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derived. The jumps are shown to be proportional to the product of the density of the potential and the
mean curvature of the underlying surface.
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1 Introduction

With the recent advances in fast algorithms (see, for example, [2]) for solving integral equations
resulting from potential theory, there is a renewed interest in the classical potential theory. As
is well known, the jump relations of the single and double layer potentials play an important

role in the classical potential theory. In [3], the jump relations of the quadruple layer potential
| on a curve in two dimensions are derived; and it is shown that the jumps are proportional to the
product of the density of the potential and the curvature of the curve. In this note, we derive
the jump relations of the quadruple layer potential on a regular surface in three dimensions
and show that the jumps of the quadruple layer potential are proportional to the product of
the density and the mean curvature of the underlying surface. The result is summarized in

Theorem 3.8.

2 Analytical Preliminaries

In this section, we collect some well known facts from classic analysis to be used in the remainder

of the paper.
2.1 Notation

We will denote by S a sufficiently smooth (say, at least twice continuously differentiable) regular
surface in R3. When § is an open surface with boundary, we assume that S is an open set, i.e.,
S does not contain its boundary C. For a point z € S, we denote the unit normal vector to S
at z by N(z). For a vector z = (z1,z2,23) € R® we will denote its length by |z|. Finally, for

two vectors z,y € R®, we denote their inner product by (z,v).
2.2 Single, Double, and Quadruple Layer Potentials

For any z,t € R3 and z # t, we define the Green’s function for the Laplace equation in R3 via

the formula

G(z,t) = ]wth] (1)



Suppose now that S is a sufficiently smooth regular surface. For ¢t € S we consider the direc-
tional derivatives of the function G with respect to ¢ along the normal directions of S at t. It

is easy to verify that

0G(z,t) _ _(N(t),z-1¢)

NG N(t)- ViG(z,t) = ST )
8°G(z,t) , _3(N(t),z —t)? 1

INGE N(t) - ViViG(a,t) - N(t) = o—tF o= iF 3)

In the literature, (1), (2), (3) are often referred to as the single, double, and quadruple potentials
respectively. Suppose further that ¢ : S — R is a sufficiently smooth function. We will refer

to the functions given by the formulae

/S Gl,t) - o(t) - dt, (@)
0G(z,t) v

/5 0] -o(t) - dt, | (5)
0%G(z,t)

s aneeE o0 ©)

as the single, double, and quadruple layer potentials, respectively.
2.3 Finite Part Integrals on a Regular Surface in R3

Finite part (also referred to as hypersingular) integrals on Euclidean spaces are well known and
extensively used in mechanical engineering. Here we generalize the definition for the Euclidean
spaces given by Samko (see Chapter 1, Section 5.3 in [4]) to define finite part integrals on a

regular surface in R3.

Definition 2.1 Suppose that S is a sufficiently smooth regular surface. Suppose further that
the function f is integrable in S — D(x) for all e € (0, €9) for some €y > 0, where D (z) = {t €
S|lt — x| < €}. Then f is said to possess the Hadamard property at x if there exist constants

ak, b, and A, possibly complez-valued, but Re(\;) >0, k=1,2,...,N, such that

N
/ ft)dt = Z ak- € +b-log E + Iy (e), (7
S-D.(z) pot €



where lim,_,o Io(€) exists and is finite. In this case the finite part of the (divergent) integral

Js-D.(z) f(t)dt is defined by the formula
Lp. /S flt)dt = %133 Iy(e). (8)
Remark 2.1 When S is a flat surface embedded in R?, the above definition coincides with the

conventional definition for finite part integrals in R™ given in [4].

2.4 Local Properties of a Regular Surface in R®

It is well known that locally any sufficiently smooth regular surface in R3 is the graph of
a sufficiently smooth function. When the local coordinates are chosen along the principal
directions, the surface admits a particularly simple parametrization. The following lemma

summarizes this fact; it can be found in [1].

Lemma 2.1 Suppose that S is a sufficiently smooth regular surface in R® and that x is a point
in S. Suppose further that z = (0,0,0) and N(z) = (0,0,1). Then there exists a neighborhood

D,(z) € S of x such that D,(z) admits a parametrization given by the formula
Da(@) = {(u,v,9) € Slg(as,0) = 5(k1 % +y %) + Blu,v)}, ©
with k1, ko the principal curvatures of S at z, and the function R satisfying the conditions
|R(u,v)| < C - (u? + v2)3/2, (10)
| Ru (2, 0)], | Ro(u,0)] £ O (u +0), (11)

for some C > 0 and all u® + v? < a2.

3 Jump Relations of the Quadruple Layer Potential

In this section, we will derive the jump relations of the quadruple layer potential on a regular

surface in three dimensions. In other words, for z € S let

2G(z+¢- N(z
u(z + € N(z)) =/S¢9 2 ;N(t)];f( L) -o(t)dt, (12)

and we would like to compute the limits lim._,04 u(x + € - N(z)) and lim,o— u(z + € - N(z)).

We first consider the simple case when S is an open region in R2.



3.1 Planar Surface

In this case, we may assume that z = (0,0,0), N(z) = (0,0,1), ¢ = (u,v,0). Substituting these

equations into (3), we obtain

62G(.’B te- N(:B), t) _ 3¢e? 3 1 (13)
ON(t)? TPt Rt (@t gy
and thus
_ 0?G(z +¢- N(z),t)
We+e-Niz)) = /S AN (t)2 -o(t)-dt
3¢? 1
) /5 { @+ 0P+ (0 0% + 62)3/2} +o(u,v) - du - dv.
(14)

The following lemma states that the quadruple layer potential is continuous across S when S

is flat.

Lemma 3.1 Suppose that o : S — R is twice continuously differentiable. Then the function u

defined by (14) satisfies the following relation:

. . 3¢? 1
lim u(z +¢- N(z)) = lim s {(u2 T2 (@t e2)3/2} -o(u,v) - du-dv

1
= —f.p.Lm'U(U,U)'dU‘dv

. 1 27
=—?_%{L_Dem-a(u,v)~du-dv— —6—-0(0,0)},
(15)

with D, = {(u,v)[u? + v < €?}.
Proof. Obviously the problem is local, and we may assume that S = Dpg for some R > 0.

(a) If o(u,v) = 1, then using polar coordinates we have

32 1
'u,(:B+e-N(w)):/DR{(U2+U2+€2)5/2 - (u2+v2+62)3/2}.1.du.d'u
_ 27 - R?
- (R2+¢-:2)3/2’
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(16)
and thus
. _ 2T
?jn)}]u(a:+e-N(:c)) =5 (17)
Also

1

1 2
El_% {\/DR—De (u2 + 02)3/2 v € } (18)

And the lemma clearly holds in this case.

(b) Similarly, the lemma holds for 0 = u and o = v since all related integrals are equal to

zero by symmetry and ¢(0,0) = 0.
(c) We now consider the general case o € C?(S). By Taylor’s theorem we have
o(u,v) = 0(0,0) + 04(0,0) - u + 4(0,0) - v + Ry (u,v), (19)
where R; satisfies the condition that for all u? + v? < 62
|R1(u,v)| < M - (u® +v?), (20)

with §, M positive real numbers. By parts (a) and (b), we only need to prove that the
lemma holds for o = R;. Since

1
(u2 + v2)1/72
(21)

<C-

3¢? 3 1 }  Ra(u,v)
(2 +v2 + €2)572  (uZ + v2 + e2)3/2 15

for all € < € and u? +v? < §2, the integrands in (15) are only weakly singular (and hence
absolutely integrable) even if € = 0. By Lebesgue’s dominated convergence theorem, the
order of limit and integration can be interchanged and the finite part integral is actually

an ordinary (Lebesgue) integral. Hence, the lemma is proved.

Next, we will study the local properties of the quadruple potential near a regular surface.



3.2 Local Properties of the Quadruple Potential near a Regular surface

From now on, we use the parametrization given in Lemma 2.1, i.e., z = (0,0, 0), N(z) = (0,0, 1),

and for ¢ € D,(z) C S, it has the coordinates
t= (U, v, g(u) 'U))
1 (22)
= (u, v, §(k1 -u? + kg - v?) + R(u,v)),

with kj, kg the principal curvatures at the point z = (0,0,0), and the function R satisfying
the conditions (10) and (11). We first compute the quadruple potential in the neighborhood of
Dy(z).

Lemma 3.2 Fort € D,(z) C S,

*G(z+¢€-N(z),t)  3(N(t),z+e- N(z)—t)? 1
ON(t)? ~ lz+eN@ -t Je+e N -t
2 (23)
3‘p1(U,U,€) 1

T Puv) B, B(uoe)

where the functions p1, J, di are defined by the formulae

(k1 - u® + k2 - %) + Ry(u,v) - u+ Ry(u,0) - v — R(u,v) +¢, (24)

(ST

D1 (’U,, v, 6) =

J(u,v):\/1+k§-u2+kg-v2+2k1-u-Ru+2k2-v-Rv+R%+R%, (25)

di(u,v,€) = |z +€- N(z) —t|

2 26
=\/u2+v2+(-;—(kl'u2+k2~v2)+R(u,v)—e) . (%)

Proof. The first equality of (23) directly follows from the definition of the quadruple potential

(3). And the second equality follows from direct computation and the details are as follows:

z+e-N(z)—t=(—u,—v, —--;—(k1 -u? + kg - v%) — R(u,v) +¢), (27)

tu = (1,0,k1 - u+ Ry,), tv=(0,1,k2-v+ R,), (28)
_tuxty  (=ki-u— Ry(u,v),—ko-v— Ry(u,v),1)

N(t) = T ) ; (29)



(N(t),z+¢- N(z)—t) = % (30)

‘We now introduce the notation

d(u,v,€) = Vu2 +v? + €2, (31)

The following lemma provides the estimates for p;, J, and d; to be used in the proof of Lemma

34.

Lemma 3.3 there exist real positive numbers Cy, Co, C, 6, €y such that for allt € Ds(z) and

0<e< e,

|p1(u, v, e)2| < C-d(u,v, 6)2, (32)
[p1(u,v,€)? — € — € (k1 -u® + k2 - v%)| < C - d(u,v,€)?, (33)
[J(u,v) =1 < C - d(u,v,¢€)?, (34)
Ci - d(u,v,€) < |di(u,v,€)| < Ca - d(u,v,¢), (35)

2 2
dy (U,l’v,e)3 - d(u,i),e)?’ -2 Q(kld(/:,: U‘;’)": ) <C- d(u,lv,e)\’ (36)

2 2
dy ('u,,lv, €5 d(u,:),e)5 - Z(kld(:, v_,*—e;672 = = E(T:),J?: (37)

Proof. The estimates (32)—(35) directly follow from the definitions of p;, J, di, d and the
condition (10) satisfied by the function R. To prove (36), we first note that
Id(u) v, h) - dl(ua v, h)l SC ' d(u’ v, 6)27 (38)
|d(u,v, k)% — di(u,v,h)? —€- (k1 - u? + kg - v?)]

2
2¢ - R(u,v) — <%(k1 -u? + kg - v?) + R(u, v)) (39)

<C -d(u,v, 6)4.



For the sake of readability, we will sometimes denote d;(u,v,¢€), d(u,v,€) simply by di, d

respectively. We have

1 1 e(ki-v’+ky-v?) (P +di-d+d})
d & d3-d3 - (di +d)
(d2—d2+e- (ki-u?+ky-v?)-(d?+dp-d+d?)

= (40)
B-d - (d +d)
1
<Cr——,
~ d(u,v,€)
where the inequality follows from (35) and (39). Similarly
(@ +di-d+d}) 3
d‘rls'(d1+d) 2.d?
_|(d—di)- (343 +6d-d? +4d? - dy + 2d°) (41)
- 2d? - d3 - (di +d)
1
<C+—
= d(u,v,€)’
where the inequality follows from (35) and (38). Furthermore,
€ (k1 -u?+ kg -v?)
<C. 42
d(u,v,€)3 = (42)

Combining (40)-(42), we obtain (36). Finally, we note that (37) can be proved in an almost
identical manner. O

The following lemma singles out most singular terms in the quadruple potential.

Lemma 3.4 there exist real positive numbers C, §, g such that for allt € Dg(z) and 0 < € <

€0,
82G(z +€- N(z),t) 3 3¢ + 1
ON(t)? d(u,v,€)®  d(u,v,€)?
_3-e-(k1~u2+k2-v2)_15-63-(k1-u2+k2-v2) (43)
2 - d(u,v,€)’ 2-d(u,v,€)7
1
sC d(u,v,€)’
Proof. Combining (32)—(34), we have
p1(u,v,€)? € +e- (k1 -u2+ k- 0v?) 1
— <C:+—. 44
J(u,v)? - di(u,v,€)d di(u, v, €)® = d(u,v,¢€) (44)

8



Combining (23) and (44), we obtain

PCte N@)t) 8 te(ulikyo?) 1 |_ 1
6N(t)2 di (u7 v, 6)5 di (’U,, v, 6)3 N d(uv v, 6) .
(45)
Finally, we obtain (43) by combining (36), (37), and (45). o

We now introduce the notation
r(z,t) = r(u,v) = Vu? +v2. (46)
The following corollary is obtained by letting € = 0 in (43).

Corollary 3.5 there ezist real positive numbers C, § such that for all t € Ds(z),

0%G(z, t) 1 1
ON(t)2  r(z,t)3 s¢- r(z,t)

(47)

3.3 General Regular Surface

We now consider the case of a general regular surface. Obviously since 1/7(z,t) in (47) is
weakly singular (and thus absolutely integrable), we obtain the following lemma by Lebesgue’s

dominated convergence theorem and Corollary 3.5.

Lemma 3.6 Suppose that o : S — R is twice continuously differentiable. Then

0%G(z,t) _ 1
S'W—U(t)dt——fph/smd(t)dt

N

where the last integral is interpreted in the sense of an ordinary (Lebesgue) integral.

f.p.
(48)

The following lemma states that the last several terms in (43) are all “approximations to the

identity” (or more precisely, a constant).

Lemma 3.7 Suppose that f € LP(Dy(z)), 1 < p < 00. Suppose further that = belongs to the

Lebesgue set of f (see, for example, [5] Chapter I ) Then

eu2

lim qu, v, f()-dt =5 f(a), (49)

e—04 Do(z) d(u v, €

9



€ v? 2w
58, o T 0= 1) o0

e - u? 27

e];l)%l+ Da(z) 4(u, v, d(u, v, €)7 (1) T 15 f(@), (51)
3. 2

B o Tawyey 1O =15 5 /@) (52)

(z belongs to the Lebesgue set of f if lim. o ;12' f Du(a) |f(t) — f(z)| - dt = 0. In particular, = is

a point of the Lebesgue set of f if f is continuous at z.)

Proof. The proofs of (49)—(52) are almost identical to each other and thus we will only prove

(52). Representing dt in local coordinates, we have

3. 12 3 . 12
/Da@) (w0, -f(t)-dt = /1‘2+02<a2 ET LR - f(u,v) - J(u,v) - dudv,
(53)

where the function J is given in (25). Obviously, J is a bounded continuous function in
u? + v? < a? and J(0,0) = 1. Hence, f(0,0) - J(0,0) = £(0,0) = f(z). By Theorem 1.25 of

Chapter I in [5], we only need to prove that

v? 2
cdu-dv =T, 4
/Rz (u2 +v2 +1)7/2 du - dv 15 (54)

But the above identity can easily be verified by evaluating the integral via polar coordinates.
Hence, the lemma follows. O

We are now in a position to present the principal result of the paper.

Theorem 3.8 Suppose that S is a sufficiently smooth regular surface in R® and thato : S — R
is twice continuously differentiable. Then the quadruple layer potential u : R® — R defined by

the formula

0%G(z,t)

u(:z:) = g W . O'(t) - dt (55)

satisfies the following jump relations at £ € S:

10



(a)
FCate N@h) . g

Jm ue+e N@) = I | — 5502
2
=2 (ka(a) + ka(a) - o(0) + 2. | -66%—((3;—) o(t) - d;
(56)
(b)
. o 02G(z +¢- N(z),t)
el—lft?— u(z+e-N(z)) = Egnol_ : AN ()2 -o(t)-dt
2 xr
=~ (ha(s) + ka(e)) o) + L. | ?-5%5’2@ Co(t) - dt,
(57)

with ki(z), ka2(z) the principal curvatures of S at x. (Note: ki(x) + ka2(x) is the trace of

the second fundamental form of S at =, which changes sign if N(z) changes sign (i.e., S

changes its orientation).)

Proof. The proofs of (56) and (57) are almost identical, so we will only prove (56). By lemma

3.4, we have

0%G(z +¢- N(z),t) _ 3€? 1
s AN ‘“““‘A{MMﬂfwmu&}”@”t

‘e . ul 2 .e3. 2 2
+/ 3-¢€ (kl u“+ko-v ) 15 - € (kl u® +ko-v ) 'O‘(t) . dt
g 2-d(u,v,¢€)® 2-d(u,v,€)7

+/SR(u,v,e) -o(t) - dt

=11 + I + I3,
(58)
where the function R satisfies the conditions
|R(u, 0, < C- ——— (59)
el = d(u,v,€)’
2
0°G(z,t) 1 (60)

RBlw.v.00 = Z5er * 5y

11



We now analyze the above three items separately. First, by Lemma 3.1, we have
1
lim I; = —~fp. | —— - o(t)-dt. 1
g =t /Sr(a:,t)3 o) (6D
Second, by Lemma 3.6, we have
i o . . . 2
61%14_ I =27 - (k1(z) + ko(z)) - o(z) (62)

Third, by Lebesgue’s dominated convengence theorem, we have

lim Ij = /S R(u,v,0) - o(t) - dt = /S {azg("”’t) b }-a(t)-dt. (63)

—0+ ON(t)2  r3(z,t)
Finally, we obtain (56) by combining (48), (58), (61)—(63). O
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