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Abstract

An accurate RC delay line model is derived for wires in MOS technologies. PLA
and ROM delay models are derived using the wire delay model. The PLA delay
model expresses the worst case delay in terms of the number of inputs, minterms,
and outputs. With information about bit patterns more accurate estimates can be
obtained.

1 Introduction

The resistance and capacitance of wires in MOS technologies affect the propagation of
signals along wires. The wire delay in state-of-the-art MOS circuits is often larger than the
charge transit time of transistors. The wire delay does not scale well with the technology
[7]. Uniform scaling of circuit geometry without any change in doping levels results in
constant delay for wires whose length is reduced by the scaling factor. For a wire of
constant length the delay increases [1]. For a long wire the increase is proportional to the
square of the scaling factor [9]. In Table 1, some typical nMOS circuit parameters are
listed and the effect of these parameters on the delays in an nMOS circuit is shown.

To estimate the delay in digital MOS circuits, transient analysis of a circuit that contains
distributed RC lines is important. In [5] a computationally simple method to estimate
the delay of nodes in an RC tree network is presented. This paper develops a delay model
for wires with uniformly distributed resistance and capacitance. The delay estimates are
more accurate than those obtained in [5], and can be applied to estimate the delay of
MOS storage circuits such as PLA and ROM.

In the next section, a MOS wire is modeled as a two-port network. The distributed
resistance and capacitance are approximated by lumped resistors and capacitors. A simple
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Feature A=2um A =0.25um
Object Resistance | Rel. Length | Resistance | Rel. Length
/0 of Equal R Q/0 of Equal R
Transistor 10* 1 10* 1
Diffusion 100 100 800 12.5
Poly 25 400 200 50
Metal 0.03 3x10° 0.24 4 x 104
Capacitance | Rel. Area | Capacitance | Rel. area
10~*pF/um? | of Equal C | 10~*pF/um? | of Equal C
Gate 5.0 1 40 1
Diffusion 1.2 4 10 4
Poly 0.5 10 4 10
Metal 0.33 15 2.7 15

Table 1: The parasitic Parameters as a chip size scales down.

equation for estimating the delay of a wire with uniformly distributed resistance and
capacitance is derived. The wire is assumed to be driven by a voltage source having an
internal resistance. The delay in a static nMOS PLA is estimated in section 3. The effect
of scaling the technology is analyzed.

2 The Distributed RC Delay Line Model

Wires in MOS circuits are often modeled as transmission lines as shown in Figure 1 [9, 1].
Signal propagation across the wire is described by the one-dimensional diffusion equation:

2
V(1) _ 9V(a,1)

ot Ox? (1)

where V(z,1) is the voltage along the wire, ¢ time, z the spatial coordinate, r the resistance
and c the capacitance per unit length.

The solution of this diffusion equation is complex and it is unreasonable to solve it for
every element in a VLSI circuit. However, with uniformly distributed resistance and
capacitance along the wire, simple approximate solutions of good accuracy can be found.
In the following a wire with uniformly distributed resistance and capacitance is referred
to as a URC element [4, 5].

Two-port Analysis of a URC Element

A URC element has two parameters: total resistance R and total capacitance C. Let r
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Figure 1: A wire modeled as a transmission line.
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Figure 2: A URC element modeled as a two-port network.
and c be the resistance and capacitance per unit length, respectively. Then for a wire of
length L, R=rL and C = cL.

A URC element can be considered as a two-port network [3, 4]. Its transmission matrix
in the Laplace domain is:
[ cosh'  smhl ]

Z
Z sinhT' coshT
where I' = v/sRC, and Z = \/%. That is,

[ y((j)) ] - [ £ G c%r ] [ y((ss)) ] (2)

where V;(s), V,(s), I;(s), I,(s) are the Laplace transforms of the input voltage, output
voltage, input current and output current, respectively, as shown in Figure 2.

Lumped Approximation of a URC element

A URC element can be approximated to first order by lumped resistors and capacitors.
Expanding the entries of the transmission matrix in equation (2) in a Taylor series and
keeping only first order terms results in,

sinh sRC
cosh' =82~ ] — [ 1+ %5 R + high order s terms (3)

Z sinhT' coshT sC 1+ &<
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Figure 3: A lumped approximation of a URC element.
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Figure 4: A URC element driven by a voltage source with resistance Rs.

which suggests a II network with a resistor of value R on top and two capacitors of value

% on each side as a model of a URC element, Figure 3.

A URC element driven by a voltage source with source resistance Rs

A URC element with total resistance R and total capacitance C driven by a voltage source
having source resistance Rs is shown in Figure 4. The source resistance can be considered
as the equivalent channel resistance of the driving transistor.

The two-port network approximation is

Vis) | _ |1 R, coshT' -s—“—‘—;i Vu(s) (4)
Ls)y| |0 1 Z sinhT' coshT I,(s)
With open output and the input driven by a unit step voltage, i.e., I,(s) = 0 and V;(s) = %,

1

Vo(s) =
(s) s(coshF+B-Z-‘lsinhI‘)

(5)

The time domain representation of the step response can be obtained by an inverse Laplace
transform:
1

s (cosh '+ EZS sinh I‘)

Vi(t) = £ (6)
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Figure 5: The unit step voltage response of a URC element driven by a voltage source
with resistance Rgs.

Rs/R | V(o =1)
o | 0.63213
10 | 0.63210
2 | 0.63180
1 | 0.63127
0.5 | 0.63044
0.1 | 0.62930
0 | 062922

Table 2: Unit step responses at t = (Rs + R/2)C.

However, there is no simple closed form for this transform. Some numerical results
for different ratios of Rs/R are plotted in Figure 5. The time-axis is normalized by
(Rs + R/2)C . The normalized time is denoted o = m.

For Rs/R = oo, i.e., R = 0 the URC element is simply a pure capacitor and the unit
step response is an exponential function with time constant 7 = RsC. Hence at time
t = RsC, the output reaches 1 — % ~ 0.63 of its final value.

As the ratio Rs/R decreases, the output response changes accordingly. Let V() be
the output voltage response of the circuit for a given ratio of Rs/R and Vj(t) the re-
sponse for a larger ratio. In the beginning (¢ = 0%), V;(t) is rising slower than V() and
Vi(t) <Vu(t) . As time proceeds, the rising rate of V;(t) increases faster than the rising
rate of V,(¢) , and eventualy exceeds that rate so that V,(¢t) =V;(t) at some time ¢. From
Figure 5 and Table 2, it is observed that the curves for different ratios Rs/R cross at
about ((Rs + R/2)C ,0.63). The curves indeed intersect each other within such a small
neighborhood of ((Rs + R/2)C , 0.63) that it with good acuracy can be considered a
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Figure 6: The bounds V° and V*° and the bounds by Penfield for unit step responses of
a URC element driven by a voltage source with resistance Rs, R;/R = 1.

point. Hence, the following proposition:

Proposition 1: The time ¢ = (Rs + R/2)C can be used as a time constant 7 for the
circuit in Figure 4.

Note that the curves in Figure 4 are bounded by two extreme cases: Rs/R — oo and
Rs/R — 0. The unit step responses for these two cases are given by equations (7) and

(8) [6]-

Vo) =1—¢et" (7)

4 o) exp!Zn—:fwzt
o0 — _ 1y 4t 8
VRO =1+ )= ®)

While ¢ <0.99(Rs + R/2)C the upper bound is V°(¢) and the lower bound is V. For
t <1.01(Rs + R/2)C the upper bound is V> and the lower bound is V°. The bounds given
by equations (7) and (8) are considerably tighter than those given in [5] as is indicated in
Figure 6.

A URC Element Driven by a Voltage Source with Source Resistance and
Source Capacitance

A URC element with total resistance R and total capacitance C driven by a voltage source
with resistance Rs and capacitance Cgs is shown in Figure 7.

An approximation of the output voltages can again be obtained by a two-port network
analysis. The unit step responses depend only on two parameters: K, = Rgs/R and
K. = Cg/C. However, over a large range of resistance and capacitance values the unit
step responses are bounded in a way similar to those shown in Figures 5 and 6. Table 3
gives the unit step repsonses at time ¢t = RsCs(Rs + R/2)C for different ratios K, and




Figure 7: A URC element driven by a voltage source with resistance Rs and capacitance
Cs.

K,

K.| 01 02 05 1 2 ) 10
0.1 |0.629 | 0.629 | 0.627 | 0.623 | 0.615 | 0.607 | 0.615
0.2 | 0.629 | 0.629 | 0.626 | 0.621 | 0.616 | 0.620 | 0.630
0.5 | 0.630 | 0.630 | 0.628 | 0.623 | 0.626 | 0.630 | 0.631

1 |0.631|0.631 | 0.630 | 0.630 | 0.631 | 0.632 | 0.632
2 |0.632|0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632
5 |0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632
10 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632 | 0.632

Table 3: Unit step responses at 7' = RsCs+(Rs + R/2)C of a URC element driven by a
voltage source with resistance Rs and capacitance Cg.

K..
The fact that all values of V,(t) for t = RsCs+(Rs + R/2)C are close to 0.63 suggests:

Proposition 2: The time t = RsCs+(Rs + R/2)C can be used as a time constant 7 for
the circuit in Figure 7.

Hence, as in the case for a one-dimensional array of lumped circuits, the time constant for
a composite circuit is to first order equal to the sum of the time constants of the circuit
constituting the array. Next, a delay model for a nMOS PLA is developed.

3 nMOS PLA Delay Estimation

Cherry [2] has given a formula for the delay in a nMOS PLA ignoring wire delay. A
formula that takes the wire delay into account is developed below. The wires in the PLA
are modeled as URC elements. Consider a typical nMOS PLA as shown in Figure 8. The
path that passes the points a,b,d,f,g is a critical path. Its equivalent circuit is also shown




Path section | Transition 0 — 1 | Transition 1 — 0
a—b R,C, kR;C,
b—d (th + R2/2)02 (Rt + R2/2)Cl
d—e kR,(Cs+ Cy) R,(Cs + Cy)
e — f R4C4/2 R4C4/2
f—g kR,Cs R;Cs

Table 4: Delays for the PLA path shown in Figure 8.

in Figure 8.

The poly wire starting at point b that runs in parallel with the wire c¢d has resistance
R, and capacitance C;. The poly wire between points ¢ and d has resistance R, and
capacitance Cy. The metal wire connecting d and e has capacitance C3. Its resistance can
be ignored. The poly wire between d and f has resistance R4 and capacitance Cy. The
metal wire connecting f and g has capacitance Cs. The output loading capacitance is
Cou:- Let R, be the channel resistance of a pull-down transistor. The pull-up to pull-down
transistor ratio is denoted k, and it is assumed to be 4 in the following calculations.

Based on propositions 1 and 2, the signal delay from the input a to the output k for 0 — 1
and 1 — 0 transitions are to first order accuracy given in Table 4. Wire resistances and
capacitances are assumed to be uniformly distributed.

The magnitudes of Ty_.; and Ti_o depend on the values of Cy, Cy, C3, Cy, Cs and Coy.
As a rule of thumb, if the number of minterms is greater than twice the number of
outputs (i.e., the AND-plane dominates the OR-plane), then To_.; > Ti_o. Otherwise
Ti—o > To_1. The delay from a to h for a 0 to 1 transition at point a is estimated as
follows:

To-n ~ RCy+ kR;C; — input buffer delay

+R,C3/2 — AND-plane wire delay

+kR;(C3+ C4) — AND-plane switching delay (9)
+R4Cy/2 — OR-plane wire delay

+R:Cs — OR-plane switching delay

+kR.C,. — output buffer delay

Ti_o can be computed in the same way. Note that R;C2/2 and R3C3/2 are wire delays
due to the resistance of the poly wires.

Figure 9 shows the layout of a basic PLA cell. It is 7 x 7A\2. The gates are minimum sized
(2\ x 2)) and separated by 5\ poly wires. The width is 2 for both poly and diffusion
wires. Metal wires are 3\ wide. The pull-up to pull-down transistor ratio k is 4.
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Figure 8: A critical path in a typical nMOS PLA and its equivalent circuit.




Figure 9: The layout of a basic PLA cell.

Let r, denotes the sheet resistance of a poly wire (/0) and C, denotes the capacitance
of a minimum gate (pF/(2X)?). The poly wire capacitance is about ;5Cy/(2X)?, and the
metal wire capacitance is about =C,/(2X)%.

Worst Case Delay

Let
P = number of minterms
I = number of inputs
O = number of outputs
four = Cout/Cy = fan-out factor

Then the maximum value of the C/s and R;s can be obtained under the assumption that
in every cell there is a gate present.

Cy =G, (1+%-%) ¢)P = 1.25C,P
Cs = (&8.Lc,)2I = 0.70C,1
C = ((1+%-%) ¢,)20 = 250C,0 (10)
Cs = (&.4c,)P = 0.35C,P
Ry = (Ir,) P = 3.5r,P
R, = (Ir,)20 = 7.0r,0

Substituting these values into equation (9) yields the maximum delay,

Toun » (2.2 (%) (P? +40%) + 6.5P +2.8 1 +10.0 O+ 4 fout) RC, (11)
1

10




The value of R;C, is the time constant for a minimum size transistor to drive a minimum
gate. It is equal to the charge transit time () for a minimum size transistor [7]. The
values of r, and R; depend on the IC process technology. At 4um feature size, R; is of
the order 10*Q2/0 and r, is in the range from 100 to 100Q2/0. Substituting r,=25 /0
and R; = 10* Q/0 into equation (11) yields

To—1 ~ (0.0055 (P2 +40?) + 6.5P +2.8 I +10.0 O +4 fou) 7 (12)

Equation (12) gives the worst case delay of a static nMOS PLA terms of the number of
inputs I, outputs O and minterms P. For a particular design, the number of gates in
each column and row is known.

More Accurate Estimation for Known Bit Patterns

Let

_ max(the number of gates each poly wire drives in the AND plane)
= P

max(the number of gates each poly wire drives in the OR plane)
2:0

Then the relations between the actual wire capacitance (C;') and resistance (R;’) and the
maximum wire capacitance and resistance are:

C! < (1.2501 P +0.035(1 — py) P)C, = (0.28 + 0.72p;)C4

C; < (1.25p; P +0.035(1 — p;) P)Cy = (0.28 + 0.72p,)C

Ch = Cs

C, < (1.25p; 20 +0.035(1 — py) 20)C, = (0.28 + 0.72p,)C,4 (13)
C! = Cs

R, = R,

R, = R,

(14)
where Cy,C,, C3,Cy, Cs, Ry, R4 are the maximum wire resistances and capacitances given
in equation (10). The approximated delay is

Toy =~ (0.0055((0.28 + 0.72p;)P? + 4(0.28 + 0.72p,)0?%)
+6.5(0.28 + 0.72p; ) P + 2.81 + 10.0(0.28 4+ 0.72p2)O + 4 fout)T (15)

The effects of scaling

The coeflicients in equations (12) and (15) are based on the resistance and capacitance
values typical at the current state of the technology (A = 2um, i.e., 7, = 25 /0 and R; =
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10* Q/0). As feature sizes are reduced by «, the wire resistances/O increase by «, while
the channel resistance of a transistor essentially remains constant. The capacitance/um?
increases by « [7, 8]. To summarize:

z — z/a
R, —- R,
Cy, — Cyla
T = 7/a (16)
T, — Tpa
e Tr
R~ R
Equations (12) and (15) become
To—1 = (0.0055c(P? + 40%) 4+ 6.5P + 2.8 I +10.0 O + 4 fo,,.)7’ (17)

and

Toy =~ (0.0055c(0.28 +0.72p;)P? + 4(0.28 + 0.72p,)0?)
+6.5(0.28 + 0.72p; ) P + 2.81 + 10.0(0.28 + 0.72p,)0 + 4f...)7"  (18)

where 7' = 7/a.

The wire delay is comparable with the switching delay when

0.00550 P2 65P — P >1181/a

0.00550: 02 ~ 10.0 0 — O > 454/c (19)

At 0.5um feature size a = 8 and equality holds at about 150 x 60 bits. Hence, unless,
e.g., the sheet resistance is reduced, the delay of large nMOS storage structures (> 10K
bit) will essentially be proportional to the storage size (bits).

Performance enhancements

By inspecting the delay equations (17) and (18), the delay introduced by a PLA can be
reduced in several ways:

1. Use superbuffers, or a sequence of exponentially sized drivers [7] to reduce the
switching delay 6.5P + 2.81 + 10.0.

2. Reorganize the bit patterns in order to minimize P? 4402, such that the wire delay
is equally divided between the AND-plane and the OR-plane.

12




3. Improve the process technology to reduce r, and therefore the wire delay (e.g., the
sheet resistance of silicide iss only one tenth of that of polysilicon).

4. Limit the driving needs on each clock phase by pipelining the operations (e.g., input
buffer, AND-plane, OR-plane, output buffer).

5. Use hierarchical storage architectures as suggested in [7].

4 Conclusions

A simple lumped approximation to the one dimensional diffusion equation as a model for
wires in MOS technology is derived. The model is accurate over a large range of resistance
and capacitance values. The lumped model is used to derive estimates of delays in a nMOS
PLA. The delay is computed in terms of inputs, outputs, and minterms.

The derivation of the lumped model can easily be adapted to other technologies such as
CMOS. Moreover, the delay equations can be adopted to estimate the speed of storage
structures. For large MOS storage structures the delay is essentially proportional to the
storage size, i.e., the square of the chip dimension. The diffusion model is the proper
delay model in this case.
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