On the Expressiveness of
Purely Functional I/O Systems

Paul Hudak
Raman S. Sundaresh

Department of Computer Science
Yale University
Box 2158 Yale Station
New Haven, CT 06520

March 10, 1989

Abstract

Functional programming languages have traditionally lacked complete, flexible, and yet ref-
erentially transparent I/O mechanisms. Previous proposals for I/O have used either the notion
of lazy streams or continuations to model interaction with the external world. We discuss and
generalize these models and introduce a third, which we call the systems model, to perform 1/0.
The expressiveness of the styles are compared by means of an example. We then give a series
- of surprisingly simple translations between the three models, demonstrating that they are not
as different as their programming styles suggest, and implying that the styles could be mixed
within a single program.

The need to express non-deterministic behavior in a functional language is well recognized.
So is the problem of doing so without destroying referential transparency. We survey past
approaches to this problem, and suggest a solution in the context of the I/O models described.

The I/O system of the purely functional language HASKELL is presented. The system
includes a rich set of operations, and distinguishes between file and channel I/O. The approach
‘to non-determinism is also presented. A useful aspect of the design is that it includes a rigorous
specification of the behaviour of the operating system, thus precisely fixing the semantics of
the various I/O operations. The HASKELL I/O system is capable of supporting many other
paradigms of concurrent computation in a natural way. We demonstrate this through the
emulation of Actors, UNITY, CSP, CCS and Linda.

1 Introduction

If functional languages are to be used in real applications programming, an effective I/O system
seems essential. To many, however, the mention of I/O conjures up an image of state, side-effects,
and sequencing. Is there any hope of achieving purely functional, yet universal, and of course
efficient 1/O? This is the question we will address in this paper.

To begin, we identify three basic requirements for such an I/O mechanism:

e Referential Transparency. We consider it inappropriate to use a side-effecting function which
returns the next value from the input stream, because such a function (call it get_char)
would destroy referential transparency (get-char would have to return a different value every
time it is called). Similarly, a side-effecting print function (call it put.char) would destroy
referential transparency because, for example, “f (put_char ’a’) (put_char 'a’')” would
not be the same as “f x x where x = put._char 'a’'.”

e Efficiency. An essential property of an I/O scheme is efficiency. It must be possible to imple-
ment the scheme efficiently without resorting to expensive operations like taking “snapshots”
of the system state.

e Co-operation. Another requirement for a practical /O scheme is the ability of the external
world to observe the effects of a program even though the program has not yet terminated.
Conversely, a program should also be able to observe changes made to the system state after
the program has begun. Thus we must view with suspicion, for example, any scheme which
maps a single initial state into a single final state.

The last requirement is important for several reasons. The first is that we anticipate writing
programs which co-operate interactively with traditional operating system services. This includes
traditional file manipulation (for example the changes made to a file by an editor need to be
visible to other programs without terminating the editor), device handling (for example printing),
and in general communication with other programs, machines, or users (for example standard
input/output and TCP/IP protocols).

Another reason is that we do not want a non-terminating (or just very slow) program to tie up
computer resources; we would naturally expect the I/O effects of various programs running under
a single operating system to be interleaved. In other words, suppose progl and prog2 are two
programs where progl performs the I/O operations op1 and op2 and prog2 performs operations
op3 and op4. If os is the operating system which maps a list of programs and an initial state into
a final state, we would expect:

os [progl, prog2] initial_state

to be the final state resulting from an arbitrary interleaving of op1, op2, op3 and op4. Thus for
each I/O model that we propose, we will either write such an operating system os to show that
the above property does indeed hold, or show why such an operating system cannot be written.

1.1 Purely Functional I/O

I/0O proposals meeting all of our requirements are rather difficult to come by in existing functional
languages. ML [HMT88] and ALFL [Hud84], for example, use side-effecting primitives to do I/O.
Since ALFL uses normal order evaluation, it also provides ways of forcing execution order to ensure
deterministic results. We summarize other existing approaches below.

Streams. An elegant and popular model that goes a long way toward meeting our requirements
is the use of streams, lazy lists of data objects. The name stream was first coined by Landin [Lan65];
since then, several functional languages have used streams for I/O, including Ponder, Hope, and
Miranda! [Fai85,BMS80,Tur85]. In these languages predefined identifiers are typically provided
which are bound to specific I/O channels. For example, the stream of input characters from the
keyboard might have the name kb, and the stream of output characters to the display might have
the name display — the operating system will provide the binding for kb, and the program is
expected to provide the binding for display.

Although elegant, there are at least three problems with these previous uses of the stream idiom:

1. They are not completely general, since typically the I/O devices and the operations on them
are pre-determined and fixed into the language.

2. The semantics of interactive I/O (for example, interaction with the user) is not entirely clear
(in some languages this problem is admitted up front by providing a mechanism to control
the order in which the streams are consumed and produced).

3. Anomalous situations are ignored; the possibility of error is generally not accounted for.

In the stream model of I/O that we present in Section 2.1, streams are used to invoke arbitrary
I/O operations with arbitrary responses (typically either success or failure). In addition we retain
the elegant use of streams to model interactive I/O, but we are careful to precisely define the
semantics such that the input from a user, for example, can depend on output from the program
(characteristic of many interactive applications). All three of the requirements stated earlier are
satisfied.

Continuations. Another model of I/O, namely continuation based 1/O, was first proposed
in the context of a functional operating system called Nebula [Kar81]. The idea reappeared in a
parallel functional language called PFL [Hol83], which is based on CCS [Mil81], and more recently
was adopted in the functional language Hope [MH88]. The continuation model is characterized by
a set of transactions, which are functions that typically take a success continuation and failure con-
tinuation as arguments; these continuations are in turn functions that generate more transactions.
The continuation model is appealing because it appears to be quite general, and the continuation
structure makes it easy to reason about the sequentiality of the induced effects.

In Section 2.2 we present a continuation model very similar to these, with one important ex-
ception: we assume a non-strict (i.e. lazy) functional language, whereas previous languages using
the continuation approach have been strict. This not only simplifies the design, but in addition
allows us to use the interactive lazy stream idea within the continuation model. More specifically,

"Miranda is a trademark of Research Software Ltd.

[

in PFL and Hope individual characters are read by each continuation operation, while in our model
a single read operation returns a lazy stream. Thus we are able to combine the virtues of both
“jdioms” — streams to model demand-driven sequences of data, and continuations to enforce control
restrictions.

Systems. We introduce a third model of I/O in Section 2.3, which we call the systems model,?
in which I/O is viewed as a series of transformations to an initial “system” that captures the state
of the operating system. One by-product of investigations into this model is that we cannot view
a functional program as a function from a single initial state to a single final state (at least not
without severely restricting functionality). Thus our model actually uses a stream of systems, but
surprisingly, only as output; a single initial system is sufficient to meet all of our requirements.

It is worth noting that the language FL [BWW86,WW88| performs I/O by adding a history
parameter to every function, both as argument and as result, and the notion of a history bears
strong resemblance to our notion of a system. However, FL is a strict language, and the history
objects are smplicit. The strict semantics allows the designers to cleanly define the order in which
1/O occurs, and ensures that exactly one history object is in existence at any given time. The
situation is not as simple with a non-strict language, and we view the use of implicit state variables
as undesirable because of its “imperative feel.”

1.2 Equivalence of Models

These three models of /O — streams, continuations, and systems — induce very different pro-
gramming styles on the user. However, it turns out that there exist surprisingly simple definitions
of any one of the models in terms of either of the other two; we give such translations in Section
2.4. The existence of such translations has two important consequences: First, it indicates that
these models are indeed equal in “expressivness,” thus ending long-standing debates over this issue.
Second, and perhaps more importantly, a language designer can provide all three styles within the
same language, simply by choosing one as “primitive” and then providing modules that define each
of the others in terms of the first (i.e. the styles do not have to be wired into the language). A
programmer is free to choose the style most suitable to a particular application, and even intermix
several styles in a single program.

1.3 Expressing Non-Determinism

Non-determinism is a pervasive property of real systems, and thus it seems desirable to express
non-deterministic behavior in a functional program. For example, if a program is to service two
independent sources of input (say two keyboards), then any fixed interleaving of the two streams
is unsatisfactory; what is needed is a non-deterministic merge of the two streams. Another use of
non-determinism is to express the so-called parallel-or function (which has the property that or L
True = or True L = True).

2Guch a model has been part of the folklore for some time, and was an active topic of the HASKELL committee,
but we have never seen the details worked out as we have done here.

The naive addition of a merge or amb operator to express such behaviors is undesirable because
of the loss of referential transparency. Also, the semantics and expressive power of such operators
are far from clear; Clinger [Cli82] discusses several complications caused by their introduction.

In Section 3 we review past approaches language designers have taken in adding non-deterministic
behavior to a functional language, and then suggest a solution based on insights obtained from the
design of our I/O systems. The result is a form of non-determinism that maintains referential
transparency within any single program, but not within a collection of programs; we argue that this
is a practical compromise solution to the problem.

1.4 HASKELL I/O

To show how all of these concepts look when incorporated into a real functional language, we
describe in Section 4 the design of the HASKELL I/O system which combines at least some of the
ideas we present.> We demonstrate the power of HASKELL I/O by showing how it can easily and
naturally simulate various other concurrent programming paradigms, including Actors, UNITY,
CSP, CCS and Linda.

(In the remainder of this paper all functional programming examples will be written using
HASKELL syntax.)

2 Three Models for Purely Functional I/O

We will introduce our three models of I/O — streams, continuations, and systems — by way of a
slightly modified version of an example from Kernighan and Ritchie’s The C Programming Language
[KR78]. This example is a simple file display program which prompts the user for a number of file
names, and reads and displays their contents.

The imperative version in C is shown below. In this program the procedure get_token reads the
next token off of an input stream. In the functional programs to be given shortly, get_tokens is a
function which tokenizes a character stream. The functional models of I/O assume that characters
typed in at a keyboard are not echoed by the operating system, whereas in the C program they
are.

8For a complete specification of the HASKELL I/O system, see [Hea88].

#include <stdio.h>
main () /* cat: concatenate files */
{

FILE *fp, *fopen();

char *get_token();

char *name;

printf("type in file names\n");
while (name = get_token(stdin))
if ((fp = fopen(name,"r")) == NULL) {
printf("can’t open file\n");
break;
} else {
file_display(fp);
fclose(fp);
}
}

file_display(fp) /* copy file to standard output */
FILE =*fp;
{

int ¢;

while ((c = getc(fp)) != EOF)
putc(c, stdout);

2.1 The Stream Model

In our stream model of I/O a program is simply viewed as a black box that generates a stream of I/O
requests; these requests are given to the operating system, processed one-by-one, and returned to
the program as a stream of responses. Thus if Request is the datatype of requests, and Response is
the datatype of responses, then a program p has type [Response] -> [Request]; the nth request
generates the nth response.

The response itself depends on the request, and would normally include the possibility of error.
However in the sample program below, tests for failure are omitted, as they are in the C program.
(In HASKELL a program has value main.?)

*Note that resps cannot be taken apart by pattern matching, since this would entail evaluating the response list
before any requests have been issued, resulting in L.

main resps =
[AppendChannel "stdout" "type in file names\CR\",
ReadChannel "stdin"]
++ file_display (tl (tl resps))
(get_tokens
(case resp!!2 of
Return user_input -> user_input))

where file_display resps [] = []
’ resps (name:names) =
[AppendChannel "stdout" name,
ReadFile name,
AppendChannel
"stdout"
(case resps!!2 of
Failure msg -> "can’'t open file\CR\"
Return file_contents -> file_contents)]
++ file_display (tl (t1 (tl resps))) names

(The functions hd and t1 are the obvious “head” and “tail” functions defined on lists; similarly,
we will use £st and snd for selectors on tuples.) Referential transparency is preserved because
there is no lexical connection between a request and a response. Thus although two different
“read” requests of the same file are equivalent values, their effect will depend on their position in
the request list, and each could invoke a different response, reflecting the fact that other programs
- may have modified the file in question between the two reads.

We now present an operating system function os which services the requests of (for simplicity)
two programs p1 and p2, and executes them in an interleaved manner. This will demonstrate the
model’s capability for co-operation/communication among different programs engaged in I/0O.

(tagged_responses, final_state) = os tagged_requests initial_state
where tagged_requests = merge requestsl requests2

requestsl = pl (untag 1 tagged_responses)

requests2 = p2 (untag 2 tagged_responses)

os maps a list of tagged requests and an initial state of the system into a list of tagged responses
and a final state of the system. The non-deterministic interleaving of effects is accomplished via
the merge operator which produces a tagged non-deterministic merge of its two list arguments (we
return to the issue of non-determinism in Section 3). untag picks out responses of a given tag value
from a tagged list of responses. Note that this scheme can be generalized to an arbitrary number
of programs.

The state of the system is a single-threaded object, and so can be implemented efficiently. On
the other hand, a certain amount of file copying may be necessary. For example, consider the
following scenario: First a program issues a read file request, but since the read is done lavily, no
actual reads are done until the value of the file is demanded. Suppose in the meantime another

program updates the file. This would mean that a copy of the old file must be saved until the
reference to it is “released” by the first program.

2.2 The Continuation Model

In this model, instead of having to manipulate lists of requests and responses, the programmer ini-
tiates I/O operations via continuation style transactions. For example, a request such as ReadFile
name in the systems model corresponds to the transaction:

ReadFile name (msg -> error_transaction)
(contents -> success_transaction)

where the second and third arguments are the failure and success continuations, respectively. The
value of the overall expression is the error continuation applied to the resulting error message if the
read fails, and is the success continuation applied to the contents of the file if the read succeeds.
Below we show the running example in this style. Note that it is laid out in such a way as to
facilitate an “imperative reading” of the program.

main = AppendChannel "stdout" "type in file names\CR\" exit (
ReadChannel "stdin" exit (user_input ->
file_display (get_tokens user_input)))

where file_display [] = done
’ (name:names) =
AppendChannel "stdout" name exit (
ReadFile name
(msg -> AppendChannel "stdout"
"can’'t open file\CR\"
exit
Done)
(contents ->
AppendChannel "stdout" contents exit (
file_display names)))
exit = msg -> Done

Referential transparency is maintained in this model for the same reason as in the stream model:
there is no lexical connection between transactions and results. However, whereas in the stream
model the functional connection was via position in a list, here the connection is established by
way of continuations.

We will write the operating system function for this model too, to show how programs indulging
in this form of I/O can co-operatively change a shared state.

os pl p2 state = os’ pl’' p2’
where os’ Done Done = state
os’ (<transaction> <args> succ_cont fail_cont) p =
os (case resp of
Return result -> succ_cont result
Failure msg -> fail_cont msg) p state’
where (resp, state’) = process <transaction> <args> state
os’ pl p2 = os’ p2 pil
(p1’,p2’) = perm p1 p2

Here the non-deterministic interleaving of effects is accomplished via perm, which returns a non-
determinstic permutation of its two arguments, and is “bottom-avoiding” in its first argument. The
remainder of the definition should be self-explanatory.

Since at any one time, only one version of the system state is in existence, this model can be
implemented efficiently. However the comment made about file copying in the stream model applies
equally here.

2.3 The Systems Model

The naive version of the systems model of I/O views a program simply as a function from an initial
system to a final system, where a “system” is meant to capture the entire operating state of interest
(files, devices, etc.). Normal I/O operations like reading and writing files are functions which take
a system and return a result and an “updated” system.

This view, while enticing, is not workable.> To see this, let us try to write an operating system
function for two programs doing I/O in this model.

os pl p2 state = amb (p1 (p2 state)) (p2 (pl state))

where amb non-deterministically returns either of its arguments. There is not much more than this
that we can do! It is apparent that there can be no interleaving of the effects of the two programs.

Ignoring this problem for the moment, let us look at the model from the angle of efficiency. The
fact that the I/O operations of two programs cannot be interleaved means that all the operations
desired by a program must be performed contiguously. Since the model makes it possible for non-
single-threaded usage of the system objects, expensive simulation of I/O operations has to be done
within the program. This can be made clear by the following example: a program that writes a
file "foo" and returns the original system if the write succeeds.

prog = sysO -> case resp of
Success -> sys0
Failure msg -> sysl
where (resp,sysl) = writefile "foo" "junk" sysO

5Thomas Johnsson first pointed out this flaw in a translation of this model into the streams model.

In this program the value of resp is needed to determine which system to return; i.e. the program
requires the result of the writefile even before “returning” anything to the 1/O system. Thus
the write must be simulated within the program. This means that a proper implementation of this
model is going to be arbitrarily inefficient.

An obvious fix to this problem is a model in which a program is viewed as a function from a
list of systems to a list of systems (an alternative considered by the HASKELL committee), where
the effect of an operation on one system is visible only in the next input system. This model has
an efficient implementation since the system state is single-threaded — the order in which I/O
operations are carried out is fixed by the output list of systems. It is also clear that the model can
interleave the effects of many programs.

Surprisingly, however, this same functionality can be obtained by a model where programs
map a single initial system to a list of output systems! We prefer this latter model because it is
equivalent in power to the former, but is more convenient to use in that it relieves us from the
tedium of managing two separate lists. As before, the result of an I/O operation on a system is
a response and a modified system; the new system can then be used for further I/O. The main
advantage over the stream model is that some of the tedium of matching requests and responses is
avoided. We show the running example in this style:

main sysO =
sysl : sys2 : file_display sys2 (get_tokens
(case resp2 of
Return user_input -> user_input))

where (sysi,respl) = appendChannel "stdout" "type in filenames\CR\" sys0
(sys2,resp2) = readChannel "stdin" sysi
file_display sys [1 = []
! sys (name:names) =
sysl : sys2 : sys3 : file_display sys3 names
where (sysi,respl) appendChannel "stdout" name sys

(sys2,resp2) = readFile name sysl
(sys3,resp3) =
appendChannel
"stdout"

(case resp2 of
Failure msg -> "can't open file\CR\"
Return file_contents -> file_contents)
sys2

Although we have not yet specified the internals of a “system” object, in the next section we
give a representation of a system using streams. One implication of this translation is that the
interleaving property we showed for the streams model holds for the systems model too.

Finally, we note that the sequence of intermediate systems is clearly specified, which means
that the order in which I/O operations are to be done is fixed. This means that the system state
is single-threaded, which in turn implies that efficient implementations are possible.

9

2.4 Equivalence of the Three Models

Although it is not apparent at first sight, there exist simple translations of one style of I/O into
another. In the sections that follow, we show how each model can support the other two.

2.4.1 Streams as Primitive

Given that a program is a function from responses to requests, how can we support the other
two styles? The continuation style can be supported simply by defining each transaction to be a
function from responses to requests, just like a program in the streams model. For example, the
definition of readChannel and done would be:

readChannel name fail_cont succ_cont =
resps -> ReadChannel name :
' case (hd resps) of
Failure msg -> fail_cont msg (tl resps)
Return contents -> succ_cont contents (tl resps)
done resps = []

Given these definitions, a program written in the continuation style will map a list of responses to
a list of requests as desired.

The system style of I/O can also be supported by representing a system as a response list-request
pair: '

type System = ([Response] ,Request)

The I/O operations are then defined to pull out a response and return a new system. As an example
consider the definition for readChannel:

readChannel name (resps, req) =
(hd resps, (tl1 resps, ReadChannel name))

Given these definitions, a program p written in the systems model described earlier can be coerced
into the streams model as follows:

resps -> map snd (p (resps, NullRequest))

where NullRequest is a dummy request.

2.4.2 Continuations as Primitive

Using continuations as primitive, first we will show how to provide a stream style of I/O. Given
a program written in the stream model, its meaning is given by the following continuation style
function c; which can be viewed as an interpreter for the stream model, written in the continuation
model.®

SA translation similar to this was first given by Simon Peyton Jones.

10

c prog =
case (prog bottom) of
[1 -> Done
(ReadChannel name) : reqs ->
readChannel name
(msg -> ¢ (resps -> tl (prog (Failure msg : resps))))
(contents -> ¢ (resps -> tl (prog (Return contents : resps))))
....and similarly for each other request....

bottom = bottom

It is interesting to note that this translation has an unavoidable “space leak,” in that the two
continuation arguments grow linearly in the number of requests issued. This also implies that the
time to process n requests grows as n?, since the nth request can only be obtained by applying t1
n-1 times. The space leak exists because the function has to be reevaluted to get information about
the rest of the program.’

A very similar translation provides the systems style of I/O, with systems and the I/O functions
being represented as in the previous section. The details are omitted.

2.4.3 Systems as Primitive

Using the systems model, simulating streams is rather straightforward. Consider a program s writ-
ten in the streams model; to run it in the systems model, we would use the following “interpreter:”

sys0 -> map fst answers
where answers = scan (x -> y -> (req-to-fn y) (fst x))
(sys0,NullResp)
requests
requests = s responses
responses = map snd answers

req-to-fn gives the system operator corresponding to a request. For example, “req-to-fn
(ReadChannel name)” is “readChannel name.” scan is defined by:

scan f a [] = []
: fa(x:xs) =fax:scanf (f ax) xs

To provide a continuation style, we write the transactions in the systems model. For example,
the readChannel and done transactions are defined by:

TGiven £ L = a:l, the second request can be accessed only by hd(t1(f a:L1)), i.e. £ must be reevaluated on
the whole argument. Compare this with a program in the continuation model: Given a program <transactioni>
<guccess continuation> <failure continuation> all we have to do to get at the second transaction given the
response to the first one, is to apply one of the continuations (depending on whether the operation succeeded or
failed) to the response.

11

readChannelC name fail_cont succ_cont =
sys -> sys’ : (case resp of
Failure msg -> fail_cont msg sys
Return contents -> succ_cont contents sys’)
where (sys’,resp) = readChannelS name sys

done = sys -> []

where readChannelC and readChannelS are the continuation and system functions, respectively,
for reading a channel. Thus, given the above definitions, a program written in the continuation
style has type System -> [System].

2.5 Comments

Given that the models are all equivalent, what can we say about their merits with respect to other
factors such as style, ease of programming, etc.? In this section we comment on these and other
issues.

e Programs using the stream style must be written with care, since subtle strictness bugs can
arise. The root of the problem is that examining a response “before” the corresponding
request is issued results in “deadlock” (i.e. L), which is an easy mistake to make since the
response list and request list are completely separate. A particularly subtle form of this bug
occurs in combination with pattern matching. For example, the following program, which
purports to write a simple message to standard output, will not work.

main [resp] = [WriteChannel "stdout" "hello"]

This is because pattern-matching demands that the response list be of a certain structure
even before the simple request is issued.

e The equivalence of the styles has an interesting implication: they can be used together in a
single program, especially (for stylistic reasons) when the program is divided into modules.
Each module can use the I/O style most suited to it or most preferred by its author.

o All three I/O models benefit from non-strict semantics in two distinct ways. The first is
that the operating system can delay responding to an I/O operation until the response is
demanded by the program. To see how this is useful consider the following compiler scenario:
For each library function mentioned in a source program, a certain information file must be
read. Ordinarily, one must choose either to make an extra pass of the program to pick out
the library functions and read the required information, or one must interleave code to do the
reading with the main pass of the compiler. Both alternatives are unsatisfactory; the first is
inefficient, while the second destroys modularity. In our I/O systems lazy evaluation comes
to the rescue. We would first “read” the required information for all the library files; but the
actual reading takes place only when the values are demanded, i.e. only for library functions
mentioned in the program. Thus both efficiency and modularity are preserved.

12

The second benefit is that since the response to requests like ReadChannel is a lazy stream
itself (i.e. a stream of characters), the routines which do the computation need never deal
with I/O or synchronization of 1/O; they simply get a character list as argument, which they
process in the usual functional style.

e An important characteristic of all the functional I/O schemes discussed is their ability to
“feel” external effects. This capability is invaluable for interactive programs like editors.
The streams and continuation models obviously provide this capability, but what is perhaps
surprising is that the systems model does also, even though it takes only one initial system
as input. This can be seen by the simulation of systems using streams given earlier.

o In our experience with writing example programs, we have found that the continuation style
is often easier to use and the resulting programs easier to read. The reasons for this are that
the continuation model reduces the syntax for handling the responses to I/O operations; the
response handling is in a sense “built-in.”

3 Non-Determinism

One of the well known shortcomings of functional languages is their inability to express non-
deterministic behaviour. Henderson [Hen82] shows how introduction of such behavior into a func-
tional language makes it possible to write a wide range of useful operating system-like programs.
He introduces non-determinism by the use of an operator called merge, which produces the non-
deterministic merge of two lists. The problem with this solution is that referential transparency is
destroyed. This implies that equational reasoning, an important program verification tool, can
no longer be used. Also, programs using these techniques tend to be difficult to read. The
term “sphagetti programming” has been used to describe them [Sto84,Tur87]. The explicit use
of non-determinism also raises a host of questions about its interaction with the parameter passing
mechanism [Cli82] and the formal semantics of non-deterministic operators is complex [Ss88].

First, we shall critically survey some of the proposals made to overcome these problems, and
then outline our proposal.

3.1 Stoye’s Approach

Stoye [Sto84] views an operating system as a collection of processes, each of which is a functional
program with a single input list and a single output list. The output list of a process is a list of
tagged data, the tag specifying the addressee. The non-determinism in the system comes into play
when two processes send messages to the same process. All the messages sent to a given process are
“merged” into a single list and given to it. This merge occurs outside of all the processes in what
Stoye calls the sorting office. The advantage of this scheme is that each of the processes themselves
are referentially transparent, and can be subjected to equational reasoning. Turner [Tur87] refined
this idea somewhat for use in another functional operating system effort, the KAOS project.

Stoye applies this style profitably to the task of writing operating system programs like device
handlers. But we claim that there are applications where this style is not suited ideally. Consider

13

the well known generate-and-test paradigm: first compute a set of candidate solutions to a problem,
then apply in parallel a test to each of them. We wish to be informed of solutions as and when
they are found. In a functional language without non-determinism, this behaviour is impossible to
obtain. The list of test results is obtained in a fixed order and if say, any one of the tests takes
a long time, solutions further down in the list which are already available will be delayed. In the
case that a test does not terminate, solutions further down the list may never be displayed.

To express this behaviour in Stoye’s scheme, we would need to create a separate process for
each of the tests and have them send their results to another process which collects them — the
non-determinism in the sorting-office gives the desired behaviour. But now the code is considerably
more complex, and modularity has been impaired.

3.2 Burton’s Approach

Burton [Bur88] addresses the problem of loss of referential transparency in a different way, and
comes up with a solution involving what he calls “pseudo-data.” He proposed to supply each
program with an extra argument: a infinite binary tree of values. Whenever the program needs
to make a non-deterministic choice, the binary tree is consulted (as a kind of oracle). A tree is
chosen rather than a list because any number of subtrees can be extracted from a binary tree.
Burton notes that in practice the values in the tree will be determined at run-time (when used as
an argument to a special function), but once fixed will never change.

While Burton’s proposal does provide non-determinism with referential transparency, it still
advocates unfettered (and possibly undisciplined) use of the merge operator. Stoye [Sto84] and
Turner [Tur87] claim that the unrestricted use of a non-deterministic operator like merge reduces the
readability of the program; in Burton’s proposal this criticism is heightened because the “pseudo-
data” tends to clutter the program even more.

3.3 Our Approach

We will refer to Burton-style non-determinism as being “amb-like,” and to Stoye-style non-determinism
as being “process-like.” In this section we will show how both kinds of non-determinism may be
achieved via small extension to our I/O models, and we discuss a related method used in HASKELL.

A simple way to achieve amb-like non-determinism in the streams model is to introduce a
request called amb which takes two arguments, and the corresponding response would return the
non-deterministic choice between those arguments. The same idea could be used with either the
continuation or systems model as well. In this way we can achieve amb-like non-determinism in
a referentially transparent way, but without cluttering up a program with “psuedo-data.” The
“generate-and-test” problem mentioned earlier can be solved nicely with this approach.

Similarly, the process-like non-determinism that Stoye uses can be achieved by providing a
special request to perform the function of Stoye’s sorting office. In a later section we will in fact
exploit this idea in demonstrating how to express other paradigms of concurrency.

As can be seen, the fundamental idea behind our approach to non-determinism is the use of the
operating system to provide “special non-deterministic services,” such as amb, the sorting office,

14

or whatever. Another example of such specialization is the non-deterministic servicing of multiple
agents (such as two keyboards), which can be handled by generalizing the ReadChannel request to
one that takes a list of channels, the response being a non-deterministic merge of the streams. This
was in fact the solution adopted in HASKELL.

Analogous to channel read, the channel write request WriteChannel could also be generalized
to take a number of streams and write their non-deterministic merge to the named channel. This,
however, may require logical parallelism within a program, and thus may be more difficult to
implement than any of the ideas mentioned so far. Nevertheless, it may be desirable as an alternative
solution to, for example, the “generate-and-test” paradigm.

4 The HASKELL I/O System

This sections describes in detail the specification of the HASKELL I/O system. Of noteable interest
is section 4.6, where the semantics of a HASKELL program engaged in I/O is described within the
operating system in which it runs.

The HASKELL I/O system unifies two popular styles of purely functional 1/O processing: the
stream model and the continuation model. Programs in either style may be combined under this
framework with a well-defined semantics. The specific I/O operations available in each style are
identical; what differs is the way they are expressed. In both cases arbitrary I/O operations within
conventional operating systems may be induced while retaining referential transparency internal to
a program.

4.1 Stream-based I/0

A HASKELL program engaged in input/output (I/O) processing must have type:
Behavior = [Response] -> [Request]

Intuitively, [Response] is an ordered list of responses, and [Request] is an ordered list of requests.
The nth response is the reply of the operating system to the nth request.

The required requests for a valid implementation are:

data Request = ReadFile Name

| WriteFile Name Contents

| AppendFile Name Contents

| DeleteFile Name

| ReadChannel Name

| ReadChannels [Name]

| AppendChannel Name Contents
type Name = String

15

Requests operate on two conceptually different components of a system: a file system (re-
sponding to the first four requests above), and a channel system (responding to the last three).
The file system is fairly conventional: a mapping of file names to contents. The channel sys-
tem consists of a collection of channels, examples of which include standard-input and standard-
output. A channel is a one-way communication medium — it either consumes values from the
program (via AppendChannel) or produces values for the program (via response to ReadChannel
or ReadChannels). Channels communicate to and from agents (a concept to be made more precise
later). Examples of agents include line printers, disk controllers, networks, and human beings.
As an example of the latter, the user is the consumer of standard-output and the producer of
standard-input.

Requests to the file system are in general order-dependent; if 7 > j, then the response to the
th request may depend on that of the jth request. In the case of the channel system, the nature
of the dependencies is dictated by the agents, and in certain cases exhibits reverse dependencies.
In all cases, external effects may also be felt “between” internal effects. All of this is formalized in
[Hea88].

Responses are defined by:

Success

data Response =
| Return Contents
|
|

TagReturn TagContents
Failure ErrorMsg

type ErrorMsg = String

Thus the response to a request is one of several kinds of success, or failure. Return and
TagReturn occur when results are expected, whereas Success occurs when a simple acknowledge-
ment is sufficient. Information about the kind of failure is contained in the ErrorMsg, the exact
nature of which depends on the request, but is otherwise left unspecified.

The datatypes Contents and TagContents define the kinds of values that are allowed to be
stored in a file or communicated on a channel:

type Contents = String
type TagContents = [(Name,Char)]

A value whose type is an instance of the class Gap may be written to a file (or communicated on a

channel) by first using put to convert it to a string; similarly, to read such a value from a file (or a
channel), get must be used. 8

4.2 Continuation-based I/0

HASKELL supports an alternate style of I/O called continuation-based I/O. Under this model a
HASKELL program is still considered to have type [Response] ->[Request], but instead of having

Sput and get are automatically derived for each type. For more on this see [Hea88].

16

the user manipulate the requests and responses directly, a collection of transactions are defined
which capture the effect of each request/response pair using a continuation style.

Transactions are just functions. For each request Req there corresponds a transaction req, as
shown below: For example, ReadFile is a request normally used in a form such as “ReadFile name”
and is expected to induce either a failure response “Failure msg” or success response “Return
contents”. In contrast, using the continuation style the transaction readFile would be used in a
form such as:

readFile name (msg -> error_transaction)
(contents -> success_transaction)

where the second and third arguments are the failure continuation and success continuation, respec-
tively. If the transaction fails, the error continuation is applied to the error message; if it succeeds
the success continuation is applied to the contents of the file. This functionality is defined in terms
of requests and responses as shown below:

type Behavior = [Response] -> [Request]

type SuccCont = Behavior
type RetCont = Contents -> Behavior
type TagRetCont = TagContents -> Behavior

type FailCont ErrorMsg -> Behavior

-- The transactions are:

done M Behavior
readFile :: Name -> FailCont->RetCont ->Behavior
writeFile :: Name ->Contents->FailCont->SuccCont ->Behavior
appendFile :: Name ->Contents->FailCont->SuccCont =->Behavior
deleteFile :: Name -> FailCont->SuccCont ->Behavior
readChannel :: Name -> FailCont->RetCont ->Behavior
readChannels ::[Name]-> FailCont->TagRetCont->Behavior

appendChannel:: Name ->Contents->FailCont->SuccCont ->Behavior

done resps = []
readFile name fail succ resps =
(ReadFile name)
case (head resps) of
Return contents -> succ contents (tail resps)
Failure msg -> fail msg (tail resps)
writeFile name contents fail succ resps =
(WriteFile name contents)
case (head resps) of
Success -> succ (tail resps)
Failure msg -> fail msg (tail resps)
appendFile name contents fail succ resps =
(AppendFile name contents)

17

case (head resps) of
Success -> succ (tail resps)
Failure msg -> fail msg (tail resps)
deleteFile name fail succ resps =
(DeleteFile name)
case (head resps) of
Success -> succ (tail resps)
Failure msg -> fail msg (tail resps)
readChannel name fail succ resps =
(ReadChannel name)
case (head resps) of
Return contents -> succ contents (tail resps)
Failure msg -> fail msg (tail resps)
readChannels names fail succ resps =
(ReadChannels names)
case (head resps) of
TagReturn tcontents -> succ tcontents (tail resps)
Failure msg -> fail msg (tail resps)
appendChannel name contents fail succ resps =
(AppendChannel name contents)
case (head resps) of
Success -> succ (tail resps)
Failure msg -> fail msg (tail resps)

4.3 File System Requests

In the descriptions that follow, requests are described using the underlying stream model — the
corresponding behavior using the continuation model should be obvious. Also, only the successful
situations are described — failures generally result in a system-dependent response indicating the
cause of failure. Typical failure messages are "File not found", "Access rights violation",
etc.

ReadFile name

Accesses the contents of the file named name. If successful, the response will be of the form Return
contents, where the structure of contents will depend, of course, on what was written. Typically,
and the only required aspect of a valid implementation, the contents will be a (lazy) list of filed
characters. .

For example, to sum together all of the elements of an integer file (one written with contents put
0 grade_list "") whose name is "grades", one would first issue the request ReadFile "grades".
If the response is of the form Return filed grade_list, then:

foldl (+) O grades
where (grades, restfile) = (get O filed_grade_list)

18

would sum the grades accordingly.
WriteFile name contents

Associates with the file name the contents contents. A successful response has form Success.

Given the two juxtaposed requests:
[..., WriteFile name contentsl, ReadFile name, ...]
with the corresponding responses:
[..., Success, Return contents2, ...]

then contents1l == contents?2, assuming there were no external effects.

AppendFile name contents
DeleteFile name

These induce the obvious effects, with successful response Success.

Note that a proper implementation of ReadFile may at times have to make copies of files in
order to preserve referential transparency — a successful read of a file should preserve the correct
contents, despite future writes to or deletions of the file.

4.4 Channel System Requests

Channels are inherently different from files — they contain “ephemeral” streams of data as opposed
to “persistent” stationary values. The most common channels are standard-input, standard-output,
and standard-error, and in fact these three are the only required channels in a valid implementation,
where they must have the names "stdin", "stdout", and "stderr", respectively.

ReadChannel name

Opens the channel named name for input. The successful response returns the channel contents
as a lazy stream. Possible failures include "Channel does not exist", "Illegal access", and
"Channel is write-only".

Unlike files, once a channel has been opened, it cannot be opened again in the same program.

This reflects the ephemeral nature of its contents and prevents a serious “space leak.”

ReadChannels [namel, ..., namek]

19

Opens namel through namek for input. Successful response has type TagReturn [(Name,Char)],
where the list of tagged elements is the non-deterministic merge of the individual channels. If an
element of this list has form (namei,ci), then it came from channel namei in the list of channel
names given to ReadChannels.

Note that although non-determinism is mentioned, it is confined to the operating system, and
thus programs using ReadChannels are internally referentially transparent.

AppendChannel name contents

Has the obvious effect of writing contents to the channel named name. The semantics here is
similar to that of AppendFile in that the contents is appended to whatever was previously written.

Note that channels cannot be deleted, nor is there a notion of creating a channel.
4.5 Optional Requests
The following requests are not required of a valid HASKELL implementation, but may be useful.

CreateProcess prog

Has the effect of introducing a new program prog into the operating system. prog should have the
type [Response] -> [Request]. This request is necessary if programs such as operating system
command line interpreters are to be written in HASKELL.

CloseChannel name

Closes the named channel which may then be reopened. Certain kinds of devices may require this
request.

CreateDirectory
DeleteDirectory

These induce the obvious effects.

4.6 I/0 Semantics

The behavior of a HASKELL program engaged in I/O is given within the context in which it is
running. That context will be described using standard HASKELL code augmented with a non-
deterministic merge operator.

The state of the operating system (OS state) is completely described by the file system and the
channel system. The channel system is split into two subsystems, the input channel systcin and
the output channel system.

20

type State = (FileSystem, ChannelSystem)
type FileSystem = Name -> Response
type ChannelSystem = (Ics, Ocs)

type Ics = Name -> (Agent, Open)

type Ocs = Name -> Response

type Agent = [State] -> Response

type Open = Pid -> Bool

type Pid = Int

type Plist = [(Pid, [Request->Response])]

Note that an agent maps a list of OS states to responses. Those responses will be used as the
contents of input channels, and thus can depend on output channels, other input channels, files, or
any combination thereof. For example, a valid implementation is required to allow the user to act
as agent between the standard output channel and standard input channel.

Running processes (i.e. programs) are identified by a unique Pid. Elements of Plist are lists
of running programs.

os :: TagReqlist -> State -> (TagResplist, State)
type TagResplist = [(Pid,Response)]
type TagReqlist [(Pid,Request)]

The operating system is modeled as a (non-deterministic) function os. The os takes a tagged
request list and an initial state, and returns a tagged response list, a final state and a list of
processes. Given an initial list of programs start_plist, os must exhibit the following behavior:

(tag_resplist, state’, plist) = os tag_reqlist state
tag_reqlist = merge [zip [pid,pid..]
(proc (untag pid tag_resplist))
Il (pid, proc) <- processes]
processes = start_plist ++ plist

where merge is a non-deterministic merge of a list of lists, and untag is defined below:

untag n [] =[]
’ n ((m,resp):resps) = (n==m) => resp:(untag n resps);
untag n resps

This relationship accounts for dynamic process creation using CreateProcess.

In addition, a valid implementation must ensure that the input channel system is defined at
"stdin" and the output channel system is defined at both "stdout" and "stderr". Furthermore,
if the agent attached to standard-input is called user (i.e. ics "stdin" has form (user, open)),
then user must depend at least on standard-output. In other words, the following coustraint must
hold:

21

user [..., (fs,(ics,ocs8)), ...] = ... user’ (ocs "stdout")

where user’ is a strict, but otherwise arbitrary, function modeling the user. Its strictness corre-
sponds to the user’s consumption of standard-output in the process of determining standard-input.

Finally, the required behavior of os in response to each kind of request is given in [Hea88].

4.7 Comments

e Since we have already seen that streams can efficiently support other styles of I/O, we chose
streams as the primitive in HASKELL (for example, they avoid the linear-space quadratic-time
inefficient that would result if continuations were chosen as primitive). This does not mean
that streams are the preferred programming model, but just that they are considered simple
and general enough to be designated as primitive.

e Note that of the non-deterministic requests only ReadChannels is a required feature of
HASKELL. This reflects the feeling that while ReadChannels is definitely a useful opera-
tion, the non-deterministic write operation will find use only in a parallel implementation.

e The only type which the I/O system will handle is String. Thus every other type will first
have to be converted to/from String before/after I/O. This is potentially a problem, for it
would be very inconvenient if the programmer had to write two such routines for every type
in his program. HASKELL solves this problem by automatically generating such functions for
any data type via the derived instance declaration mechanism [Hea88].

e We have introduced the notion of an agent that consumes data on output channels and pro-
duces data on input channels. This is useful in capturing the semantics of interactive I/O
operations. For example, the user is an agent who consumes standard output and produces
standard input. This particular agent is required to be strict in the standard output, corre-
sponding to the notion that the user reads the terminal display before typing at the keyboard.

5 Other Programming Paradigms

What is the relationship between HASKELL and other proposals for concurrent computation? To
put the expressive power of HASKELL into context, we will show in this section how other styles
can be expressed fairly naturally in HASKELL (or in any functional language incorporating our
ideas about functional I/O). The point is not to show “equivalence,” but to demonstrate how these
styles find a concise expression in HASKELL.

5.1 HASKELL, the Actor

The Actor Model of computation [Agh86] consists of a number of computational agents called
actors. An actor maps each incoming communication to a 3-tuple consisting of:

e A finite set of communications sent to other actors.

22

e A replacement behavior (which governs the response to the next communication processed).

e A finite set of new actors created.

It is not difficult to see how the HASKELL I/O system can be used to write actor programs.
Each actor is represented by a HASKELL program. In the actor model, communication is handled
by an underlying invisible mail system (similar in ways to Stoye’s sorting office) — in HASKELL
one 1/O channel can be dedicated to function as this mailbox. Note that each process needs a
unique tag to identify addressees of the messages. Thus, communication can occur by I/O write
operations. The replacement behavior is simply expressed as a recursive function call on the rest of
the messages for the actor. Creating new actors can be achieved via HASKELL’s CreateProcess.

There have been several languages based on the actor model. Agha [Agh84] defines one called
SAL. The following SAL program fragment models a shared bank account. (It is a simplified
version of the example in [Agh84].) Only two operations, namely depositing and balance querying,
are allowed. Both these operations return the balance after completion. (In the program that
follows, r specifies the type of the transaction, d the amount involved, and m specifies the mail
address of the customer.)

def bank_account (a) [r, d, m]
if r = deposit then
become bank_account <a+d> //
send [a+d] tom
fi
//
if r = balance then
become bank_account <a> //
send [a] tom
fi
end def

The corresponding HASKELL program would look as follows. The program can be made to
look even more like the actor version by defining syntax to mimic become, send and other SAL
primitives.

main resps =
[ReadChannel "mailsystem",

WriteChannel "mailsystem" answers]

where answers = put (bank_account O queries)
queries = get resps!!l
bank_account a [] = []
’ a (DEPOSIT d m : rest) = (a+d,m) : bank_account (a+d) rest
’ a (BALANCE m : rest) = (a, m) : bank_account a rest

23

5.2 The UNITY in HASKELL

UNITY is a computational model and a proof system [CM88] for developing programs in general
and parallel programs in particular. A UNITY program consists of a declaration of variables, a spec-
ification of their initial values, and a set of multiple assignment statements. A program execution
starts from any state satisfying the initial condition and goes on forever; in each step of execu-
tion some assignment statement is selected non-deterministically and executed. Non-deterministic
selection is constrained by the following “fairness” rule: Every statement is selected infinitely often.

The following UNITY program (from [CM88]) non-deterministically merges two sequences x
and y into z.

Program MUX
assign
X,z := tail(x), z;("x",head(x)) if x != null
y.z := tail(y), z;("y",head(y)) if y != null
end {MUX}

In HASKELL, this could be naturally expressed as follows: The state of the program would be
represented as a tuple of the relevant values, and each of the UNITY multiple-assignment statements
would be written as a state transforming function. The non-deterministic control can be provided
by the oracle form of non-determinism described before. At each stage, one of the functions would
be chosen by inspecting the ressult of a choose transaction, and applied to the state to obtain a
new state.

mux (x,y,[]) where
mux state = choose [f1, £f2] (f ->
mux (f state))
f1 (x:xs, y, 2) = (xs, y, z ++ [x])
£2 (x, y:ys, z) = (x, ys, z ++ [y])

This style of programming in HASKELL has been used previously to express asynchronous process
simulations [HA88].

5.3 HASKELL meets Linda

Linda [Gel85] is a parallel programming language, where a program is a set of cooperating processes
communicating asynchronously via a global data structure called tuple space. Processes add tuples
to tuple space by an out operation. The operation of removing tuples from tuple space (in) takes a
template and instantiates variable slots with values from a tuple which matches the constant slots.

HASKELL already provides a process oriented model (the only difference being that the processes
must be HASKELL programs). The flexibility of the I/O system can be put to good use by providing
aI/O device called (say) tuplespace. The operations on this tuple space are in the form of requests
corresponding to in and out.

A common Linda paradigm is the “task bag” paradigm, where processes pick out tasks from a
bag, and add in new tasks generated. In Linda, each process would look as follows:

24

process_i

{
do forever {
in ("task", var task-descriptor) /#pick task to work on*/
... process the task ..
out("task", task-descriptor) /*add new task to bag */
}
}

In HASKELL this would look as follows:

process_i resps = [ReadChannel "tuplespace"
("task", var task-descriptor),
WriteChannel "tuplespace" new_tasks]
where new_tasks = process tasks
tasks = resps!!l
. description of process ..

5.4 Communicating Sequential (HASKELL) Processes

Much work has been done in developing a calculus of interacting processes, the two most important
being CCS [Mil81] and CSP [Hoa78,Hoa85]. It is clear that the parallel programming paradigm CSP
has a communication structure which could be reproduced in HASKELL. The main difference, as
Hoare points out in a comparison with [Kah74], is that communication in CSP is synchronous, while
functional multiprogramming models (including HASKELL) are asynchronous. To force synchronous
execution of HASKELL processes, the “sorting office” described earlier could match input and
output requests before sending out a response. Turner [Tur87] refines Stoye’s scheme to achieve
synchronous communication in a similar way.

In [Hoa85] Hoare also points out that in a functional multiprocessing system the processes
themselves are deterministic; for example it is not possible for a process to wait for the first of two
inputs. This criticism clearly does not apply to HASKELL, since non-deterministic requests like
ReadChannels give us the desired functionality without destroying referential transparency.

6 Conclusion

Contrary to popular belief, purely functional I/O can be both flexible and concise. Lazy evaluation,
one of the most important tools in the functional programmer’s toolbox, serves us well in the context
of 1/O; perhaps this should come as no surprise. We plan to gain more practical experience by
writing numerous functional programs involving I/O using HASKELL.

Non-determinism is manifested in the “glue” with with programs are put together. Thus the
programs themeselves remain referentially transparent. These approaches also naturally apply to
work on writing non-determinate systems in a functional language (notably, functional operating
systems).

25

References

[Agh84]
[Agh8e]
[BMS80]
[Bur8s]

[BWWs6]

[Cli82]

[CMsS]
[Fai85]

[Gel85]

[HASS]

[Hea88]

[Hen82]

[HMTSS]

[Hoa78]

Gul Agha. Semantic Considerations in the Actor Paradigm of Concurrent Computation,
pages 151-179. Volume 197 of Lecture Notes in Computer Science, Springer Verlag, 1984.

Gul Agha. Actors A Model of Concurrent Computation in Distributed Systems. The
MIT Press, 1986.

Burstall, McQueen, and Sanella. Hope: an experimental applicative language. In Pro-
ceedings 1st International LISP conference, Stanford, 1980.

F. W. Burton. Nondeterminism with referential transparency in functional programming
languages. The Computer Journal, 31(3):243-247, 1988.

John Backus, John H. Wkilliams, and Edward L. Wimmers. FL Language Manual (Pre-
liminary Version). Technical Report RJ 5339 (54809), IBM Almaden Research Center,
November 1986.

" W. Clinger. Nondeterministic call by need is neither lazy nor by name. In Proc. 1982

ACM Symp. LISP and Functional Programming, 1982.
K. Mani Chandy and Jayadev Mishra. Parallel Program Design. Addison-Wesley, 1988.

Jon Fairbairn. Design and Implementation of a Simple Typed Language Based on the
Lambda-Calculus. Technical Report 75, University of Cambridge Computer Laboratory,
May 1985.

David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80-112, January 1985.

Paul Hudak and Steve Anderson. Haskell Solutions to the Language Session
Problems at the 1988 Salishan High-Speed Computing Conference. Technical Re-
port YALEU/DCS/RR-627, Yale University, Department of Computer Science, January
1988.

Paul Hudak and Philip Wadler et al. Report on the Functional Programming Language
Haskell. Technical Report YALEU/DCS/RR-666, Department of Computer Science,
Yale University, December 1988.

P. Henderson. Purely functional operating systems. In J. Darlington, P. Henderson,
and D.A. Turner, editors, Functional Programming and its Applications, pages 177-189,
Cambridge University Press, 1982.

Robert Harper, Robin Milner, and Mads Tofte. The Definition of Standard ML Version
2. Technical Report ECS-LFCS-88-62, Laboratory for Foundations of Computer Science,
Department of Computer Science - University of Edinburgh, August 1988.

C. A. R. Hoare. Communicating sequential processes. Comm. ACM, 21(8):666-677,
1978.

26

[Hoa85]
[Hol83]

[Hud84]

[Kah74]
[Kar81]
[KR78]
[Lan65]
[MHsg]
[Mil81]
[sS88]

[Sto84]

[Tur85]

[Tur87]

[WWss]

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Séren Holmstrém. PFL: A Functional Language for Parallel Programming, and its
Implementation. Technical Report 7, Programming Methodology Group, University of
Goteborg and Chalmers University of Technology, September 1983.

Paul Hudak. ALFL Reference Manual and Programmer’s Guide. Technical Re-
port YALEU/DCS/TR-322, Yale University Department of Computer Science, August
1984.

G. Kahn. Information Processing, chapter The Semantics of a simple language for
Parallel Programming, pages 471-475. Volume 74, North Holland, 1974.

K. Karlsson. Nebula, a Functional Operating System. Technical Report, Chalmers
University, 1981.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-
Hall, 1978.

P. J. Landin. A correspondence between algol 60 and church’s lambda notation. Comm.
ACM, 21(11):931-933, 1965.

Lee M. McLoughlin and Sean Hayes. Interlanguage working from a pure functional
language. Functional Programming mailing list, November 1988.

Robin Milner. A Calculus of Communicating Systems. Volume 81 of Lecture Notes in
Computer Science, Springer Verlag, 1981.

Harald Sondergaard and Peter Sestoft. Nondeterminism in Functional Languages. Tech-
nical Report 88/18, Department of Computer Science, University of Melbourne, 1988.

W. Stoye. A New Scheme for Writing Functional Operating Systems. Technical Re-
port 56, Cambridge University Computer Laboratory, 1984.

David Turner. Miranda: a non-strict functional language with polymorphic types. In
Proceedings IFIP International Conference on Functional Programming Languages and
Computer Architecture, Nancy France (Springer Lecture Notes in Computer Science, vol
201), September 1985.

David Turner. Functional Programming and Communicating Processes, pages 54-74.
Volume 259 of Lecture Notes in Computer Science, Springer Verlag, 1987.

John H. Williams and Edward L. Wimmers. Sacrificing simplicity for convenience:
where do you draw the line? In Proceedings of the Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages , San Diego, California,
January 1988.

27

