Greedy Lagrangians for Neural Networks:
Three Levels of Optimization in Relaxation Dynamics

Eric Mjolsness and Willard L. Miranker

Research Report YALEU/DCS/TR-945, Version 1
January 1993

Greedy Lagrangians for Neural Networks:
Three Levels of Optimization in Relaxation Dynamics

Eric Mjolsness
Department of Computer Science, Yale University
P.O. Boz 2158 Yale Station, New Haven CT 06520-2158

Willard L. Miranker
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598
and Department of Computer Science, Yale University

January 1993

Abstract

We expand the mathematical apparatus for relaxation networks, which conventionally con-
sists of an objective function E and a dynamics given by a system of differential equations whose
trajectories diminish E. Instead we (1) retain the objective function E, in a standard neural net-
work form, as the measure of the network’s computational functionality; (2) derive the dynamics
from a Lagrangian function L which depends on both E and a measure of computational cost;
and (3) tune the form of the Lagrangian according to a meta-objective M which may involve
measuring cost and functionality over many runs of the network. The essential new features
are the Lagrangian, which specifies an objective function that depends on the neural network’s
state over all times (analogous to Lagrangians which play a similar fundamental role in physics),
and its associated greedy functional dertvative from which neural-net relaxation dynamics can
be derived.

The combination of Lagrangian and meta-objective suffice to derive and provide an inter-
pretation for clocked objective functions, a useful notation for algebraically formulating and
designing neural network applications, possibly with the assistance of symbolic computation.
Clocked objectives thus generalize the original static objective function E as a practical neural
network specification language.

With these methods we are able to analyze the approximate optimality of Hopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects
of relaxation-based neural computation, the integration of relaxation-based and feed-forward
neural networks, and the control of computational attention mechanisms using priority queues,
coarse-scale blocks of neurons, default-valued neurons, and other special-case optimization al-
gorithms. !

1Supported in part by AFOSR grant AFOSR-88-0240, and by ONR grant N00014-92-J-4048.

1

Greedy Lagrangian Dynamics for Neural Networks

Contents
1 Imntroduction
11 Costand Functionality uuii...
1.2 Outline e e e e
2 Dynamical Objective Functions and Lagrangians
2.1 Cost and Functionality Terms
2.1.1 Remarks on Some Generalizations
2.1.2 Refinement to Continuous Dynamices
2.2 Greedy Functional Derivatives.
2.3 Theory for Refinement to Circuit Lagrangians
2.3.1 Transformationsof Lagrangians
2.3.2 Meta-Optimization
24 CyclicLagrangianst i it ittt i e e
24.1 Relationof Eqocked t0 E« o . . o .
2.4.2 Lagrangians for Clocked Objective Functions
2.4.3 Notation for Clocked Objective Functions
3 Circuit Dynamics
3.1 RefinementtoaCircuit
3.1.1 Underconstrained Refinement #1
3.1.2 Underconstrained Refinement #2
3.1.3 Stopping Criterion
3.2 Overconstrained Refinement: Meta-Optimizationof K
3.2.1 Optimizationofpandv
3.2.2 Solution of the Auxiliary Problem
3.2.3 Approximate Solution of the Meta-Optimization Problem
3.24 NotesontheSolution
33 Clocked Circuits i v ittt et et e e e e e e e
3.3.1 Feed-Forward Networks as Constraint Projection
4 Application to Dynamics with Switching
4.1 Formulationof L at the Coarse Scale
4.2 Criteria for Estimating the Effects ofaFocus
4.2.1 Candidate v Estimatorst ittt nuenenn.
422 CostTerms i i it ittt ittt it iit e
43 LattheFineScale. it iieeno.
4.3.1 Two Phasesof Switching
4.3.2 Complete Multiphase Dynamices.
4.4 Varietiesof m;inNeural Design
4.4.1 Priority Queue Attention,
4.4.2 Multiscale Attention
4.4.3 Jumping and Rolling Windows of Attention
4.4.4 Sparse Networks and Spreading Activation
445 Orthogonal Windows

5 Discussion and Conclusions

Greedy Lagrangian Dynamics for Neural Networks

1 Introduction

Optimization is a prominent way to bring mathematical methods to bear on the design of neural
networks. Often the connection is made [Hop84, Gro88, HT85] by specifying the attractors of a
neural network’s dynamics by means of a static objective function (or objective) to be optimized,
provided that the optimization problem can be put in a standard neural-net form (which is not
too restrictive a requirement [MG90]). In this way it has proven possible to design neural
networks for applications in image processing [KMY86], combinatorial optimization [DW87),
clustering [RGF90, BK93], particle tracking in accelerators [YHP91], object recognition [Tre91]
and other applications. Unfortunately it is also customary to introduce a generic steepest-
descent dynamics to optimize or “relax” the objective, without further regard to computational
constraints. The resulting equations of motion generally contain gradients of the static objective,
but are otherwise ad hoc and not particularly suited to elaboration or refinement in response
to varied computational constraints. We shall develop a more general approach, starting from
basic principles, to formulating the dynamics of a relaxation-based neural network.

In this paper we start from fundamental computational considerations which, we hypothe-
sise, constrain all dynamical systems that compute. Specifically, the cost and functionality of a
computation are fundamental to its design, and in general each must be traded off against the
other in the course of optimizing that design. (Here the “design” is all the information which
directly specifies the structure or configuration of the dynamical system that performs a compu-
tation.) In the context of neural computations, we will find measures of cost and functionality
and combine them into dynamical objective functions from which one may derive the entire
dynamics of a neural network. This dynamics includes not only the (fixed point) attractors but
also the equations of motion governing convergence to an attractor, i.e. a mathematical model
or specification of the network itself.

Our dynamical objective functions can be specialized in many ways that correspond to the
wide variety of goals and constraints that may be imposed on a computation. We will also
relate the dynamical objective functions to a so-called Lagrangian functional. Our Lagrangian
is analogous to one which plays a similar fundamental role in physics. A basic limitation of our
approach is that such a dynamical objective function or Lagrangian can only be optimized in a
limited way, by means of greedy algorithms which don’t look far ahead in time. This limitation
allows our algorithms to be implemented in physical hardware, and also allows us to derive
nonconservative, irreversible dynamics which can approach a desired fixed point. We will derive
these algorithms by means of a new greedy variation applied to the Lagrangian functional.

Generally we will accept the limited type of optimization that results, but sometimes we
can do better by introducing another level of optimization: a meta-optimization problem in
which the form of the dynamic objective (the Lagrangian functional) is itself varied so as to
optimize another objective function, which may involve measuring cost and functionality over
many runs of the network. This meta-optimization problem determines the choice of the exact
algebraic form of the Lagrangian and hence of the computational dynamics for a whole class
of applications. So for a meta-objective function, cost and functionality are measured over a
class of computational problems rather than over a single instance of that class as would be the
case for a Lagrangian functional. The computational cost or analytic effort required to perform
the meta-optimization is to be amortized over many problem instances. One example of this
approach will be a (meta-) optimality objective for Hopfield/Grossberg dynamics, for which we
provide a proof that the associated Lagrangian is close to optimal.

1.1 Cost and Functionality

Consider a physical system capable of nontrivial computation. More abstractly, consider a
discrete, continuous or mixed dynamical system which computes, in the sense that it models

Greedy Lagrangian Dynamics for Neural Networks

a computational device or framework. Examples include a general-purpose computer equipped
with suitable programs, a discrete data structure implemented by means of such a program,
an individual silicon chip, or an animal brain. Such devices have detailed dynamics, often
approximable as large sparsely coupled systems of ordinary differential equations, which have
been designed (or evolved in the case of a brain) to serve some set of computational purposes at
feasible cost. So we refer to these dynamical systems as computational systems and hypothesise
very broadly that fundamentally, a computational system is designed (or evolved) to optimize
two things: its cost and its functionality. Functionality means what the system can do, and cost
means how cheaply or quickly it can do it.

For example, the design of silicon chips is largely constrained by the use of chip area and cycle
time as the measures of cost, and the need to attain at least a minimal level of functionality
to make the chip generally useful (e.g. to implement an adequate instruction set in a CPU
chip); tradeoffs between minimization of chip area and maximization of detailed functionality
are frequent in the design process. For another example we refer to the implementation of
abstract data structures such as priority queues, for which a functionality specification requires
that a small set of operations (such as adding a prioritized element to a queue, and removing
the element with highest priority from the queue) must be supported, and cost is conventionally
characterized by an asymptotic scaling rule for the time-cost of performing a worst-case mix of
these operations on a very large queue.

For a relaxation-based neural net which is programmed or designed to optimize a static
objective function E(x) from an arbitrary starting point Xinitial, typical expressions for cost and
functionality might be

C = 4-Volume = Space x Time : 1)

and

F = E(xfina1) = E(Xinitial)- (2)
The space-time product is familiar in computer science as an important measure of cost, in which
the Space term is a volumetric measure of hardware usage such as chip area (including on-chip
wires) or memory usage, and the Time term is likewise a computational version of physical time
such as the number of clock cycles required to complete a computation. (A specific volumetric
measure of wiring cost for circuit implementations of neural nets has been proposed in [Mjo85].)
As to functionality, the use of an objective function E is a common way to measure progress
(hence functionality) in a wide variety of computational problems. For example, one can fit
a piecewise-constant model to a 2-d image {d;;}, segmenting it into roughly constant regions,
with the objective function [KMY86)

E(f,s*,s") = i;'}:(fij —di)* + g‘z(fﬂl,j - fii)*(1 - s%)
m G

B 2 h h v (3)
+3 2 Uegar = £ (1= sy) + 0 3 (6l + o3y),
8 i

where fi; € R is a reconstructed version of the image, and s:-'j"' € {0,1} represent discrete
decisions concerning the probable presence or absence of horizontal and vertical edges. f and s
together constitute the vector x appearing in equation (2). This kind of objective has been used
to derive functional neural networks for large-scale problems (10° neurons with 10¢ connections)

as required for image-processing [RC91, KMY86).

1.2 Outline

In this paper, we (a) introduce a three-level optimization framework, concentrating on La-
grangians (of a type relevant to computation) and their specialization to clocked objective

Greedy Lagrangian Dynamics for Neural Networks

functions (section 2); (b) apply the framework to derive analog circuits such as those modeled
by the Hopfield/Grossberg dynamics for optimization (section 3); and (c) apply the framework
to incorporate computational attention mechanisms into various dynamical systems which are
designed to solve optimization problems (section 4).

Section 2 introduces the three-level optimization framework, beginning with the general form
of a Lagrangian suitable for use in attractor dynamics for optimization problems. The greedy
functional derivative is defined and calculated for such Lagrangians (sections 2.1 and 2.2). The
strategy used to design circuit-implementable Lagrangians is one of refinement (section 2.3),
in which cost and functionality measures are first defined at a coarse temporal scale and then
refined for use at finer time scales, down to the infinitesimal time scale suitable for dynam-
ical systems that model analog circuits. The validity of the transformations required during
refinement is ultimately specified by a meta-objective function which measures network perfor-
mance. One circuit-implementable form of Lagrangian is introduced in sections 2.2 and 2.3,
though not completely derived until section 3.2, and it is illustrated by the concrete example
of Hopfield/Grossberg dynamics for a region-segmentation neural network. A more general
circuit-implementable form of Lagrangian, which allows network dynamics to be controlled by
a repeating cycle of objective functions rather than a single objective function, is introduced
in section 2.4 where it is illustrated by an algorithm similar to line minimization. This type
of Lagrangian gives rise to the practical clocked objective function and clocked sum notation of
sections 2.4.2 and 2.4.3, whose theoretical justification requires all three levels of optimization:
the objective E, the Lagrangian L, and the meta-objective M.

Section 3 is devoted to the study of circuit-level Lagrangians with continuous time dynamics
and analog-valued neurons. Two novel possibilities for such Lagrangians are discussed in sections
3.1.1 and 3.1.2. In section 3.2 a simple meta-optimality criterion for a limited class of analog
circuit Lagrangians is presented. Since this constrained meta-objective function M, is a function
of the fastest and slowest physical time scales in various circuits, it is invariant with respect to
monotonic, coordinatewise reparameterizations (changes of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2.3 we prove Theorem 1, which asserts that the Lagrangian L
corresponding to Hopfield/Grossberg dynamics yields a value of M, [L] which is within a factor
of two of the optimal value of M,. This means, roughly, that the worst-case time constant
for this Lagrangian L is at most twice that of the optimal Lagrangian L*, whatever that is.
The proof exploits a sharp global optimality result for Hopfield/Grossberg dynamics (Lemma
1 of section 3.2.2). Unlike M,, the optimized functional of Lemma 1 does depend on the

- coordinate system chosen. A number of limitations of Theorem 1 are discussed. The resulting
Lagrangian for analog circuits can be generalized to clocked objective functions, as discussed in
section 3.3. Section 3.3.1 provides an instructive example: a clocked objective function which
incorporates one or more general feed-forward neural networks (for which relatively efficient
learning algorithms are available) inside a general relaxation neural network.

In section 4 we show how simple cost constraints can lead to a variety of computational
attention mechanisms analogous to virtual memory protocols in present-day computers, and
an associated Lagrangian or clocked objective function to control each attention mechanism.
Examples of possible foci of attention include a subset of the n (out of N) neurons with highest
estimated improvement in functionality |AE|, which may be tracked efficiently by means of a
priority queue data structure (section 4.4.1); a subset of course-scale blocks in a minimal parti-
tion of the neurons, scheduled by their estimated individual and pairwise contributions to |AE|
(section 4.4.2); a set of rectangular windows in a two-dimensional network, each of which can
either “jump” or “roll” to a new location (section 4.4.3); a subset of neurons in a sparsely active
network including all neurons which don’t have prescribed default values and hence do require
storage space (section 4.4.4); and a subset of neurons determined as the Cartesian product of
several simpler foci of attention (section 4.4.5). The designs presented in section 4 are theo-

Greedy Lagrangian Dynamics for Neural Networks

retically well-motivated but may need to be revised in the light of subsequent experimentation,
which is beyond the scope of the present paper.
Finally, a brief summary of our work is given in the concluding section 5.

Greedy Lagrangian Dynamics for Neural Networks

2 Dynamical Objective Functions and Lagrangians

We have argued that fundamentally, a computing system is designed by trading off two com-
peting utilities: its cost and its functionality. We may specify a fixed allowable cost and seek
to obtain maximal functionality, or we may specify a fixed functionality and seek to obtain a
minimal cost, or we may seek a specified trade-off between cost and functionality. We may
specify further dynamical constraints required for implementability. With Lagrange multipliers
and/or penalty terms we may reduce all these cases to extremizing

S= Accost + BF; functionality » (4)

where the system is more functional for lower values of F, and where any dynamical constraints
have been absorbed into the Ceost term. Now the designer’s problem is to find functions C
and F (perbaps based on equations (1) and (2)) which depend on the trajectory of some vector
of state variables x(t) over time, such that the global optimization of S can be reduced to a
collection of local decisions about how to change the individual components of the state vector x
at a given small time step from time ¢ — At to time t. These decisions must however be made by
very simple physical devices such as transistor circuits containing only a few transistors. Such
local decisions will prove to be analogous, in a physical system, to a differential or difference
equation formulation of dynamics that follows from the principle of least action for the same
system.

For example, it would be advantageous if C and F were each sums (or integrals) over a
collection of decisions spread out over space and time. To express this summation, let us index
the components of the state vector x by an index s. Since s indexes all the variables present
at a fixed time, those variables could be viewed as being embedded in one fixed-time slice of
a space-time volume, in which case s may also be viewed as indexing spatial locations in the
system. So we refer to s as the spatial indez and t as the temporal indez; the entire trajectory
of a computation is specified by {z(s,t)}. Then the sum over decisions would be

S=A Y, Cul{s(,t)D+B Y F{z(s,)}) (3)

decisions(s,t) decisions(s,t)

where each function C, ; or F; ; may depend on only a few of its arguments {z(s’,t')} and hence
on only a small part of the trajectory near (s,t). In equation (5) we may introduce a continuous
time axis by replacing the temporal sums by integrals; we can do this by integrating over ¢ and
summing over s. Following the analogy with physics, S is referred to as the “action”. The
decomposition (5) would be a useful first step towards enforcing spatial and temporal locality
on the dynamics of our computation, since the decomposition distributes S over a sum of terms
which pertain to particular spatial and temporal locations. Unlike space, time has an intrinsic
directionality and we will also need to enforce causality in the optimization of S. Before seeking
specific forms for C, ; and F, ¢, we will discuss locality and especially causality.

A pattern of communication is implicit in the dependence of C, ¢ and F, ; on z(s',t’). If C,
and F,; were each a function only of z,;, rather than a functional of the entire state vector
x(t') at many different times ¢/, then every decision term could be optimized independently,
and the associated computation would proceed without any communication. This is a trivial
case, however, and generally we will have quite a bit of interaction (via specific C and F terms)
between variables defined at different times and places. (For a non-trivial example see the
region-segmentation Lagrangian of section 2.1.2.) The pattern of communication is defined by a
communication graph whose nodes are space-time sites (s,t) and whose links record the presence
or absence of functional dependencies of C, : or F, ¢ on trajectory variables z defined at other
space-time sites (s',t'). We want to keep this implicit pattern of communication relatively local,
and we insist that it be causal.

Greedy Lagrangian Dynamics for Neural Networks

The effect of causality on the communication pattern is twofold. (i) Causality favors the
adoption of a convention in which interactions between variables indexed by different times
are entirely incorporated in the C and F terms indexed by the later of the two times, and do
not enter into the C' and F terms defined at the earlier of the two times. That way, every
C; or F; term depends only on variables indexed by times ¢/ < ¢. This is called the retarded
interaction form of S. (ii) If we introduce computational dynamics by sequential optimization,
at successive time steps t/, of sets of variables indexed by ¢/, then causality denies a computation
the possibility of optimizing all terms of S with respect to any one variable z(s’,t'). Instead,
each variable z(s',t’) can only be varied under an objective involving those terms of S all of
whose variables z(s"”,t"”) are optimized at the same time as z(s',t') or earlier. The values of
all other variables (those indexed by t” > t') are as yet undetermined. Which terms of S are
eligible to participate in the variation of z(s',t')? Any C; or F; term for which ¢ > t’ depends
on variables (such as z(s,t)) which have unknown values at time step ¢’ and are not being varied
at that time step. Such a term is is ineligible; so we are restricted to those terms of S indexed
by time t < t'.

Note that the eligible terms of S with ¢ < t' are mostly irrelevant to the optimization of
z(s’,t'), since point (i) imples that the t < ¢’ terms do not contain the variable z(s’,t’). This
leaves only the ¢t = ¢ terms of S to determine z(s',t’).

Of course, an acausal optimizer could achieve a better value for S by being less “greedy”
(increasing present C; + F; terms to decrease future ones by a greater amount), but as argued
above causality forces our dynamics to be greedy. In other words, the causality constraint only
permits a partial or greedy optimization of S, and the nature of the partial optimization depends
on the decomposition of S into a sum over decisions of causally constrained terms. This basic
limitation to causal or greedy dynamics will be more or less severe depending on which of many
possible decompositions of C and F over time is chosen.

We shall define the greedy derivative of S with respect to z(s’,t') as being the ordinary
derivative of the sum of such eligible (¢ < ') terms of S, and use that derivative to define
optimality of z(s’,t'). But this greedy derivative immediately simplifies due to the retarded
interaction form of C and F':

T 7) 2(AC + BF) = 5o 59 T) S ACH + BR) = 5o (ACy + BE). (9

<t/

How can we find functions C(x{t'}) and F(x{t'}) that specify (via optimization of S) an
entire computational task and yet break up into a sum over easily computed decisions? This is
a statement of the problem of algorithm design, for which there is no general answer, but we
can still invent some fairly general techniques. The cost function can be regarded as some kind
of space-time volume to be minimized (e.g. circuit size times the duration of its use) and can
be decomposed into a sum of space-time volumes for the many elementary decisions or state
changes, at individual locations and times, that comprise the associated computation:

C=Vol=) 6Vol,,. (7

3,

Also the functionality F(x{t'}) is often measured by some definite objective function E(x), such
as total tour length in a traveling salesman problem [HT85], and this can be decomposed over
time as (cf. equation (2))

F(xfina1) = E(Xfina1) — E(Xinitiat) = ZA L ar’ (8)

Greedy Lagrangian Dynamics for Neural Networks

For example, a standard form for analog neural networks’ objectives E is MG90):

E(v)= —% 3 Tijrviviv - % > Tjviv; - > hivi + 3 diw), 9)
(3 [

ijk]]

which encompasses many network designs including equation (3). Here v takes the place of z
and the indices i, j, and k take the place of s. In equation (9), v; is the output value of neuron
t; T;; and T;j; are connection weights between two and three neurons, respectively; h; is a bias
input to neuron ¢; and é(v;) is the potential function for neuron i and determines the transfer
function g; (e.g. a sigmoid function) through

v = g;(u,-) and U = ¢’(v,-). (10)

Often equation (9) is further specialized by setting T};; = 0.

As a complete example of a dynamical objective function we present, in the following equation
(11), a dynamical objective for the Hopfield/Grossberg dynamics of an analog circuit. This
dynamical objective will be derived in sections 2.1 and 3.2, using the fact (to be established
in section 2.2) that, for a continuous-time analog circuit model, a condition for the greedy
optimization takes the form of a (functional) derivative §/6% (where ¢; = dv;/dt). The dynamical
objective is

S[v(t),v(t) = / dt E (K[i),-,v,-] + z—f;a.-) : (11)

where K[v,] is a cost-of-movement term to be derived in section 3 (see Theorem 1). Varying
with respect to 4; and making use of the form of E given by equation (9), we will find analog
neural-net equations of motion as expected:

Tal; = Z'I}jkvjvk + ZTz‘jvj +h; and v; = g(u;) . (12)
jk J

Here 7y is a time constant. The dynamical objective function S of equation (11) can be recog-
nized as an instance of (5) by identifying the neuron index i with the space index (i.e. component
index) s and the time integral [dt with the temporal sum ¥~,; also C,¢ — K[t;(t), v:(t)] and
Fyt — (OE[v(t)]/8vi)vi(t). :

There is a close analogy between equation (5) and standard ideas and terminology in physics.
The action, S, can be decomposed into the temporal sum (in physics, an integral) of a Lagrangian
L(t) which in turn is a spatial sum of a Lagrangian density Lyi=Cit+ Fy 1

2_L@)

S LusxE)) = 3 Cont Fog - (13)
(s,0) (s,t)

S

(Note that the sum over time may become an integral when we consider time steps of infinitesimal
duration, since the extra factor of At required to get an integral is just a constant that doesn’t
affect the solution to an optimization problem.) For our neural network design purposes the
Lagrangian L is generally the most useful of these alternative notations, particularly for algebraic
manipulation, because the temporal sum has the same algebraic form from one problem to the
next (and hence is uninformative) but the spatial sum does not.

Extremization of such functions (or functionals) provides a foundation for the study of many
dynamical systems including quantum field theories. F and C might with lower confidence
be identified as classical kinetic energy and potential energy terms respectively, but as we will

Greedy Lagrangian Dynamics for Neural Networks

see, many details are different. These differences prevent a literal-minded mapping onto the
formalism of physics. In particular, causality is not built into physical theories by means of
the partial optimization of S, but in a completely different way that is inconvenenient for
treating irreversible dynamics such as our computations; therefore neither the dynamics nor the
Lagrangians of physics can be called “greedy” in the sense we use the term.

There are a number of other ways to derive dissipative dynamics from Lagrangians, as sum-
marized in [VJ89]. Allowing explicit time dependence, such as an overall factor of e, in a
conventional Lagrangian allows physically damped second-order dynamics to be derived. The
strategy of the approach is to start with a differential equation, derive an associated Lagrangian
(this is called the inverse problem of the calculus of variations, and it may have many solutions),
and use that Lagrangian to analyse or approximate the solutions of the differential equation.
Our strategy and methods differ, in that the Lagrangians are obtained from cost and func-
tionality considerations and hence are known before the differential equations are known, and
these Lagrangians require an unconventional variational principle (the greedy variation) to pro-
duce acceptable differential equations. Nevertheless there may exist some deeper relationships
between our greedy Lagrangians and previous approaches discussed in [VJ89).

2.1 Cost and Functionality Terms

Equation (8) for F is particularly appropriate for a net whose dynamics is intended to converge
to fixed points that encode the answer to a static optimization problem, such as the standard
neural network form of equation (9). Equation (8) represents a substantial specialization from
the general set of functions Fy({z(s',t')}) = 3, Fs:({z(s',t')}) that appear in equation (5).
For in equation (8), F; depends on ¢ only through its arguments and not through its subscript,
so that the algebraic form of F; is independent of time (i.e. F; is autonomous):

F({=(s,)’ <t}) = E[x(t)] - Efx(t - At)]. (14)

In the simplest case of static special-purpose neural circuitry, the computational cost is just
a constant N reflecting the hardware committed (neurons and connections), times the length of
time it is used:

for fixed hardware, or the more general
C=4 / dtN(t) (16)

if the amount of hardware devoted to the network can vary over time (a possibility we will
consider in detail in section 4). Once N is allowed to vary with time, it becomes relevant to
consider the details of how much node and wire volume is required to implement dynamically a
given pattern of connections.

Equations (14) and (15) go part of the way towards defining a computational system, but
they are not yet detailed enough to specify a parallel algorithm or analog circuit that optimizes
E. Our main line of development will be from these equations towards an analog circuit. But
first we note an alternative strategy for generating parallel algorithms which will be developed
in sections 2.4 and 4.

2.1.1 Remarks on Some Generalizations

It is by no means necessary to specialize the expression for S in equation (5) all the way to
the form in equation (14), if some other way to minimize the original action, equation (4), can

10

Greedy Lagrangian Dynamics for Neural Networks

be found. Most alternative sets of F functions would pertain only to one particular objective
function E, but there are also systematic methods for deriving F; from E in which F; benefits
from retaining an explicit time dependence. For example, F; might take the form of AE, ;) for
one of p possible objectives E,, where the choice of objective as a function of time (given by
a(t) € {1,2,...p}) is made in a cyclic fashion. Then (14) is replaced by

F({z(s',)It' < 1)) =) ba(t)AEa[x(t), x(t — At);x(t74)], an

where 14(t) =1 if @ = a(t) and 0 otherwise,and where
AE,[x(t),x(t — At); x(t°)] = Eq[x(2); x(t%9)] — Ealx(t — At); x(t°)]. (18)

Here we assumed that ¢’ takes only the values t,¢ — At and t°!4, where t — At is the previous
time step in the current o phase of the cycle and t°!9 is the final time step of the previous
phase o — 1 in the cycle. Because of its explicit dependence on a cyclic clock signal a(t), Eq4 is
called a clocked objective function. It must be fundamentally connected to the original objective
function E if the resulting cyclic Lagrangian is to have the correct functionality, but there are
several ways of making such a connection. This possibility is explored further in section 2.4 and
applied extensively in section 4.

It is troubling that there exists a wide variety of different local and causal Lagrangians (cf.
equation (5)) each of whose dynamics will partially optimize the original dynamical objective
function, or action, given by equation (4). How do we pick one over another, and what are the
minimal criteria for any to be acceptable? In other words, what are the rules of the game for
proposing distributed cost and functionality terms in equation (5)? The answers must ultimately
be related to algorithmic performance in minimizing the action itself (equation (4)). We begin
our work on these questions in section 2.3.2.

2.1.2 Refinement to Continuous Dynamics

For the moment, let us assume that equations (14) and (15) describe an acceptable Lagrangian,
which is a decomposition of equations (1) and (2) to finite-sized time steps, and try to further
refine them to a dynamics with infinitesimal time steps, i.e. continuous time and continuous-
valued (i.e. analog) variables.

A standard form for analog neural networks’ objectives E is given in (9). The corresponding
functionality term F may be derived with a series of three design transformations. Start with
an objective function E[v] of continuous variables v; ...v, and discrete 0/1-valued variables
Um41 - - - Un, With @;(v;) = O for the latter (where ¢ is defined in (9)). The first transformation
is to reformulate the discrete variables as continuous variables each with the constraints that
0 < v; < 1. This step may introduce new local minima at the intermediate values of v;; if this
possibility can be analyzed away, or designed away by adding a “bump term” such as the penalty
term), c;vi(1 — v;) to E, then we have a valid transformation. The second transformation is
to replace the constraints with penalty or barrier terms ¢;(v;) added to E for unconstrained,
continuous-valued optimization. Steps 1 and 2 together may sometimes be replaced by the one-
step Mean Field Theory derivation of continuous-valued objectives for discrete-valued variables
(first discussed in [Hop84] and extended by others including [Sim90, PS89, GY91]) with improved
control over local minima. But in section 4 we will have occasion to separate the two steps.

As an example of these first two steps, the region segmentation objective (3) can be refined to

11

Greedy Lagrangian Dynamics for Neural Networks

an analog neural net with discrete variables s € {0, 1} replaced by continuous variables ! € [0, 1]:

A B
EfPF) = 3 };(f.-j -4y’ + 5 ;j(ﬁ+1J = i)' - 1)
B
+5 2 (Fasrr = TP (L= 1) + 8 (0 + 1) (19)
1] 13
+36lh) + D ().
ij i

Finally, we must refine the global objective E into an arbitrarily large number of infinitesimal-
step AE terms for use in the simplest continuous-time dynamics. Using Taylor’s theorem for
small At,

coarse = AE % At Y Et; = AtFyge[¥] (20)
T
(so that 3, Feoarse = [dtFgy,.) where
) 1
E;= =73 E'ﬂjkvjvk - Z’I;‘jvj = hi + ¢' (i), (21)
: ij J

and v is a vector of variables comprised of all the f, I, and I* variables of (19). This third
transformation step does not yet specify the associated transformations of the fine-scale cost
term Ceine[{v,,:}], which we will work out in section 3. The result will be of the form Cgne[V] =
2 K[, v] (cf. equation (136) of section 3.2). Together with equation (20), this gives us the
Lagrangian

LPsadlf vl = 3 (Kl + 5) ()

and the action fuﬁctional
S= / dtLpe. (23)

This action is in agreement with equation (11). For the region segmentation example, 8E/dv;
is given by equation (21).

In summary, we have transformed the problem three times along the way to the circuit-
level functionality term in equation (20) and an associated Lagrangian. The transformations
are intended to preserve (approximately) the fixed points of the equations of motion, while
making the dynamics progressively more implementable as an analog neural network. Both
the transformations’ validity (as measured by the functionality term of the original coarse-scale
action (4)) and their efficiency (as measured by the cost term of (4)) must still be demonstrated,
since the finer-scale versions of this action functional are only partially optimized. The three
transformations used to obtain equation (20) were: (1) discrete variables — continuous variables,
constrained to intervals; (2) constraints — penalty or barrier terms in unconstrained, continous
optimization; and (3) temporal refinement: F; = AE =~ [dtE. (The refinement of C must still
be worked out before we have a derivation of the fine-scale Lagrangian. See section 3.)

2.2 Greedy Functional Derivatives

Based on the foregoing work, we seek to derive continuous-time dynamics from suitable La-
grangians. This requires formulating the greedy derivative of equation (6) for use with continuous-
time dynamics, hence formulating it as a functional derivative.

Following equation (5), we argued that the local cost and functionality terms F; ; and C, ¢
in a Lagrangian should depend on variables z,/ ¢ only for ¢’ < ¢, and that only variables with

12

Greedy Lagrangian Dynamics for Neural Networks

t' = t should be varied in the optimization of F, ; + C, s; all values of earlier variables are held
fixed. Then F and C are said to be in retarded interaction form. These constraints can be
imposed on any continuous-time Lagrangian in differential form,

| L(x(t),%(), %(2), .) (24)

as follows: first we replace the derivatives by difference expressions (x(t) —x(t — At))/At and so
on, taking care that the largest time ¢’ to appear is t; this yields an approximate discrete-time
Lagrangian which we then optimize with respect to x(t) by differentiating to find the dynamics;
then we take the limit as At — 0. In that way we ensure that t' < ¢ (retarded interaction form)
and that only variables for which ¢’ = ¢ are actually optimized at time ¢, as required.

This procedure for finding the continuous-time dynamics for a Lagranglan in differential
form (24) may be formalized by means of the greedy functional derivative introduced in [MG90,
MM91]. Here we provide a new formal derivation of the greedy functional derivative 6 which
exploits the retarded interaction form of a Lagrangian.

Let N be a normal form operator on derivative expressions:

Nl=z(t)] z(1),

Niz(t)] = (z(t)-z(t- At))/At,
N[E(t)] = (z(t) —2z(t — At) + z(t — 2At)) /(At)?, . (25)
.o and so on. Also
N[F[y@®)]] = F[N[y®)]), y=z(t),#(t),%(@),... if F is autonomous.

So N serves to replace time derivatives by temporal difference expressions for which ¢’ < ¢, which
we can differentiate with respect to z(t). In other words, it suffices to put a Lagrangian L into
retarded interaction form, so that a greedy variation can be taken, while preserving its value
in the At — 0 limit. (N is known in numerical analysis as the “backward divided difference
operator”.) Then the greedy functional derivative may be defined, even on Lagrangians L not
yet in retarded interaction form, so as to agree with equation (6): For any small At > 0,

/)

; z(t) / diL(z(0), &(D), . ~—=NL(z(f), 2(%),..)

3(3

0 .
B O aE)

(/]
= G UL NGO,

= ke (t),f&f;‘f—“—))

where the last step used (25). Continuing,

—--6G 3 : _ z(t) - z(t — At)
) / diL(z(8),2(0),.-) = 3 (t)L(2(t), =)

9
(2 @i = EE) L0,)
(by the chain rule)

[si-o 2:(At)" 3(@,(0/4@)@)['(’@”(0’
(E= A) | 0.0,

n=0

(27)

13

Greedy Lagrangian Dynamics for Neural Networks

Here the functional derivatives §/6(d"z(t)/dt") are taken to be independent of one another,
as partial functional derivatives (so for example éz(f)/6z(t) = 0, rather than 6z(f)/6z(t) =
dé(t — t)/dt as would be the case for total functional denvatxves)

So the greedy functional derivative é¢/écz(t) is given by the operator equation

P) §
&s:(t) = 2 (At) §(dnz(2)/dt™)(?)

(28)

where At is infinitesimal. Again, the conventional functional derivatives are independent of one
another (they are partial functional derivatives). Needless to say, the highest powers of (1/At)
will dominate all others in the continuum limit At — 0. For example if L depends on v and
v, but not on higher time derivatives, then the greedy functional derivative will be (1/At)§/6v.
This will generally be the case for our circuit Lagrangians.

We can derive analog, continuous-time network dynamics by applying the greedy functional
derivative to the continous-time Lagrangian (22). Since the highest time-derivative in the La-
grangian is v; for each variable v;, the greedy functional derivative is proportional to §/6v. Then
the equations of motion become

6S
5v

For K[v,v] = (1/2)ruv?/9' (97 (v:)), the circuit-level cost term which will be derived in section
3.2.3, and for an objective function E given by equations (9) and (10), the greedy variation
equations become Hopfield/Grossberg dynamics:

= K[, 0] + a—E =0. (29)

Tl + U = ET.'jkvjvk + ZTijvj +h; and v = g(u;). (30)
jk J

This type of dynamical system describes an analog neural network, and we will make no dis-
tinction between such a dynamical system and the neural network itself.

As an example, we may work out the dynamics for the region segmenta.tion Lagrangian
given by equations (22) and (19). Specializing the dynamics of (30) to the region segmentatlon
objective (19), we can expand the first term of the objective to find a potential term (4/2)f2%
for the f;; variables. Then we find the standard Hopfield/Grossberg equations of motion for
this analog network, which are

Tréij +eij = Adij = B(fij — firj) (1 = §5) = B(fij — fij+1)(1=85), fis = (1/A)esj,
-n,lc:, +k; = BJ2 Es‘j(»fi'l'l,j - fi;? - m, &, = gk}, ,),
ekl + kZ, = B/2%;(fije1 - fii)* — n, o= g(ky).)
(31

2.3 Theory for Refinement to Circuit Lagrangians

We have found a path of argument from computational first principles to specific neural net-
works, but the status of some of the steps along the path is still unclear. The basic problem
is that various transformations of the original action functional (4) are required to get an im-
plementable dynamical system, and limitations of causality and the simplicity of elementary
processing devices require that the spatially and temporally distributed Lagrangian functional
(such as (5) or (11)) be optimized only partially (as in the discussion following equation (5)).
Our approach to this basic problem is to catalog a variety of useful transformations that
lead towards circuits or parallel algorithms, and to re-use the fundamental dynamical objective
function (4), or closely related quantities, as a measure (i.e. a criterion) for judging the success

14

Greedy Lagrangian Dynamics for Neural Networks

of such transformations. Such a criterion may be called a meta-objective since it is an objective
function used to select a dynamical objective function for the neural network dynamics.

This approach may be thought of as a symbolic search procedure to be carried out by human
designers, who select the likely transformation sequences, with machine assistance in evaluating
them and perhaps also performing them. On occasion it may be possible to eliminate the search
procedure by proving the (meta-) optimality of a given Lagrangian, but we do not think that
this will be possible in most cases.

2.3.1 Transformations of Lagrangians

Recall the three transformations leading to circuit-level Lagrangians in section 2.1.2:

T1. discrete variables — continuous variables, constrained to intervals

T2. constraints — penalty or barrier terms in unconstrained, continous optimization

T3. refinement: F; = AE= [dtE. (The refinement of C will be worked out in section 3.)

We remark on each of these transformations.

T1 and T3 are required to get a circuit implementation, but more generally they serve
the purpose of making a parallel algorithm. Discrete-time update schemes may be introduced
instead, but some care is required so that the updates of independent variables done in parallel
don’t have the joint effect of increasing rather than decreasing E. For example, for some networks
it is possible to “color” the variables with a small number of colors so that no two connected
variables (z; and z; such that T;; # 0) have the same color; then different colors can be updated
at different times in a clocked objective function, and all the variables of the same color can
be updated at once (even by discrete jumps) without interference in E. (Interference would
mean that several variables would each, if updated alone, diminish E, but if the same updates
were done together then E could increase.) Such (fairly standard) parallel update schemes are
not so important for continous-time and analog-valued networks, whose descent dynamics are
explicitly parallel.

Transformations like T2, which incorporate static constraints into the static optimization
problem, may change the nature of the optimization problem significantly. Penalty and bar-
rier terms on constraints that involve many variables destroy locality, unless they are further
transformed to a local form by methods such as those described in [MG90]. In this case a
minimization problem is replaced by a saddle-point problem. Alternatively one can introduce
Lagrange multipliers, but that also changes the static optimization into a saddle point problem
[PB87). Either way, the dynamics associated with the Lagrangian functional loses its obvious
convergence properties (because limit cycles around a saddle point become possible), and it may
be necessary to engage in meta-optimization of some kind in order to secure convergence for a
local circuit implementation. Another alternative, which requires clocked objective functions
but does not explicitly introduce saddle points, is to use an algorithm similar to the “gradient
projection algorithm” or “scaled gradient projection algorithms” [BT89] to repeatedly reestab-
lish the constraints as the dynamics proceed. Such an alternative will be employed in section
33.1.

In previous work [MG90] it has been demonstrated that static neural network objective
functions may be transformed in a variety of ways in order to acheive design goals such as
reduced wiring cost or attaining an implementable form while preserving the functionality (the
fixed points) of an optimizing neural network. Likewise, in this paper we will introduce a number
of transformations from one Lagrangian to another that achieve satisfaction of design constraints
while preserving or improving the functionality of a computation.

A fundamental aspect of equation (5) is that, due to its linearity, it naturally supports the
hierarchical decomposition of computational dynamics into large state changes (or decisions),

15

Greedy Lagrangian Dynamics for Neural Networks

each achieved through many smaller state changes or decisions. This is in analogy to multiscale
or multigrid algorithms from numerical analysis, or to renormalization group ideas in statistical
physics, or to the idea of stepwise refinement in the design of computer programs. As in equation
(5), the action S can be decomposed into a sum over state-change decisions. But if each of these
decisions is in turn made by a dynamical system consisting of a sequence of sub-decisions at a
finer time scale (which may also involve a finer spatial scale), then we can relate the two time
scales (“big” decisions and “sub-decisions”) and reexpress the action in terms of the fine-scale
decisions alone (“small” decisions):

S = A Z Cii{x(®)}))+ B E F3:({x(t"})
big decisions(7,7) big decisions(7,7)

[) c.,,({x(t')})]
big decisions(7,t) |sub—decisions(s,t) (32)

+B) > F.,,({x(t’)})]

big decisions(s,f) | sub—decisions(s,t)

= A Y Coi({x(t)}) + B b Foe({x(t)})-

small decisions(s,t) small decisions(s,t)

= A

Notice that the step from equation (4) to equation (5), or more specifically to (7) and (8), can
be given a similar hierarchical interpretation: we are expressing a single quantity, optimized
over the entire circuit convergence time, as a sum of quantities to be optimized more locally
in time or space. The further refinement to infinitesimal time steps, equation (23), is another
example. Then equation (32) subsumes all these examples of hierarchical design.

2.3.2 Meta-Optimization

We have discussed the necessity for some criterion or figure of merit by which to compare
alternative Lagrangians and the dynamical systems to which they give rise. Generally we start
with some global objective function such as S in equation (4), then transform it though a
series of spatially and temporally localized Lagrangians of the form (5) to a final circuit-level
Lagrangian L, which is only partially optimized (i.e. is greedily optimized) by the dynamics.
Finally we wish to quantify the performance of the resulting dynamical system, i.e. to evaluate
the quality of the associated computation, for example by computing the value of S at the end
of a run. The meta-optimization problem is to optimize the resulting evaluation, treating it as
a functional of the exact form of L.

An obvious way to do that is by means of a retrospective (a posteriori) evaluation of the
original objective S of equation (4). But optimizing with respect to this protocol of retrospective
evaluation of S¢,ars; seems out of the question, since that involves many repeated tests of the
neural network dynamics with different values of the parameters that specify the (transformed)
Lagrangian, and is therefore far more expensive than one relaxation run of the network. (The
parameterization of L may involve real-valued parameters, or may simply be the discrete choice
of a sequence of transformations to derive L from Seoqrse-)

Fortunately the cost of optimizing Scoarse as a function of the form of L (i.e. the cost of
meta-optimization) may by amortized over many inputs h (cf. equation (9)) to one network,
drawn from some probability distribution, or even over many network connection matrices T
drawn from another probability distribution. This amortization would involve optimizing M,
at great expense, and then using the resulting dynamics to improve the performance of many
different computations. An apparent obstacle is that different h vectors and T matrices will in
general have unrelated meta-objectives M, so amortization looks difficult.

16

Greedy Lagrangian Dynamics for Neural Networks

Such amortization may still be achieved if the meta-objective function M[L] is altered to
become an average-case measure of S.oqrse:

M [L] =< Seoane[L] >hT - (33)

Just as in neural network learning procedures, the distribution average would be sampled by a
finite sum over a training set; this sum would be optimized, and then a further sampling could
be made to test generalization from the training set to a testing set. If such generalization is
to be expected, either on experimental evidence or according to theoretical criteria such as the
Vapnik-Chervonenkis dimension [Vap82, BH89], then amortization will be possible. For the cost
of computing (hence of optimizing) M[L] is multiplied by the size of the training set, but that
large initial cost is then effectively divided by the number of times that L is used subsequently,
which may be far larger than the training set. This gives the desired amortization.

Alternatively, one could amortize the cost of optimizing M by taking M to be a worst-case
measure of Scoarse Which can be optimized analytically. The worst case performance is very hard
to evaluate experimentally, but may be more easily subject to analysis than the average-case
performance, at least if we are allowed to alter the form of S.oarsc Somewhat. That will be our
approach in section 3.2.

2.4 Cyclic Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle of a fixed
set of heterogeneous coarse-scale decisions will be fundamental. It is analogous to a “loop” in
programming, or to the use of cyclic clock signals to control an electronic circuit. The idea may
be expressed in terms of Lagrangians in several different circumstances which we will explore in
this paper. In all cases we will find a simple formulation in terms of a clocked objective function
[MGM091]: a version of the AE functionality term of the Lagrangian in which the structure of E
is regarded as time-dependent according to a temporal cycle corresponding to the fixed cycle of
coarse-scale decisions. The possibility of formulating a cyclic Lagrangian in terms of a clocked
objective function was introduced in section 2.1.1, equations (17) and (18).

As an example, consider the conventional line-minimization algorithm for local optimiza-
tion. Repeatedly, one calculates the gradient at a current location x, does a one-dimensional
minimization of the objective function along the gradient direction, and updates x. During the
cycle it is necessary to store an old configuration x°!¢ for use in updating x, and to restore to
zero the scalar parameter s which measures displacement in the gradient direction.

To express these ideas we recall the clocked objective function notation [MGM91]: Suppose
that we have a small set of objective functions {E,} which are to be partially relaxed in a cycle.
We define one nonoverlapping clock function t4(t) = 0 or 1 (with 3, ¥4 (t) < 1) for each phase
a of the cycle. The clocked objective function is written as

Eaocked[x,] = Y va(t) Ea X 2fxed] (34)

where Xfe® and xfixed are subsets of variables from the entire set {z:}. During phase « (i.e.
when $o(t) = 1), Eclocked = Eo[XEF*¢|Xfxed] i5 to be extremized with respect to all variables
in Xfree while all variables in Xf‘;“ are to be held fixed or clamped. Figure 1 shows one

interpretation of the nonoverlapping clock functions ¥4 (t).
For example, a simple clocked objective function for line minimization would be

Fetoked = ¢,(:)% 1% - x|[2 + 57) x4, six] (initialize x° and 5)
+¥2(t){ E[x + sVE[x]]) [sx] (line minimization) (35)
+¢3(t)§ (le —x°M - sVE[xdd]”’) [x|s,x°¥] (update x).

17

Greedy Lagrangian Dynamics for Neural Networks 18

_ i en i

T t

Figure 1: Two time variables 7; and 7, may increase during nonoverlapping intervals of an under-
lying physical time variable, t. For example 7, = [dty1(t) and 7, = [dtty(t) where ¥, = dry/dt
and 9; = dr;/dt are nonoverlapping clock signals. (a) The parametric curve (7y(t), 72(t)). (b) The
functions ¥;(t) and 2(t).

Since the @ = 1 and a = 3 phases are especially easy quadratic optimizations, one could arrange
that these terms are relaxed almost to zero during the appropriate clock phase interval. Then
equation (35) is a continuous-time refinement of the coarse-scale Lagrangian’s decision cycle,
which partially relaxes E in a gradient direction and then resets the variables for the next partial
relaxation. At the end of phase 2 in each cycle, the clocked objective function takes the value
of E at the new point. So the clocked objective function may be interpreted as a refinement
of the functionality term of the coarse-scale decision-cycle Lagrangian. This interpretation also
requires that the correct variables be held fixed at the correct times; this may be achieved with
a cost term C, which strongly penalizes any change in the frozen variables for the relevant clock
phase.

Many variations on equation (35) are possible; the clocked objective could devote an extra
cycle to the calculation of the gradient vector, and the x used to calculate the gradient could
be taken as the u = g=!(v) rather than v variables for E, and so on.

2.4.1 Relation of Ejoqeq to E

So far we have only argued that clocked objective functions provide an interesting special case of
the distributed Lagrangian (5); we have not shown how they can be related to the static objective
function E or the dynamic objective function (4) with functionality term F = Egna — Einitial -
Here we will discuss three different classes of clocked objective functions, each of which can be
used to make some progress on minimizing E in every complete clock cycle so that AE < 0 for
each cycle even though the functionality term is not simply equal to AE. In this section we
refer to such a clocked objective as “valid” for objective E.

For the first class of clocked objective functions, of which the line minimization objective
(35) is an example, Eciocked is valid if one of its components Ej is equal to E itself, perhaps
with restricted arguments, and if the other components can each be expected to relax to near-
zero values within their own phase of the cycle. These other components will be referred to as
transient terms of a clocked objective function, since they approach zero quickly. Then progress
is definitely made during phase 3, and at least no harm is done in the other phases a. Generally

Greedy Lagrangian Dynamics for Neural Networks

the other phases are used to ensure the suitability of the arguments of Es = E.

In the second class of valid clocked objective functions, E, is equal to E during all clock
phases, except that it is a function of different sets of variables (or more generally, is a function
of different submanifolds) during different clock phases. We will refer to this type of term as a
subspace term of a clocked objective function. There can be no significant calculation required
to decide what set of variables E depends on during each phase (otherwise we’d need a further
phase to make that calculation), but one simple arrangement is to partition all variables into
a few blocks X4, with one block of variables allowed to change during each phase of the clock.
Then equation (34) simplifies (since every E, is just E) to

EdockedlX, f] = Y Ya(t) E[XIe| xiixed) (36)

This permits concise expression of blockwise coordinate descent algorithms.

It is perhaps surprising that Egoged[X,?] is not numerically equal to E[x(t)] in this case,
owing to the nonoverlapped clock factors ¥q(t) € [0,1] whose sum varies between 0 (between
phases) and 1 (during a clock phase). As we will see in the next section (2.4.2), this is necessary
so that the continuous-time Lagrangian will force all variables to completely stop changing
between clock phases, as they should.

We note that the second class of clocked objective functions can be used for the discrete par-
allelization scheme mentioned at the beginning of section 2.3.1. There we postulated a partition
of the network variables into a small number of “colored” blocks, with neighboring variables in
the network having different colors. Such a partition can be used to ensure noninterference of
discrete-time parallel update dynamics. Clearly equation (36) is the correct clocked objective
for this situation, and F would just be AEgocked-

For the third class of valid clocked objective functions which perform optimization, one
constituent objective Eg is again taken to be E with restricted arguments (a subspace term, as
in the first and second classes), and the other phases either relax to nearly zero (being made
of transient terms as in the first class) or serve to determine the choice of active arguments
for phase # without directly changing any of the original variables x. Since this last type of
objective is a sum of terms that only involve variables that control the active set of arguments
for B, its constituent terms will be referred to as control terms in a clocked objective function.
Clocked objective functions with control terms are the class of objective functions most relevant
to the attention mechanisms of section 4. In that section we will have occasion to use clocked
objectives containing a variety of subspace terms, transient terms and control terms.

2.4.2 Lagrangians for Clocked Objective Functions

We have seen in equation (17) how clocked objective functions may arise from coarse-scale La-
grangians, in which the the functionality term takes on a cyclic sequence of different forms. Our
purpose now is to relate such clocked objective functions (34) to continuous-time Lagrangians.

The essential feature of a single term E,[X¥fe¢|xfixed] in a clocked objective function E is
that it depends only on some of the variables, the rest being held constant at their earlier values.
This is expressible in terms of derivatives:

aE, OEq
T AT = xai g 37)

where xai € {0,1} is a constant which indicates the presence (x = 1) or absence (0) of
z; in Xf,’“ (For fixed a, xo; is an indicatrix for Xf,"‘) Consequently, E,[’2"’&]

low-dimensional slice of the higher-dimensional function Eq[X,], evaluated at values of the ﬁxed
parameters which are dictated by the state vector x at the beginning of the a’th phase.

19

Greedy Lagrangian Dynamics for Neural Networks

From equations (36) and (37) we may now calculate 8 Eciocked/%::
8E
clocked = Z xb.(t)xm 8 (38)

which has the virtue of being zero at any given time ¢ unless z; is in the free set of variables
then.
We can take the final continuous-time Lagrangian to be

L= Z(K[z., .]+8E°‘°d“") (39)

To see that this is consistent with the desired pattern of fixed variables as a function of time, we
examine the resultant dynamics. As in equation (30), varying #; and using J_, YaXai € {0,1},
and defining K[w, z] as the inverse of K[z, 2] ; on its first argument, the equations of motion
are

b1 = K= 3 baxer e e 2= 5 balxuk- e el (40)

where we have used equation (38) and K[0,z] = 0 to simplify the equations of motion. The
factor of ¥qo(t)xai ensures that the correct variables are frozen at the correct times.

Equation (39) is appealing because it has the same form as the continuous-time Lagrangian
for unclocked objective functions (22). This is the desired relationship between continuous-time
Lagrangians and clocked objectives. Because of equation (39) it will often suffice to give the
clocked objective alone, omitting the Lagrangian, in order to specify a network’s dynamics.

2.4.3 Notation for Clocked Objective Functions

Equations such as (37) above can be expressed in a more convenient notation for algebraic
calculations (by human or computer) From an algebraic point of view, (37) ma.y be regarded
as the z; derivative of Ea, a version of E, in which all fixed variables z; € X ed are simply
replaced by clamped variables (or “fixed variables”) Z; for which

0z; _ . Oz; _

B2, = 0 despite the fact that Bz = 8ij. (41)
The actual value of Z; is updated to the current value of z; only at the (otherwise irrelevant)
time intervals between the nonoverlapped clock phases, when)", ¢a(t) = 0. Equation (37)
follows directly from this interpretation of E,[Xfee|xfixed] in terms of E,.

In fact, we can design notation for the substitution that relates E to E. Define

z{x}=xz+(1-x)2 s0 xX{Xa}=Xo X+(1-xa) % (42)

where x is a zero-one scalar (or can easily be rounded to zero or one) and X, is just the constant
array Xoi which determines which variables are clamped in each phase . With this notation,
Ea is just Ea[x{Xa}] ie.

Eo[XF>|X4) = E,fx{x,}] (43)

and we will use E,[x{x,}] as the preferred notation. Furthermore x can be replaced with any
vector-valued expression #(§) involving variables £, not just a constant. Equation (42) would

still define _ _
x{%(€)} = O(x(®) - 1/2) - x +6(1/2 - %(§)) -%, (44

20

Greedy Lagrangian Dynamics for Neural Networks
where - 0
z>
O(z) = { 0 otherwise (45)

and © is defined componentwise on vectors. The purpose of the © function here in (44) is to
round #(§) to zero or one, with a boundary at 1/2. Note that, in agreement with equation
(42) in which x is a constant, x is clamped in equation (44). That is because x’s focus of
attention cannot shift during the phase in which x is being relaxed without incurring excessive
and uncontrolled switching costs.

As a further notational refinement, we may drop the explicit ¢(¢) functions from our notation
by defining a clocked sum,

PE=)_ vat)Ea (46)
(-3 a
which may be written out term-by-term as
Ei®FE:0...E,. (47)

(The “@” symbol is evocative both of a rolling “+” sign, and of an analog clock face.) Of
course the periodic functions t4(t) still have to be specified before the clocked sum is a well-
defined quantity. The clocked sum is neither commutative nor associative, but we may take it
to associate over the ordinary sum:

T =QTe

Moreover, parenthesised expressions such as E; @ (E2 @ E3) may be used to denote nested
loops in which for example E; and E3 are repeatedly relaxed in an inner loop, within one phase
of an outer loop, and E; is relaxed once during the other phase of the outer loop. Again the
timing would be controlled by external functions ¥ (t), which must still be specified separately.

Perhaps the most important algebraic property of the clocked sum, for the purpose of for-
mulating descent algorithms, is its trivial commutation with partial derivatives:

9 9
e @Ea = Q? 3 e (49)

This follows directly from the definition of the clocked sum. The right hand side of equation
(49) could be used as the time-dependent descent direction in a gradient-descent algorithm.

We may conventionally expect to find the & signs outside the + signs in a clocked objective
function, and accordingly we assign @ a lower grammatical precedence than + in otherwise
ambiguous expressions. So by precedence, E; @ E; + E3 means E; ® (E, + E3).

With the addition of clamped variables Z, conditional variables z{x}, and clocked sums
@, Ea, we are able concisely to express a wide variety of clocked objective functions. For
example the line minimization objective (35) becomes

Egockea = 8§2/24|]x°M - %]||?/2 (initialize s, x°!9)
® E[x + sV E[x]] (line minimization) (50)
® |lx -z - 5VE[x]||?/2 (update x),

or what may be easier to implement as a circuit,

Edoked = 8°/2+|Ix" —%||?/2+ |lw — VE[X]||*/2
(initialize 5, x°'4; find gradient w)
® E[x + sw) (line minimization)
® |Ix — x° — 5w||/2 (update x).

(51)

21

Greedy Lagrangian Dynamics for Neural Networks
Furthermore, clocked objective functions make new algebraic transformations possible. For

example, equation (44) may be implemented for x-expressions (assuming only that we can
implement it for 0/1-valued variables) by introducing new variables 7 as follows:

Elx{x(©}] = 3 [~ m(m(® - 1/2)+ do(w)] & Elbx{n}]. (52)

22

Greedy Lagrangian Dynamics for Neural Networks

3 Circuit Dynamics

3.1 Refinement to a Circuit
Upon refinement, the Lagrangian L = C + F becomes

L=ANAt+BAE. (53)

We would like to take the limit At — 0, refining to infinitesimally small time steps in a continuous
analog circuit. We expect this to be both simpler than a discrete-time (finite At) dynamics, and
also more relevant to neural network implementations. But performing the greedy optimization
of such a Lagrangian presents some surprising problems.

For instance, a first-order expansion of AE(At) yields a Lagrangian proportional to At:
L{v,At] = At(C + BY; E ;[v]v;), which cannot be optimized with respect to At > 0 without
going outside the expansion’s domain of validity. To avoid this problem At might be taken to be
a small constant, but that would make the entire cost term C = AN At constant and therefore
irrelevant to the dynamic optimization problem. More seriously, partial optimization can only
affect v which appears linearly in this Lagrangian; 9; = %00 will be the optimum, which would
not only invalidate the expansion of E(t) again, but would violate physical limits on circuits as
well. A somewhat more physical dynamics would result if we arbitrarily followed the analogy
from the Lagrangians of physics and changed the cost term to a kinetic energy (1/2) 3_; v7; but
we have no computational justification for doing so.

On the other hand, not expanding AE(At) at all leaves a fine-scale optimization problem
which is equivalent to optimizing the full coarse-scale objective E, in much less time. This is
simply not possible. And even a second-order finite Taylor expansion of A E(At) is problematic
since the optimized values of At and v are likely to lie outside the expansion’s small domain of
suitability as an aproximation.

The essential problem here is that each fine-scale optimization, to be implementable as a
circuit, must be more constrained than the coarse-scale optimization. We must stay within
the domain of a Taylor expansion of AE(At), and we must not violate physical speed limits
(e.g. for physical implementability we must prevent circuit time constants physically from
becoming too small), and so on. These constraints are either (a) direct physical limits on circuit
implementations, or (b) computational limits on what can be achieved with a small amount
of physical computing (computation which occurs in a physical medium) in time At. These
constraints are generally too complex to state exactly in a simple Lagrangian.

We identify two general approaches to formulating such circuit constraints and the corre-
sponding fine-scale Lagrangians. In the “underconstrained” approach, we impose simplified,
loose versions of the physical and computational constraints on the optimization of Leoarse, in
the hopes that the resulting dynamics will be constrained enough for a genuine physical imple-
mentation (perhaps at an even finer time scale). These loose constraints can be tightened up for
analytic or computational convenience, and then expressed as penalty or barrier functions which
are added to L to form Lgp,, the fine-scale Lagrangian. By contrast, the “overconstrained” ap-
proach stays within the realm of physical implementation by hypothesising a parameterized
class of fine-scale Lagrangians known to be implementable, which can be thought of as alter-
native strategies, and optimizing some measure of their relationship to the original coarse-scale
Lagrangian L. In particular, the cost terms of Lane may be optimized while the functionality
term is taken to be AE ~ AtE as in the coarse-scale Lagrangian. Thus the underconstrained
approach applies looser constraints than implementability may actually require, and the over-
constrained approach applies tighter constraints than are actually required. We give examples
of each.

23

Greedy Lagrangian Dynamics for Neural Networks

3.1.1 Underconstrained Refinement #1

We will require Av be small enough that AE[Av] can be expanded to first (or second) order in
a Taylor series, and that each |v;| be bounded by a physical speed limit. So we must optimize

L[v,At] = ANAt + BAE[Av] (54)
subject to
[IVlleo = max|is] < s (55)
(where v x~ Av/At) and
llaviiz < r(v) (56)

where r(v) is chosen to ensure that a first (or second) order expansion of AE[Av] is sufficiently
accurate. Also, there are two approaches to varying At. If we let At be optimized (subject
to At > 0), the cost term in the Lagrangian will keep it small but not necessarily drive it to
the continuum limit At — 0. Or, we can let At = x7, where x € 0,1 is a discrete dynamical
variable which “stops” the neural network when x is optimized to zero, and where 7 is a small
constant which we can analytically take towards zero to extract continuum dynamics.

In the latter case, ||Av||2 = x7||V]l2 < xT/ns is more restrictive in the limit 7 — 0 than
constraint (56) except when the network finally stops, at which time both constraints become
irrelevant. So we can drop constraint (56). If we express constraint (55) as a barrier function
3 i #+1(vi/s), the fine-scale Lagrangian becomes unconstrained:

Lene[V,x] = E 6+1(vi/s)+ x[AN+ B E E,,'i'),']. (57

Except for the new x variable, this is the same form of Lagrangian for neural networks that we
have proposed in [MG90, Mjo87]. The corresponding dynamics are (varying v, cf. (28))

v = —sg+1(E), (58)

and varying x to get the stopping criterion, we find the optimal values of x occur only at the
boundaries of the allowed domain of x:

x=0[s)_ Eigs1(E;) - AN]. (59)
i
Here ©(z) is the Heaviside function (1 for z > 0; 0 for z < 0).

3.1.2 Underconstrained Refinement #2
If, on the other hand, we let At be optimized freely, then we are imagining a computational step
that takes a small but nonzero amount of time to change the state by Av, which is constrained
by both (55) and (56), which in turn are related by v &~ Av/At. We will express constraint
(55) as ||Av]|eo < sAt, which can be tightened to the more tractable

(/)3 1au] < At. (60)

i

Also we can tighten constraint (56) to

18Vl < B2 = #(0) (61

24

Greedy Lagrangian Dynamics for Neural Networks 25

2.5

1.5

0.5}

-1 -0.5 0.5 1

Figure 2: Potential ¢, /o,_(z) incorporates automatic stopping criterion. When other terms fail to
alter the ordering among ¢(—1), ¢(0), and ¢(1), then Av = 0 is favored and neuron v; stops.

(which implies (56)). Optimizing L[V, At] of equation (54) with respect to At, which occurs
linearly in (54), as constrained by (60) just saturates the constraint: At = (1/8)3; 1A

The remaining constrained optimization is with respect to Av. Using barrier functions, we
find an unconstrained Lagrangian

Llav)= ATN‘ Z |Av] + E E;Av; + 2 é+1 (%)) ' (62)
o AN? Ay,
Lavi= 3 B+ 2 56,0 (22), (63)

where ¢4 /0/-(2) = ¢+1(z) + |z

-1 if E;—AN/s>0
Av/i(v)={ 0 if E;— AN/s<0and E;;+AN/s >0 164)
+1 if E;+AN/s<0

A number of calculations of bounding expressions #(v) are possible, but we will not pursue
this approach further here.

3.1.3 Stopping Criterion

Lagrangians (57) and (62) each have intrinsic stopping criteria which compare the expected
improvement in functionality AE with a cost of movement, and allow movement only when it is
sufficiently beneficial. But E may not always be the right function for this purpose. A monotonic
function b(E) may be used in place of E in equation (8) and may likewise be decomposed into a
sum of Ab terms; that would alter the tradeoff with the cost term for incomplete optimizations
and therefore the stopping criterion (the point at which a further decrease in F is smaller than
the expected cost of obtaining it). ’

One major drawback of using a monotonic function 5(E) in place of E in a Lagrangian is
that if E is of the standard neural network form (9), it is already a sum of local terms and
therefore close to neural implementation. By contrast, direct optimization of b(E) requires
a global calculation of E even to get the gradient Vb = b'VE needed for the dynamics of

Greedy Lagrangian Dynamics for Neural Networks

every variable. One can circumvent this problem by transforming the objective function with a
particular type of Legendre transformation [MG90]:

Xb(E) = —0E + xt + ob~ (7). (65)

In the resulting gradient dynamics, only one variable (¢) requires computation of the objective
function E. Unfortunately this transformation replaces a static minimization objective with
a static saddle-point objective, since some of the new variables are to maximize rather than
minimize the transformed objective. To find a Lagrangian which always converges, rather than
cycling around the saddle point, may then require an appeal to meta-optimization (e.g. either
experiment or deeper analysis) of the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinement: Meta-Optimization of K

A second, more systematic way to overcome the problems with refining the Lagrangian through
expansion of E(At) is to define a class of Lagrangians which are known to be physically imple-
mentable and mathematically tractable, though they are not the only physically implementable
expressions for a circuit-level Lagrangian, and to pick the best member of the class based on a
meta-optimization criterion. So we overconstrain the set of allowed Lagrangians, and optimize.
We will be able to do this theoretically for a meta-objective that measures worst-case perfor-
mance of a Lagrangian for minimizing an especially simple class of neural network objective
functions.

The allowable class of objective functions will be those of the form Efv] = —(1/2) 3_,; T;;viv; —
Y hivi + Y, é(v;), in which the matrix T is negative semi-definite and has exgenvalus whose
absolute values are bounded above by some number tymax. An example of such an objective
functxon is the hysteresis-free version of the common winner-take-all network objective [HT85)

(A/2)(E, v; — 1)2 = 3", hivi + 3; 6(v;). There is a straightforward generalization to the
case in which different neurons v; have different potential functions ¢;(v;), but we won’t work
that out here. The negative-definite restriction on T is severe because it means that £ must be
unimodal (since each ¢; is unimodal too). Unimodal objectives have some computational uses,
such as in the winner-take-all network or the “invisible hand” algorithm for matching [KY91],
but our meta-optimization results will not be widely applicable until they are generalized to mul-
timodal objective functions. Nevertheless we can present the unimodal analysis as an example
of the meta-optimization of a circuit-level Lagrangian.

What mathematical conditions would make a Lagrangian physically implementable, so the
associated dynamics can be implemented with a circuit, and also result in good performance?
The essential limiting factors for circuit speed are the time constants (such as resistance-
capacitance products in an electrical circuit) that govern the approach to any stable state of
any one- or two-element subcircuit. These time constants must be larger than some physical
lower bound, say 7ras:. We also want the stable fixed points to be minima of some neural net-
work objective E. Subject to these constraints, we want to minimize the slowest time constant
for the full circuit (which as we will show is also larger than 73). Of course time constants
are only defined for a local linearization of a dynamical system, so we must constrain them in
the neighborhood of each attainable configuration, and we may optimize the worst case time
constant over all such configurations.

With these points in mind, we define a constrained optimization problem over a limited class

of Lagrangians of the form
Lv] =) K[ii,vi] + Y Es, (66)
i i

26

Greedy Lagrangian Dynamics for Neural Networks

where the objective takes the form
1
Ep)=-3 Zﬁ Tty = o+ 2600, (67)

and h includes the input to the network. Note that the cost term in (66) is a sum over kinetic-
energy terms each pertaining to only one neuron; this is a form of locality. Also the equivalence of
stable fixed points and local minima of E can be ensured by simple constraints on K. Equation
(66), together with the time constant constraints and K constraints to be introduced, specifies
the class of Lagrangians that we will call “circuit-implementable”, and it is parameterized by
the kinetic-energy function K from 2 to R, suitably constrained.

One important property of equation (66) is that it retains its form under componentwise
reparameterizations v; = fi(z;), where f; is monotonically increasing, differentiable, and its
inverse is differentiable. (Note that such reparameterizations form a continuous group under
composition.) That is, under such a reparameterization the dE/dt term is invariant and the
K term, while not invariant, becomes another function K[z;,z;] of the corresponding new
variables. So the problem of optimizing with respect to K can be solved equivalently in any
such parameterization we choose, if only the objective and constraints are also chosen to be
parameterization-invariant in this sense. We will insure that condition by deriving them from
physical circuit time-constants for exponential convergence to fixed points.

The greedy functional derivative was derived in section 2.2. We use that result to find
the greedy optimum of the action [dfL with respect to the trajectory v(t). The dynamical
system that results from calculating the greedy variation of L with respect to v (i.e. the regular
variation with respect to v) and setting it to zero everywhere is

% = K[-E,,v] (68)

where K[w,v] is the inverse of K [9,v]; on its first argument. This forces us to constrain K to
be monotonic in its first argument. Here we introduce the notation

w,-[v] = -E,; = El}jvj + h; — ¢’(v.°). (69)
J

For stable fixed points to correspond to local minima of E (for which w = 0), it suffices to
assume that

K[0,v] =0 and Klw,v], >0 (70)
for all w and v. The linearization of this dynamical system at v is
Av; = f{[w.-, v] + ZA;jAvj (71)
)
where 5
A = 2 Riww
N oy <1 vl (72)

K o[wi,)] (Tij — &;j ¢"(vi)) + K o6;;.

Now we are in a position to derive the constraints on the function K that result from
considering the time-constants of the dynamics specified by A. We want the circuit elements
and their connections to be physically implementable, so we’ll constrain one- and two-element
subcircuits of the linearized system (71) to be slower than 7. We do this by setting all
elements of A to zero except for A;; (for a one-element subcircuit) or {Aii, Aij, Aji, Ajj} (for
a two-element subcircuit), to get a 1 x 1 or 2 x 2 matrix A({) or A(%,j). Furthermore, we

27

Greedy Lagrangian Dynamics for Neural Networks

may arbitrarily pick the subcircuit’s fixed point v* by adjusting the input vector h; this does
not alter any element of A or A. In that case K[w;,v;] = 0, and the linearized dynamics (71)
converges exponentially to v with a time constant determined by the largest eigenvalue {);} of
the matrix A, i.e. by its matrix norm ||4||;. So the physical constraint would be

max||4]lz < 1/7ast, (73)
Aca

where A C A means that A is varied over all 1 x 1 and 2 x 2 submatrices of A and over all state
vectors v.)

The constraint (73) is parameterization-invariant. Invariance follows for any A by applying
Taylor’s theorem at a fixed point v* of v, to get the linearized dynamics in a new coordinate
system {z; = f;(v;)}. The new matrix A is just a similarity transformation J. AJ-1 of A, where
J is the (nonsingular) Jacobian of the change of coordinates. Therefore A and A have the
same eigenvalues (e.g. [Ner70], Theorem 5.2 or 5.3) and ||A||; is parameterization-invariant as
long as the Jacobian J is not singular (which ours never are). Furthermore, the identity of the
1 x 1 and 2 x 2 submatrices of A are invariant under our coordinate-wise reparameterizations
{zi = fi(v)}. So the whole constraint (73) is parameterization-invariant. This invariance
confirms the intuition that exponential convergence to a fixed point in one coordinate system
{vi} (i.e. v—v* = cexp —At) does not change its convergence exponent) in another coordinate
system {z; = fi(%)}.

Note that because each f; is assumed to be monotonic, differentiable, and to have a dif-
ferentiable inverse, constraints (70) are also parameterization-invariant. That’s because each
w; = —E; is multiplied by f(v;) in reparameterization {z; = f;(v;)}, where 0 < f!(v:) < oo.

Constraint (73) is not a sufficiently convenient form for all our subsequent analysis, so we
will relate the constraint to something more tractable. The matrix norm of each A C A is
bounded above and below by multiples of max,; |Ags| (e.g. [GL83], p. 15):

max |Aas| < [14]l2 < dim(A) max |Aas), (79)
whence X
max |4;;| < max||A]lz < 2max|4;;], (75)
3y ACA 3]

where as before A ranges over all 1 x 1 and 2 x 2 submatrices of A. So a closely related but
more tractable constraint may be formulated:

maxmax |4 (V)| < 1/Ttast. (76)

Of course, the bounds of (75) hold regardless of what coordinate system is used to derive
A, so long as A is expressed in the same coordinate system. Still, constraint (76) is not
parameterization-invariant, since similarity transformations do not preserve the elements of a
matrix. We will have occasion to use both (73) and (76) in what follows.

Since one K is to apply to many connection matrices T and state vectors v, we will also
constrain a worst-case estimate of the circuit speed over all T in some allowable class 7 in the
formula for A, and over all state vectors v for each connection matrix:

Allz € 1/Tase. 7
max maxmax || Ally < 1/t ()

As previously mentioned, we take 7 to be the set of negative-semidefinite connection matrices
T, such that the absolute values of the T’s eigenvalues (i.e. T"s singular values) are bounded

28

Greedy Lagrangian Dynamics for Neural Networks

above by ¢max. Constraint (77) is parameterization-invariant but not as analytically tractable
as the alternative,
maxmaxmax|4;;(v,T)| < 1/ Trast. (78)

which will enter into the following analysis even though it is not parameterization-invariant.

The invariance of constraint (77) is one reason to prefer the time-constant constraint (77)
over the “speed limit” imposed in sections (3.1.1) and (3.1.2), which explicitly depends on the
choice of variables. On the other hand the speed-limit constraints take into account the entirety
of each trajectory, rather than just the behavior near (all possible) fixed points.

Next we must formulate the objective function, which will be a worst-case estimate of the
much slower time constant for convergence of the full circuit (as opposed to 2 x 2 subcircuits).
We want to minimize 750w, Where

Tslow = m‘}xglea%:miaxl/ll\;(.ﬁi(v, T))|
= (A-1
= maxmaxmax|Xi(47(v, T))| (79)

— -1
= maxmax |47 (v, T)]l2-

Equivalently we want to maximize

NPT | -1
minmin ||47*(v,)|l (80)
Again, the objective (79) will be parameterization-invariant because the time-constants are
invariant under similarity transformations.

Because the optimization of (79) with respect to K[v,v] subject to (77) is invariant under
reparameterizations z; = f;(v;), we may change variables to u; = ¢](v;), calculate A for the
linearized u variables, restate the optimization problem, and find the optimizing K. The func-
tions ¢ are the single-variable potentials appearing in equation (67), so each ¢ is monotonic,
differentiable, and has a differentiable inverse. The variables u; were introduced in equation
(10). Using the u variables, one may express the dynamics by means of the Lagrangian

= 0F .
L= Kli,uw]+)_ 5=, (81)
whence the equation of motion
u; = K;l[-—-g-f%, u.-] (82)

(where the function inverse concerns only the first argument, u;, of K 4,). This may be rewritten
in terms of w; from equation (69):

éE 1 0E
e 83
YT T ¢(w) Ou; (8)
which enables us to define) .
Klw;,ui] = K;l [wig’ (us), ui) (84)
and reexpress the u; dynamics as)
4 = Klw;, us). (85)

Then the linearized dynamics is

Ay; = K[w;,w] + Z AijAu; (86)
J

29

Greedy Lagrangian Dynamics for Neural Networks 30
where A;j = 0K [w;, u;]/du;, ie.
= Aij = Rofwi, 0] (Tiio! (w) + 85) = Ruli, l6is. (87)

(We have defined T = -T'.))
So our optimization problem is to find K which solves the following optimization problem:

Maximize
O = min ||[AY(u,D)|?
u,w,:l-'ei II (u :r)'lz
with respect to (w.r.t)
K, subject to
¢ = (max_ max||Allz < 1/Tuse
uw,Tef Aca
and Koyy = Kyw and Ko >0 and K0, 4] =0)
where : . _
T = {T]61(T) < tmax and T is positive semi-definite}, and
—Aij = K o[wi,v] (T;'jgl("i) + 5ij) — K u[wi, w6
. - (88)
and 0,(T) is the largest singular value of T, i.e. the largest absolute value of any eigenvalue of
T.
By introducing new notation
plw,u] = I?,!,[w,v] (89)

v[w,u) -K y[w,v]
and translating the constraints appropriately, we can treat u and v as independent functions
except for the constraint on the mixed partial derivatives. Then the problem (88) is equivalent
to the following optimization problem:

Maximize
O = min_|l4A7(u,T)l5?
2w, TeT
w.rt (u,v),
subject to
¢ = max _max||A]|; < 1/7
(u,w,i'ei'ch” ll2 < 1/taae (90)

and py = -V, and p >0 and v[0,u]= 0)

where ; _ . .
T = {T|01(T) < tmax and T is positive semi-definite}, and
—A;j = plw;, v (ﬁjy'(ui) + 5;,’) + vi[w;, u;]é;;.

In the next section we will establish an approximate solution to this optimization problem: a
(#,v) pair that satisfies all the constraints and comes within a factor of 2 of the globally optimal
value of O. Here we simply make several observations about the optimization problem (90).
First, one of the most important questions about this problem, and our solution to it,
is whether the restriction to positive semi-definite T’s can be removed. Connection matrices
appearing in real applications can have bounded singular values, but rarely are all the eigenvalues
of the same sign. Second, we note the close relation of this problem to a worst-case minimization
of the condition number of A4, £(4) = ||A||2||A~?||,. Since max;; |a;;| < ||Al|2 and y and v can

Greedy Lagrangian Dynamics for Neural Networks

easily be rescaled by a constant while preserving their constraints, the two problems look quite
similar. Indeed, maximizing x(A) over all u,w,T € 7 subject to the u and v constraints would
yield an upper bound Of Ttastkmax for Omax. But our problem is more difficult because the
extremization over u,w, T € T is performed separately for the constraint and the objective.

3.2.1 Optimization of 4 and v

A useful auxiliary problem to (90) is obtained by replacing (73) with the non-invariant expression
(76):

Maximize
O = min_[l47(u,T)|;?
min_ (47, Dl
w.rt (u,v),
subject to
Cle) = (cuﬁ%:e:ini_?xlA;j(u,T)lsl/nm (91)
and py =—-vr, and x>0 and u[O,u]:O)
where

T = {T|01(T) < tmax and T is positive semi-definite}, and
—Aij = plwi, v (ﬁjg'("i) + 5.',') + v[w;, u;)6;;.

Unlike the original problem (90), we will be able to solve this auxiliary problem exactly.

To solve the constrained maximization problem (91) and others like it, we will use the
following proof strategy. Given objective O and constraints C, we will maximize some lower
bound objective O_ such that O_[u,»] < O[u,v], subject to tightened constraints C_ such
that C_[s,v] = C[y,v]. In this way we ensure that max(O-|C-) < max(O|C). Likewise we
will maximize some upper bound objective O, such that Ofu,v] < O,[u,v], subject to loos-
ened constraints Cy such that C[u,v] = C4[u,v]; this combination ensures that max(0|C) <
max(0+|C4). Having solved both constrained optimizations, we will see that both give the same
value for the objective:

max(0.4|C4) = max(O-|C-) (92)
which implies that all the extremal values are the same:
max(0|C) = max(0-|C_) = max(04|C4). (93)

Furthermore, the extremal values u* and v* of max(O- [, v]|C-[u,v]) all satisfy constraints C
(since they satisfy C_) and thus constitute extremal values of max(O[u, v]) as well. Thus we
will have solved the original constrained optimization problem of maximizing © with respect to
C, by finding the maximal value and arguments u*,»*) at which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimization problem
(91). A variant of the same argument can then be used to conclude that the (p,v) pair for the
¢ = 2 auxiliary problem comes within a factor of two of solving the original optimization problem
(90).

In fact, using (75), we see that the ¢ = 1 version of (91) is a upper bound for (90) and the
¢ = 2 version is an lower bound. In other words,

max(0|C(c = 2)) < max(O|C) < max(0|C(c = 1)). (%4)

Furthermore, C(c = 2) implies € so that the extremal (u*,v*) for max(0|C(c = 2)) are in
the constraint set for max(O|C). As it will turn out, max(©|C(c)) is proportional to 1/c, so

31

Greedy Lagrangian Dynamics for Neural Networks

O(u*,v*) = O(p*,v*) is proven to be within a factor of two of its optimal value, max(0|C). In
other words,

O(p*,v") = max(0|C(c = 2)) < max(O|€) = 2max(0|C(c = 2)) (95)
which implies o
(1/2) max(O[C) < O(u*,v*), = max(O|C(c = 2)) (96)
and (u*,v*) is an approximate solution (satisfying the constraints and optimizing the objective
to within a factor of two) of the meta-optimization problem (90) or equivalently (88).

3.2.2 Solution of the Auxiliary Problem

We may solve the auxiliary problem for ¢ = 1, then scale it to any other ¢ by scaling 7rast
appropriately. So we’ll assume ¢ = 1 in the following solution of (91). The basic strategy will be
to obtain upper bounds by restricting consideration to diagonal connection matrices T, and to
compare these upper bounds with lower bounds that follow from matrix theory. In some cases,
we will find it useful to repeat the above reasoning to solve the bounding constrained optimiza-
tion problems themselves. For example, max(O_|C_) will be found by way of max(O-_|C--)
and max(O_4|C_). But first we will treat the upper bound max(0.|C;). _

By simply restricting the class 7 in problem (91) to the subset 7, of T' matrices which
are also diagonal, we simultaneously increase the value of O[u,] (since it’s a minimum over a
proper subset of T' € 7) and loosen the constraint C[u,v]. So one lower bound optimization
problem is:

Maximize
o = A™1
n o= min 47D

wrt (p,v),
subject to

Ch1 = (u';n;;cnng?xlfiu(u,’-")l < 1/ Trast

and gy =-v,y and 4 >0 and v[O,u]:O)

where

T, = {T|T is diagonal and &1(T") < tmax and T is positive semi-definite}, and
—Aij = plwi, v] (’fi,'g'(ue) + 6.',') + v[w;, u;]6;;.
(97)
This will not be the sought-after O, and C,, but it moves in the right direction since O < O,
and C = C41.
If T is diagonal then so is A. For a diagonal matrix A = diag(a;), ||A~||~! = min; |a;| and

32

Greedy Lagrangian Dynamics for Neural Networks

max;; |Aij| = max; |a;|. So we can calculate more detailed bounds:
041

Jmin, minwi(Tig] + 1)+ v
By min lm(T..g. +1)+ "‘l .,
“{I!}é’% mim II‘:‘(T}:'Q,- + 1)|w=0 (since [0, u] = 0)
min minui((Tulef +)|, (98)

u,T€ +
= . g’ i /
= minming ((}’éﬁ \Tisl)g} + 1) I..,=o (since 4 > 0 and g; > 0)

IA

minmin [0, w] (since mingez, |Tii] = 0)
min p[0, u]
O+ [“: V]

Likewise we can bound the main constraint of C,;, which is that é+1 < 1/7ast, where

€41 = max max lm(ﬁiyﬁ +1)+ Vil
u,w f’ET.p.

2 max mulﬂs(nagz + 1) + Vul
(73 TET... t w =

= max max|u(Tyg! + l)l (since v[0,u] = 0)
ufefy o

= max maxpu((Tulel +1)| (99)

= maxmaxp ((g% |Tiil)gt + 1) L,=o (since p > 0 and g} > 0)
= mua.xmiaxy[o, u;] (tmng’ (w)+ 1) (since maxs ez, |Tii| = tmax)
= max u[0, y] (tmaxg’(u) + 1)
= Cilpy
So the upper bound optimization problem becomes

Maximize
0+ = muinp[O, ‘ll]
w.r.t (u,v),
subject to (100)
Cy = (muaxp[o, u] (tmug'(u) + 1) < 1/Tgast

and py =-vy and >0 and v[0,u]= 0)
To this optimization problem we propose the solution (s}, v}):

fied 2 Y

where go = max, g'(u). These values for ;4 and v are constant, i.e. independent of w and u,

so the mixed partial derivative constraint of problem (100) is trivially satisified. Clearly also

p% > 0 and v}[0,u] = 0 are satisfied. The C; < 1/7ras constraint can also be verified:

max (tmg' (u) + l)
ffut(tmaxgo + 1)

Ca w3, vi] = maxp} [0, 4] (tm.xg'(u) + 1) = = 1/Ttast- (102)

Greedy Lagrangian Dynamics for Neural Networks

So (u3.,v}) satsifies the desired constraints. The objective is O [u%,v}] = min, p}[0,u] =
1/Ttast(tmaxgo + 1). But from the constraints we see this value is also an upper bound for
O4[u,v] as follows:

é+ D“) ”]
max, (0, 4] (tmaxs’ () + 1)

(mit, 4f0, u]) (maxy (tmaxs’(w) + 1)
Ol) (tmaxgo + 1),

which implies O, < 1/7fast(tmaxgo + 1). So equation (101) solves problem (100).

Next, we use matrix theory to find and solve a constrained optimization problem max(0-|C-)
which can serve as a lower bound for max(0|C).

To bound O below (in problem (91)) we must simplify ||A~!||;!. In matrix notation,
[lA~2)|7? is just 0,(A), the smallest singular value of A. Also A is given by the matrix ex-
pression

1/ Trast

v

(103)

v

A = diag(p)(Tdiag(¢’) + 1) + diag(v). (104)

The smallest singular value ,(M + N) of a sum of matrices M and N is bounded below by
on(M) — 01(N), as shown for example in [GL83] (Cor. 8.3-2, p.286). We will take A= M + N
with N = diag(v), and use oy(diag(r)) = max; ||, to find a lower bound O_ for O:

020.= min_|[on (disg(u)(Tding(s’) +1)) - maxlual]. (105)

u,w,Te

We can also bound the main constraint of C, which is that ¢ < 1/7¢ast. We will use the fact
that 0;(M + N) < 01(M) + 01(N), which is also shown in [GL83] (Cor. 8.3-2, p.286). The
bound is as follows:

Cluv] = g
(s, 7] R max |4;;|
< max_||A];
u,w,
(standard matrix norm bounds, e.g. [GL83], 2.2-10, p. 15)
= max_o;(4) (106)
u,w,TeT
< max_[o(diag(u)(Fding(y') +1)) +max|u]
u,w, €T 4
= C_[p,v).
So the lower bound optimization problem becomes
Maximize
- . . > 3 ’ _ .
0- = min_[on(ding(u)(Tding(s’) +1)) — maxiuil
wrt (u,v),
subject to (107)
- = (max [(ding(w)(Fdiag(s") +1)) +maxpsl] < 1/
u,w,TeT L4

and py =-vy and >0 and v[O,u]:O).

Greedy Lagrangian Dynamics for Neural Networks

Consider the related optimization problem

Maximize
O-s1 = min_[on(ding(u)(Tding(y) +1)) — maxiusl
w'sr:bj(e’;ytl’ (108)
Coq1 = (u’ggzi [crl (diag(p)(Tdiag(g') + 1)) +max jvi l] < 1/ Tgast

and 4 >0 and u[O,u]:O)

which differs from (107) by removing the partial derivative constraint that relates x4 and v.
Clearly if we solve this problem, and find a solution that also obeys the partial derivative
constraint, then we will have solved the original problem. That is what we will do. But the new
problem (108) can be further sunphﬁed by observing that the optimal »2 ., must be identically
zero; otherwise, an optimal (uZ ,,,vZ,; # 0) would have a lower value of the objective than
(uZ 41,0) which equally well satisfies the constraint C_.;; that would contradict the assumed
optimality of (l‘.—-t-la V:.H # 0)

So to solve max(0_|C-), i.e. problem (107), it suffices to (a) solve problem (108) assuming
v =0, ie. to solve:

Maximize
O-+ = _min oo (diag(u)(Tding(s") + 1)
W,
wr.t (4,v),
subject to (109)
C-+ = (max o(diag(u)(Tding(s) + 1) < 1/t
and p > O),

and then (b) verify that the mixed derivative constraint p, = —v, (= 0) is satisfied by the
solution (uZ,,0) to (109). Furthermore, the optimizing values (4 ,v*) will just be (42 ,0).
We will solve max(0-4|C-4) using the same strategy as for max(O|C) itself: by con-
structing an upper bound problems by restricting to dxagonal connection matrices T € 7, =
T N {diagonal matrices}, and a lower bound problem using more matrix theory, and showing
that they have a common solution.
The upper bound for O_ is calculated as follows:

0-+ = min_on(diagu)(Tding(s") +1))

u,w,
< min oo (disg(u)(Fdiag(s') +1))
uw,TeT
= min_ min Ilh(Tug; + l)l
uwwTef, o
< 'wn;ngn min ;i (|Tiilgf + 1) (110
- in [Telq!
= %uﬁmw(%msh‘*l) _
= miminslui] (ince mingz, il = 0)
min yfw, u]

O-++

35

Greedy Lagrangian Dynamics for Neural Networks

The corresponding (lower) bound for €., is calculated as follows:

C-s

u,w,T€

= max o (diag(u)(Tdiag(s") + 1))

> max o, (disg(u)(Tding(s)) + 1)

u,w,TeT,

u,w,TeTy

uvw ey

min_ ming;(Tiig! + 1)

max_ max lm(f"seyé + 1)|

(since T} > 0)

= maxming; (max Tig} + 1)
TeT,

u,w

= m?ﬂxm‘m plws, w) (tmug’(u,-) + 1)

U,

(since maxgez, Tii = tmax)

= x'x‘l,txp[w, u] (tmaxg'(u) + 1)

Co++

So the upper bound optimization problem becomes similar to problem (100):

Maximize
O_++

w.r.t (#’ V)a
subject to

Co++

min pfw, u]

(maxplw, o) (tmass' () + 1) < 1/
and p > 0)

To this optimization problem we again propose the solution (cf. equation (101))

I‘:++ [w: “] = l/ffut(tmaxgo + 1)

(111)

(112)

(113)

where go = max, ¢'(u). The proof of this solution is the same as that of the solution of problem
(100) by equation (101), except that now w must be optimized everywhere u is. This establishes
the solution of problem (112) by equation (113).

We must now find a lower bound max(O_;_|C_4-) for max(O_4|C_4), and to do so we
require another matrix theory result: that for positive semi-definite matrices M and N, o,(M +

N) 2 on(M) + 0 (M) [SgS90].

(Note on the proof so far: We could not use this result earlier since diag() was not positive
semi-definite. Also the use of this result, and equation (111), are the only places in the proof
that depend on the assumption that T is positive semi-definite.)

36

Greedy Lagrangian Dynamics for Neural Networks

Thus,
0-+ =
2
2

Likewise,
é...;. =
<
<

min o, (diag(u)Fdiag(s") + diag(u))

u,w,Te

N 31;'-2 ; [O’n (diag(p)f‘diag(g')) + a,.(djag(p))]

min _[on(diag(k))on(T)on(ding(s')) + on(ding()]

" (since 1Ml < M| 1l, [GL8S] p.16)
TLD [Un (diaG(#))(I;l'Zilf}an(T)) on(diag(g’)) + on(diag(ﬂ))]

T el wl
(since mins 4 oa(T) = 0)
min ufw, u]

O—4-[n]-

(114)

max oy (dias(#)f"dias(y’) + dias(#))

u,w,T€E

max, [71 (ding(u) T ding(g")) + o (ciag(u)]

(since || + Nllz < 1Ml + |V |l2, [GL83] Cor 8.3-2)
max_[os(ding(u))or(T)o (ding(s")) + o2 (ding(1))]
" (since IMN1j2 < [1M112]| ¥z, [GL83] p.16) (119

maxo1(ding(w) ((maxer (7)) o1 (ding(s")) + 1)
lg}px(m'.ax#[wa, u;]) (tmu(mgxy’(u,-) + 1)
(since maxsez 01(T) = tmax)

~

= Co4-[y]
We can assemble these bounds into the constrained optimization problem

Maximize

O-4+- = mingfw,y
wrt (p,v), _

subject to (116)

Coy- = (maxtmaxpufu, u]) (tmax(mpxs'(w) +1) < 1710
and p > 0)

To this optimization problem we once again propose the constant solution (cf. equation (101))

By [w, 4] = 1/Tast(tmaxgo + 1) (117)

where go = maxy ¢'(u). Clearly the constraint u®,_ > 0 is satisfied. The Coim < 1/Tiant
constraint can also be verified:

é_+- ki,]l= f'll}’agﬁl“_.g.— [w,y] (tmaxgl(“) + 1) =

maxy (tmug'(u) + 1)

Trast (tmaxgo + 1) =1/Tase- (118)

37

Greedy Lagrangian Dynamics for Neural Networks

So p’,_ satsifies the desired constraints. The objectiveis O_4_[u%] =miny o p,_[w,u] =
1/7rast(tmaxgo + 1). But, once again, from the constraints we know this value is also an upper
bound for O_,_ [y]:

Co-[u]
maXy .y plw, u) (tm.,g’ (u)+ 1)

(minu, « pfw, u]) (mte u(tmas’(4) + 1))
O_s-[p,v] (tmaxgo + 1) s

which implies O_ 4~ < 1/7tst(tmaxgo + 1). So equation (117) solves problem (116).

We have previously solved problem (112) with equation (113). The resulting maximal values
of O are the same for the two problems (116) and (112) (max(O-4-[C-4-) = max(O—44+|C-4+4+) =
1/7tast(tmaxgo + 1)), and are attained by the same u* = constant functions. Since these were
lower and upper bounds for max(O_+|C_4), we conclude that the same y* and maximal value
of O also solve problem (109), namely the calculation of max(O_4|C-4). But in the discussion
of problem (109) we pointed out that, if 4, , = 0 (as it certainly is, since u* , is a constant
independent of both u and w), then (42, ,v = 0) is also a solution (u*,v*) of problem (107).
This result is the sought-after lower bound for the original problem (91), and may be joined
with the solution of (100) (an upper bound for (91)) by (101) to finish the entire problem:
max(0_|C-) = max(0|C) = max(04+|C;+) = 1/Ttast(tmaxgo + 1); and the optimum is attained
at (p*, V‘) = (/":)”:) = (“:-a V;-)y ie.

1/"&“

v

(119)

v

[l:: {zz :% : (l)/ffut(tmugo + 1) (120)

is proven to be a solution of (91) for ¢ = 1. Other values of ¢ may be absorbed into the definition
of Trast- So we have established Lemma 1:
Lemma 1. The optimization problem

Maximize
0o = : A—l , ™ (1=1
min_ |14~} Dl
wrt (p,v),
subject to
c@) = (max emaxli(a,T)| < 1/mm | 121)
and py =—Vy and >0 and v[0,u] = 0)
where

7= {Tlt&(’f’) < tmax and T is positive semi-definite}, and
—Aij = plwi, v] (Tijg'(u.‘) + 5.‘,') + v[wi, ui)6;;.

has as one solution
p[w,u]

1/(07fast(tmax90 + 1))
v*[w,u] 0.

Z (122)
It remains only to translate this solution for p[w,u] and v[w, u] back into a function K (as
called for in (88)) and thence to the desired “kinetic energy” or “cost of movement” function

K[u,u] or its equivalent, K[, v].

Greedy Lagrangian Dynamics for Neural Networks

3.2.3 Approximate Solution of the Meta-Optimization Problem

From equation (96), we can apply Lemma 1 with ¢ = 2 to find a (u*,»*) pair which comes
within a factor of 2 of solving the meta-optimization problem (90) or equivalently (88). (Note
that (96) was derived assuming that max(O|C(c)) is proportional to 1/c, which has now been
established in Lemma 1.) Changing back to K notation,

Ko=1/tg, Ku=0 (123)
where
TH = 27fast (tmaxgo + 1) (124)

is a constant. (The factor of 2 comes from ¢ = 2.) The general solution of these partial
differential equations is K[w,u] = w/7g + ¢;, but from the statement of problem (88) we must
take K[0,u) = ¢; = 0. Then A

Klw,u]=w/rg. (125)

Using equation (84),
K a6, u] = K [u, u]g'(v) = raig’ (u). (126)

This has the solution K[#,u] = (7g/2)4%¢'(u) + co(u). But the term cy(u) has no effect on
the dynamics, since its greedy derivative is zero, and without loss of generality we can take
c2(u) = 0. Then

K[i,u) = -—u 2g' (u). (127)

This is the sought-after kinetic energy or cost term for ¢, and the associated equation of motion
is (from equation (82))

u = :IH-(JEﬂjvj-l-hg—‘ui), where

vi = g(w)

(128)

This K _may also be translated back to a Lagrangian expressed directly in terms of v;, using
K[, = Kli(0), u(o)): .
K[,v] = = %/¢' (67 (v)), (129)

or equivalently ,
K[b,v)= 7‘%%"(»). ’ (130)

If g(u) is linear (i.e. if ¢(v) is quadratic), this kinetic energy expression is proportional to the
conventional (m/2)v? expression encountered in physics, but for nonlinear g this expression is
different from a kinetic energy in physics. Equation (129) is the circuit cost-of-movement (or
kinetic energy) term used elsewhere in this paper, and a greedy variation of the associated
action functional yields equations of motion equivalent to the Hopfield/Grossberg dynamics of
equation (128).

Assembling Lemma 1 and equations (66), (67), (71), (77), (80), (96), (124), and (130), we
have proven a theorem:

39

Greedy Lagrangian Dynamics for Neural Networks

Theorem 1. The linearized dynamics determined by a greedy variation of the Lagrangian

L[v] ; Kb, vi] + ¥_; Ei%;, with
BN = 13y Tyuv; = 5o+ S é(w), and (131)
¢'(v) = 97(v) and go = max, |¢'(u)|

may be computed to be

Av,- = I.{[w.-, v] + Ej A Av;
where 132
A = Kolwi,u](Ts - 8;6"(w)) + K o8, and (132)
w; = ~E;, and K[K[b,v),v] = v.
If we define the objective
M:(K) = minmin [|4™(v, T)|7". (133)
where
T = {T|01(T) < tmax and T is negative semi-definite}, (134)

and if we impose the constraints on K that

(@) maxy maxper maxicy l4ll < 1/,
(where A runs over 1 x 1 and 2 x 2 submatrices of A), and
() K is continuous in its first and second derivatives, . (135)
(o) R[O, v] =0, and
(d) k[w! U],w S 0$

then the function
K[v,v] (tr/2)9%¢"(v) where

TH = 27fast(tmaxgo+1)

satisfies the constraints and comes within a factor of two of the globally maximal value of M(K)
subject to these constraints. Furthermore, the objective M, and the constraints (a) — (d), with
definitions of 4, K and w as in equation (132), are invariant with respect to coordinatewise
reparameterizations z; = f;(v;) in which each f; is monotonically increasing, differentiable, and
has a differentiable inverse.

(136)

3.2.4 Notes on the Solution

If ¢ differs from one neuron to the next, and is indexed by i as ¢;, then the optimal K term
will still have the above form if it too is allowed to depend on i. The proof in section 3.2.2 can
easily be altered to establish this generalization of the result.

Note that equation (124) relates the fastest physical time scale 7¢a¢ in a circuit to an optimal
value of the neural time scale 7y appearing in Hopfield’s version of the analog neural network
[Hop84], and the two are not the same. The best value for the neural time constant is the slowest
time constant in the system, whose ratio to the fastest time constant is roughly the product of
the neural gain go and largest eigenvalue of T'.

We note a change of variable which simplifies the kinetic energy term in the above dynamics,
for use in the next section:

L[W] - Et w2 + Eg dw; wh
OL /0 (t) = 0 = t; + OF/0w; = 0, i.e. (137)
w; = —0E /0w,

40

Greedy Lagrangian Dynamics for Neural Networks

which is supposed to be identical to 4; = —0E/8v;, v; = g(u;) (cf. (12)). This can be arranged

by choosing w:
o
= o = gl o Juilds (138)
= 9% = /o'(w;)

ie.

w; =/uidu\/g’(u) and v; =/m dw+/¢’(u(w)). (139)

3.3 Clocked Circuits

Of course clocked objective functions can also be used to specify circuits at the analog level. The
simplest way to do this is to give each clock phase the dynamics of an analog neural network
in which some variables have been clamped, under the control of the clock signals and/or other
variables. That is the effect of equation (39), either under the original definition of clocked
objective (38) or under the more powerful and convenient notation defined in equations (41),
(44), and (46); it is also a basic idea behind the design of clocked pipelines of combinatorial
logic in the data paths of simple CPU chips [MC80] where clamping is determined only by the
clock signals. We take it as clear, then, that such clocked objective functions can be imple-
mented as analog circuits provided that each phase can be so implemented, and provided that
the objective includes Z expressions but does not include z{y} expressions. For example, the
line minimization clocked objective of equation (51) can be implemented this way, as can the
multiscale optimization objective of [MGM91].

In the next subsection we show another such example: a clocked objective function which
incorporates one or more general feed-forward neural networks inside a relaxation-based neural
net, in a hybrid that may be of use for combining relatively efficient learning algorithms (from
feed-forward nets) with expressive power (from relaxation nets).

Later, we will discuss a set of applications that require the more powerful z{y} notation,
without speculating on the hidden circuit-level implementation of the switching mechanism.
Thus the problem of eliminating z{y} expressions in favor of Z expressions remains for future
work; it is related to the “neural network routing problem” discussed in [MG90], section 2.6. A
further open problem is to replace global clock signals in a Lagrangian circuit formulation with a
system of self-timed subcircuits, in which the ¥, control functions are replaced by relatively local
variables with indepenent dynamics. Solutions to analogous problems are implicit in the design
of many distributed computer systems, but not within a circuit-level Lagrangian framework.
The z{y} notation represents a substantial escalation in expressive power, and section 4 is
devoted to some of its uses in designing computational attention mechanisms.

3.3.1 Feed-Forward Networks as Constraint Projection

A feed-forward network inside of a relaxation network can be regarded as a set of constraints
on the relaxation network:

Err/reinx[X] = EBranx[x]+ D, FF[V,T,v'"}] (140)
1 (layers)

where FF is the functional dependency constraint of a layer’s output neurons on its input
neurons (here taken to be in the previous layer, though neurons in any previous layer may be
inputs without causing problems for the following algorithm). Various methods are available for
enforcing constraints within a neural network optimization [PB87, MG90, PS89], but the feed-
forward network constraints have a natural ordering determined by the feed-forward pattern

41

Greedy Lagrangian Dynamics for Neural Networks

. of connections, so in this special-case we can use a nonlinear projection method to enforce all
the constraints. As mentioned in section 2.3.1, related algorithms are discussed in e.g. [BT89)
under the name of “gradient projection algorithms” or “scaled gradient projection algorithms”.
Any incremental relaxation of the objective Erejay is followed by a series of projections which
reestablish the feed-forward constraints, layer by layer (i.e. from earlier to later neurons in the
feed-forward neuron order), in preparation for further relaxation. The clocked objective is

Brrpoiectinfx, V)= @ { L {- v DT + 40D}]} © Funld. (141)

1 (layers) 4 J

Note the especially simple form of each layer’s objective

Every neuron v} in layer [is independent of every other in this objective, and the minimization
of this objective is best achieved just by assigning values to all layer-/ variables in parallel:

v} = gi(v} ZT}',-v}"l), where g;71(v) = ¢/(v). (143)
j

This is the projection operation which immediately enforces the layer-1 constraints. Later layers’
projection operations do not disrupt earlier ones. So, at the beginning of the relaxation phase
of every cycle, all the FF constraints will have been consistently satisfied.

> { -0})Tt + 6o})} : (142)
3

42

Greedy Lagrangian Dynamics for Neural Networks
4 Application to Dynamics with Switching

Suppose we have hardware capable of switching different sets of output neuron values from a
static memory into an active neural network, where they can be updated. With such hardware
it is possible to implement a computation which would require a much larger neural network if
every neuron were to be actively updated at all times. This situation would be analogous to the
use of virtual memory in a conventional computer, in which one has a limited amount of physical
memory (Random Access Memory) augmented by a much larger amount of secondary storage
(magnetic disks). Equally, it is analogous to the distinction between the small cache memory
associated with a central processing unit, and the larger physical memory (RAM). In either part
of the memory hierarchy a relatively small and fast memory, in concert with a relatively large
and slow memory, simulate a large fast memory with occasional slowdowns (due to page faults
or cache misses). In like manner, we would like to design a switching mechanism for obtaining
the computational power of a large neural network with a small neural network plus a large,
slow and relatively inexpensive memory. Furthermore, in some cases it will prove possible to
dispense with the slow memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situations where
only a limited amount of spatial resources (neurons and connections) are available, but also for
formulating search algorithms (such as binary search) which can’t be fully parallelized due to
their unpredictable total resource requirements.

What kind of cost and functionality terms would model this situation? This is a hierarchical
design problem. At a coarse scale, we have just two kinds of decisions to make: what the
active set of neurons (the focus of attention) is to be at any given time, and what their new
values are to be after some period of active dynamics. (In the memory hierarchy analogy, one
would like to decide which part of slow memory to bring into fast memory as some computation
progresses.) At a fine scale we must repeatedly make circuit-implementable state changes which
move towards answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as space-
time volume, no savings will be realized unless the focus-of-attention decision has converged
to a definite answer by the time a switch of attention is to be made; partial answers as to
which neurons should be active would just force all the candidate neurons to be active. (An
attentive neural network which unhappily violates this constraint is described in [Mjo87).) Of
course one can contemplate dynamics in which e.g. a linear combination of neuron values is
made active, but such a system should be designed by introducing new variables for the linear
combinations and a discrete switching circuit which still, to be physically cost-effective, makes
definite decisions about the active set of neurons.

So, our problem is to find both coarse-scale and fine-scale cost and benefit terms to model a
focus-of-attention mechanism which switches many stored neuron values into and out of a small
active network, where the neural values are updated. We will not consider all aspects of this
problem, but only derive a few plausible Lagrangians in the form of clocked objective functions.
Related work appears in [Coo89, Mjo87, MM91, BSB+91].

4.1 Formulation of L at the Coarse Scale

Let x be a set of discrete-valued variables which determine, directly or indirectly, which com-
ponents of the neuron vector v are actively updated at any given time. In other words, x
determines a characteristic function #;(x) for the focus of attention or active set of v;’s. Thus

1 if v; is active, i.e. in the focus of attention,
mi(x) ={ 0 oth;rwise)) ! (144)

Greedy Lagrangian Dynamics for Neural Networks

with
Z wi(x) =n. (145)

For example, we could have as many components of x as of v and set 7;(x) = x;. Or instead,
we could introduce a partition of the components of v into blocks indexed by a, with a 0/1
partition matrix B;,; this is a form of aggregation applied to x. (For now we will take n to be
constant, though a variable n is sometimes useful.) Then we would have one component of x to
switch each block of the partition, and m;(x) = 3, BiaXa- (I.e. a variable v; is in the focus of
attention iff its course-scale block a is in the focus of attention as determined by x4.) Usually
#:(x) can be made linear in x.

Regardless of the actual formula for #;(x), there will be some sparseness constraint on x
to ensure that only a small fraction of the neurons v are in the focus of attention at any one
time. For example one might impose), 7i(x) = n, where n is the optimal size of the focus
of attention (and n € N = the total number of neurons v;). In the case of a partition matrix
B with blocks of roughly equal size b (so }_; Bis = b), the sparseness constraint would become
Y e Xa =n/b.)

Whatever the sparseness constraint on x is, we will express it as a summand ®(x) in an
objective function. ® may be a penalty function, a barrier function, a Lagrange multiplier times
the constraint, or some combination of these possibilities. For example, we could choose from a
variety of “k-winner” objective functions. Assuming ®(x) = ®(e) where e = }_; mi(x) — n, we
can enforce or at least favor satisfaction of the constraint e < 0 with

(c/2)e? (a penalty term), or
de + coe — (c/2)0? (Lagrange multiplier + effective penalty [MG90),
with o an appropriate auxiliary variable), or
®(e) = c[S. . 9(z)dz g monotonic and odd (a barrier term), or
eo— [0 o(3) 9(-1)(z)dz, (effective barrier, linear in e),
(146)

Stricter sparseness terms are also permissible, such as a sum of many k-winner terms on different
sets of variables. And for a variable-size focus of attention, in which n is variable, one would
also need a cost term for n.

All components of v will be assumed to take continuous values, even if they are ultimately
supposed to converge to discrete values. Then the coarse-time-scale update rule implied by the
action S will be of the form

v =v(v,x), (147)
for example
v} -V = ‘A’,‘(X)G.'(V) (148)

where G is the cumulative effect determined by the fine-scale dynamics within an active-v clock
phase. This update rule is to be derived from the greedy variation of a multiphase dynamical
objective of the form

s= Y = ¥ > ba®[Cat)+ Fa®)], (149)
coarse scale Y La20 ae{ coarse-V,
decision times £, coarse-Y
Lcycle >0

where 1, is defined as in section 2.4. The principle feature of equation (149) is that it has two
clock phases, one during which the v variables are free to move and the x variables are clamped,

Greedy Lagrangian Dynamics for Neural Networks

and one in which the roles are reversed. During the active-x phase the focus of attention is
determined for the next active-v phase of the cycle.

Notice also that we have assumed a simple stopping criterion, 3" Lo < 0, which means that
the coarse-scale dynamics only continues as long as its benefits (decrease in F) outweigh the
costs (given by C), and this decision is made at the end of each complete cycle. We must now
find suitable functions Ccome_v, Fm.v, Cm_x, and me.

To find the F terms, we must decompose Fioia) = AE into a sum of coarse-scale causal
terms. We would like Feoarse to measure the improvement in E due to choosing a configuration
x and then updating v accordingly:

F(t) = Feoarse-v + Fooarse-x = E[V/(v, x)] — E[v]+ &(x). (150)

How can we decompose this combined effect of v and x into separate F terms for each coarse-
scale decision? As previously mentioned, the difficulty is that the coarse-scale decision step
which chooses values for) cannot be made simultaneously with the decision of v values whose
presence in the focus of attention is determined by that particular x. One obvious way to
accomplish this is to stage alternating coarse-scale decision phases, updating the two sets of
variables, each based on the most recent value of the other:

x = xX(xv)
vl = Vl(V,x'). (151)

Then, to decompose Fy + F, = E[v'] — E[v], we may interpose some especially cheap estimate
v of v/ which could even be computed analytically given any candidate x':

Feoarse xl[x"V] E[V(V, X')] - E[V] + Q(X) (152)
Fmv:[v’lv, X'] E[V’IXI] - E[{'(v’ x')'v’ X’]

The optima of these two expressions with respect to their free arguments then determine the
functions in equation (151). Note that Feoarse v#[V/| . .] is independent of ¥, though the constant
E[¥(v,X’)] is subtracted off to satisfy equation (150).

The F functions of equation (152) may be understood in the terminology of section 2.4.1
as a control term E[¥(v,x’)] — E[v], a transient term ®(x), and a subspace term E[v'|x’] But
the subspace term is carefully normalized by subtracting the constant E[¥(v,x')], in order to
apportion credit for a given AE (equation (150)) between the x and v phases of the dynamics.
It remains to find ¥(v, x’) and the cost terms C,.

In summary, once we are given the function ¥(v, x'), there is a Lagrangian (the sum of cost
and functionality terms) and an associated optimization principle (6L = 0, as in section 2.2)
that determines the discrete-time dynamics of v and x. The action is given by equations (149)
for S and (152) for F.

4.2 Criteria for Estimating the Effects of a Focus

It remains to find suitable formulae or dynamics for ¥(v, x’), which has the function of estimating
the influence of alternative x vectors (hence of different foci of attention) on v without actually
performing the minimization of Feoarse v/[V/|v,X’]. This problem is closely analogous to the
meta-optimization problem posed in section 3.2, which was to find a functional form K(v,v)
for the kinetic energy which resulted in the “optimal” dynamical system, where optimality was
defined to depend on behavior in many different trials of the network. Likewise we must first
define meta-optimality and then seek it, in the determination of a formula for ¥ which will be
used in many different trials of the network. -

For any such functional ¥, the required network computation must be very cheap compared
to that of v/ for this reason: the cost of optimizing Feoarse y is expected to be some large number

45

Greedy Lagrangian Dynamics for Neural Networks

of fine-scale iterations times the cost of finding ¥, and is to be added to (and therefore balanced
with) the cost of finding v’.

Against cost we must as always weigh functionality. What makes an estimator ¥(v,x’)
functional? For a single neural network trajectory, the obvious choice is to consider the ¥
function effective to the extent that the resulting v(¢) trajectory minimizes the action of equation
(149). After all, the Lagrangian already contains the correct balance of cost and benefit terms
for judging the v dynamics, complete with a stopping criterion. The only remaining question
is how to aggregate over many trials of the network which share the same formula for v, i.e.
many starting points, inputs, and possibly connection matrices. One could attempt a worst-case
analysis as in the determination of K(v,v), but we have not succeeded in that. Or one can
consider an average case measure of action, averaged just over some probability distribution on
starting points.

We have already proposed a meta-objective, (153), for this type of problem. Here we are
averaging over starting points (and perhaps also over inputs h and connection matrices T'):

P
M= =(T L0), vFE T LmO)=ME]L (153

HIL(1)20 P=11|L(1)20

where {v,(0)} are P starting points sampled from the same random distribution over initial
conditions.

Generally, predictive accuracy in v is rewarded by this objective because of the term E[v’|x]
in (152): x' is optimized for E[v¥(v, x)] and then used as a constraint in optimizing E[v’|x']
with respect to v'.

The sampling procedure converts the infinite-sized sum into a computable and optimizable
quantity My, at the cost of introducing a learning and generalization problem. As in theoretical
approaches to learning [Vap82, BH89], we must ensure a sample size sufficient not only to
approximate the infinite sum, but to continue to do so even after the sampled objective has
been optimized (by tuning ¥) to that particular sample so that it is no longer a random sample
of the infinite sum. In this way, a nontrivial predictive learning problem enters into the design
of the switched neural network dynamics.

Mo may also be regarded as an average over all configurations along a trajectory, rather
than just over the starting points, since every decision point along the trajectory contributes
to the summed action. But to do this we must define a suitable probability distribution of
configurations, and the distribution itself is a function of ¥. This may limit its usefulness for
simplifying the objective.

The connection between the optimization of ¥ and a learning problem demonstrates one
advantage of section 3.2’s derivation of optimal kinetic energy terms from a worst-case meta-
objective (equation (79) rather than an average-case meta-objective (equation (153)): by this
means analysis could be substituted for a large and (in general) recurring training computation.

4.2.1 Candidate v Estimators

We now present several possible forms for ¥(v, x), which are to be optimized and evaluated
according to the criteria of the previous section. In the simplest form, ¥ is to be computed
by hypothesizing a small, constant time At between course scale decisions, during which ¥ and
therefore E[v] change according to Taylor’s formula:

dv;

6:' =v; + Atz; (154)

(cf. (148) where 7, = [Yv(t)dt as in Figure 2.4.

46

Greedy Lagrangian Dynamics for Neural Networks

We may also introduce, for each variable v;, a hypothetical time axis 7; which increases
linearly with real time t when neuron v; is in the focus of attention (equivalently, when ¢y (t) = 1
and y allows v; to be actively updated, i.e. when v (t);(x) = 1) and stays constant otherwise.
So

ni(t) = / dtpv(t)ri(x), and dr/dry = 7(x). (155)
Then o d
Vs AT
and

Feoarse-x'[x|V] = E[¥(v, x’)] E[V]+‘I’(x)

~ Ti 157
~ At Z: av dr d‘rv (tbepnnmg of v phse)IX] + ®(x)- (157)
We introduce the useful quantity gy
oy
Eslvl= 5o (158)
which for Hopfield/Grossberg dynamics becomes (cf. equation (30))
2
Bubvl = =sita o) (3) = ~si(w(EY, (159)

first proposed as an objective function for driving a focus of attention in [Mjo87]. Wlth these
definitions, F becomes

Feoarse-x'[x|V] = At E ni(X)E[v] + ®(x)- (160)

and the associated v becomes, from (156),
v =v + Atr;(x)é,- (161)
where now 9; = dv;/dr; and v; will take bounded values determined by the v-phase Lagrangian.
The optimizing parameter here (for the prediction objective M) is At, which will also enter
into the coarse-scale cost term, since the cost of switching can be amortized only over the time
At. Note that the variables x, are still discrete, and the cost of partly or completely minimizing
Feoarse x' depends on the relation between #;(x) and x, to be specified.
Naturally the partial relaxation cost associated with x;(x) will only increase if we take the
natural step of expanding ¥ and E to second order in At. One good reason for doing this second-
order expansion is that the optimal At will not be small if switching costs are sufficiently high,

so a second order approximation may be more accurate. The second-order expansion proceeds
as before:

¥ = v; + Atmi(x)vi + Athw,-(x)t?.- (162)
and AR
Feoarse x/[XIV] = At Y mi(OEslv]+ - 3 m(0)m (0Bl +8(x) (163)
i &5

where E; has been defined in equation (160) and where E;;[v] is the quadratic form given by
_ &E
E;lvl = 5,
&? E dv; dv; B_E_ﬁv_. (164)
Bv;v; dr dr; ' Bv; dr?
= Egjvgv, +6.JE‘.6",

47

Greedy Lagrangian Dynamics for Neural Networks

For example under Hopfield/Grossberg dynamics, E;; can be calculated as

T
TR E;i[v] = o' ()9’ (4)EE Eij + 6i59' (wi) E 5 (E 9'(w)Eu + g?((—;f;')l(E,.-)’) (165)

k ¢]
Because 7;(x)? = 7i(x), any diagonal terms in the quadratic form i Euimi(x)7i(x) (cf.
equation (163), in particular all those terms with §;; factors as in equation (165), can be absorbed
into the n-linear part of Fcoarse /- For example, in a quadratic neural net objective E[v] =
—=(1/2) 3 Tijvivi — 305 hivi + 3, é(vi), the coefficient of the quadratic form for x could be

taken as N
E;j[v] = -Tij9'(w)d'(u;)EE ;, (166)
in which case the 7-quadratic part of equation (163) becomes
Feoarse-quadratic = — 3_ %i(X)7; (x)9' (4:)9'(4;)E 4 E ;T;; (167)

i
and a corresponding connection matrix would have the opposite sign.

The essential new feature of objective (163) is that it involves quadratic interactions between
the x expressions corresponding to different neurons. This introduces a nontrivial scheduling
problem as part of the determination of the next focus of attention: separate neurons must
not only be capable of making progress individually, but also those neurons likely to cooperate

should be scheduled into the same focus of attention. This point will be elaborated in section
44.2.

4.2.2 Cost Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the v network for
time Aty, plus the cost of switching to the x network, and the cost of running the x network
for a period Aty, and the cost of switching back to the v network to start the next cycle.
These considerations may be expressed in the following cost terms for a coarse-scale clocked
Lagrangian:
Ceoarse-v = Cawiteh + Nl(n)Atv + Cla.mp(Ax, {Av,~|,,.(x)=o}) (168)

and
Ceoarse-x = Cewitcn + N2(n)Aty + Clamp(Av) (169)

where “Clamp” is a penalty or barrier function which enforces the constancy of v or x as
needed. Both of the cost terms above are constant if we regard n, Aty, and Aty as constant
within a run, although in that case the constant values of the n and the At’s probably should
be chosen by a meta-optimization procedure using the same action, averaged over many trials,
as the meta-objective.

Such a meta-optimization procedure could also be generalized to produce a simple rule,
rather than a constant value, for each At and for n; when such a rule produces the result
Aty = Aty = 0, the computation stops. In that way the common problem of choosing a
stopping criterion, as well as the more specialized problem of switching between optimization of
v and of x, fall naturally in the purview of meta-optimization. Of course such a rule could be
given in the form of a Lagrangian for At,, or equivalently for ¥, but we will not pursue this
possibility here.

48

Greedy Lagrangian Dynamics for Neural Networks

4.3 L at the Fine Scale

Since the v are analog variables, finding fine-scale C' and F' terms which act to minimize the
coarse-scale ones is now easy; we do it as in sections 2.1.2 and 3, except that the Lagrangian
functional of equation (22) is generalized to integrate each variable v; according to its own
internal time variable 7; = [¢v(t)7;(x)(t)dt as in Figure 1:

dv; OF dv;
Lopfoleals) o

We may convert this into an integral of a single Lagrangian over a single time variable by
using the formula for 7;, and the fact that ¢v(t) and #;(x)(t) are each approximately zero or
one almost all the time:

S = T [0 (Kigei+ 5oge)
/ dtz:(df' y (K[zv""'] 8f ::')
/ dtZwbv(t)f.(x) (dﬁ K[:v""’] %%’f%)

/ dttl)v(t)zw.(x) (K[:”' ”Z', v + gE Z’)
(using K[O v] =0 and d‘r./dt Oorl)

JE20 (z: mGOKIGHwl + S0, ‘j,t)

But this is not quite the whole fine-scale Lagrangian for the active-v clock phase, because of the
coarse cost terms of equation (168). The “Clamp” terms may be refined by adding appropriate
cost-of-movement terms K[z, z] (where K is minimal at £ = 0) for each of the clamped variables:

5o / dttﬁv(t)(m K[z, z]+z:(1 nO0) K[,v,-]). 172)
non-v variables z

Adding S®) and S together, we get the part of the action that pertains to the active-v phase:

Sﬁn&V/dtil'v(t) (‘“ K[z, z] +E1rs(X)ng ‘L‘;:)
variables z

Note that, as far as the Lagrangian is concerned, this refinement amounts to an algebraic
substitution

wOCv+FV - @ X2 zz1+z:«.(x)—v.) (174)

all variables z

Q

(171)

Q2

1

(173)

which is legitimate since F at the end of a coarse-scale step is just a constant starting value
plus a coarse-scale change AcoarseF', and the coarse-scale change is equal to a sum of fine-scale
changes [dt Y ;(8F/0v;)v;. Also, the K terms for the clamped variables (some v; and all other
variables) serve as penalty terms which, in the absence of other z terms, enforce z = 0 when
v = 1 and thereby refine the “Clamp” terms of Cy.

The hard part of refining a focus-of-attention Lagrangian is to find fine-scale C and F terms
for the variable-x phase, because our coarse-scale terms assume discrete-valued x variables and

49

Greedy Lagrangian Dynamics for Neural Networks

the previous refinement techniques don’t apply to that case. Indeed, a general, N-variable,
discrete-valued optimization may be the goal of the entire neural computation (at the coarsest
time scale of all) so we surely can’t assume that much capability at the fine time scale. On
the other hand we have already accepted an approximation in Feoarsey, On the grounds that it
is not global convergence but merely the order of neural updates that is at stake, and further
simplifying approximations may also be acceptable if optimized through training and verified
through testing.

Unless Feoarsey is linear in x,, (for example by being linear in At with 7;(x) linear in x),
this F is a nonlinear objective which will require many steps of analog relaxation dynamics,
implying an uncertain time to convergence to a nearly discrete-valued x. Since we only have an
intermediate, fixed time At available for relaxation, some additional mechanism will be required
to find discrete values for x after a possibly incomplete analog optimization of F[£], where £,
are continuous-valued versions of x,.

4.3.1 Two Phases of Switching

The computational savings we seek accrues through the actual switching from one active set
of neurons to the next. For switching to occur, however, we need a “digital restoration phase”
in which the x variables are restored to definite 0/1 values. This phase could be left implicit
in our modeling, as part of the unspecified switching hardware, but then we would be unable
to analyze possible failures of the mechanism such as too little time to converge to discrete
values, or too many #;(x) = 1. By contrast it is easy to leave purely digital circuit switching
details unspecified, since accumulated experience makes it relatively easy to engineer such circuit
mechanisms outside of our methodology. We will however explicitly model a third phase, in
which analog variables x, are restored to nearly discrete values x,, as close to 0 or 1 as any
physical circuit quantity ever gets.

Then we will have a global cycle through one phase that relaxes the analog v variables and
two phases that optimize the discrete 0/1 x variables by first optimizing analog variables ¢ and
then restoring them to nearly discrete values ¥ which can substitute for actual discrete values
X in any circuit implementation. Of course in a digital implementation medium (such as a
general-purpose software environment), which exists as an abstraction of some analog physical
system, one should instead move directly from ¢ to x.

These considerations can be formalized as a slight modification of the Lagrangian transfor-
mation point of view used in section 2.1 to derive a fine-scale Lagrangian for v. Now we are
required to partially optimize an objective Feoarse-x[X|V], While guaranteeing the discreteness
of x. We will adapt the same three transformations as before. First we switch from discrete
to constrained continuous optimization, accomplished in two successive phases using clocked
objective function notation (2.4):

¥x(®) |Cx + Fixd + @3 milx) - n)] - Ye(t) L > Kiza+FlE+ e m(€)
i variables z i
+¢,z(t)L Y K+ Y Relta- a)]
variables z a
(175)

where §; € [0,1], x: € [0, 1], 0 is a threshold, and & is a sparseness term such as those of equation
(146). Second, replace all constraints with penalty functions added to the objectives:

F[ﬁ] - Ex—opt[ﬂ = F[&] + Q(E' ”i(i) - n) + E. ¢(€¢): (176)
YaXala —0) — Eresore[X] = Ea Xa(€a = 0) + 2, 6(Xa) ’

50

_,,]

Greedy Lagrangian Dynamics for Neural Networks 51

where the threshold 6 is usually taken to be 1/2, but other values may be used if the analog
x dynamics would thereby be sped up without losing accuracy. Also £(3) = %;(€), as in equa-
tion (144). Note that the objective Erestore[X] is especially innocuous, among those we have
considered, in that the only way a large condition number or delay can arise is through the
potential terms. The third transformation is to refine these coarse-scale objectives, and the
usual volumetric cost terms, into fine-scale Lagrangians (cf. equation (174):

Ce+FIEI+Y #€) » 3 Klszl+ Ve [Fle+ () =)+ Zmn]
a all variables z
CX + Ea 20(64 - 0) + Ea ¢(i¢) i Z K[z, z] + Vx[ZXc(fa - 0) + E¢(Xa)]

all variables z
177)

These two Lagrangians, along with the usual one for v, must be reassembled into a full three-
phase Lagrangian by multiplying by nonoverlapping clocks ¥»(t) and summing over a as in
section 2.4; that is the only way to express the action as a sum over algorithm time ¢ (some
[-dt or some Y, -) rather than over the intra-phase time variables 7o.

4.3.2 Complete Multiphase Dynamics

We now have a 3-phase dynamics: First, choose the focus of attention using analog x variables so
as to optimize their estimated effect on AFE subject to resource limitations. Second, discretize
x- Third, relax E[vx] using the chosen focus of attention. The analog x phase includes a
global n-winner constraint for #(x). We will assemble the previously derived fine-scale cost and
functionality terms for this net into an action functional and an associated clocked objective
function.

Adding the fragmentary Lagrangians of equations (174) and (177), we get a preliminary
Lagrangian

Lone= Y, '/’a(t){ Y K+ Y %fﬂia}. (178)

phases o all variables z a-variables, X, ©

This Lagrangian has a problem for times ¢ between a-phases, when), ¥a(t) = 0, because at
those times no dynamics is specified. The desired dynamics between phases is that all variables
should be clamped. This can be ensured by adding a penalty term for movement of any variable
between phases, in the form of a kinetic energy term K:

Lextra= (1—2%«)) Y Kiza) (179)

all variables z

Note that in physics Lagrangian consisting only of a kinetic energy term corresponds to a particle
moving along a geodesic such as a straight line (Z = 0), whereas here it corresponds to a variable
clamped or frozen to a particular value.

With this addition the fine-scale Lagrangian becomes

Line= Y, Klzzl+ Y valt) Y (%ffxa) (180)

all variables phases o a-variables, X,

which, as we showed with equation (39), is exactly the Lagrangian corresponding to a clocked

objective function
Egne = E Ya(t)Ealxa|..] = @Ea [Xa, Xs2a] - (181)

Greedy Lagrangian Dynamics for Neural Networks 52

or more particularly (substituting from equations (174) and (177)) we get the clocked objective
function for three-phase attentive dynamics:

E3phase = Z €1 E[V] + @ (E 7i(§) —) + E d0/1(£s) (control terms) .

6 Z Xa(€a - 6) + Z ¢o/1(X¢) (transient terms) (182)
& E[v{t(x)}] (subspace term)
Note that, from equation (174), we have
BE[v;:(X)}] .(x)g_i - "‘(")g_f.- (183)

which is the essential feature of a clocked objective function, as derived in (38).

Various special-case expressions for 7;(x) will be explored in the next section. In the resulting
networks we will often omit the digital restoration phase for a simple kWTA network, on the
understanding that it should be added back in as part of an analog circuit design.

4.4 Varieties of 7; in Neural Design
4.4.1 Priority Queue Attention

The simplest possible expression for 7;(x) is the identity function, in which each variable v; has
its own attention indicator x;:

7i(x) = xi € {0,1}, where Zx,- =n<&N. (184)

We have previously reported on this case in [MM91]. The objective function for x would be
transformed into a clocked objective, as in (149) (again using the notation of section 2.4.3):

Elv] — (\WTAGLn) + o x:Ei¥]) © Elvix). (185)

This representation of 7;(x) looks expensive, since any savings obtained by leaving most v;’s
out of the focus of attention could be lost by updating all the x; variables each iteration. From
equation (182) this update would also require computing E;; for every i, in the focus or not.
But in fact E; is unchanged unless v; is in the focus of attention, or has a network neighbor in
the focus; so for efficiency we can store this gradient information in a variable w; which is only
updated in those circumstances. Also, the n-winner circuit can be implemented digitally as an
incremental priority queue of w; values. So the clocked objective function becomes

Equeuve = z (w,- {start +xi + z Nbr.-,-x,-} - E;,'[\-r])z/2 (transient terms)
® start?/2+ Z Xithi +® (Z Xi — n) + E do/1(xs) (transient + control terms)
® E[v{x}]- ' ’ ' (subspace terms)
(186)

Here “start” is initialized to unity and almost immediately changed to zero (in the second phase
of the first clock cycle), and Nbr;; is a constant 0/1 matrix recording whether neurons v; and

Greedy Lagrangian Dynamics for Neural Networks

v; are adjacent in the network or not:

0 1fma.x|a v, [v]|_

Le. if muv(l¢"(v)l)+m;l+2k [Tijal =
1 otherwise.

Nbr;; = (187)

Note that, at the end of the first phase, w; = —E;[v]. That’s because (a) in the first cycle,
start; = 1, and every variable wj is initialized to —E; and (b) in subsequent cycles, either w;
is again set to the proper value, or else x; = 0 and E Nbr,, X; = 0. In the latter case we know
that w; is unchanged from the previous cycle (since 1t is only changed in the first phase of any
cycle), and also that E; is unchanged from the previous cycle because it is unchanged by the
dynamics of E[v{x}]’s relaxation:

I'd'E"I dt(gf K-35, ’”’))I

"
- A6 (k-)+ Eui,

_ 6’E dv, drj\(; OE dv; dr; OF

- (Z 0v;0v; dr, dt) (K 8v;) d—n-d—t-iv:K"’ (188)
8’E dv_, dv. 8F

= (Z Bv;00; | X |7, IK - _K X | Fe

=0 (smce Xi + ENbr,-,-x,- =0).
J

So throughout the second phase, when x is being determined, @; = —E;[V].

Also note that, in accordance with the definition in equation (44), the expression that controls
the clamping of a variable such as w; is implicitly held constant and need not be explicitly
clamped. Only the second phase of equation (186) above has O(N) variables, and it can be
replaced by a priority queue data structure with update cost O(n log" N +c¢N), where k depends
on digital hardware details and where ¢ < 1 reflects the cost of storing w; in inactive memory
for future use, presumed to be relatively small.

Equation (186) assumes that n is constant. This assumption may be removed, if the coarse-
scale cost of each n is modeled explicitly as mentioned in section 4.2.2. To a first approximation
we may take the cost of a focus of attention to be proportional to its size, n, and ignore the
effects of various different border shapes on the actual cost (these effects would tend to favor a
focus with a small-boundary.) But what should the proportionality factor be between cost and
benefit (AE) terms? To get sensible results we’ll answer this question in an ad hoc way, not
(yet) derived from fundamental considerations. Suppose that the cost of updating a neuron is
dominated, not by space and time costs, but by the AE benefit foregone by not saving those
same space-time resources to update some other neuron in the following iteration. To estimate
that cost, per focal neuron, we multiply the average available AE per neuron by a constant f
which must be meta-optimized. Then

i,] = 3 x:Eal¥) + kWTA(x,n) + 3 Z E3[¥]l + boy1(n/N). (189)

Optimizing this F may be achieved by (a) sorting i according to E;;, for example incrementally
with a priority queue data structure, and (b) turning on all x; for which [E4|/(N~! T, |E4[¥]]) >
f. The focus of attention then consists of neurons whose single-neuron estimated contribution

53

Greedy Lagrangian Dynamics for Neural Networks

to AE is more than f times the average; it can range from none to all of the neurons. The
potential function ¢¢/1(n/N) can also be chosen so that the minimum focus size is one, rather
than none, of the neurons.

The focus of attention equation (184) provides maximal flexibility, in that any subset of n
out of N neurons in the network can be in the focus at one time. However, efficiency requires a
hidden priority queue representation of x(x), so that x can be represented with only a marginal
increment of space to encode this focus over that required by the n actual neurons in the focus
at any time.

Generally such a representation is based on the binary addressing capabilities of a general-

purpose computer. In fact the number of bits required in x to specify such a focus is log, (IrY) .
For large N and n < N, this is approximately nlog, N bits. We can easily encode x with this
many bits, for example using the binary addresses of the n neurons in the unrestricted focus of
attention. (Other efficient addressing schemes, such as Gray codes, would work too.) In radix
(e.g. binary) notation for which ¢ =4, ...4:

1
x() =D TT % (xas — i) (190)
a d=1
(where xq» are binary-valued and 6X is the Kronecker delta), or equivalently,
1
x(@) =Y T xabis, with Y xabiy = 1. (191)
a =1 19

If such a representation is plugged directly into a neural network objective function, rather
than used in a hidden digital implementation of a stereotyped objective function such as the
priority queue, then we get relatively intractable high-order objectives for x (see [MG90] for an
example of a sorting network using a similar high-order representation). Until this problem is
solved by expressing some special- or general-purpose addressing and communication algorithms
with simple clocked objective functions, we must appeal to non-neural switching circuits as
necessary, taking care to estimate their costs. The clocked objective with brace notation v{x}
still specifies the use we make of such switching hardware, and would remain a useful notation
even if we knew how to eliminate it in terms of clocked objectives without brace notation.

4.4.2 Multiscale Attention

The m;(x) = x:i representation of a focus of attention has the disadvantages of requiring a
hidden, digital implementation (e.g. a priority queue) in order to be efficient, and of allowing
foci without any coherent structure that might decrease the number of border neurons that
are outside the focus but involved in the computational decision to move the focus. Both of
these problems may be eliminated by restricting the focus of attention to a choice of one or
several blocks of neurons, from a fixed partition of all the neurons into equal-sized blocks with
low connectivity between the blocks. An example of such a partition would be the division
of the 2-d grid of the region-segmentation network (19) into A < N uniform rectangular sub-
grids. Any such partition can be represented by a sparse, non-square 0/1 matrix B for which
E« B;s = 1. Given such a partition, only one focus indication neuron x, is needed for each
block a € {1,...,A € N}, rather than one per neuron index i € {1,...,N}. In return for
increased efficiency in the attention mechansim as compared with the previous case, one gives
up flexibity in the shape of the focus of attention. Some of that flexibility can be reacquired by
generalizing the partition scheme described below to many levels in a recursive algorithm.

54

Greedy Lagrangian Dynamics for Neural Networks

For a single level of partitioning, in which neurons v; are grouped into fixed blocks a which
enter or leave the focus together according to indicator neurons x,,

Ti(X) = Z BiaXa (192)

where B is the constant partition matrix.

We could just substitute this expression for x; (or #;(x)) into equation (186) (or (182)), in
which case the most active blocks of the partition B would be the focus of attention. Attention
would be a very affordable computation, a k-winner-take-all (kWTA) network. One clocked
objective is simply

Eblock

S xe BBl 4 (E Xa - n(A/N)) + 2ol

(193)
@ E["{E BmXc}]

which can again be improved by storing E; as’w;, to be recalculated only as necessary, and
which can be further improved by storing w, = 3°; Biaw;.

But here we will push the method a little farther, by choosing the k blocks not only based
on their internal gradients but also on their predicted synergies with each other. The synergy is
predicted by using the second order expansion for E, equation (163), which may be affordable
now that we have only A focus-control neurons:

Bl = Arv(o) Bx + SHEDIv (Bl (194)

Then the clocked objective analogous to (186) is
Bpoa = 2 (wi{start + Z BiaXa + E Nbraxs} - Ey [v])
+ 2 (w., {start + Z:(B,, + Bja)Xa + E(Nbr,c + th.c)xc} Egj [v])
® E (wa{sta.tt +Xa+ E Nbrasxs } = EBicwi) /2
: E (was{start +xa + x3 + Z(Nbl’ac +Nbri)xe } = Z B..B,,,w.,) /2
Ef«&tﬁao +@ (2& - n(A/N)) + ;450/1(&.)

- Z NaXa + P (Z Na — ”(A/N)) + Z ¢0/1(7)¢)
- 2 Xa(fla — 6) + E éo/1(Xa)
E[v{z Biaxa}l,

® start?/2+ Ze,&, -

(195)
where we have introduced constant sparse matrices

Nbrip = e(z BjyNbr;; — 1/2) (196)
j

55

Greedy Lagrangian Dynamics for Neural Networks

and
Nbrg = 6(E B;aBjNbr;; — 1/2). (197)
i

In (195), as in its prototype (163), the main departure from other clocked objective functions
for attention is the quadratic objective function for ¢ which expresses a nontrivial scheduling
problem: which k neuron-blocks should be active simultanously in order to maximize the ex-
pected sum of single-block and block-pair contributions to |AE|? This quadratic optimization
could be as hard as the original optimization problem E, were it not for the fact that it involves
far fewer variables £,. So it is crucial to have a separate restoration phase for x in case the ¢
analog scheduling optimization does not finish within its clock phase. In fact if the convergence
time of the scheduling network isn’t known well enough, we may need two restoration phases:
one which restores € to an analog kWTA solution 5, and a subsequent phase to ensure discrete
0/1 values x for the attention control variables. This conservative approach to restoration is
incorporated in equation (195).

The scheduling network is a kind of auxiliary, coarse-scale network which controls attention
at the level of blocks. Its connection matrix is surprisingly similar to part of a previously
studied multiscale optimization neural network [MGM91], which also had an auxiliary coarse-
scale network at the level of blocks of neurons. In that case the coarse-scale network was not
for the purpose of control, but rather to accelerate the convergence of the much more expensive
fine-scale network (which was simulated without any attention mechanism). In this regard the
coarse-scale attention-control connection matrix w,» may be taken (as discussed in section 4.2.1)
to be the negative of equation (167) after substituting (192) for #;(Xx); then it becomes identical
to the coarse-scale acceleration connection matrix from [MGM91],

Tas =) BiaBjsg'(u:)g' (u;) EE ;Ti;. (198)
ij

4.4.3 Jumping and Rolling Windows of Attention

The block-attentive neural network algorithm of equation (195) is equipped with a focus of
attention that jumps from one block or combination of blocks to another in successive clock
cycles. These jumps are rather expensive, since they involve storing the values of whole blocks
of neurons which used to be in the focus of attention but no longer are, and retrieving from
static memory the blocks of neurons which are newly promoted to the focus. A more gradual
migration of neurons to and from the focus of attention is studied in this section, for networks
with such a regular topology that the focus of attention can roll (i.e. move incrementally) from
one region to another as well as jump.

A rolling focus of attention is one which moves incrementally, keeping most of its neurons
assigned to the same implementation hardware. For example, consider a two-dimensional mesh
of neurons with local connectivity, as occurs for example in the region-segmentation objective
function (19). A small piece of such a mesh could be implemented by a two-dimensional VLSI
chip in which a fraction of the chip area is devoted to end-around connections, giving the circuit
the topology of a torus, together with some form of secondary storage for the many neuron
values which are clamped and stored off-chip. The torus can roll in any direction. The situation
is illustrated in figure 3. Consider also the assignment of physical (chip-implemented) neurons
to the much larger set of virtual neurons comprising the neural network. A rolling motion
allows this assignment to remain unchanged everywhere except at the boundaries of the chip,
or equivalently the boundaries of the focus of attention. This minimizes the need for off-chip
communication and on-chip analog shifting circuitry everywhere in the chip, at the expense of
requiring dynamic boundary circuitry (probably digital) throughout the chip. An alternative
would be to allow the focus of attention to “slide” around the neural net instead, in which

56

Greedy Lagrangian Dynamics for Neural Networks

Figure 3: A rolling window of attention.

case the dynamic boundary circuitry may be eliminated in favor of the analog shifting circuitry.
Our clocked objective function can be implemented either way, but we’ll keep the “rolling”
alternative in mind.

To describe the focus of attention mathematically, we just need x(x). We want to use a set
of blocks of neurons as in section 4.4.2, so that they can jump under the control of {xa}, except
that the blocks also roll (or slide) around the mesh. Each block’s position can be characterized
by its center. Block a has center ¢, +x,, in which c, is a home position for block a defined bya
fixed coarse-scale grid, and x, is a dynamical displacement variable. The reason for including the
home positions is to allow unused blocks to stay near their home positions, providing coverage
of the alternative locations that the focus of attention can jump to. (This capability would
not be necessary if blocks were only allowed to roll, but that would introduce spurious local
minima into the attention mechanism, as for example when a rolling window encounters its own
or another window’s path.) Then m(x) is as in section 4.4.2, with B;, = bi(ca + X,):

%i(x) = Ebi(ca + X4)Xa- (199)

We may scale our two-dimensional coordinates so that a block is a unit square, and we may
assign addresses c; in this coordinate system to each neuron %, and we take ¢, and x, to be
measured in this coordinate system also. Then the window boundary function b; becomes

bi(ca +Xa) = b(ca + Xa —), ~(200)

where

dim x
bx)= J] ©(1/2 - zal). (201)
a=1

We will also have occasion to use a soft (differentiable) version of this window boundary function,
bi(ca +Xa) = b(ca + Xq — €i), (202)

where
bx)= [T 6(1/2- |zal) (203)

a=1

57

Greedy Lagrangian Dynamics for Neural Networks ‘ 58

and

_ { 0, z < ~-w/2
O(z)={ z/w+1/2, -w/2<z<w/2 . (204)
1, z<w/f2

Then a clocked objective function for the rolling and jumping window of attention is

Ejg:v.6x] = Z (w.{start+2b,(c¢ + Xa)Xa +2mex»} - E[¥) /2
(compute the gradxents)
® E [Na (start +Xa + ENbfabXb - 1/2) + ¢0/1(f)a)]
(clamp unaffected wmdows)
& Y (welned - X bilea +xa)s) /2
(;ggregate the giradients) (205)
® start?/2+ Y [H(ze{na)) + 3 Nbresbi(zaine});]
a i

(roll unclamped windows)
® Z Xe [H(z..) + Z bj(ca + x.)w,] +kWTA(x, n4/N)

(select k best wmdows & jump there),
® E[v{ Z Xabi(ca + x,,)}] (descent within windows),
a

where as before
kWTA(x, k) = & (Z Xa = k) +_ dalxa)- (206)

A crucial ingredient is the spring potential function H which allows a block a to move freely
away from its home position until it is more than halfway into another block’s territory, then
hand off the rolling window to a neighboring block b by turning off x, and turning on x3, and
then to return to the home position x, = 0 to compute its expected AE and compete for

another chance in the focus of attention. ,
A spring function that makes this possible is illustrated in figure 4. An explicit expression ‘
for H is
dim x)
H(x)=) H(za), (207)
a=1
where
H(z) = elz| + c1p(lz] - 1/2) + $21(3 /2), (208)
and where <0
o(z) = / O(z)dz = { b st (209)

4.4.4 Sparse Networks and Spreading Activation

The attention mechanisms of the previous sections are designed to limit the number of active
variables at any time, including both problem variables v and attention-control variables x.
However there is no attempt to limit the number of inactive variables whose values must still

Greedy Lagrangian Dynamics for Neural Networks 59

L-g-.

Figure 4: Spring function H(z) = e|z| + e1p(|z| - 1/2) + ¢41(7=%73), solid curve. First term
restores |z| to zero when block is out of the focus of attention. Second term favors hand-off to a
neighboring block (neighboring block spring functions shown in dotted curves.) The third term is
a barrier term, limiting the number of blocks that can be attracted to an attractive focal region of
the network.

be stored and which therefore still occupy some hardware at all times. By imposing such a
limit, we may be able to achieve far greater efficiency for optimization problems whose solutions
are constrained to be sparse. What is required is that most of the variables outside the focus
of attention should take on default values, such as zero, which need not be stored at all. The
strategy is to enforce sparseness of v at every phase in every cycle, not just at the end of the
computation. To achieve this we will allow mild expansions in the number of active neurons at
some phases within a cycle, and enforce counterbalancing contractions in the number of active
neurons at other phases in the cycle.

Suppose v is a set of N variables, constrained to be sparse in the sense that all but n < N of
them take (possibly identical) default values default(:) at any valid configuration. The default
values may be zero or any number easily computed from the index i alone, without the use of a
large table of values (which would have to be stored). Let E(v) be an objective which includes
penalty terms for sufficient sparseness constraints on at least some of the variables v, and which
has the property that at any sparse configuration in which cn variables are unclamped in a
focus of attention, all but n of the variables must approximate their default values at any local
minimum. (Here ¢ > 1 is a constant.) Also suppose it is possible to initialize the network so
that the focus of attention contains all non-default variables (of which there are < n), and also
all neighbors of such variables (of which there are < cn).

Then at the beginning of a relaxation phase for E[v{x}], all < n non-default variables and
all their < cn neighbors are included in the focus of attention. At the end of the relaxation
phase, some new set of < n variables have non-default values; the rest have approximately
default values which can be reset to their default values without introducing much error, and
which therefore do not need to be stored explicitly. In this way a limited front of activation
relaxation, will propagate through the network of possible neurons or latent neurons. The
dynamics is reminiscent spreading activation or “marker propagation” algorithms in artificial
intelligence [Fah79, Tou86), and could perhaps be developed in that direction by using objective
functions proposed in [MGAB89]. Latent neurons are to be distinguished from the virtual neurons
of previous sections (e.g. section 4.4.1), the latter requiring storage even when out of the focus
of attention.

A suitable clocked objective function for such a spreading activation network, with many

Greedy Lagrangian Dynamics for Neural Networks

where N
13
Y x)<m and Yom()=[[m<n (218)
H=1 [b

Following equation (185), we can use the clocked objective function
Eornog = Ex[x, V] ® E[v{x") ® x}], (219)

where
Efx, ¥ = Y xxPE#+ 8 1P - 1) + (3 x — na)

i iy iz 220
+ Y 60n0) + Y 60 (D). @0

A major problem with this scheme is that all the E;[¥] derivatives must be calculated, even
though we want a small window of attention. A simple solution is to window the control variables
X also, and only calculate the few that are necessary. There may be only O(N; + N3) of those,
rather than O(N). One possibility is the disjoint union focus of attention #(x) = (nV),n(?)
for x. We will apply transformation (185) twice: first to v, substituting 7;(x) = xg)xg) for
Xi,» and then to x itself, using a straightforward focus of attention:

Tean(m) =1, where > 5 < oms. (221)
&
From equations (158) and (159), we can calculate

Bl b ¥ = Bl 914 = 44,) (AP Bs09 + ... (222)

a

and

L1 ¥ = Bil, 95 =~ (65 0P (o xPBale) + ..) (223)

a

Then the doubly attentive clocked objective function becomes

Eorthog = E’(Cl")x [x, v + E,(:;,),[i,‘?] + ‘I’(E ".(;1) —emy) + ‘I’(z Vc(,z) — eny)
- ~

+2_ 60D+ Y 6D
il “2

© 2 XD+ xXVD + PV Bl

i

+ QXY + X0 - m) + (T AP P +xP) —na)

t) i2
+ D00 + XD + 2 60 00D +x2))
i iz

® Elv{x"ex®}.

The first phase may be traded in as before for a priority queue implementation; but the space
cost of the default circuit implementation is already so small (O(n; +n2) for the kWTA network)
that the priority queue is not necessary. In the second phase at most (c + 1)?n? gradients E;
must be calculated. As in previous networks, one could make the efficient calculation of all
gradients explicit by adding extra phases and variables.

The focus of attention introduced in this section applies when the neuron index i takes values
in some domain which is a cross-product of other domains, domain(i) = domain(i;) x domain(is).

(224)

Greedy Lagrangian Dynamics for Neural Networks

This is of interest for building complex network architectures by composing simpler elements.
Another natural operation on index domains is the disjoint union i = (b, ;). The E, example
above showed how to compose a focus of attention for this case as well (see equation (221), with
23 cny < the number # of active neurons allowed), though that case is much simpler than for
the cross product.

63

Greedy Lagrangian Dynamics for Neural Networks

[Mjo85] Eric Mjolsness. Neural Networks, Pattern Recognition, and Fingerprint Hallucina-
tion. PhD thesis, California Institute of Technology, 1985. See section I1I1.3.1 for

wiring cost.

[Mjo87] Eric Mjolsness. Control of attention in neural networks. In Proc. of First International
Conference on Neural Networks, volume vol. II, pages 567-574. IEEE, 1987.

[MM91] Eric Mjolsness and Willard L. Miranker. A Lagrangian approach to fixed points.
In Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors, Neural
Information Processing Systems S. Morgan Kaufmann, 1991.

[Ner70] Evar D. Nering. Linear Algebra and Matriz Theory. John Wiley & Sons, Inc, second
edition, 1970.

[PB87] John C. Platt and Alan H. Barr. Constrained differential optimization. In Dana Z.
Anderson, editor, Neural Information Processing Systems. American Institute of
Physics, 1987.

[PS89] C. Peterson and B. Soderberg. A new method for mapping optimization problems
onto neural networks. International Journal of Neural Systems, 1(3), 1989.

[RC91] A. Rangarajan and R. Chellappa. A continuation method for image estimation and
segmentation. Technical Report CAR-TR-586, Center for Automation Research,
University of Maryland, October 1991.

[RGF90] K. Rose, E. Gurewitz, and G. Fox. Statistical mechanics and phase transitions in
clustering. Phys. Rev. Lett, 65(8), 1990.

[SgS90] G. W. Stewart and Ji guaang Sun. Matiriz Perturbation Theory. Academic Press,
1990. Theorem on p.25-26, using definitions on p.3.

[Sim90] Petar D. Simic. Statistical mechanics as the underlying theory of ‘elastic’ and ‘neural’
optimization. Network: Computation in Neural Systems, 1(1):89-103, January 1990.

[Tou86] David S Touretzky. The Mathematics of Inheritance Systems. Morgan Kaufmann
Pulishers, 1986.

[Tre91] Volker Tresp. A neural network approach for three-dimensional object recognition.
In Neural Information Processing Systems 3. Morgan Kaufmann, 1991.

[Vap82] V. N. Vapnik. Estimation of Dependences Based on Emprirical Data. Springer Verlag,
1982. \

[VI89] B. D. Vujanovic and S. E. Jones. Variational Methods in Nonconservative Phenom-
ena. Academic Press, 1989.

[YHP91] A. Yuille, K. Honda, and C. Peterson. Particle tracking by deformable templates. In
International Joint Conference on Neural Networks, pages I-7 to I-12. IEEE, July
1991.

66

