Yale University
Department of Computer Science

Data Field + Dependency = Parallel Program
Marina Chen, Young-il Choo, and Jingke Li

YALEU/DCS/TR-621
April 1988

This work has been supported in part by the Office of Naval Research under
Contract No. N00014-86-K-0564.

Data Field + Dependency = Parallel Program

Marina Chen Young-il Choo Jingke Li

Department of Computer Science
Yale University
New Haven, CT 06520
chen-marina@yale.edu choo@pyale.edu li-jingke@yale.edu

April 11, 1988

Abstract

This paper describes how Crystal — a language based on familiar mathematical notation and
lambda calculus — addresses the issues of programmability and performance for parallel super-
computers. What is new about Crystal (or how is it different from existing functional languages)
lies in its model of parallel computation and a theory of parallel program optimization. We il-
lustrate the power of our approach with benchmarks of compiled parallel code from Crystal
source. The target machines are hypercube multiprocessors with distributed memory, on which
it is considered difficult for functional programs to achieve high efficiency.

1 Introduction

Rapid development in large scale parallel machines presents a new challenge in software: How can
these machines be put to effective use, and how can efficient programs be written for a machine
consisting of hundreds, thousands, or even millions of processors without too much difficulty? Since
the purpose of parallel processing is to obtain high performance at a reasonable cost, efficiency and
cost-performance are of ultimate concern.

Superficially, the idea of parallel processing is simple: allow many processors to work together
in order to solve a particular problem. Thus, the length of time it takes to perform the task will
be reduced. All sounds well and good, but in order to use parallel machines effectively, many
problems must be overcome. First of all, we need algorithms that have enough concurrency to
take advantage of large numbers of processors. Secondly, this concurrency must be conveyed in
some language that will eventually be translated into commands that can direct the operations
and cooperations of processors. Thirdly, the cooperation between processors may cause problems:
when one processor needs to use another processor’s result — it needs to find out whether that
result will be ready to be used and where it can be found. The more processors a system has,
the more communications between processors must take place. The danger is that the processors
can spend more time telling each other how far they have gotten with their tasks than solving
them. This processor bureaucracy must be brought under control. Another problem is the so-
called hot-spot phenomenon where requests of services are concentrated at a few processors while
others are waiting to be served. Like any large organization, concentration of workload must be
smoothed out in order to achieve higher overall performance. Finally, there is a cost associated
with communicating information between processors. The more local the communication, the less

2 1 Introduction

costly. The benefit attained by taking advantage of locality must then be weighed against the cost
and the effort spent in arranging for local communications and cooperations. Such arrangements
may not always be made in a cost-effective manner. However, when a problem is amenable to such
arrangement, the performance gain can be significant.

In this paper we describe how Crystal [5,6] — a language based on familiar mathematical
notation and lambda calculus (see, for example, [19]) — addresses each of the above issues. What
is new about Crystal (or how is it different from existing functional languages) lies in its model of
parallel computation and a theory of parallel program optimization[7].

On the issue of concurrency, Crystal’s philosophy is to make it easy for programmers to express
concurrency. However, whether an algorithm, by nature, has a lot of concurrency is an algorithm
designer’s responsibility. Thus, the design of algorithms and the management of parallelism are
treated as two distinctively separate issues. The mathematical nature of the language does not pre-
suppose sequential implementation as conventional programming languages do. A Crystal program
does not have extraneous dependencies not in the original problem as is the case with conventional
languages. The program faithfully embodies whatever concurrency existed in the original algo-
rithm. Thus, Crystal allows a programmer to focus on algorithmic issues, leaving the grungy and
error-prone aspect of managing parallelism to its compiler and run-time system.

Regarding the suitable level of specification for concurrency, we don’t encourage programmers
to describe the microscopic behavior of each individual processor. Rather, you describe what is to
be done by the processors collectively. This lack of specification in the source program about each
processor’s assignment provides the machine with the flexibility in interpreting how the collection
of processors will execute the programmer’s command.

With regard to language constructs for specifying concurrency, we believe that machine charac-
teristics (that affect the design of algorithms) and code optimizations (that improve the target code
performance) have mathematical representations that can be reasoned about without implemen-
tation details. Hence, commands dictating the implementations of interprocessor cooperations —
such as locks for secure sharing of common data or “send” and “receive” for transmitting messages
between processors — are not in Crystal’s vocabulary. They are used, rather, in the target code
into which a source program is translated.

Crystal’s view of computation is of a global data space with non-uniform communication metrics.
Each data subspace, called a data field, has its own shape and topology described as graphs.
Code optimizations are specified as morphisms between data fields and carried out as source to
source transformations. If so desired, a programmer can optimize the target code explicitly using
data field morphisms. Again, this process can be carried out at the source level with the benefit
of the mathematical apparatus. Implicitly by the compiler, or explicitly by a programmer, all
optimizations are performed at the source level. Since the “target” Crystal program embodies
information of the exact microscopic behavior of each individual processor, its translation to any
of the many languages on parallel machines becomes a straightforward process.

The richness of the language in expressing shapes and topologies of data fields and the capa-
bility of abstracting away from implementation details imply the portability of source programs
to different parallel architectures. Whether the target machine has shared-memory or distributed
memory, is fine-grained or coarse grained, is small scale or massively parallel, the difference in

architectures simply induce different communication metrics for optimization.

The heart of Crystal’s compilation process lies in morphisms for keeping communication over-
head low (space-time realization, partition morphism), avoiding hot spot (fan reduction), ensuring
balanced load (distributing morphism), and attempting locality whenever possible (contraction
morphism). Crystal’s theory of data field morphism says that all information for an optimization
is embodied by a data field morphism, which is a pair of functions. These functions are in “closed
form” for compile-time optimizations, and dependent on run-time data for run-time optimizations.
Once a morphism is given, Crystal’s metalanguage processor is responsible for either generating an
optimized program or augment the original program with additional code that creates an environ-
ment for executing the morphism at run-time.

For a large program, the complexity of optimizations as well as programming must be managed.
In Crystal, both can be done systematically by composing a large system in a hierarchical manner.
Each Crystal sub-program can be separately designed and tested, and optimized by morphisms
on the data field upon which it operates. When sub-programs are put together to create a larger
one, optimizations for gluing their data fields together take place. We believe that this structured
optimization approach may well be a more cost-effective one than the global optimization approach,
especially when it comes to producing efficient target code for large, realistic applications.

The rest of this paper is organized as follows: We present an overview of the Crystal system in
Section 2. In Section 3, we give a brief introduction to the language Crystal and its metalanguage.
Next, we present a model of parallel computation with communication metrics in Section 4. Notions
of data fields, computational fields, communication metrics, and morphisms are introduced. In
Section 5, we describe the morphisms needed for generating an efficient target code from an initial
mathematical description. In Section 6, we present performance results of parallel C code which
are compiled from Crystal on two target machines, namely, NCUBE and Intel’s iPSC. We conclude
with a discussion of related work and a few remarks.

2 Crystal System Overview

In the following, we outline the current Crystal system which is under design and implementation.
Optimizing or improving programs for parallel execution is at the heart of the implementation of
Crystal. In Crystal, code optimization may be performed by source-to-source transformations at
compile time, or it may be carried out as part of the run-time environment’s function. Figures
1 and 2 depict the organization of Crystal compilers for various parallel machines and Crystal’s
run-time environment, respectively.

2.1 Optimization Library

Procedures or heuristics for optimizations are collected in the Optimization Library, whose func-
tions include: analyzing a source program, choosing what type of optimizations must be applied,
specifying the transformation steps for compile-time optimizations, and determining the run-time
optimization and activation structure.

2 Crystal System Overview

source program

Y

lexer, parser

Y

meta-language <
processor |
/ " \ {

interpreter scope analysis

Y Y
sequential ‘ control flow
result analysis
re - = el s T J i PR]
Y Y A

data dependency

! I
[I
: analysis !

I
| y Y |
I I
I space-time ‘e fan- . |

I artition , e ¢ | contraction

I realization P reduction I
I I
! I
! |

!

code generators

/ \ \
iPSC, Connection | « o o

NCUBE Ginzu Multimax Warp Machine

Figure 1: Organization of the Crystal Compilers

2.1 Optimization Library

target
code

data distributor, dynamic processor-
task scheduler storage allocator

garbage
collector

processor-storage
Figure 2: Run-time Environment of Crystal

A

o

compactor

N\

6 3 The Crystal Language and Its Metalanguage

2.2 Metalanguage Processor

Compile-time transformations are specified in Crystal’s metalanguage, which contains operators for
manipulating source programs. The metalanguage processor knows about the algebra of Crystal
programs and actually carries out the program transformations. While the metalanguage is used
mostly by the procedures in the optimization library, users of Crystal may program in it for explicitly
controlling transformations.

2.3 Run-time Environment

Run-time optimizations are achieved by a data/task distributor and a dynamic processor/storage
allocator. The former is responsible for shuffling data around for the purpose of load balacing and
minimizing communication overhead. The latter is responsible for creating space for procedure
activations, establishing communications that transfer data between parallel procedures, and opti-
mizing spatially the location of an “activation record”, again, for the purpose of balanced load and
low communiation overhead. The garbage collector and storage compactor work across processors
as well as on the memory within a processor. The run-time environment itself is implemented in
parallel code for minimizing run-time overhead.

2.4 Code Generators

Crystal is an architecture-independent language, which is currently targeted to a variety of par-
allel machines: hypercube multiprocessors (NCUBE and Intel’s iPSC), multiprocessors with mesh
interconnections (Ametek’s Ginzu), shared-memory multiprocessor (Encore’s Multimax), systolic
array processors (Warp), and massively parallel machines (Thinking Machine’s CM-1 and CM-2).
Different architectures impose different optimization criterions and choices of parameters, which
are reflected in the optimization procedures in the library.

For most of the machines, Crystal’s code generators produce target code consisting of programs
for individual processors in high-level languages such as C, Fortran, or Lisp, plus communication
or synchronization commands for inter-processor communications. Two exceptions are in the use
of *Lisp code along with calls to PARIS as target code for the Connection Machines, and W2 code
for the Warp array processor.

3 The Crystal Language and Its Metalanguage

Crystal is a language for defining index domains, domain morphisms, data fields, and computation
fields. It is basically the mathematical notation that was used for defining the various mathematical
objects enriched with A-abstraction, application, recursion, and local environment. The only control
structure consists of the conditional expression. Conventional control structures such as various
forms of loops are subsumed by Crystal’s domain operators.

In order to express high-level program transformations, a metalanguage is defined for Crystal,
consisting of construtors, selectors and operators.

3.1 The Language 7

3.1 The Language
Data Types

The basic data types consists of the integers and the booleans with the standard arithmetic functions
(plus, minus, times, divide, etc.), and boolean functions (and, or, not). The standard environment
has names for all the integer and boolean constants, and the standard functions over them.

The composite data types include the sets, the index domains, and data fields. A simple data
field a over an interval domain {0..n } can be expressed [a(0),...,a(n)], or [a(¢) | i:{0..n }] using
data field comprehension. In general, for any domain D, the data field a : D — V can be expressed
as [a(z) | : D). Here 7: D indicates that the variable ¢ ranges over the domain D.

The Conditional

The conditional expression has the following form

Bl""El

B, — E,

where the B;’s are boolean expressions and E;’s are any expressions, and its value is the value of
the first expression with a true guard.
Functions

Given any expression in the language, the A-abstraction produces A-expressions that denote func-
tions. If the formal parameters are declared over an index domain it denotes a data field.

Example If e[z] is an expression in z, then
Az : D.ef[z]
denotes a data field over D whose values at each index z is e[z].

Repeated A-abstraction produces higher-order functions.

Operators

Operators are higher order functions that take other functions as arguments. The standard envi-
ronment contains the composition (o).

The reduction operator ([13]) comes in three flavors: the left associative (\r,), the right associa-
tive (\r), and the binary-tree associative (\p). The left associative \1, takes a binary associative
function f and a linear data field [ao, ..., a,] and satisfies the equation

\L flao .. an] = f(---(f(f(ao,a1),a2))).

8 3 The Crystal Language and Its Metalanguage

The others differ only in the association of the binary function f.
The scan (\\) is defined to be

\\f[a07°'°’an] = [aO’ f(a’Oaal)a"-af(' "(f(f(a()’al)’a?)))]

and returns a data field of the same shape but with all the partial reductions as values.

Programs

A definition has the form 'f = E" or 'f = E where N, where f is an identifier, F is an expression,
and N is an environment. An environmentis a set of mutually recursive definitions which augments
the environment in which the definition is given. The definitions in a local environment may also
have their own local environments.

A Crystal program is a set of mutually recursive definitions and an expression that is to be
evaluated in the standard environment.

3.2 A Metalanguage

The metalanguage will be used to formalize transformations of programs [7] written in Crystal.
Like any other metalanguage, the Crystal metalanguage consists of basic constructors and selectors
for each of the constructs in Crystal and operations that manipulate Crystal programs as objects

[7].
Constructors, Selectors, and Predicates

For each construct of the object language, there exists a metalanguage constructor that takes the
components and produces the construct.

Example For the conditional expression, the constructor takes a list of guarded expressions and
returns the conditional expression made up of the given guarded expressions.

mk-eqn(71,73) = ' =7
Ihs(mk-eqn(71,72)) = 7
rhs(mk-eqn(71,72)) = 72

mk-abs(7,7) = "Ar.7?

Il
5

param(mk-abs(7, 7))
body(mk-abs(7, 7))

Il
\‘

are the constructors and selectors for making equations and A-abstraction. Other constructors
include the eta-abstraction, application, and the conditional expression constructors.

Operators

Metalanguage operators manipulate the Crystal programs. The standard program transformations
known as “fold” and “unfold” [4,8] take an equation (a function definition) and replaces a body by
its function call, or the inverse. These can be defined in terms of more primitive operators “expand”
which replaces the function name by its defining equation, and “reduce” which does S-reduction
on a redex.

In the metalanguage, these are denoted fold(k, ¢), unfold(k, ¢), expand(k, #), and reduce(r),
where x denotes an equation, ¢ a name, and 7 a term.

Other operators include substitution of a sub-term with an expression that is equal in the theory
(subst(k,71,72)), and various simplifications for arithmetic expressions or function compositions.

The reshape operator, denoted reshape(def('a’),"g’,"0"), is a composite function in the met-
alanguage. It takes an equation defining the function ¢ and returns an equation defining the
function b such that @ = b o g where g is an index domain morphism. The fan-in/fan-out
reductions can also be expressed as metalanguage functions: fan-out-red(def("c'),"X.’,"a’) and
fan-in-red(def("c"),"Z", "a"). The use of these will be illustrated below. A more complete presenta-
tion of the metalanguage is in [7].

4 A Model of Parallel Programs

In this section we present a model of parallel programs that forms the foundation of an equational
theory of program optimizations.

The central notion in our model of parallel programs is that of a data fields, representing the
evolution of data values distributed over a space and time of processors, known as indez domains.
A parallel program, presented as a system of mutually recursive definitions, denotes a set of in-
terdependent data fields, called a computation field. The reshaping of data fields is represented
by morphisms. The algebra of morphisms of the data fields provide us with an equational theory
in which new types of transformations can be defined to improve the overall efficiency of parallel
programs.

Index domains are given a topology by defining a communication metric which represents com-
munication cost between different nodes of the domain. This allows us to model any kind of machine
architecture, from single processors to shared memory machines, and distributed memory machines.

The communication metric provides us with a measure of a program’s efficiency on a particular
architecture and guides the strategies for parallel-program optimization.

4.1 Graphs and Communication Metrics

This section introduces notations for graphs and defines a communication metric over pairs of
nodes. Graphs embody the topology of the computation. Morphisms between graphs allows us
to reshape one computation into another that looks different yet is related to the original by the
morphism.

10 4 A Model of Parallel Programs

Graphs and Graph Morphisms

By a graph we shall always mean a directed graph G which is presented as a set of nodes, o(G),
and a set of arcs, p(G). An arc with source node z and target node y will be denoted z +— y. A
path is a non-empty sequence of arcs such that the target node of one arc is the source node of the
next. We write = ©> y to indicate that there is a path from z to y. A graph has finite degree if each
node has a finite number of incoming or outgoing arcs. A graph is well-founded if it has no infinite
descending chains.

Definition A graph injection, written g : G — H, is an injective function, o(g) : 0(G) — o(H),
from nodes to nodes that preserves paths: if ¥> y in G, then o(g)(z) ¥ o(g)(y) in H. The
identity on a graph G, denoted 1g, is an injection that is the identity on the nodes.

Definition An elementary surjection is a mapping from one graph to another that collapses one
arc with its source and target into one node while preserving paths. A graph surjection is a (possibly
empty) sequence of elementary surjections. [11].

Definition A graph morphism is a composition of some graph injections and surjections.
In Crystal, graph morphisms are expressed as functions.

Definition For any graph morphism g : G — H, a left inverse, if it exists, is a morphism & : H — G
such that ho g = 1g. Furthermore, if g is a left inverse of A, i.e., go h = 1p, then h is called an
inverse of g and is denoted g~!. Any morphism that has an inverse is called an isomorphism.

Communication Metric

For this section, let G be a graph and let R be either the real or the natural numbers extended with
infinity. We define the notion of a communication metric that measures the communication cost
between nodes, and then show how a communication metric may be induced by communication
cost for each arc.

Definition A communication metric on G is a map p = u(G) : 0(G) x 0(G) — R, such that
1. If z = y, then u(z,y) = 0.
2. p(z,y) > 0 for all z, y.
3. p(z,z) < pw(z,y)+ u(y,2) for all z, y and =.

u(z,y) is called the communication cost from z to y.

Note, that a communication metric is weaker than the usual topological notion of a metric[9).
The usual metric is symmetric (u(z,y) = u(y,z)), and also satisfies the converse of condition 1
(#(z,y) = 0 implies z = y). A communication metric is meant to capture the communication cost
along the paths of a graph. Therefore, the communication cost can be very different in opposite

4.2 Index Domains and Domain Morphisms 11

directions. It may also be possible that two logical processors are mapped onto a single physical
processor, resulting in the communication cost being zero.

In Crystal it will often be convenient to determine a communication metric by specifying the
communication cost for each arc. We show that there is a canonical way to do so.

Definition A local metric on G is a function v = v(G): p(G) — R that assigns to each arc a
communication cost.

Given a local metric, it is straight forward to extend it inductively to a path so that for any
path p, v(p) is the sum of the local metric of each arc in the path.

Definition The default communication metric on G is one induced by the local metric that assigns
to each arc one unit of communication cost.

4.2 Index Domains and Domain Morphisms

The graphs and communication metrics are used to define index domains and index domain mor-
phisms.

Definition An indez domain D is a graph of finite degree with a communication metric (D)
defined over it. A node of the underlying graph will be called an indez.

Example A local metric with cost 1 on each arc for a square mesh domain D can be defined
v(G) = Az :p(G).1.

For a shared memory machine, the domain is a star, with each arc having the same communication
cost.

Usually, the communication metric will not be given explicitly, but will be inferred from the
Crystal program by doing dependency analysis.
For the following definitions, let D and E be index domains.

Definition A domain injectionis a graph injection on the domains considered as graphs. A domain
surjection is a graph surjection on domains considered as graphs. An index domain morphism,
written g : D — E, is some combination of domain injections and surjections.

Index domains with index domain morphisms form a category, since an identity morphism exists
for each index domain and the composition of morphisms is associative.

Definition An interval indexz domain, denoted {!..u }, domain whose nodes are contiguous integers
between between / and u, inclusive. The local metric assigns unit cost to adjacent nodes. We also
write {{.<u} ({{<.u}) if the upper (lower) bound is not included.

A special class of index domains will be used to model discrete time.

12 4 A Model of Parallel Programs

Definition A time domain is a linear, well-founded graph with the default communication metric.
In particular, T}, will denote a time domain of length n.

Definition Let D be a domain with n nodes. A linearization of D, denoted 7(D), is a time
domain of length n with nodes o(D) such that there exists an injection from D into 7(D) which is
an identity on the nodes.

Note that 7(D) represents just one possible linearization of D.

Definition A binary tree domain is a domain with nodes connected as a binary tree. The predicates
root and leaf test for root and leaves, and functions parent, left, and right return the parent, left
child, and right child of each node, respectively, if they exist, and is undefined otherwise.

Let S be a set of nodes and r some node.

Definition A tree domain over S with root 7, denoted tree(S,r), is a binary tree domain with the
leaves from S and the root r. If the cardinality of S is odd, we allow one non-leaf node not to have
both children.

Definition A tree domain is balanced, denoted treep, if the leaves are all at the same distance
from the root, is left-associative tree domain, denoted treer, if all the right children are leaves, and
is right-associative, denoted treeg, if all the left children are leaves.

Definition Let g: D — E be a domain morphism. Then the induced communication metric on
the domain D by g is defined by

(D) = A(z, y)-u(E)(9(z), 9(y))-

Domain Constructions

Given domains, new domains can be constructed. The usual cartesian product and disjoint union
are defined, and a special construction called time product is introduced.

Sometimes we want to restrict ourselves to a subdomain. A subdomain can be defined by
providing a restriction on a domain, where a restriction is a boolean valued function over the
domain. In Crystal, the restriction is specified using a filter, which is a boolean expression.

Example
Az : {0..100 }&even(z).5z
denotes a data field defined only over the even members of the domain.

Definition Let D; and D; be domains. The cartesian product of D; and D, denoted Dy x Dy,
is defined as follows:

U(Dl X D2) = O'(D1) X O'(Dz)

p(D1 X D3) = {(z1,51) — (22,%2) | (21 = 22 and y; — y2) o1 (21~ z2 and y1 = y2) }
N(Dl X D2) = v*

4.2 Index Domains and Domain Morphisms 13

where the local metric is

D = if 21 = 2 and y; — ya,
V(($1, yl) — (x2’ y2)) - ﬂ'(1)(yl y2) . 1 2 71 Yo
w(D2)(x1 — 22) if 21— 2 and y1 = ya.

If D, and D, are interval domains, then the communication metric on their product is usually
known as the Manhattan metric. Communication can occur only along directions parallel to the
axes.

Next, we define the coproduct, or disjoint union.

Definition Let D; and D, be domains. The coproduct of Dy and D, is disjoint union domain
Dy + D, with two injections ¢ : Dy — Dy + Dy and 13 : Dy — Dy + D4. The communication metric
is

p(D1+ D2)(u(z),u(y)) = w(Di)(z,y),
#(D1+ Do)(e2(2),t2(y)) = p(D2)(z,y), and
p(D1+ D2)(u(z),2(y)) = k,

for certain nodes in the coproduct corresponding to z in D; and y in D, to have communication
cost k, called inter-component cost.

Il

The injections ¢; and ¢ enables us to avoid having to specify the exact implementation of the
coprduct in terms of set-theoretic constructions.

When the components of the coproduct are the same, then we define the default inter-component
cost for corresponding nodes to be zero, i.e., u(E + E)(t1(z),t2(z)) = 0 for all z in E.

Next, we introduce a construction that models a space of processors in time. Unlike the product,

where the original arcs remain unchanged, in the following construction, the arcs will point forward
in time. ‘

Definition Let S be a domain and T a time domain. The time product of S with T, written S T
and read “S in T,” is a domain with
o(S+T) = o(S)x o(T)
p(§*T) = {(21,t1) — (@2,%2) | (x1 = 22 and ty — 13) or (z1 > 22 and t; — t2) }
w(S*T) = v*

where

N(T)(tl = tg) if T1 = T9 and 11— t2,
max{ /L(S)(:I:l land .’IIQ),/J(T)(tl g tz)} if Ty T and 11 — 1o

V((wlatl) s ($2,t2)) = {

Time product of a domain S creates copies of o(5) for each of the time steps in the time domain
T and creates arcs forward in time from each node of o(5) to itself and each arc gets transformed

14 4 A Model of Parallel Programs

Figure 3: S | T SxT S*T

to one with same source, but the target is in the next time step. This reflects the fact that any
communication in space must take at least a unit of time.
A domain of the form S T will be called a spacetime domain.

Example Let S be a three element domain and T be a three element domain. Their cartesian
product and time product are depicted in Figure 3.

Generalized Products and Coproducts

The product and coproduct constructions may be generalized to arbitrary set of domains. Let I
be a domain and D(¢) be a domain for each ¢ in I, and let P be a restriction on I.

The product of { D(¢) | i: I\ P} is denoted []¢:I|P.D(z), and the coproduct of { D(i) | i:I|P}
is denoted)¢ : I| P.D(3).

Let D=3%i:{0..n}.3>7:{0..i}.{(4,7) } denote a triangular domain. Then any function
defined over it can be thought of as implementing a parallel version of a nested loop, where the
inner j is bound by the outer 7 loop variable.

Domain Operations

The following morphisms are used for projecting and injecting between domains of different dimen-
sions. Let D(¢) be an interval domain for each ¢ in {0..n }.

Definition For each k in I, the projection along the kth coordinate axis, the selection of the kth
component, and the injection into the kth component are morphisms

proj(k) : D(0)x ---x D(n) — D(O0)x +--Xx D(k—1)x D(k+ 1) x ---x D(n)
(doy...,dn) — (do,...,dk—1,dk41,--.,dn),
sel(k) : D(0) x ---x D(n) — D(k)
 (doyeeeydn) = (di),
inj(k) : D(k) — D(0) X ---x D(n)
(di) — (L,...,L,dg, L,..., 1),

where L denotes an undefined element which is less defined than any other in each index domain,
and df is in the kth component of the tuple.

4.3 Data Fields and Data Field Morphisms 15

4.3 Data Fields and Data Field Morphisms

Data fields are defined to be functions from index domains to values.

Definition Let D be an index domain and V a domain of values. A data field over D, written
a:D —V,is afunction a : (D) — V which assigns a value to each node of the index domain.

A datafield @ : D — V can be expressed as a function over the index domain. For example, let
D ={0..20}, then
Az:D.x+2

denotes a data field whose value at each index z is z + 2.
Index domain morphisms are used to define morphisms of data fields.

Definition Let f; : Dy — V and f: Dy — V be data fields. A data field morphism g from f; to
J2, written g : fi — f;, is an index domain morphism g : Dy — D,, such that f; = f; o g, making

-D] fl

|

D,
commute.

Parallel-program optimization consists of reshaping the data field so that it will be most efficient
for a given space of processors. Reshaping of data fields consists of finding an isomorphism between
two index domains. We describe the important ones here.

Affine Morphism

One common class of domains consists of a cartesian product of a number of interval domains with
the Manhattan communication metric. Any affine injection from one such domain to another is
called an affine morphism.

Let D={0..n-1},E={0..2n—-1},and T = {0..3n — 2} be domains. An example of an
affine morphism is the spacetime realization

9=X(,5,k): D3.(i+k,j+ki+j+k):(EXE)T
and the communication metric on E x E is induced by a local metric that assigns the unit cost to
the arc joining each node to ones lying in the direction of the vector (0,1), (1,0), (=1, —1) from it.
Partition

A uniform partition of a domain D is a domain isomorphism ¢ : D — D; X Dj. The idea is that the
domain D, is spread over domain D;. In general, a partition is an isomorphism g : D — 34 : I.D(4).

16 4 A Model of Parallel Programs

Contraction

Another class of domain morphisms comes from the idea of collapsing a domain into a smaller
domain so that the data fields are folded (spliced and translated, etc.) onto the smaller domain in
layers. By folding the data field in a clever way, a program requiring distant communication can
be transformed into one with local communication.

For example, consider a definition for a data field that involves distant communication where
the communication is symmetric with respect to some hyperplane in the index domain of the data
field. The communication can be made local by defining two related data fields on the same side of
the hyperplane where one has the value of the original data, except reflected along the hyperplane.
Then, the two new data fields together are equivalent to the original.

Definition Let a: D — V be a data field and £ a domain. A domain injection g : D — E + E
with inverse g=! = [l3,l5] : E+ E — D, is called a contraction, and the data fields dq,dz: E — V
making

D 2.V
gl A,dﬂ
E+ F

commute, are called the layers of the contraction.

In general, the codomain of a contraction may be the coproduct of many copies of E’s.
Note, that once the linear morphism or contraction g and g~! have been given, there is a purely
formal way to derive the layers d; and d; from a. A worked example of each will be given below.

Spacetime Realization

Domains embody the logical communication costs, but before a real computation can be carried
out, they need to be embedded in a spacetime domain.

Definition Let D be any index domain. A spacetime realization of D is an index domain injection
(s,t) : D — S+ T where T is a time domain and S is a domain.

Note that S * T is well-founded for any domain S, since T is well-ordered. Also, since domain
injections preserve paths, causal dependency in D is preserved in § * T'.

If the domain S has suitable geometry, it makes sense to talk of the minimum area or diameter
of S that realizes D, and the communication metric induced by (s, t).

Using these notions, we can characterize different objectives in the optimization of programs.
For example:

1. Minimize time. Pick (s, t) so as to minimize the length of ¢.

2. Maximize efficiency. Pick (s,?) so as to maximize the ratio of the volume of (s,)(C) inside
the minimum bounding volume S * T'.

4.3 Data Fields and Data Field Morphisms 17

Refinement and Abstraction

Given an injection g : D — E, we think of E as containing more structure than D. Conversely, if
h: E — D is a surjection, then D can be thought of as an abstraction of some details in E. We
make this notion precise by requiring that the go h = 1p.

Definition A refinement morphism from D to E, denoted (g,h): D — E, consists of a domain
injection g : D — E, and a domain surjection h : E — D such that hog=1p and goh C 15.

For example, let U and V' be interval domains, then (g, h) is a refinement morphism from U to
U x V where g maps an element u to (u, L), and h maps (u,v) to u. When a morphism maps some
element to L, the undefined element of a domain, the implementation is free to choose some value
for it to make the whole refinement optimal in some way.

When h = g~! in a refinement morphism, we shall call it a reshape morphism, and not explicitly
indicate the inverse.

We overload and say that E is the refinement of D along g, and D is the abstraction of E along
h.

Definition Let f; : Dy — V and f; : Dy — V be data fields. A data field refinement from f1to
f2, denoted (g,h) : fi = f3,is a domain refinement (g, k) from Dy to D; such that f; = f, 0g and
fa=fioh.

The following refinement morphisms model fan-in and fan-out reductions.

Definition For any domains N and S,let D = N +{r}+S be a domain with arcs from each node
of S tor,and let E = N +treeg(S,r). A fan-in refinement of D is a domain refinement (g,) from
D to E, where g injects N to N and r and S to the corresponding root and leaves of treep(S, T)
and h maps r and the nodes of S in treeg(S,r) to 7 and S in D, N to N, and is undefined for the
inner nodes of treeg(.,r).

A fan-out refinementis defined analogously for E containing treeg(S,r) with analogous domain
refinement.

Program transformations corresponding to fan-in and fan-out refinement are described next.

Fan-in Reduction Consider the program
c=A:D.\ fH(),

where H has shape [D — [N — V]] for some domains D and N and f is some binary associative
function. The hot spot occurs at each index ! in D since all the values { H({)(n) | n: N } are needed
for each I. The fan-in reduction is done by replacing the expression "\ f H(I)" with "a(l)(r), where
a is a new function whose definition will be added and r is the root of the domain of each a(l).

For the three flavors of reduction, \r, \g, and \p, the definition of a will be different. For the
left-associative reduction, the program for ¢ becomes

¢ = M:D.a(l)(r) where a = Zp[a,D,H,N,r, f]

18 4 A Model of Parallel Programs

where
Zila,D,H,N,r, f] = M :D.\k:treer(N,r).

{leaf(k) — HQ)(k) }
leaf(k) — f(a(l)(left(k)), a(l)(right(k)))

and we assume that a(!)(1) = id(f), to take care of the cases when a node k¥ may not have both
children. This operation will be denoted fan-in-red(def("¢'),"Z", "a").

Similarly, there are corresponding Zr and Zp for right associative and binary-tree associative
reductions. The only difference comes in the generation of the tree domains treeg and treep.

Fan-out Reduction Consider the program
c¢=A:D.e[H]

where e[H] is an expression containing H. The interpretation of this program requires that the
value H be broadcast to each ! in D. To reduce this fan-out, we replace it with a data field a
defined over treeg(D,r) such that each node of the tree has the value H.

_The fan-out reduced program looks like

¢ = M :D.el[a(l)] where ¢ = X[a, D, H]
where

Xila,D,H] = A :treep(D, 7‘).{r_lor(;to(z()l)_)_,Ha(parent(l))}

This operation will be denoted fan-out-red(def("¢"), "X, "a’).

Currying

Currying corresponds to abstraction of data fields so that a whole data field can be the value at an
index.

For index domain D and a set of values V, let [D — V] to be the set of all data fields over D
taking values in V.

Proposition 4.1 For any index domains D and E and a set of values V', the function
¢:[DXE—-V]|2[D—[E-V]

defined by
¢(f) = Az ry.f(z,y) ¢ (g) = A(z,9)-9(2)(y)

is an isomorphism.

19

Definition The process of converting a function f to ¢(f) is known as currying.

Currying corresponds to the interchanging of loops, in sequential program optimization.

The task of coming up with suitable refinement morphisms is non-trivial, but for large class
of problems, the regularity of the computation makes automatic generation of certain morphisms
possible.

5 Examples of Compile-time Optimizations
In Crystal, the problems of matrix multiplication and LU decomposition are specified as follows:

Program 1 (Matrix Multiplication)

C = A4, J5): D.\r +[A(3, k) x B(k,j)|k € N,
N ={1.n},
D = NXN

Program 2 (LU-Decomposition)

lu-decomposition(A0, n) = [L,U]

where {

(i k) D k=0— A0[i— 1,5 — 1],
a7, g = ’
¢ 0 < k — ai, j,k — 1) — L(i, k) % U(k,)
1<k—0,
L(’i,k):Dz =4qi=k—1, ’

k<i— a(i,kk—1)/U(k,k)

j<k—0,
k< a(k,jk-1)

! define a 3-dimensional domain
D ={1.n}x{1l.n}x{l.n},
! projection of D along the 1’st dimension
Dy = proj(1)(D),
! projection of D along the 0’th dimension, then transpose the domain
D, = trans(proj(0)(D)),
! coproduct of two domains
D, = D+ (proj(2)(D) x {0}),

U(k,7): Dy

Il

20 5 Examples of Compile-time Optimizations

From this level of description, target C code plus communication commands are compiled. We
illustrate in the following the compiler optimization steps that transform the matrix multiplication
program into a target Crystal program that yields the blocked partition program described in
Section 6.

5.1 Fan-in reduction

In Program 1, hot spots occurs at each index (%,j) € D since n terms are summed together. By
performing fan-in reduction fan-in-red(def("C"),"Z1","C") the new program becomes:
C = Xi,5): D.C(i,5)(n)
C = 71[C,D, H, Ny, r, +],
where { H = A(3,7).Ak.A(3, k) x B(k,j),
No={0..n}

Expanding the definitions of the Z;,, we obtain
~ leaf(k
C = A(%,j): D.Xk : treer,(No, 7). eaf(k) H,(\l)(k)’ ~
—leaf(k) — C(¢,7)(left(k)) + C(¢, 7)(right(k))

Expanding the definitions of particular implementations of leaf, left and right of treer,(No,) (where
a left-associative tree is collapsed into an array Ng), and the definition of H, we obtain

é:A(i,j);D.Ak:NO.{kzo_’O’ . . }
=(k=0)— C(i,5)(k—1) + A(i, k) x B(k,j)

5.2 Partition Morphism

The next step is to adjust the granularity of a parallel computation so as to balance the communi-
cation and computation. A data field can be partitioned into a collection of sub-fields where each
sub-field has a sequential space-time realization. A simple partition domain morphism divide a
domain into subfields each of size b or less.

hy = Ai: N.(idiv b, mod b): Uy X V},
Ryt = Mu,v): Uy X Vsu X b+v: N,
Up = {1..ndivbd},

Vi = {0.b-1}

A compound partition morphism is defined as the product of two simple partition morphisms, where
the product of two functions f and g is defined as f x g = A(3,7).(f(¢),9(5))-

5.3 Currying 21

The morphism we are going to apply to the matrix multiplication example is the pair of func-
tions:
g9 = hyo X hin
A(2,7) : D.((4 div 0,7 mod b0), (5 div b1, 7 mod b1)) : (Upo X Vio) X (U1 X V1)
g7 = hyy x Ayt
= A((u0,v0),(ul,v1)): (Uso X Vio) X (Upr X Vp1).(u0 X b0 + v0,ul X b1+ v1): D

Il

By using the meta-language operator reshape(def("C"), g", '@")], we obtain

¢ = A((u0,v0),(ul,v1)): (Us X Vao) X (U1 X V1).Ak : Ng.
k=0-—0,
=(k = 0) — &((u0,v0), (ul,v1))(k—1)
+A((u0 X b0 + v0), k) X B(k,(ul x bl + ul))

5.3 Currying

We now want to modify the above definition so as to set the stage for making v0 and v1 indices
of sequential loops while keeping the parallel interpretation of indices 0 and 1. By currying, we
redefine ¢ to be é:
¢ = Mu0,ul): Uy X Up . A(v0,v1): Vg X Vp1).Ak : No.
k=0-—0,
(k= 0) — é(u0,ul)(v0,v1)(k— 1)
+A((u0 x b0 4 v0), k) x B(k,(ul x b1 + ul))

5.4 Fan-out Reduction

Note that in the above definition, the distribution of the matrix elements of A and B causes hot
spots at every index (u0,ul). To remove these hot spots, we perform fan-out reduction. First,
another currying step results in

¢ = Aul:Up.Au0: Upo.A(v0,v1): Vio X Vip).Ak : No.
| k=0-—0,
(k= 0) — é(u0,ul)(v0,v1)(k—1)
+A((u0 x b0 + v0), k) X B(k,(ul x bl + ul))

Then fan-out-red(def("é4"), X, "a") gives us

éA = Aul: Ubl.A’u,O : Ubo)\('vo,’l)l) . %0 X ‘/1,1))\’6 : No.

22 6 Performance of Compiler-Generated Code

k=0-0,
=(k = 0) — é(u0,ul)(v0,v1)(k— 1)
+a(ul)(u0,v0,k) X B(k,(ul x bl + ul))
a = Xgla,Uy, A(u0,v0,k): Us X Vo x No.A((u0 x b0 + v0), k)]
Fan-out reduction for matrix elements of B can be carried out similarly. The resulting Crystal
program is then translated to parallel C code.
The second example (coarse-grained systolic version) described in Section 6 requires modifi-

cation of the above step and a few additional optimization steps, which can be summarized as
follows:

1. Instead of fan-out reduction by balanced tree treep in the above step, use left-associative tree
treeyr,.

2. Partition morphisms applied to definitions of @ and b.
3. Currying
4. Affine morphism for achieving a better utilization of processors.

The example of LU-decomposition appears to be more complex, but essentially the same op-
timization steps as the coarse-grained systolic matrix multiplication are required, and they are
processed in the meta-language in the same way.

6 Performance of Compiler-Generated Code

Several programs have been successfully compiled using our first version of the Crystal compiler.
The target machine is an Intel iPSC hypercube (with 32 nodes). It has since be adapted to generate
code for the NCUBE hypercube (with a 128 nodes). Results from both machines show that the
performances of the compiler generated codes are comparable to those of manually-written ones.
In this section, we discuss some issues of compiler-generated programs and their performances.

6.1 Measuring performances

The Crystal compiler generates a host program to be executed on the host processor and a node
program to be executed on each node processor. To analyze the performance of the target code,
we classify statements in a node program into three disjoint groups:

o Computation statements: Any statements which are associated with local computations.

e Communication statements: Statements which involve inter-processor communications, for
instance, send and receive statements, statements for preparing message buffers, statements
for unpacking incoming messages, and etc.

6.2 Performance Analysis 23

Initialization statements: Statements for initializing variables, array allocations, opening com-
munication channels, etc. that are executed only once in each invocation of the node program.

The cpu time spent on the execution of a node program is collected in two parts: computation
time and communication time. The cpu time spent on the initialization statements are negligible,
and can be ignored. For each processor i, we define:’

(i) (Elapsed time): time spent on the entire execution.
teompt(t) (Computation time): time spent on computation statements.

teomm (1) (Communication time): time spent on communication statements. It also includes
the idle time due to waiting for other processors’ messages.

t(z) = tcompt(i) + tcomm (l)

Performance of a program on the iPSC (or the NCUBE) is measured by its over all elapsed
time, computation time, and communication time. Speedup of parallel execution over sequential
execution is also computed for each case. These quantities are defined below:

6.2

Number-of-Processors: N.

Sequential-Elapsed-Time: Ts = t.ompt(1), where N = 1. (The program is executed on
one single processor, tcomm (1) = 0.)

Parallel-Elapsed-Time: T, = max;<i<n (%)
Average-Computation-Time: T, = (XX teompt(4))/N.
Average-Communication-Time: T, = (XN, teomm(i))/N.
Speedup: r = T;/T..

Efficiency: e = r/N.

Performance Analysis

The performances of three compiler-generated programs are shown in this section. We first describe
briefly these three programs, then discuss the effects of different types of programs and different
parameters of programs on the performances.

1.

Block-partitioned matrix multiplication program: It computes the product of two
matrices, C = A X B. In it’s execution, each processor is assigned to compute a block of
the product matrix. The node program executes in two phases: a broadcasting phase and a
computing phase. Initially, every processor has a block of A and a block of B. In the broad-
casting phase, through row-broadcasting and column-broadcasting among processors, every
processor will end up getting its needed rows and columns of A and B. In the computation
phase, every processor will compute a block of C locally.

Elopsed time (ms)

20000

24

6 Performance of Compiler-Generated Code

n=64

15000

10000 —

5000 —

I . I . 80000

Comparison [(matrix mult,

Hand-written, statlc date-structurel

] 60000 |
Compiler, statlc data-structure E i~
. E
Compliler, dynamic data-structure A o
5 40000 |-
-
o
IS
o
S
—_
i
20000 |-

| n=128)
T T l T l
.]

:i -
! Hand-written, static data-structufe

Compiler, statlc data-structure -

% Compiler, dynamic data-structure —

Processors

Comparisons of 3 Standard Matrix Multi Rlgs

Processors

Comparisons of 3 Standard Matrix Mult: Algs

Figure 4: Performances of three block MM programs on iPSC. Two are generated by compiler; one
is manually written.

2. Coarse-grained systolic matrix multiplication program: Here, elements of matrices

A and B are pipelined through processors. The program is organized in an iteration loop.
In each iteration, every processor does three things: receiving some data from its neighbors,
passing some data to its neighbors, and accumulating some partial results locally. At the end,
every processor will have a piece of the product matrix C.

. Coarse-grained systolic LU decomposition program: It decomposes a square matrix

A into its L, U factors. This program is structurally the same as the systolic matrix multi-

plication program.

Compiler Generated Program vs. Hand-Written Program

Figure 4 shows performances of three matrix multiplication programs, which use the same block
partitioned algorithm. Two of them are generated by the Crystal compiler. The other is manually
written. One of the compiler-generated programs uses static memory allocation, i.e. array sizes
are runtime constants. The other uses dynamic memory allocation,
malloc() at runtime. The hand-

i.e. arrays are allocated by

written program uses static memory allocation.

In Figure 4 we see that the compiler-generated programs perform almost as good as the hand-

6.2 Performance Analysis 25

written one. The overheads introduced by the compiler are negligible.

Systolic Communication vs. Broadcasting

The two versions of the matrix multiplication program employ different types of communications.
For the systolic matrix multiplication program, communications only exist between adjacent pro-
cessors. This communication locality is very suitable for the iPSC and the NCUBE, for on both
machines, the communication cost is proportional to the distance between the source and the desti-
nation processors. Another good feature of communication locality is that the communication cost
does not scale up with the size of the machine. If the problem size is fixed, increasing the number
of processors in a multiprocessor will reduce the sub-problem size on every processor. This reduces
the amount of messages that every processor has to communicate with. Therefore, increasing the
number of processors will reduce communication time for each processor.

For the block-partitioned matrix multiplication program, broadcasting among many processors
(a row or a column) is needed. A broadcasting is done by dynamically creating a communication
tree and exchanging data at each level of the tree. The time a broadcasting takes is logm, where m
is the number of processors involved. (Cf. [14] for detailed discussions about optimal broadcasting
on hypercubes.) When the number of processors is increased, the communication time may not
decrease, since although the amount of messages on each processor will be reduced, the cost of
broadcasting will increase.

In Figure 5, we see that for the systolic program, both T}, and T,,, decrease when N increases.
For the block-partitioned program, 7T, stays roughly at the same level, no matter what N is.
Therefore, for the block-partitioned program, when N increases, more percentage of cpu time will
be spent on communication. The speedup of parallel-elapsed-time over sequential-elapsed-time will
not grow linearly with the increase of N, as shown in Figure 6.

Effects of Changing Granularity

When a program is organized in an iteration loop (like the systolic matrix multiplication program
or the systolic LU decomposition program), a parameter is provided by the compiler to control the
size of an iteration step between two inter-processor communications.

The first effect of changing granularity is on communication time. To illustrate this, we write
the formula for computing t.omm as follows:

teomm = k X (startup-time + msg-size X transmitting-time)

where k is the total number of iteration steps.

A larger iteration step means less iterations will be needed and messages will be grouped in
larger packages. This will reduce the overhead of communication startup time, therefore reduce
tcomm- Thus, a coarser grain implies less communication overhead.

However, changing granularity can also effect the delay time. In the first phase of an iteration, if
the computation on a processor depends on results from another processor, then the first processor
has to wait for the second one to finish its first iteration. The waiting time is called delay time. The

Times (ms)

10°

10t

10°

102

26 6 Performance of Compiler-Generated Code

a0

T ®Yr 1T 171717

111t

————— Tp (linear speedup
e T 4

o 1 0%
E T . S
““““““““ ~—] bk
............. . " = [e
B g - T o
- . 107 |
Processors Processors 10

n x n Systolic MM n x n BlocK-partition MM

Figure 5: Performances of two different types of matrix multiplication program: systolic and block.
partitioned, on NCUBE.

delay time, apparently depends on the amount of computation in each iteration. A larger iteration
step, therefore, means larger delay time.

Adjusting granularity is actually a trade-off between the communication overhead and the delay
time. Where the best point lies, depends on both machine’s and program’s characteristics.

The following table shows one example.

Step size | 50 25 17 13 10 7 5 3 2 1
T. 21503 | 16217 | 14536 | 13720 | 13123 | 12626 | 12295 | 12208 | 12392 | 13423

Table 1. Effects of granularity on elapsed-time. Systolic matrix multiplication program on NCUBE,
Matrix-size = 50 x 50, N = 4. The best step size for this program is 3.

iPSC vs. NCUBE

All of the three programs have been run on an iPSC and an NCUBE. The following is a comparison
between the two machines.

6.2 Performance Analysis 27

Speedups — Sp?edyp%
T T T T T T T T T T T 1*/ I T ‘[‘;——,—7_
"/ - B ‘// .
I ,/‘/ L e
i e i ,./'/‘)
100 —— n=200 yd - 100 — — n=128
S
él 9
o 8
Q. w
[p]
Processors Processors
n x n Systolic MM n x n BlocK-partition MM
! Figure 6: Speedups of the systolic, and the block-partitioned matrix multiplication programs on
NCUBE.
iPSC
program N | T, T, T. T

Systolic MM 100x100 | 32 | 10698 | 3330 | 14042 | 22.7
Block MM 100x100 | 32 | 2103 | 340 | 2472 | 22.6
Systolic LUD 100x100 | 32 | 11777 | 3455 | 16695 | 22.6

NCUBE
program N | T, T. T, r
Systolic MM 100x100 | 32 | 7254 | 2382 | 10420 | 22.3
Block MM 100x100 | 32 | 1386 | 136 | 1620 | 27.4
Systolic LUD 100x100 | 32 | 8138 | 2670 | 11860 | 22.0

We can see in the tables that for the timing entries (i.e. Ty, T, and T¢), numbers in the second
table are all less than their corresponding ones in the first table. The reason for this is because

28 7 Concluding Remark

the NCUBE’ processors are more powerful than the iPSC’s processors. However, there is no big
differences between the corresponding speedup numbers in the two tables. This means that the
computation/communication cost ratios on the two machines are very close.

The performance of the target code on the largest hypercube used in our experiments is sum-
marized as follows:

NCUBFE
program N T, T. Te r
Systolic MM 200x200 | 128 | 14317 | 5075 | 21060 | 87.0
Block MM 128x128 | 128 | 721 171 980 | 94.2
Systolic LUD 200x200 | 128 | 16240 | 5721 | 24220 | 85.8

7 Concluding Remark

The parallelizing compiler approach and Crystal’s approach to parallel processing attack the same
problem from two opposite perspectives: one attempts to increase the degree of parallelism while
the other reduces it. Nevertheless, many of the techniques used in parallelizing Fortran compilers
[1,10,16,15,3,17,18] can be understood as morphisms. For example, strip mining[16], a technique
for memory management, transforms a single sequential loop into a double nested one so that the
outer loop of the resulting code can be executed in parallel. The partition morphism of Crystal, in
contrast, transforms a one-dimensijonal data field, where all elements can be executed in parallel,
into a two-dimensional data field. The computation along one of the dimensions can then be
serialized in order to reduce communication overhead. Crystal’s fanout reduction and contraction
morphisms are particularly useful for distributed-memory machines where the cost of accessing
data is not uniform.

Much effort has been made in the realm of functional languages [2] and data flow processing
(see summary in [20]) for discovering latent parallelism in programs. Due to the freedom from side-
effects, functional calls that are not interdependent can be executed in parallel. But the focus of
data flow processing has been on parallel tasks with different threads of control. The distribution
(copying) of data to parallel tasks therefore becomes a source of inefficiency. Remedies such as
explicit specifications of data locations by annotations are used in [12]. Though Crystal is also a
functional language, it tackles the data distribution problem at the most fundamental level, namely,
in the model. The notions of data fields and communication metrics are essential for the compiler
optimization that generates efficient code.

Because we are free from the constraints of an existing language, we can make Crystal and,
most importantly, its model to be algebraic. Consequently, optimization techniques are captured
as morphisms, which can be expressed as Crystal functions and carried out by the metalanguage
processor in a uniform and systematic fashion. We also believe that the theoretical foundation
helps us in managing the complexity of implementing Crystal by factoring out the part of the
system that contains heuristics (the optimization library) and the part of system which is entirely
algebraic. Currently, we are planning the programming of large, realistic applications in Crystal.

References 29

We hope to demonstrate that elegance, practicality, and high performance are not competing goals
but synergistic ones.

Acknowledgment We would like to thank Eileen Connolly for her editorial effort and the generous
support by the Office of Naval Research under Contract No. N00014-86-K-0564.

References

[1] J .R. Allen and K. Kennedy. Supercomputers: Design and Applications, chapter PFC: a

program to convert Fortran to parallel form, pages 186-205. IEEE Computer Society Press,
1985.

[2] John Backus. Can programming be liberated from the von neumann style? a functional style
and its algebra of programs. Communications of the ACM, 21(8):613—641, August 1978.

[3] Utpal Banerjee, Shyh-ching Chen, and David J. Kuck. Time and parallel processor bounds
for Fortran-like loops. IEEE Transactions on Computers, C-28(9):660—-670, September 1979.

[4] R. M. Burstall and John Darlington. A transformation system for developing recursive pro-
grams. Journal of the Association for Computing Machinery, 24(1):44-67, January 1977.

[5] M. C. Chen. A parallel language and its compilation to multiprocessor machines. In The
Proceedings of the 13th Annual Symposium on POPL, January 1986.

[6] M. C. Chen. Very-high-level parallel programming in Crystal. In The Proceedings of the
Hypercube Microprocessors Conf., Knozxville, TN, September 1986.

[7] Young-il Choo and Marina Chen. A Theory of Parallel-Program Optimization. Technical
Report YALEU/DCS/TR-608, Dept. of Computer Science, Yale University, 1988.

[8] John Darlington. An experimental program transformation and synthesis system. Artificial
Intelligence, 16:1-46, 1981.

[9] James Dugundji. Topology. Allyn and Bacon, 1966.

[10] J.A. Fisher, F.R. Ellis, J.C. Ruttenberg, and Nlcolau A. Parallel processing: a smart compiler
and a dumb machine. In ACM-Sigplan 84 Compiler Construction Conference, ACM, June
1984.

[11] Frank Harary. Graph Theory. Addison-Wesley, 1969.

[12] Paul Hudak. Para-functional programming: a paradigm for programming multiprocessor sys-
tems. In The Proceedings of the 13th Annual Symposium on POPL, January 1986.

[13] Kenneth E. Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

30 References

[14] S. L. Johnsson and C.-T. Ho. Matriz Multiplication on Boolean Cubes Using Generic Com-
munication Primitives. Technical Report TR-530, Yale University, 1986.

[15] David Kuck. A survey of parallel machine organization and programming. Computing Survey,
9(1):29-59, March 1977.

[16] D. B. Loveman. Program improvement by source-to-source transformation. JACM, 24(1):121-
145, January 1977.

[17] David A. Padua, David J. Kuck, and Duncan H. Lawrie. High-speed multiprocessors and
compilation techniques. IEEE Transactions on Computers, C-29(9):763-776, September 1980.

[18] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of ACM, 29(12):1184-1201, December 1986.

[19] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, 1979.

[20] Philip C. Treleaven, David R. Brownbridge, and Richard P. Hopkins. Data-driven and demand-
driven computer architecture. ACM Computing Surveys, 14(1):93-143, March 1982.

g

Elopsed time (ms)
o)
8

5000

24

6 Performance of Compiler-Generated Code

80000

Hond-written, static doto-structure

Comparison (matrix mult,

n=128)

-- Compller, statlc data-structure

i -~ Compller, dynamic data-structure

Processors

Comparisons of 3 Standard Motrix Multl Algs

60000

40000

Elapsed time (ms)

20000

! 1 T [T

H — Hand-written, stotic dota-structor

-- Compller, static data-structure -

& -~ Compller, dynamic data-structure —

Processors

Comparisons of 3 Standard Matrix Multl Rlgs

Figure 4: Performances of three block MM programs on iPSC. Two are generated by compiler; one

is manually written.

2. Coarse-grained systolic matrix multiplication program: Here, elements of matrices
A and B are pipelined through processors. The program is organized in an iteration loop.
In each iteration, every processor does three things: receiving some data from its neighbors,
passing some data to its neighbors, and accumulating some partial results locally. At the end,
every processor will have a piece of the product matrix C.

3. Coarse-grained systolic LU decomposition program: It decomposes a square matrix
A into its L, U factors. This program is structurally the same as the systolic matrix multi-

plication program.

Compiler Generated Program vs. Hand-Written Program

Figure 4 shows performances of three matrix multiplication programs, which use the same block
partitioned algorithm. Two of them are generated by the Crystal compiler. The other is manually
written. One of the compiler-generated programs uses static memory allocation, i.e. array sizes
are runtime constants. The other uses dynamic memory allocation, i.e. arrays are allocated by
malloc() at runtime. The hand-written program uses static memory allocation.

In Figure 4 we see that the compiler-generated programs perform almost as good as the hand-

6.2 Performance Analysis 27

Speedups

Speedups ——

T T T T T

100 |-
100 |-

Speedup
Speedup

50 100
Processors

Processors

n x n Systolic MM n x n BlocK-partition MM

Figure 6: Speedups of the systolic, and the block-partitioned matrix multiplication programs on
NCUBE.

We can see in the tables that for the timing entries (i.e. T}, T, and T.), numbers in the second
table are all less than their corresponding ones in the first table. The reason for this is because

iPSC

program N T, T, T, T
Systolic MM 100x100 | 32 | 10698 | 3330 | 14042 | 22.7
Block MM 100x100 | 32 | 2103 | 340 | 2472 | 22.6
Systolic LUD 100x100 | 32 | 11777 | 3455 | 16695 | 22.6

NCUBE

program N| T, T. T. T
Systolic MM 100x100 | 32 | 7254 | 2382 | 10420 | 22.3
Block MM 100x100 | 32 | 1386 | 136 | 1620 | 27.4
Systolic LUD 100x100 | 32 | 8138 | 2670 | 11860 | 22.0

Times (ms)

10t

10°

- 102

26

T

L ! ! I Il 1 1

(l1near speedug

L1111

10!
Processors

n x n Systolic MM

Times (ms)

102

10

6 Performance of Compiler-Generated Code

T T T

Il 1

ool

L1 11

Il

10"

Processors

10°

n x n Block-partition MM

Figure 5: Performances of two different types of matrix multiplication program: systolic and block-

partitioned, on NCUBE.

delay time, apparently depends on the amount of computation in each iteration. A larger iteration
step, therefore, means larger delay time.
Adjusting granularity is actually a trade-off between the communication overhead and the delay
time. Where the best point lies, depends on both machine’s and program’s characteristics.
The following table shows one example.

Step size | 50 25 17

13

10

7

5

3 2

1

T. 21503 | 16217 | 14536

13720

13123

12626

12295

12208 | 12392

13423

Table 1. Effects of granularity on elapsed-time. Systolic matrix multiplication program on NCUBE.

Matrix-size = 50 x 50, N = 4. The best step size for this program is 3.

iPSC vs. NCUBE

All of the three programs have been run on an iPSC and an NCUBE. The following is a comparison

between the two machines.

