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Abstract

Wavelet packets are an effective representation tool for adaptive wavefor-
m analysis of a given signal. We first combine the wavelet packet representa-
tion with zerotree quantization for image coding. A general zerotree structure
is defined which can adapt itself to any arbitrary wavelet packet basis. We
then describe an efficient coding algorithm based on this structure. Finally,
the hypothesis for prediction of coefficients from coarser scale to finer scale
is tested and its effectiveness is compared with that of zerotree hypothesis for
wavelet coefficients. ’
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1 Introduction

In recent years, there has been a surge of interest in wavelet transforms for im-
age and video coding applications. This is mainly due to the nice localization prop-
erties of wavelets in both space and frequency. Wavelet coding techniques such as
[14, 13] are known to perform well on images with relatively smooth regions. Re-
cent work [9] on multi-layered representation of images for coding purposes uses
the wavelet transform for encoding only smooth contents of the image. Wavelet
packets [3] were developed in order to adapt the underlying basis to the contents of
a signal (an image, in our case). The basic idea is to allow the non-octave subband
decomposition to adaptively select the best basis for a particular signal. The nodes
in a full subband tree (or short-term Fourier transform, namely STFT, tree) are
pruned following a series of split/merge decisions using certain criterion (see [4]
for entropy-based basis selection and [12] for optimizing the underlying basis using
a rate-distortion framework). Results from various image coding schemes based on
wavelet packets show that such methods are particularly good in encoding images
with oscillatory patterns - a special form of fexture containing rapid variations of
the intensity. While wavelet packet bases are well adapted to the given signal
(image), one apparently loses the parent-offspring dependencies, the zerotrees or
the spatial orientation trees, as defined in [14, 13]. Zerotree quantization, pro-
posed by Shapiro [14], is an effective way of exploiting the self-similarities among
high-frequency subbands at various resolutions. The main thrust of this quantiza-
tion strategy is in the prediction of corresponding wavelet coefficients in higher
frequency subbands at the finer scales, by exploiting the parent-offspring depen-
dencies. This prediction works well, in terms of efficiently coding the wavelet
coefficients, due to the statistical characteristics of subbands at various resolution-
s, and due to the scale-invariance of edges in high frequency subbands of similar
orientation. Various extensions of zerotree quantization, such as [6, 18], have been
proposed since its introduction. |

In this work, we address the following questions: @) Can the zerotree quanti-




}

zation strategy be applied to the wavelet packet transformed images? b) If so, how
would the spatial orientation trees, or zerotrees, be defined in order to predict the
insignificance of corresponding wavelet packets at a finer scale, given the wavelet
packet at a coarser scale? The validity of former of these questions arises from the
fact that one does not generally observe as much self-similarity among the wavelet
packet subbands as among the wavelet subbands. We first provide an answer to
the latter of these questions, assuming that the zerotree quantization can be applied
to the wavelet packet decomposition of an image. This issue of wavelet packet
zerotrees was addressed partially by Xiong et al. in [19]. In their work, however,
the subband decomposition was restricted not to have a basis causing the parent-
ing conflict, a problem explained in the next section. We present a solution to this
problem and define a set of rules to construct the zerotree structure for an arbitrary
wavelet packet geometry. This generalized zerotree structure is termed the com-
patible zerotree structure, for reasons mentioned in the next section, and provides
a general quantization framework for efficiently encoding the wavelet packet coef-
ficients. The answer to question a) becomes clear when we test the validity of this
structure.

This paper is organized as follows. In the next section, a brief review of the
wavelet packet transform and corresponding criteria used for the basis selection are
presented. A general zerotree structure and the detailed algorithm for its construc-
tion are described in Section 3. The new zerotree quantization strategy is combined
with the wavelet packet transform on the front end and an entropy coder on the back
end. The image codec so obtained is explained in Section 4, and the experimental
results are presented in Section 5. Finally, we conclude with a debate on the ap-
plicability of zerotree hypothesis for the wavelet packets and some suggestions for

improvements in the codec’s performance.




2 Wavelet Packet Transform

Block transform (such as DCT) coding methods (e.g.; the JPEG [10] image
coding standard) produce undesirable blocking artifacts which are easily detectable
by the human visual system (HVS). Local signal representation tools such as the
short-term Fourier transform (STFT) and wavelet transform (WT) offer a solution
to this problem by conjoining respectively frequency or scale to the position (time
or space). The symmetry that exists among subbands of these transforms also pro-
vides a more efficient way of signal encoding in terms of coding gains. Practical
coding schemes such as [1, 13, 14, 17] exploit these symmetry properties and have
successfully exhibited their superiority over block transform coding methods. The
artifacts caused by wavelet coding are known to be psychovisually tuned and thus
are not so easily detectable even at medium bit rates. These methods, however,
have a problem of their own at low bit rates. While they perform well on images
containing smooth regions and edges, they perform poorly on images with oscilla-
tory patterns (such as the well-known Barbara image). The quantization of many
low-energy coefficients belonging to the high-frequency subbands causes artificial
smooth regions (smearing) in the éreas of image that contain rapid variations of
intensities [8].

The need for an adaptive representation tool arises in order to tailor the under-
lying basis according to a given image instead of forcing a specific basis on images
of all types. Generalized wavelet transforms such as wavelet packet transform [3]
and multiresolution Fourier transform (MFT) [15] were developed to cater for this
need. In this work, the former of these transforms is investigated using the zerotree

quantization framework for image coding. Consider a 1-d discrete signal x = zp,

n=0,1,..., N — 1. The wavelet packet coefficients are defined as follows:
Wan,jl = ng—u Wp e L =0,1,... ,N2I—J
k
Wont1jy = 9 hk—21 Wnjrrk L =0,1,... , N27=7
k
Wo,Jl = TI l=0,1,...,N
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where iun,j,l is the transform coefficient corresponding to the wavelet packet basis
which has relative support size 27, frequency 727 and is located at 1277, and {hy},
{gn} are the lowpass and highpass filters respectively for a filter bank. The trans-
form is invertible if appropriate dual filters {hn}, {Gn} are used on the synthesis
side of this two-channel filter bank. Since this library of available basis functions
provides an overcomplete description of the signal x, a combination of basis vec-
tors from this library is sought for which is well-suited to the signal and also forms
an orthogonal basis. Although the overall'variance is preserved by the decomposi-
tion of a given image (or subband) into low and high frequency subbands [1], it is
the distribution of variance that determines if and how efficient the decomposition
(split) is from a coding viewpoint. Various criteria have been used for computing
the cost of a split (such as entropy as defined in [4], actual coding cost 8], and
Lagrangian cost [12] function involving both rate and distortion) to decide whether
such a split should be kept or the decomposed subbands should be merged. Cou-
pling of such a criterion with a fast dynamic programming algorithm proposed first
by Coifman and Wickerhauser [4] finds the optimal basis adapted to the image con-

tents with respect to that particular criterion.

3 Zerotree Quantization for Wavelet Packets

Suppose that the best basis has been selected using any of the methods de-
scribed in the previous section and zerotree quantization is to be used to encode
the wavelet packet transform coefficients. The real issue is how to organize the
spatial orientation trees so as to exploit the self-similarities, if any, among the
wavelet packet subbands. The wavelet packet basis does not, in general, yield
the parent-offspring relationships like those in the wavelet subbands. Due to the
dyadic nature of wavelet subbands, the organization of parent-child relationships
is quite straightforward. As shown in Figure 1(a), these dependencies are gener-
ated in such a manner that the whole subband decomposition is divided into three

different types of subbands - horizontal, vertical, and diagonal. The four coeffi-
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cients in a high-frequency subband are associated with a coefficient at same spatial
location and belonging to subband of similar orientation at a coarser scale. Lewis
and Knowles [7] hypothesized that in this tree-like structure, if the magnitude of
a parent coefficient is below a given threshold, all of its children coefficients are
most likely to follow this course too. This gave rise to the notion of zerotrees, a
tree of insignificant or zero coefficients, which allow us to encode the whole lot of

coefficients in such a tree using a single codeword.

: H v D
L3 HL3 HL3. LH3 . HH3.
HL>
I H3 |H H3| HL,
LH, HH»
HL> ? LH»> . HHz.
LHI HH1
[‘ILl . LH1 . HH] ‘

(a) (b)

Figure 1: (a) A typical 3-level wavelet subband decomposition, (b) Compatible zerotrees
for the subband families #, V, and D in (a).

We classify the subbands in a wavelet packet decomposition into three main
categories, similar to three families of subbands in a wavelet decomposition, name-
ly horizontal H, vertical V, and diagonal D. We use the term compatible zerotrees
to denote the trees of subbands having similar global orientation (ie, belonging to
the same family). The adjective compatible originates from the fact that these trees
are generated taking into account both the scale and orientation compatibility, as
will be obivous from the rules defined for their construction. It is to be noted that
the compatible zerotrees differ from the spatial orientation trees of [13] in the sense

that the nodes of a compatible zerotree represent a full subband rather than one or
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more transform coefficients. For instance, the compatible zerotrees associated with
the three families 7, V, and D of the wavelet decomposition, given in Figure 1(a),
is shown in Figure 1(b). In case of a wavelet packet decomposition, the fact that
the subbands of all the three families , V, and D can be further decomposed, up
to the coarsest scale, makes the construction of such a tree structure non-trivial.
In the next section, we present a solution to the problem when a child node in the
compatible zerotree is at a coarser scale than the parent node. The set of rules re-
quired to construct the compatible zerotrees is given in Section 3.2. The algorithms
for the establishment of compatible zerotrees and the detection of zerotree root n-
odes in subbands belonging to such tree structures are provided in Section 3.3 and

Section 3.4 respectively.

3.1 Parenting Conflict

As mentioned earlier, the high-frequency subbands in a wavelet packet decom-
position can be further decomposed in order to adapt the basis to the image con-
tents. In a pre-decomposed tree of one of these families of subbands (#, V, and
D), if a child node is decomposed into only four subbands of next coarser scale,
the parent-offspring dependencies are easy to establish, as shown in Figure 2(a).
However, if any of these four children nodes is decomposed any further, as shown
in Figure 2(b), the resulting subbands C1, C3, C3, and Cy would be at a coarser
scale than the parent node (subband) LHo. This results in the association of each
coefficient of such a child node to multiple parent coefficients, in the parent node,
giving rise to a parenting conflict. In other words, there are four candidate coeffi-
cients in L H> claiming the parenthood of each of the four corresonding coefficients
belonging to the children nodes C; (1 = 1,...,4). In [19], the best basis was se-
lected in such a way that whenever a conflict like this arises, the four children are
merged so as to resolve the conflict. This suboptimal approach constrains selection
of the best basis at the cost of a loss of freedom in adapting the wavelet packet

basis to the contents of a given signal. In order to resolve the parenting conflict,
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we suggest the following solution. Due to their orientation and scale compatibility
with the subband L Hs, these children nodes C; (i = 1,...,4) can be moved up
in the tree so that they are linked directly to L H3, the root node of the compatible
zerotree associated with the family V of subbands. This allows us to generate the
compatible zerotree structure dynamically so that there is no restriction on selec-

tion of the wavelet packet basis.

LLs| .L3
I Hs L H;
LHy LH,
A
cil e
Py N Cs| Ca
LH, | LH,
(a) (b)

Figure 2: (a) Wavelet packet subband decomposition with no parenting conflict ()
Wavelet packet subband decomposition with parenting conflict arising from the split of
one of the children nodes of the vertical high-frequency subband LH;.

3.2 Rules

Once constructed for a given wavelet packet basis, the compatible zerotrees can
be utilized to find the coefficients which are zerotree roots for various thresholds.
In this section, a set of rules is defined so that the overall zerotree structure can be
constructed for an arbitrary wavelet packet basis. The only assumption made is that
the selected basis has the lowest frequency subband at the coarsest scale. This is
a reasonable assumption which is based upon the fact that a significant amount of
the signal energy is concentrated in the lowest frequency subband, which is most

likely not to be merged by any of the tree pruning algorithms.
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Figure 3: (a) Sample segmentation in a 3-level wavelet packet decomposition, and (b) the
parent-offspring dependencies for compatible zerotree originating from T7.

Consider the sample segmentation shown in Figure 3(a). Let R denote the n-
ode representing the lowest frequency subband situated in the top-left corner of a
conventional subband decomposition. Then R represents the root node of over-
all compatible zerotree with 74, T%, and T3 - which represent the coarsest scale
high-frequency subbands - being its immediate children nodes, as shown in Figure
3(a). These children nodes are themselves roots of three compatible zerotrees cor-
responding to the families H, V, and D respectively. These compatible zerotrees
are separately generated, only once for a given wavelet packet basis, in a recursive
manner using the rules described below. In the description of these rules, “node
X is followed by node Y refers to the situation where node X is at a higher lev-
el (or coarser scale of pre-decomposed high-frequency subbands, as in a wavelet
decomposition) than the node Y in the hierarchy of subbands in a given family

tree.

a) Ifanode P ata coarser scale is followed only by a node C at the next finer
scale (as in a wavelet transform), the node P is declared as a parent of C.

b) If a node P is followed by four nodes C, Ca, C3, and Cy (at the same
scale), then P is declared to be the parent of all these four nodes.

c) If four subbands P;, P,, P3, and P, at a coarser scale are followed by four
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subbands Cy, C5, C3, and Cj at the next finer scale, then node F; is declared
to be the parent of node C; (for: = 1,2, 3,4).
d) Ifanode P is at a finer scale than four of its children, say C1, Cy, C3, and
Cy, then P is disregarded as being the parent of all these nodes and all of

them are moved in the tree under a node at the same or a coarser scale.

In a compatible zerotree, the parent-offspring relationships are established by look-
ing at the scales of subband nodes in the tree. Unlike the cbmpatible zerotrees for
wavelet subbands (where each parent subband node is followed by exactly one
child subband of similar orientation at the next finer scale and thus each coefficient
of the parent node is associated with four coefficients of the child node at some s-
patial location), an intermediate node in a compatible zerotree, in general, can have
more than one child node. What determines the parent-offpsring relationships be-
tween their coefficients is the difference in scale of the parent and child nodes. For
instance, if both parent and the child nodes are at the same scale, each coefficient
of the parent node will have exactly one offspring coefficient at same spatial loca-
tion in the child node, whereas if the parent node is at the immediate coarser scale
than the child node, then each coefficient of the parent node is associated with four

coefficients at the same spatial location in the child node.

3.3 Compatible Zerotree Generation Algorithm

The construction of final compatible zerotrees proceeds in two steps. In the
first step, the primary compatible zerotrees corresponding to the subband families
H, V, and D are constructed using rules a, b, and c. In the second step, the overall
tree is re-organized using rule d, in order to resolve any parenting conflicts. Let us
consider the segmentation shown in Figure 3(a) to explain these rules. The primary
compatible zerotrees T}, Tb, and T3 are generated, as shown in Figure 4, in the first
step. The overall tree is re-organized (as shown in Figure 5) using rule d in order to
resolve the parenting conflict under node P. This rule first identifies nodes with the

parenting conflicts and when such nodes are found, the whole bunch (consisting of




Figure 4: The overall compatible zerotree structure comprising of the three primary com-
patible zerotrees T3, T, and T3; each node represents a whole wavelet packet subband, and
the node radius is directly proportional to the support of wavelet packets at that transform
level.

Bunch of nodes moved
up in the tree

T;

a a

blblblb &
0000 ]

Figure 5: The overall compatible zerotree structure, after re-organization to resolve the
parenting conflicts; the edge labels depict the rules used to generate the links between
parent and the children nodes.

C,, Cy, C3, and Cy) is plucked from its current position in the tree. The algorithm
then climbs up the tree to look for an appropriate node, a compatible ancestor at
the nearest scale and having the nearest orientation, and glues the bunch under this
newly found compatible parent. The parent-offspring dependencies for the primary
compatible zerotree T are shown in Figure 3(b). The pseudocode of an algorithm
for the generation of compatible zerotrees is given in the Appendix A.

Given an arbitrarily segmented wavelet packet basis, compatible zerotrees are
constructed using the algorithm described above. In order to be able to make pre-
dictions for wavelet packet coefficients at finer scale subbands, the compatible ze-
rotree hypothesis is defined as follows: If a wavelet packet coefficient of a node

from the compatible zerotree is insignificant, it is more likely that the wavelet
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packet coefficients at similar spatial locations in all the descendent nodes of the

same compatible zerotree will be insignificant as well.

3.4 Utilizing the Compatible Zerotrees

The compatible zerotrees provide us a convenient way of making predictions
about the insignificance of corresponding coefficients in the children nodes, given
the significance of a coefficient belonging to the parent node. It is to be noted here
that the compatible zerotrees are utilized for the detection of coefficients which are
roots of the zerotrees. The encoding of zerotree codewords and information relat-
ed to the significance of coefficients with respect to a threshold value follows the
detection. Details of the algorithms used for the detection of zerotree root coeffi-
cients in each of the three primary compatible zerotrees and for the encoding are

provided in Section 4.

3.5 Validating the Compatible Tree Organization

The success of compatible zerotree hypothesis for wavelet packets, as defined
in Section 3.3, needs to be tested, and we employ two empirical ways of doing
so. First, the amplitude of transform coefficients is plotted for all the subbands
organized both in the ordinary increasing frequency order and in the compatible
zerotrees. Consider the plots of wavelet coefficients’ amplitude against the co-
efficient indices for a 5-level wavelet decomposition of the 512 x 512 Barbara
image, as shown in Figures 6 and 7. The amplitude axis in both plots was restrict-
ed to 1000 to facilitate the display of smaller coefficients. While the subbands
were arranged in an increasing frequency order for the plot in Figure 6, the plot in
Figure 7 refers to the subbands as organized in the compatible zerotrees. Similar
plots of wavelet packet coefficients’ amplitudes against the coefficient indices for
the same image using the basis geometry shown in Figure 8(a) (the corresponding
compatible zerotrees are also shown in the Figure 8(b) with a numbering generated
in a recursive manner) are given in Figures 9 and 10. In all plots corresponding

to the subbands organized in the compatible zerotrees, three families of prima-
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ry compatible zerotrees Ty, T%, and T3 are clearly visible showing that the new
arrangement is successful in isolating the coefficients of similar orientation in a
hierarchy to be used for prediction in a top-down order. Zoomed plots of these
families, as shown in Figure 11, exhibit more sub-families organized within these
compatible zerotrees.

An alternate approach to test the success of compatible zerotree hypothesis is
to actually compute the conditional probability p(z|y) of the significance of a child
coefficient z given the significance of its parent coefficient y for a specific threshold
value. We plotted both joint and the conditional histograms to verify how success-
fully the prediction for insignificance of a coefficient in a child subband can be
made given the insignificance of its parent coefficient. The joint and conditional
histograms for some parent subbands and their immediate children using the sub-
band decomposition of Figure 8(a) for Barbara are shown in Figures 12, 13, 14,
and 15. The concentration of these histograms in the low-significance range of
children coefficients throughout the range of parent coefficients is an encouraging
evidence for the organization of these subbands in a compatible tree order. As is

clear from the equation
H(X|Y) = H(X) - I(X,Y),

encoding the grouped significance information is more efficient than just encod-
ing the individual coefficients’ significance, if the mutual information I (X,Y)-or
the Kullback-Leibler divergence between the joint pdf p(z,y) and the product pdf
p(z)p(y) [5] - is greater than zero. The success of compatible zerotree hypothesis,
and thus the performance of zerotree encoding, depends largely upon J (X,Y) for
a given image, the basis used for its representation, and a specific threshold value.
Larger the value of this measure, more successful the compatible zerotree hypoth-
esis is going to be and thus more efficient the encoding is. Given basis B for an
image, this value determines whether or not the basis B would be friendly to the

zerotree quantization strategy.
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Figure 6: Plot of wavelet coefficients’ amplitude versus coefficient indices for 5-level
wavelet decomposition of 512x512 Barbara image; the subbands were arranged in an

increasing frequency order.

Coefticient Amplitude

1 15
Coefficient Index x10°

Figure 7: Plot of wavelet coefficients’ amplitude versus coefficient indices for 5-level
wavelet decomposition of 512x 512 Barbara image; the subbands were organized in com-
patible zerotrees with the help of rules mentioned in Section 3.
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Figure 8: (a) Wavelet packet decomposition used for illustration of the compatible ze-
rotree hypothesis for wavelet packets, (b) Compatible trees for the decomposition in a.

4 The Coder Algorithm

Once the compatible zerotrees have been generated, based upon knowledge of
the best basis, the coding is performed by successively encoding the significance
information about the coefficients, as they appear in the subbands in increasing
frequency order, and the refinement information until the bit budget is expired.
Detailed flowchart of the coder algorithm is given in Figure 16. Our algorithm re-
quires only one list of detected coefficients (LDC) to be maintained, similar to [11],
as opposed to two (or three) lists kept by the EZW (or SPIHT). The decoder first
reads geometry of the best basis and generates the compatible zerotrees. It then
proceeds by entropy decoding and interpreting the codewords until the bit budget
is expired. The decoder is also capable of generating an approximation to the o-
riginal image at any given bit rate or quality (as long as the minimum required bits

are available for doing so.)

S Experiments and Conclusions
The idea of compatible zerotree quantization was combined with the wavelet
packet transform for progressive image coding and its performance was tested for

two standard 8-bit grayscale 512 x 512 images containing oscillatory patterns us-
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Figure 9: Plot of wavelet packet coefficients’ amplitude versus coefficient indices for the
wavelet packet decomposition shown in Figure 8(a) of the 512x512 Barbara image; the
subbands were arranged in an increasing frequency order.

Coefticient Amplitude
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Figure 10: Plot of wavelet packet coefficients’ amplitude versus coefficient indices for
the wavelet packet decomposition shown in Figure 8(a) of the 512x512 Barbara image;
the subbands were organized in compatible zerotrees with the help of rules mentioned in

Section 3.
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Figure 11: Zoomed sections of Figure 10 for the families 7}, T3, and T3 showing more
sub-families within these compatible zerotrees.
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p(x,y) p(x]y)

Figure 12: Joint and conditional histograms for subband numbered 3 and its immediate
children (binsize=80).
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Figure 13: Joint and conditional histograms for subband numbered 4 and its immediate
children (binsize=50).
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Figure 14: Joint and conditional histograms for subband numbered 26 and its immediate
children (binsize=100).
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Figure 15: Joint and conditional histograms for subband numbered 43 and its immediate
children (binsize=80).
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Figure 16: Flowchart of the embedded wavelet packet image coding algorithm employing
the compatible zerotree quantization strategy.
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ing both wavelet basis and a zerotree friendly wavelet packet basis. The latter of
these bases was selected using the actual encoding cost for selecting a basis and
then taking simple split/merge decisions on that basis in order to maximize the mu-
tual information I(X,Y"). For all the experiments, we used the factorised [8] 9-7
biorthogonal filters [2] for efficiently computing the wavelet packet transform.

Results for the performance of both variations of the CZQ coder - that is, with
the wavelet basis (CZQ-Wave) and with the wavelet packet basis (CZQ-WP) - and
state-of-the-art SPIHT coder for both the test images (Barbara and Fingerprints)
are presented in Table 1. The measure used to describe the performance of each

coder is the peak signal to noise ratio (PSNR) given by

255
PSNR =20 logq m

where I and I; denote the original and the decoded images respectively. Although
it is well known that PSNR is not a representative measure of the performance
from a perceptual quality viewpoint, it is still widely used for comparing the cod-
ing performances in terms of quantitative distortion. The performance difference
between SPIHT and CZQ-Wave is due to the following reason. We used a sim-
ple first-order adaptive arithmetic coder of [16] for entropy coding of the zerotree
quantized codewords and the significance information, as opposed to order-3 arith-
metic coders used in both SPIHT and FWP [8].

While being capable of progressively reconstructing the encoded image and
being relatively faster - by a factor ranging from two to four - than bitplane coding
of the FWP, the CZQ-WP performs comparably well. The coding gain achieved
by it, approximately 1dB for Barbara and almost 0.5dB for Fingerprints, on top
of CZQ-Wave verifies the validity of compatible zerotree hypothesis for wavelet
packets. Figures 18 and 20 show the geometry of wavelet packet basis selected for
Barbara and Fingerprints images respectively. A closer look at the reconstructed
images by CZQ-WP and SPIHT at 0.25 bits per pixel (bpp) reveals that CZQ-
WP yields better visual quality than SPIHT. Note, for instance, the quality of a
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portion (table cloth) of the reconstructed Barbara image encoded by CZQ-WP and
SPIHT as shown in Figure 17, and the quality of a portion (central spiral) of the
reconstructed Fingerprints image encoded by CZQ-WP and SPIHT as shown in
Figure 19.

It is worth noting, however, that the effectiveness of zerotree quantization de-
pends strongly upon the scale-invariance of edges among subbands of similar glob-
al orientation. We also believe that the so-called best basis is optimal only for a
given cost function. This function should involve both rate and distortion caused
due to the quantization framework being used. Our future work aims to look at
employing higher-order contexts for wavelet packet subbands arranged in the com-
patible zerotree order, and the introduction of a modified cost function which can

take into account both distortion and the encoding cost of zerotree quantization.

(a) (b)

Figure 17: Portion of Barbara (table cloth) encoded at 0.25 bpp by (a) CZQ-WP and (b)
SPIHT.

Appendices
A Algorithm (Generating the Compatible Zerotrees)

1. Create raw compatible zerotrees.

a) For each family of subbands F € {#,V,D}, create a compatible

zerotree using rules a), b), and c) of Section 3.2.
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Figure 18: Wavelet packet basis selected for the 512x512 Barbara image.

[ Image [ Rate (bpp) | Ratio (:1) | CZQ-Wave | CZQ-WP | SPIHT ||

Barbara 0.25 32:1 27.12 28.12 27.58
0.50 16:1 30.28 31.60 31.39

1.00 8:1 35.14 36.15 36.41

Fingerprints 0.25 32:1 26.53 27.07 27.12

0.50 16:1 30.65 31.15 31.27

1.00 8:1 35.24 35.82 36.01

Table 1: Coding results for standard images with texture - Barbara and Fingerprints.
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(a) (b)

Figure 19: Portion of Fingerprints (central spiral) encoded at 0.25 bpp by (a) CZQ-WP
and (b) SPIHT.

b) Establish a link between all the three compatible zerotrees generated
in step a) and the node R representing the lowest frequency subband
so that the node R now represents the whole raw compatible zerotree

structure.
2. Resolve the parenting conflicts, if any.

a) Traverse the whole raw compatible zerotree generated in step 1 to find
out two sets of nodes P and C (where | P |=| C' |= k) such that: for
all: =1,2,...,k, P; - the ith element of P - is the parent node of C;
- the ¢th element of C - and P, is at a finer scale than C;. If £ = 0,

then stop.

b) Fort=1,2,...,k, find out a compatible ancestor node A; to C;

which is at the same scale or at a coarser scale than C; itself.
¢) Fori =1,2,...,k, delete the link between P; and C; and establish a

new link between A; and C;.
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Figure 20: Wavelet packet basis selected for the 512x 512 Fingerprints image.
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