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Abstract

In this paper we present a theory of parallel program optimization. We begin
with a language; construct a model of parallel computation; define an equational
theory of the language; and present a metalanguage for formalizing the program
transformations. To illustrate these ideas, we show detailed examples of the
derivation of optimized programs using the formal transformations.

The central notion in our model is that of a data field, a distribution of
data values over a space of processors known as an indezx domain. A parallel
program, presented as a system of mutually recursive definitions, denotes a set
of interdependent data fields called a computation field. The reshaping of data
fields is represented by data field morphisms.

The heart of our theory is the connection between the semantic notion of the
data field morphism and the syntactic operation of the program transformation.
Given a program which denotes a data field the creative task is to find a data
field morphism that produces a more efficient data field. Using the definition of
the data field morphism, a new program can be derived within the equational
theory of Crystal that has the new data field as its denotation.
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1 Introduction

Decades of experience has impressed upon us the complexity of programming computers.
Making the programs correct is hard enough, making them run efficiently requires more
work. With the arrival of large-scale multi-processor computers, we now face the challenge
of parallel programming where the allocation of processors and the cost of inter-processor
communication enter into the question of efficiency. Unless this complexity can be managed,
the task of distributing the computation over a space of processors will simply replace the
von Neumann architecture in sequential computers as the new bottleneck to cost-effective
computation.

For sequential programming languages, program transformation has been useful for
making the programming task easier. The idea being to begin with a clear and concise
program and then transform it in well defined steps to produce an equivalent version that
is more efficient. The most common goals of program transformation are the optimization
of program control structures (using folding and unfolding, for example (6,22,23]) and the
efficient implementation of composite data structures (like set and map types in SETL).

Experience with the design of parallel programs indicates that program transformation
is an indispensable tool in deriving programs that coordinate parallel tasks with intricate
space and time dependencies [4]. In this paper we present a theory of parallel program op-
timization. We begin with a language; construct a model of parallel computation; define an
equational theory of the language; and present a metalanguage for formalizing the program
transformations. To illustrate these ideas, we show detailed examples of the derivation of
optimized programs using the formal transformations.

The programming language we use is Crystal—a functional language with composite
data structures. We freely use the lambda-notation for representing functions, which turns
out to be invaluable, if not essential, in formalizing various program transformations. Our
choice of a functional language lies in our view that parallelism is an interpretation of
the language on specific models of computation, and that it should be implicit in the
program with only the data dependencies being specified, leaving the implementation to
map the computation to processors in space and time. We restrict ourselves to deterministic
programs in this paper.

In our presentation of the model of Crystal, we assume familiarity with the standard
denotational semantics of functional languages where the meaning of a recursively defined
function is given as the minimal fixed-point of the defining functional [28]. What is new is
the interpretation of the domain of certain functions as the spacetime domain of processors
and the additional structure on the domain for representing the data dependencies and the
communication cost between the processors.

The basic model is built upon indez domains which represent the location of Processors.
A function call with a certain index value is interpreted as communication with a processor
at the location labeled by the value or index. By defining a suitable topology and com-
munication metric on an index domain, we can model different types of parallel machines,
from shared memory to distributed memory machines where the processors are connected
in a network such as a mesh or hypercube etc.

Composite data structures are represented as functions over index domains and are
called data fields to emphasize their role as distributed data structures. The shape of a
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data field is the topology and the communication metric of its index domain. Mappings
from one index domain to another which preserves the topology may be used to change the
shape of data fields. This is captured in what we call data field morphisms.

In the standard program transformation method for sequential programs, the transfor-
mations are only done on the expressions of the programs and are denotation preserving.
In our approach, we consider program definitions as equations in an equational theory of
the language and do transformations on equations, not just expressions. This generates
a larger class of transformations, including ones which produce new programs with differ-
ent denotation, albeit, related to the former in a well defined way. In order to formalize
these transformations, we define a metalanguage for constructing and modifying Crystal
programs.

The heart of our theory of program optimization is the connection between the semantic
notion of the data field morphism and the syntactic operation of the program transforma-
tion. Given a program which denotes a data field the creative task is to find a data field
morphism that produces a more efficient data field. Using the definition of the data field
morphism, a new program can be derived within the equational theory of Crystal that has
the new data field as its denotation.

To be more specific, an initial problem specification is often a program with a straight-
forward structure of distributed data which denotes a data field a. An efficient solution
of the problem often needs data to be distributed in a different, more sophisticated way,
described by a new program denoting the data field 4. The transformation from the initial
program to one that is more efficient changes the denotation of the program (from data
field a to data field @). The relationship between the old data field @ and the new data field
a is represented by a mapping, called an index domain morphism, between the old index
domain D of @ and the new index domain D of a.

This idea of data field morphisms can be extended to map abstract computation onto
specific computer architectures. A spacetime realization of a parallel computation gives us
a metric for measuring the communication cost, the number of processors required, and the
time steps required.

To make these ideas more concrete, we present three examples of program optimization
based on this framework. The derivations are given as a sequence of steps, defined in the
metalanguage, which produces the new program when given the initial program and the
definition of the index domain morphism.

Approaching parallel program optimization by program transformations allows the pro-
gram to be written initially in a logically clear form without worrying about efficiency.
The more efficient version may then be produced by a transformation system according to
the necessary transformations specified in the metalanguage. The set of parameters that
come into play in designing parallel programs has become so large that we believe program
transformation will become an essential part of parallel program development. We believe,
in particular, that the data field morphism which describes the assignment of logical data
structure to physical processors, will be at the heart of many parallel program design efforts.

The task of parallel program optimization consists then in finding suitable index domain
morphisms which will increase the efficiency of the communication structure of the original
program. The actual derivation of the new program turns out to be merely a sequence of
mechanical operations on the program.




The rest of this paper is organized as follows. The Crystal language is briefly introduced
in Section 2. Section 3 introduces the model of parallel programs. In Section 4, an equational
theory of the Crystal language is presented along with the metalanguage for specifying the
program transformations. Using the framework introduced, we discuss the overall strategy
for optimization in Section 5. Section 6 contains examples of data field morphisms and the
transformation steps defined using the operators of the metalanguage. A few concluding
remarks are given in Section 7.

2 The Crystal Language

The objects of Crystal include index domains, domain morphisms, data fields, and compu-
tation fields. These will be formally defined in Section 3. The syntax of Crystal is basically
the the notation for objects of the semantics with the A-abstraction and application from
the A-calculus, enriched with recursion and environments. The only control structure con-
sists of the conditional expression. Conventional control structures such as various forms of
loops are subsumed by Crystal’s domain operators.

Data Types

The basic data types consist of integers and booleans with the standard arithmetic functions
(plus, minus, times, divide, etc.), and boolean functions (and, or, not). The standard
environment has names for all the integer and boolean constants, and the standard functions
over them.

The composite data types include sets, index domains, and data fields. A simple data
field a over an interval domain 0 .. n can be expressed [a(0),...,a(n)], or [a(i) | i:0..n]
using data field comprehension. In general, for any domain D, the data field a: D — V
can be expressed as [a(z) | z : D]. Here : D indicates that the variable 7 ranges over the
domain D.

The Conditional

The conditional expression has the following form:

B1—>E1

B, - FE,

where the B;’s are boolean expressions and E;’s are any expressions. Its value is the value
of the first expression with a true guard.

Functions

Given any expression in the language, the A-abstraction produces A-expressions that denote
functions. If the formal parameters are declared over an index domain it denotes a data

field.
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Example If e[z] is an expression in z, then
Az : D.e[z]
denotes a data field over D whose values at each index z is e[z].

Repeated A-abstraction produces higher-order functions.

Operators

Operators are higher order functions that take other functions as arguments. The standard
environment contains the composition (o).

The reduction operator ([12]) comes in three flavors: the left associative (\r), the right
associative (\r), and the binary-tree associative (\g). The left associative \z, takes a binary
associative function f and a linear data field [ao, ..., a,] and is defined as

\z flao, .- an] = f(---(f(f(a0, a1), 02)) - ).

The others differ only in the association of the binary function f.
The scan (\\) operation ([12]) is defined similarly

\\f[a07"',an] = [a07f(a07a1)""7f('"(f(f(a07a1)7a2))"')]

and returns a data field of the same shape with all the partial reductions as values.

Programs

A definition has the form 'f = E" or 'f = E where N7, where f is an identifier, E is
an expression, and N is an environment. An environment is a set of mutually recursive
definitions. An environment following the “where” in a definition is said to be local to that
definition and augments the environment in which the definition is evaluated. Of course,
the definitions in a local environment may also have their own local environments.

A Crystal program consists of a set of mutually recursive definitions and an expression
that is to be evaluated in the standard environment.

3 A Model of Parallel Computation

In this section we present a model of parallel computation that forms the foundation of an
equational theory of program optimizations.

The central notion in our model is that of a data field, a distribution of data values
over a space of processors known as an index domain. A parallel program, presented as a
system of mutually recursive definitions, denotes a set of interdependent data fields called
a computation field. The reshaping of data fields is represented by data field morphisms.

The algebra of morphisms of the data fields provide us with an equational theory in
which new types of transformations can be defined to improve the overall efficiency of
parallel programs.
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Index domains are given a topology by defining a communication metric which represents
communication cost between the nodes of the domain. This allows us to model any kind of
machine architecture, from single processors to shared memory machines, and distributed
memory machines.

The communication metric provides us with a measure of a program’s efficiency on a
particular architecture and guides the strategies for parallel-program optimization.

3.1 Index Domains and Data Fields

In this section we present the objects which model parallel-programs and program trans-
formation. The basic objects are the data fields. Informally, a data field represents the
- distribution and data dependence of data values over some domain of processing nodes. An
index domain represents the communication paths and data dependency between the nodes
of the domain.

Communication Metric

Before defining index domains, we need the notion of a communication metric which repre-
sents the cost of communication between nodes in a space of processors.
Let R be the set of non-negative real numbers with positive infinity.

Definition A communication metric on a set S is a function 7 : § X S — R satisfying the
following:

1. If z = y, then y(z,y) = 0.
2. For all z and y, v(z,y) > 0.

3. For all z, y and 2, 7(2,2) < v(z,y) + 7(y, 2)-

And y(z,y) is the communication cost from z to y.

Note that a communication metric is strictly weaker than the usual geometric notion
of a distance metric [7], which also is symmetric (for all z and y, v(z,y) = v(y,z)) and
satisfies the converse of the first condition (y(z,y) = 0 implies z = y). This weaker notion
is motivated from the observation that communication costs in opposite directions need
not be equal, and that several logical processes may be mapped onto a single physical one
resulting in the communication cost being zero.

Index Domains and Index Domain Morphisms

Definition An arc over a set S is an ordered pair of elements from S, denoted z > y,
where z is called the source and y the target of the arc. A path is a non-empty sequence of
arcs such that the target node of one arc is the source node of the next. We write z ¥ y to
indicate that there is a path from z to y.

We define index domains to be directed graphs with extra structure.
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Definition An index domain, D, is a structure

(o(D), p(D),7(D)),

where (D) is a non-empty set, p(D) is a set of arcs over o(D), and (D) is a communication
metric over o(D).

Just as for graphs, an index domain has finite degree if each node has a finite number of
incoming and outgoing arcs. An index domain is well-founded if no path can be extended
at its source infinitely often.

Next, we define the notion of mappings, or morphism, between index domains. The
crucial feature of such a mapping is that it must preserve paths, since paths represent
possible communication paths.

Definition An index domain injection, written g : G — H, is an injection g : o0(G) — o(H)
that preserves paths: if z ¥ yin G, then g(z) ¥ g(y)in H. The tdentity on an index domain
G, denoted 1g, is an injection that is the identity on the nodes.

An indezx domain surjection is a (possibly empty) sequence of elementary surjections,
where an elementary surjection is a mapping from one index domain to another that col-
lapses one arc with its source and target into one node while preserving paths (In [11] these
are called elementary homomorphisms).

A indez domain morphism is a combination of index domain injections and surjections.

We allow index domain morphisms to be partial functions, denoting the undefined value
at a node by L. This is useful for when we want the system to choose some value based
on optimization. To do this rigorously, we can define the nodes of an index domain to be a
flat lattice of nodes with the undefined node (L) less than any other node in the ordering
of the lattice (C). For sake of simplicity we do not do this.

Definition For any index domain morphism g:G — H, a left inverse, if it exists, is a
morphism A : H — G such that ho g = 1g. If g is also a left inverse of A (i.e.,goh=1g),
then h is called an inverse of g and is denoted g~1. Any morphism that has an inverse is
called an isomorphism.

Note that though an index domain is a structure with three components, in Crystal
programs an index domain is normally defined by its set of nodes. The arcs are given by
the data dependencies implicit in the program and the communication metric will usually
be induced by another index domain. These will be defined below. Also, the nodes are
more than a set, they are actually elements of an algebra, with operations and predicates
defined over them. So, for example, when the nodes consist of the integers, we assume that
all the arithmetic operations are defined for them.

Since an index domain morphism preserves paths between two index domains, we can
use it to induce a communication metric in the source index domain from the communication
metric of the target index domain.

Definition Let g:D — E be a domain morphism and Y(E) be a communication metric
over E. The communication metric on D induced by g is

79(D) = Mz, 9)7(E)(9(x), 9(y)).
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Here, the index domain D can be thought of as a sub-domain of E.

Sometimes it is more intuitive to give the communication cost on each arc and then let
the communication metric be induced from them. Call a function v = ¥(G) : p(G) — R that
assigns to each arc a communication cost, a local metric on G. Given a local metric, which
gives the communication cost for each arc, it is straight forward to extend it inductively to
a path so that for any path p, v(p) is the sum of the cost of each arc in the path. Using
this extension we define the following function which will be shown to be communication
metric.

Definition Let v be a local metric on G. Define the function v* : 0(G) X 0(G) — R as
follows:

1. v*(z,y)=0,ifz = y.
2. v*(z,y) = v(z — y), for all arcs z — y.
3. If £ +> y, then v*(z,y) = min{ v(p) | p is a path from z to y. }.

4. v*(z,y) = 00, if there is no path from z to y.

The default communication metric on G is one induced by the local metric that assigns
to each arc one unit of communication cost.
We next present several examples of index domains.

Definition An interval indez domain, denoted [ .. u, is an index domain whose nodes are
the integers between ! and w, inclusively. We also write I .< u (I <. u) if the upper (lower)
bound is not included.

A special class of index domains will be used to model discrete time.

Definition A time domain is a linear, well-founded graph with the default communication
metric. In particular 7, will denote a time domain of length n.

Given any well-founded index domain, there are many ways of linearizing it. Let D be
a domain with n nodes. A linearization of D, denoted 7(D), is a time domain of length n
with nodes o(D) such that there exists an injection from D into 7(D) which is an identity
on the nodes. Since domain injections preserve paths, the linearization must be consistent
with the ordering in the original D. Note that (D) represents an arbitray linearization of
D.

Any set can be made into a domain by making it into a complete graph with unit com-
munication cost between any two nodes. For any set S, the complete graph domain, denoted
6(S), is a domain with nodes from S forming a complete graph with unit communication
cost between any two nodes.

Index domains can be of general shape. The following define a tree connected index
domain.

Definition A binary tree domain is a domain with nodes connected as a binary tree. The
predicates “root” and “leaf” test for the root and the leaves, and the functions “parent”,
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“left”, and “right” return the parent, left child, and right child of each node, respectively,
if they exist, and is undefined otherwise.

Let S be a set of nodes and » a node not in S.

Definition A tree domain over S with root r, denoted tree(S, ), is a binary tree domain
with the leaves from S and the root . The arcs are pointed from the children nodes to
their parent. If the cardinality of S is odd, we allow one non-leaf node not to have both
children.

A tree domain is balanced, denoted treep, if the leaves are all at the same distance
from the root, is left-associative, denoted treer, if all the right children are leaves, and is
right-associative, denoted treeg, if all the left children are leaves.

A tree domain denoted tree(r, S) has the same nodes but the arcs point from the parent
to their children.

Index Domain Constructions

Various domain constructions will be presented. The usual cartesian product and disjoint
union are defined, and a special construction called the time product is introduced. Sub-
domains can be defined by selecting certain elements which satisfy a boolean function.

Definition Let D; and D, be domains. The cartesian product of Dy and D,, denoted
Dj x Dgy, is defined by
O’(Dl X .D2) O'(Dl) X U(Dz)

p(D1 X D) = {(z1,91) — (22,92) | (1 = 22 and y3 = y2) or (z1 — 22 and y; = 12) }
¥(D1 x D3) = v*

Il

where the local metric is

D — ifzy = 29 and ,
V((xl,yl) — (zz’yz)) — 7( 1)(y1 y2) . 1 2 Y1 Y2
(Do) (21 = zq) if 21 — 29 and y; = ys.

If Dy and D, are interval domains, then the communication metric on their product is
usually known as the Manhattan metric. Communication can occur only along directions
parallel to the axes.

Next, we define the coproduct, or disjoint union. In the coproduct, there can be new arcs
that are added between nodes of the different components. These arcs are given separately
as the glue of the coproduct. Given two domains, a glue between them is a set of arcs linking
nodes from one to the other domain.

Definition Let D; and D; be domains and let J be a glue between them. The coproduct
of Dy and Dj with glue J is a domain Dy +; D, with two injections ¢; : Dy — Dy +7 D,
and ¢z : D2 — Dy +7 Dy, defined by

{u(@) |z € o(D1)}u{w(z) |2 € o(D2) }
p(D1)Up(Dg) U J

(D1 +5 D3)
p(D1 4+ Ds)
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where ¢; and ¢y are the encoding injections of the nodes to make them disjoint. The
communication metric is induced by the new communication cost of the arcs in the glue
with the separate communication cost of each component.

The injections ¢; and ¢y abstractly indicate into which summand an element is mapped.
The most interesting use of the coproduct is when the components are the same. In
this case the default inter-component communication cost is defined to be zero: y(E +;
E)(u(z),t2(z)) = 0 for all z in domain E.

Definition Let D; and D; be domains and l; : Dy — E and Iy : Dy — E be a pair of
functions. The coproduct map of l; and I3, denoted [l1,l3] : D; + Dy — E, is a function
equivalent to [y if the argument is from Dy and equivalent to 5 if the argument is from Ds.
Algebraically, it satisfies the following;:

l1 = [11,12] ol and l2 = [11,12] 0 L9,

The product and coproduct constructions may be generalized to arbitrary set of domains.
Let I be a domain and D; be a domain for each 7 in I.

Definition The product of a set of domains { D; | ¢ € I} is a domain, denoted []i: I.D;,
with projections py : [[¢: I.D; — Dy, for each 7 in I.

The coproduct of a set of domains { D; | + € I'} with glue J is a domain, denoted
>y t:1.D;, with injections ¢ : Dy, — 574 : I.D; for each 7 in I.

The coproduct allows the construction of arbitrarily shaped domains. Nested loops can
be regarded as evaluation over coproduct domains.

Next, we introduce a construction that models a space of processors in time. Unlike the
product, where the original arcs remain unchanged, in the following construction, the arcs
can only point forward in time.

Definition Let S be a domain and 7 a time domain. The time product of S with T,
written S * T, is a domain defined by

o(S*T) = o(S) x o(T)

p(S*T) = {(z1,t1) = (22,%2) | (z1 = 22 and #; ~ t,) or (z1 V> zg and t; — t3) }
Y(S*T) = v*
where

’)’(T)(tl ad t2) if 1 = T2 and t1 — t2,
max{y(S)(z1— 22),7(T)(t1 — t3) } if 21 — 9 and ¢; — t5.

v((z1,t1) = (22,82)) = {
Time product of a domain S creates copies of o(.S) for each of the time steps in the
time domain T" and creates arcs forward in time from each node of o($) to itself and each
arc gets transformed to one with same source, but the target is in the next time step. This
reflects the fact that any communication in space must take at least a unit of time. Figure
1 illustrates the difference between the cartesian product and the time product.
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T

S T SxT ST

Figure 1: The cartesian and the time products of S and 7.

A domain of the form S * T will be called a spacetime domain.
Another method for obtaining a new domain is by filtering the nodes of a previously
defined domain. A filter is simply a boolean function over the nodes of the domain.

Definition Let D be a domain and P be a filter over D. The restriction of D by P,
denoted D|P, is a domain whose nodes are the nodes of D satisfying P, and whose arcs are
given by the following: (1) if an arc exists between two nodes satisfying P, the the arc is in
the restriction, (2) if there is a path between two nodes satisfying P but all the intermediate
nodes do not satisfy P, then we add a new arc between these two nodes.

Index Domain Operations

The following morphisms are used for projecting and injecting between domains of different
dimensions. Let D; be an interval domain for each 7in 0 .. n.

Definition The projection, selection, injection, and transpose functions are defined as
follows:

pl‘OJ(k) : .D()X"'X_Dn—*DoX‘"XDk_l XDk+1 X"'XDn
(do,...,dn) Lad (do,...,dk_l,dk+1,...,dn),

sel(k) : Do X +-+X D, — Dy,
(do,...,dyn) — (dg),

inj(k) : Dy — Do X -+ X Dy,
(dk)l——)(J_,...,J_,dk,J_,...,_L),
k
trans(7,7) : DoX +++X Dy X X Dj X +++X Dy — Do X +++X Dj X +++X Dy X ---X D,
(d(),...,di_l,di,...,dj_l,dj,...,dn)l—>(do,...,di_l,dj --~,dj—17di>---7dn)

where L denotes an undefined element in each index domain.
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Data Fields and Data Field Morphisms

Data fields model parallel computation and are functions which assigns values to indices of
a domain. In the following, the domain of values will usually be the integers or the reals,
but it can also recursively be a domain of data fields and other higher order objects.

Definition Let D be an index domain and V a domain of values. A data field over
D, written a: D — V, is a function a : 0(D) — V which assigns a value to each node of
the index domain. The domain of data fields over D with domain of values V is denoted
[D — V]. And we say that data field a is of type [D — V.

The domain of values, V, will typically be the integers, the reals. Higher-order data
fields will have other domains of data fields as their domain of values.

To be more precise, we can define the domain of all data fields, F, using lattice theoretic
domain equations. Let D be the set of all index domains, and let P be the union of all the
primitive value domains (the integers, the reals, the boolean values).

F = U[D—»V]
DeD
V = F+ P

(This definition actually contains more than we need since it allows for F' to be reflexive.
All we need is the union of all the inductively defined levels.)

Example A data field a: D — V can be expressed as a function over the index domain.
For example, let D = 0 .. 20, then

A :Dzx+2

denotes a data field whose value at each index z is z 4+ 2. More complex data fields can be
defined using a suitable language which will be presented later.

Definition Let [D; — Vi] and [D; — V3] be domains of data fields. A data field morphism
is a map

¢[D1 —-—)‘/'1]—> [Dg——)Vz]

This definition is very general. We introduce two types of data field morphisms that
will be useful later. The first type comes from the observation that each index domain
morphism defines a data field morphism.

Definition Let [D; — V] and [D; — V] be two data field domains. An index domain
morphism g : Dy — D, induces a data field morphism

g*:[Dy = V] = [D1 - V]

defined by
g (f)=fog.
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Example Let f:D; — V be a data field and g : D; — D; an index domain morphism.
Then the following diagram commutes:

Dl 9*(f2 \%

| A

D,

The second type is currying. Currying corresponds to abstraction of data fields so that
a whole data field can be the value at an index.
We use the fact that for index domains D and F and a set of values V', the function

¢$:[DXE—-V]|2[D—[E—V]

defined by
(f) = e dy.f(z,y)  ¢7'(9) = Mz, y)-9(2)(y)

is an isomorphism.

Definition The process of converting a function f: D x E — V to HNf):D—[E—V]
is a data field morphism known as currying.

3.2 Parallel Programs and Computation Fields

A Crystal program was defined as a set of mutually recursive definitions. The semantics of
a Crystal program can be given by the standard fixed point technique.

In Crystal programs, we define the nodes of index domains, but not the arcs. In this
section we show how the arcs can be defined from the data dependency that can be ex-
tracted from the program text. Next, we combine the data fields defined by each definition
into a computation field representing the causal dependency between the data fields. The
denotation of a program, consisting of a number of definitions, then is a computation field.

Data Dependency
Consider the following Crystal program:

f A(x):-Dl-'rl[f’g]a
9 = Mz,9): Da.mo[f, g]-
Definition An instance of a definition is an equation formed by the application of both

sides of the definition to some argument. An instance of a parallel program is a set of
instances of each of its definitions.

Example In the case of the above program, an example of an instance is

{/(2) = nlf,41(2), 9(2,5) = n[f, 9](2,5) }
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where 2 is in Dy and (2,5) is in D;.

Let f be a function symbol and ¢ be an index in the domain of f. The expression fi will
be called an application, and we think of it as indicating a node in the domain of f. We will
say the node fi to mean the node ¢ in domain of f. Nested applications denote multiple
indices. For example, g(j, fi) denotes the nodes fi, and g(j, k) where k is the value of the
function denoted by f at node denoted by 1.

Definition Given an instance of a parallel program, the node on the left hand side of each
equation is said to be causally dependent on the nodes occurring on the right hand side.

Definition Let P be a parallel program defining the data fields f; : D; — V; for 0 < i < n.
The computation field defined by P is the coproduct

[fo,...,fn]:zjz':o..n D,-—>Zi:0..n Vi,

where J is the glue consisting of all the new arcs representing the causal dependencies
between nodes of different index domains. The communication metric, y(Dg +7 - - - + D,),
is induced by the local metrics, v(D;), of each of the components with new costs defined on
the new arcs.

Representing data dependencies of program by directed graphs are widely used (8,14,21].

Proposition 3.1 A parallel program is well-defined if the domain of its computation field
1s well-founded.

Proof: Well-foundedness of the domain implies that there is no infinite chain of data de-
pendencies and no cyclic dependencies. If all the initial values are defined, the whole
computation is defined. []

Data fields embody the geometric structure of the data values in spacetime. The com-
putation field of a parallel program embodies the causal dependency of values between the
different data fields so that it represent the intention.

Since computation fields are a subclass of data fields, the notion of computation field
morphism is the same as for data fields.

Spacetime Realization

Computation fields embody the logical communication costs, but before a real computation
can be carried out, they need to be embedded in a spacetime domain. Spacetime domains
are index domains where the arcs and the communication metric are explicitly given. This
is in contrast to the index domains of data fields which are determined from the program
text.

Definition Let f:D — V be a computation field. A spacetime realization of f is a
computation field A : S+ T — V| where S * T is a spacetime domain with communication
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metric ¥(S) on S, and an index domain injection (s,t) : D — S * T, known as the spacetime
embedding, making the following diagram commute:

D —L.v
(srt)l /
SxT

Note that S * T is well-founded for any domain S since T is well-ordered. Also, since
domain injections preserve paths, causal dependency of C is preserved in S T

The metric on D induced by the embedding (s, t) gives us precise physical performance
measures.

- If the domain S has suitable geometry, it makes sense to talk of the minimum area or

diameter of S that realizes a computation field f, and the volume of the injection in § % 7.

Using these notions, we can characterize different objectives in the optimization of
parallel-programs. For example:

1. Minimize time. Pick (s,t) so as to minimize the length of T'.

2. Maximize efficiency. Pick (s,?) so as to maximize the ratio of the volume of (s, t)(D)
inside the minimum bounding volume § x T'.

3.3 Refinement and Reshaping

An important parallel-program optimization consists in reshaping the data field in order to
minimize communication cost for a given space of processors. Domain morphisms embody
the exact relationship between two domains. Simple reshaping can be achieved by using
domain isomorphisms. In general, when there is no isomorphism, we define a pair of mor-
phisms, called refinement morphism, that are almost inverses of each other to indicate how
the two domains are related.

Since data fields are defined over index domains, these concepts also apply to data fields.

Definition A refinement morphism from D to E, denoted (g,h): D — E, consists of a
domain injection g : D — E, and a domain surjection A : E — D such that hog = 1p and
goh T 1g. When h = g~1, it will be called a reshape morphism, and will be denoted using
just g¢.

For any injection g : D — E, there are many morphisms & : E — D, such that hog = 1p.
We single out one, called the conjugate of g, denoted g°, to be the minimal such morphism
under the pointwise ordering of morphisms. The conjugate maps all the nodes that are
images of nodes back to their preimage, but is undefined on all the other nodes. Clearly,
for any injection g, (g, ¢°) is a refinement morphism.

Example Let U and V be interval domains, then (g, h) is a refinement morphism from U
to U X V where g maps an element « to (u, L), and h maps (u,v) to u.
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When a morphism maps some element to L, the undefined element of a domain, the
implementation is free to choose some value for it to make the whole refinement optimal in
some way.

Definition Let (g,h): D1y — D, be a refinement morphism. The data field refinement
induced by (g,h), denoted (g, h)* : [Dy — V] — [Dy — V], is a pair of data field morphisms

9" : [D2 = V]—[D1—=V],
h* [D1—+V]—->[D2—>V]

such that f1 = g*(f2) = faog and h*(f1) = fioh C fa.

The task of coming up with suitable morphisms is at the heart of compiler optimizations.
The following is a list of commonly used reshape and refinement morphisms.

Affine Morphism

One common class of domains consists of a cartesian product of a number of interval domains
with the Manhattan communication metric. Any affine injection from one such domain to
another is a reshape morphism.

Example Let D =0..3, E=0..3,and 7 = 0..6 be domains. Then,
g=Ai,5): D2(5,i4+4): ExT
is an affine morphism.

Figure 2 shows the effect of reshaping. The virtical axis is the first component and the
horizontal axis is the second component. A spacetime embedding of the domain D? requires
a time product D? x T, while the reshaped domain E T is a spacetime domain already.
Hence only a linear number of processors instead of a quadratic number of processors are
needed after reshaping.

Partition

A uniform partition of a domain D is a domain isomorphism g: D — Dy x Dy. The idea
is that the domain D, is spread over domain D;. In general, a partition is an isomorphism
g:D — Y i:1.D(4), where I is some index domain. Figure 3 illustrates a partition where
a domain is a disjoint union of some smaller domains.

Contraction

Another class of domain morphisms comes from the idea of collapsing a domain into a
smaller domain so that the data fields are folded (spliced and translated, etc.) onto the
smaller domain in layers. By folding the data field in a clever way, a program requiring
distant communication can be transformed into one with local communication.

For example, consider a definition for a data field that involves distant communication
where the communication is symmetric with respect to some hyperplane in the index domain
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Figure 2: Affine morphism.

1
I
]
—

Figure 3: Partition morphism.

of the data field. The communication can be made local by defining two related data fields
on the same side of the hyperplane where one has the value of the original data, except

reflected along the hyperplane. Then, the two new data fields together are equivalent to
the original.

Definition Let a: D — V be a data field and let E +; E be a coproduct domain with glue
J. A domain injection g : D — E +; E with inverse ¢g7! = [l1,l3] : E4+5 E — D, is called
a contraction, and the data fields dq,d; : E — V making

D =V
gl Aydz]
FE +7 F

commute, are called the layers of the contraction.

In general, the codomain of a contraction may be the coproduct of many copies of the
E’s. In Figure 4, a contraction resulting in two layers is depicted.

Fan-in and Fan-out Refinements

The following refinement morphisms model fan-in and fan-out reductions.
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Figure 4: Contraction morphism.

Definition For any domain S, let D = {r} +; S be a domain with J consisting of the
arcs from each node of S to r. A fan-in refinement of D is a domain refinement (g,h) from
D to treeg(S,r), where g injects r and the nodes of S to the corresponding root and leaves
of treeg(.S,) and h maps 7 and the nodes of S in treeg(S,r) to 7 and the nodes of S in D,
and is undefined for the inner nodes of treeg(.S,r).

A fan-out refinement is defined analogously for treeg(r, S) with analogous domain re-
finement.

Figure 5 shows how a large fan-out can be smoothed by a left-associative tree or a
balanced tree.

4 A Theory of Crystal

In this section we present an equational theory of the Crystal language. This theory provides
the formal foundation for program transformations which realize optimization at the source
level. The elements of the equational theory comes from [3,25]. Next, the elements of the
Crystal metalanguage is presented in which the program transformations can be expressed.

4.1 An Equational Theory

An equational theory of Crystal consists of the signature ¥ of Crystal and a set of equations
E.

Signature

The signature X consists of the set of sorts S containing int, bool and dom which correspond
to the data types of Crystal, and a family of operators  of various types over the sorts. For
example, Qint,int—int 15 @ member of Q that contain all the operators of type int,int — int,
and in particular, will have operators corresponding to the primitive arithmetic functions.
Also, we assume variables over all the different sorts.
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e S

Figure 5: Fan-out refinement.

Equations

An equation is a pair of terms over the signature ¥, that is universally quantified over a set
of the free variables that includes the free variables in the two terms. Terms are well-formed
expressions in Crystal. The set of equations, E, contains all the equations that are true of

the language Crystal interpreted in a standard model. In particular E satisfies the following
conditions.

1. Contains all equations derived from the «, 8 and 5 conversion rules of the A-calculus
suitably translated into Crystal:

Az. M = Ay.M[z/y]
(Az. M)N = M[z/N]
M = lz.M(z)

where M[z/N] denotes the term where all free occurrences of z are replaced by N.

The parameters may have type information, in which case they need to be suitably
modified.

2. Closed under reflexivity, symmetry and transitivity of the equality relation:

M =M
M=N= N=M
M=Land L=N = M=N
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3. Closed under substitution of terms for equals:

M =N = C[M]=C[N]
M =N = M[H/K]= N[H/K]

where C[] is a term except for one missing subterm, H is a subterm occurring in both
M and N, and M[H/K] denotes the substitution of the subterm H by K.

4. Contains equations involving various functions. Let [dy,d3] be a coproduct function
with injections ¢; and ¢9, f and h; functions, e; be expressions, and b; be boolean
expressions, then E contains the following.

coproduct
dl = [dl, dg] ol and d2 = [dl, d2] e %)

dist-comp-coprod

fO [dladZ] = [fo dl)fodZ]
b1 ad hl(w) b1 — fo hl(IL')
o(Az. = Az.
f ( {bg—)hz(m)}) {bz—%fohg(x)}

bi—e |y _ ) bi— fler)
f({bz-*ez})_ {b2—>f(ez)}

A definition in Crystal introduces a new operator symbol to the family of operators Q, and
adds the defining equation to the set of equations F in the theory of Crystal.
Consider the definition

dist-comp-abs

dist-app-if

Definitions as Equations

f=Az.1f],

where 7[f] is a term (possibly containing f) of Crystal. It defines a function to be denoted
by f. In the language Crystal the equality symbol is used for definitions, but once the
function has been defined, then we can consider f as satisfying the equation.

Definition A definition in the theory of Crystal is a special kind of equation where the
left hand side is a variable and the right hand side is some expression.

In the framework of [3], a definition enriches a theory with a new operator and a new
equation. For a mutually recursive set of function definitions, we consider the functions
that are implicitly defined as satisfying all the defining equations in the enriched theory.
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4.2 The Metalanguage

The metalanguage will be used to formalize transformations of programs written in Crystal.
Like any other metalanguage, the Crystal metalanguage consists of basic constructors and
selectors for each of the constructs in Crystal and operations that manipulate programs. The
metalanguage borrows ideas from ML of Edinburgh LCF [9] and Brian Smith’s 3-Lisp[27].

Constructors, Selectors, and Predicates

For each construct of the object language, there exists a metalanguage constructor that takes
the components and produces the construct. For example, for the conditional expression,
the constructor takes a list of guarded expressions and returns the conditional expression
made up of the given guarded expressions.

We will use Greek letters to denote the metavariables ranging over the expressions of
Crystal. The quine quasi quote are used to name the expressions of Crystal which may
contain metavariables.

The following is a list of the basic constructors, selectors. The expressions in quine
quotes are the concrete form of the program constructed. For each constructor mk-name
the predicate that tests it has the form name?.

Equations
mk-eqn(r1,72) = ' =7’
Ihs(mk-eqn(71,72)) = 7
rhs(mk-eqn(71,72)) = 7
Lambda abstraction
mk-abs(7,7) = "Ar.r"

param(mk-abs(7r,7)) = =
body(mk-abs(w,7)) = 7

Eta Abstraction

mk-eta(7,7) = "Ar.77’
eta-param(mk-eta(7,7)) = 7
eta-body(mk-eta(w, 7)) = 7

Application

mk-app(‘rl, 7'2) = 'mr’

rator(mk-app(71,72)) m

rand(mk-app(r1,72)) = 7
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Pairs and Triples

mk-pair(ry,72) = "(11,72)"

mk-triple(y, 72, 73) = (71,72, 73)"
The selectors are first, second, and third and they pick out the respective components.

Guarded Expression

mk-gexp(1y,72) = 11 — 7
guard(mk-gexp(T1,72)) = T
exp(mk-gexp(71,72)) = T

where 7 is a boolean expression and 75 is any expression.

Conditional
mk-if(11,72) = "{ n }"
T2
first-gexp(mk-if(t1,72)) = 7
second-gexp(mk-if(ry,72)) =
Coproduct
mk-coprod(71,73) = "y, 7]

The selectors are first and second, and they pick out the respective components. In
general there are coproducts for arbitrary number of functions.

We will not explicitly define constructors for boolean expressions and arithmetic expres-
sions. They can be constructed as applications of appropriate functions over pairs or triples
of constants or variables or other expressions, inductively.

Operators

The following is a list of operations that are needed for program transformation. The unfold
and fold are taken from [2] and are made into operators that take an equation and a function
name or a term as arguments.

Let x range over equations, 7 over terms, and ¢ over function names.

expand(k, #) Substitutes all occurrence of ¢ in k with the right hand side of the equation
defining ¢.

reduce(r) B-reduces the B-redex .

normalize(k) fB-reduces all B-redexes occurring in x.
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unfold(x, ¢) replaces the function named by ¢ and its argument with its body with appro-
priate substitutions of the arguments in the equation x. Note that this is equivalent
to expand of the function followed by a reduce or normalize.

fold(k, #) is the inverse of unfold which replaces a term by an equivalent function applied
to suitable arguments.

subst(k, 7y, Ty) substitutes the subterm m with 7 in the equation , which is only done
when 71 = 73 is in the theory.

simplify-arith(k) simplifies the arithmetic and boolean expressions into some canonical form.
simplify-comp(x) simplifies the composition of functions and eliminate identities.

right-comp(x,7) composes the function denoted by 7 on the right to both sides of the
equation K.

dist-comp-abs(x, ¢) Distribute the function ¢ over abstraction and compose it with the
function of the body.

dist-app-if(, ¢) Distribute the function ¢ over the application of a conditional and apply it
to the expressions.

dist-comp-coprod(k, ¢) Left distribute the function ¢ composed with a coproduct over the
coproduct.

def(¢) Denotes the equation that defines ¢.

reshape(def(‘a'), g, ") Composite operator that takes the equation defining the function
a and returns an equation defining the function b such that a = b o g where g is an
index domain morphism. A concrete example will be given below.

Using these operators and the constructors and selectors defined above, we can formalize
the informal program transformation. The metalanguage provides the facility for construct-
ing and manipulating Crystal programs. The operators are defined to be consistent with the
equational theory of Crystal. The equational theory contains the algebraic identities of pro-
gram expressions and the inference rules for equality and lambda, expressions based on the
conversions rules of Church’s lambda calculus [1]. The o and S rules are well understood,
but we show that n-abstraction is needed in order to simplify function expressions.

5 Data Field Morphisms and Program Optimizations

A Crystal program consists of a set of definitions. Each definition defines a data field and the
program defines a computation field. The computation field contains not only the extension
of the program as a set of functions, but also the intentional information contained in the
data dependency between the indices in the various domains.

The task of optimization for Crystal program consists in analysing the communication
metric of the underlying index domains, and deriving a reshape or refinement morphism
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which will decrease some measure of complexity, for example, total computation time, or
resource utilization, then transforming the program according to the equational theory so
that the new denotation satisfies the reshape or refinement morphism.

For reshape morphisms, the transformation is straight forward. For refinement mor-
phisms, extra program text must be added to deal with the additional nodes of the refined
domain. This section describes the strategy for these morphisms and their corresponding
program transformations.

5.1 Reshape Morphism

For simplicity, consider a program consisting of one definition:
a = Az:D.efa], (1)

where e[a] is an expression in @ possibly containing a. By an intentional abuse of notation,
let a also be the data field denoted by this program.

Next, let the reshape morphism ¢ and its inverse be defined by

g = Ax:D.ey: F,
g7l = \y:E.e3:D.

Techniques for finding reshape morphisms for restrictive classes is known in the litera-
ture, see for example [20,19,24,16,5,13,17,18].
Functionally, what we want is a data field & satisfying

@a=aogl.

However, merely executing ¢g~! and then a does not decrease the communication costs.
What we want is a new definition of & which does not contain a or g.
Using the equations of the theory, we outline the strategy for obtaining a new definition

for & from the definitions of a and g.

1. First, using the identity

substitute all occurrences of @ in 1.

2. Next, using a combination of unfoldings of ¢ and g=! and various other equational
transformations given in the theory, eliminate all occurrences of g and g~!.

The first example in the following section gives a step by step transformation formalized
in the metalanguage. The second example deals with a domain contraction which requires
a couple of extra steps to deal with the coproduct arrow.
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5.2 Refinement Morphism

For refinement morphisms, the program transformation cannot be carried out in a purely
deterministic way since the refinement maps the original domain into another domain with
extra nodes and arcs. The prgrammer or the programming environment must indicate the
type of transformation that is required.

In this section we present the transformations that are needed for the fan-in and fan-out
refinement morphisms.

Fan-in Reduction

Consider the program
c=A:D.\ fH(]),

where H has type [D — [N — V]] for domains D and N, and f is a binary associative
function. The hot spots occur at each index [ in D since all the values in { H(I)(n) | n: N}
are needed for each [. The fan-in reduction is done by replacing the expression "\ f H (I ) by
fa(1)(r)", where a is a new function whose definition will be added and r is the root of the
domain of each a(l).

The reduction can be done in numerous ways. For each of the three natural orders of
reductions, the left associative reduction, the right associative reduction, and the balanced
tree associative reductions, denoted by \r, \r, and \p, the definition of a will be different.
For the left-associative reduction, the program for ¢ becomes

¢ = Al:D.a(l)(r) where a = Z[a, D, H, N, r, f],
where
Zpla,D,H,N,r,f] = X :D.\k:treer(N,r).

leaf(k) — H(I)(k)

—leaf(k) — f(a(l)(left(k)), a(I)(xight(k))) [
Note that the square brackets denote syntactic substitution. We assume that a(l)(L) =
id(f), to take care of the cases when a node k may not have both children. This operation
will be denoted fan-in-red(def("c"),"Z.","a").

Similarly, there are corresponding Zr and Zp for right associative and binary-tree as-

sociative reductions. The only difference comes in the generation of the tree domains treeg
and treep.

By implementing a left-associative tree as a linear domain, Z7, can be simplified to the
following;:

Z%[a, D, H, Ny, f] = M :D.\k: N.

{k =0 —1d(f) }
k>0 fla()(k— 1), HI)(*)) [’

where No = {0}UN.
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Tree Fan-Out Reduction

Consider the program
c= AN:D.e[H]

where e[H] is an expression containing H. The interpretation of this program requires that
the value H be broadcast to each ! in D. To reduce this fan-out, we replace it with a data
field @ defined over treeg(D,r) such that each node of the tree has the value H.

The fan-out reduced program looks like

¢ = M :D.ela(l)] where a = X[a, D, H],

where

Xrla,D,H] = A :treeg(D, T)’{I:)Izto(j()l;_f{a(parent(l)) } .

This operation will be denoted tree-fan-out-red(def("c")," X", "a’).

Butterfly Fan-Out Reduction

A more efficient method of fan-out reduction requires a hypercube (boolean n-cube) topol-
ogy.
Consider the program
a=MAj:D.Ak: EV(j),

where D = E = 0..n—1 for some n. At each index k over E, we need the value V(7), which
is non-local communication. Using a natural isomorphism of D and a hypercube containing
n nodes (assuming for simplicity and without loss of generality that n is some power of 2),
we take log n time steps to copy V(j) to each k.

First, define a syntactic abstraction

s 0. dim k=0-[V(j)]
QID,f,V] = A\j: D.)k:0..d (D)'{k>oﬂf(j)(k—1)::f(hcnb(j,k))(k——1)}7

where henb(j, k) is the neighbor node of j along the kth dimension when D is considered a
“hypercube, :: is the array append operator, and dim(D) is the number of dimensions of D
considered as a hypercube. For example, a hypercube containing n nodes, the dimension is
logn.

Then, given the definition of a, butterfly-red(def("a"),'Q", "@") returns the following pro-
gram

a = Aj:D.Ak: E.f(5)(dim(D))(k) where f = Q[D, f,V].

6 Examples of Optimizations

In this section we present detailed examples of the formal transformation of programs using
the metalanguage operators.
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6.1 Affine Domain Morphism
The Program

Consider the following program which uses the third dimension in @ and b to copy the matix
values in order to reduce hot spots:

D = 0.n,
E =0..2n-1,
T =0..3n-2,

i =0 A;
a:)\(i,j,k):D3.{] B }

0<j<n—a(t,j—1,k)

i =0 — By
b:A(i,j,k):DS.{’ ki }

0<i<n—bli—1,jk)

k=0—0
¢ = )\(i,j,k):D3.{ - }

0<k<n—a(i,jk)xb(ijk)+c(i,jk—1)

A direct realization of this algorithm in a spacetime domain will result in injecting D? into
D3 % T,, which due to the causal dependency will be very sparse, resulting in many idle
Processors.

Since the communication is only along each coordinate by 1, D has the Manhattan
metric. The above program defines the data fields a, b, and ¢ which are the components of
the computation field

la,b,c]: D+5D+ D -V,

where the glue J consists of arcs connecting the nodes from the first two summand to
the corresponding node in the third summand. The communication metric will be the
Manhattan metric on each component of the coproduct domain while the inter-component
cost is defined to be 1 between corresponding elements, i.e., y(D + D + D)(15(x),e(z)) =1
for each z in D and ¢, j from 1 to 3.

Suppose we are given the following affine morphism:

9 = Mi,5,k):D.(i+ k,j+kyi+j+k):(EXE)*T
97" = A5, 5,k) B2« T(k—j,k—d,i+j—k): D®

Figure 6 shows how the two domains are related. In the naive realization, the domain
D3 is replicated in time, but the affine morphism allows a spacetime realization with two
space coordinates and a time coordinate.

The Derivation of an Optimized Program

Given the definition of a data field a and a affine domain morphism g, our goal is to derive
the definition of another data field @ such that @ = @ o g. The derivations for the other
definitions are identical.

Let xo denote the equation defining a above. The sequence of operations is as follows:
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Figure 6: An Affine Domain Morphism.

. Substitute "d o g" for "a” in ko. K1 = subst(ko,"a’,"d 0 g):

= 0= A(i, k
aog=,\(i,j,k):p3.{’ = AL, k) }

0<j<=n—aog(ij—-1,k)

. Right compose both sides of the equation with g, the inverse of g.
Ko = right-comp(xy, 'g™1"):

= A1,k
GogogTl= [A(i,j,k):D3.{J 0~ AG, k) }}og_1

0<j<n—aog(ij—1,k)

. Simplify composition of g and g='). k3 = simplify-comp(;):

a=[Mi,5,k): D% (i, k) Jog™
0<j$n—>&og(i,j—l,k)

27
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4. Expand g. k4 = expand(ks, g"):
J=0— A(i, k)
a=[Mi,j,k): D>{ 0 < j < n— o Jog™
(NG5, k) D2(i 4 by + ki 4 + 1)) (6,5 = 1,k)

5. Distribute composition over abstraction. x5 = dist-comp-abs (x4, "a"):
J=0— A(i, k)

@=[\G5,k):D*{0<j<n— Jog
(A(i,j,k):D3.&(i+k,j+k,i+j-|- k))(i,j— 1,k)

6. Normalize. kg = normalize(xs):

a=[A(Gi,5,k): D%’ =0 — Ai, k) Jog™
0<j<n—a(i+kj—-1+kitj—1+k)

7. Eta abstract the body of the right hand side.
k7 = mk-eqn(lhs(x¢), mk-eta-abs("(4, , k) : E% + T", rhs(kg))):
@ = A(i,j,k): B2+ T.[(A(i, 5, k) : D°.
§ =0 AG, k)
0<j<n-— )og'“l](i,j,k)
a(i+k,j—1+k,i+j5—1+k)

8. Unfold the composition and normalize. kg = normalize(unfold(x7,"")):

J=0— A(i, k)
&= XG5, J, k):E*+T. (M(i,5,k):D° 0 < j < — (g™ 5,k))

9. Unfold g=*. kg = unfold(kg, g~ 1"):

i = A(i,j,k):E2*T.<>\(i,j,k):D3.
j=0- A(i,k)
0<j<n— Yk =g,k —iyi+ 5 — k)
a(i+k,j—1+ki+j—1+k)
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10. Normalize. k19 = normalize(kg):

k—i=0— Ak—j,14+7—k)
0<k—-i<n—
ak—jritj—hk—idtitj—k—1,
k—j+k—i—-14i4+7-k)

&= Mi,j,k): E2+T.

11. Simplify the arithmetic. k11 = simplify-arith(x10):

k_‘:O Ak—.. '—k'
d=/\(i,j,k):E2*T.{ 1=0— A(k-J,i+] )}

O0<k—-i<n—a(i,j—1,k—1)
The final equation is in the form of a definition, without @ or g appearing in the expression.

6.2 Domain Contraction

In this section we illustrate the derivation of the layers of a domain contraction using a
linear programming example.

The Program

Let m(i,j) = [%—3] and let hy and hy be expressions.
D = {(1,j,k)|1<i<k<j<n},
E = {(5,k)|(,5,k) € DAk >m(i,5)},
- ik
a = /\(i,j,k):D.{J = b k) }

j>k—>a(i7j" 1ak)

- .
b= A(i,j k) D4 TR elbdE)
i<k—b(i+1,5,k)

(j—i=1-¢;
j—i>1—
(k= m(3,5) = hila(i, §, k), b(i, 5, k), )
a(i, 5,0+ j — k),b(i,5,i+ j — k)]
m(i,j) <k <j—
hale(i, 5,k — 1), a3, 4,k),b(4, 5, k),
a(i,g,i+ 5 — k), b(3, j,i+ j — k)]
k=j—c(i,j,k-1) )

c = M¢,7,k):D.

/

Just like in the previous example, let D have the Manhattan metric. The above program
defines the data fields a, b, and c and the corresponding computation field la,b,¢]: D+
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Figure 7: A domain contraction.

D + D — V with the Manhattan metric on each component of the domain and the inter-
component cost defined to be zero between corresponding elements:

¥(D +5 D + D)(1i(z),¢(z)) = 0,

for each z in D and 4, j from 1 to 3.

Notice that the causal dependency in the definition for ¢ requires that the left-hand-side
node depends on a right-hand-side node that is distance k — (i + j — k) away.

Analysis of the computation field indicates a way to reduce the long distance commu-
nication by reflecting one half of the domain into the other. This defines a contraction
morphism g and its inverse g~1:

s i -
AGjyky: D4 2 B D) = alhak) :E+E
k<m(i,j) > w(i,j,i+j— k)

97 =, 1] = [A(i,4,k): E.(i,4,k), A6, 5, k) : E.(i,j,i+ j — k)]: D

I

g

The effect of this contraction is to fold the computation field upon itself so that the nodes
requiring communication over distance k— (i + j — k) can now be made to have a small con-
stant communication cost. The Figure 7 illustrates the before and after of the contraction.
The shaded plane represents the plane of reflection and all the nodes below it are reflected
into the upper part of the domain. The long distance communication in the first diagram
become constant distance communication.
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The Derivation of an Optimized Program

The derivation will only be carried out for the definition of a. The derivations for b and ¢
are identical.

From the definition of @ and the definition of the contraction, our goal is to derive the
definition of the layers of the contraction di and d such that a = [dy, d3] 0 g, where [d1, d3)
denotes the coproduct arrow of the coproduct construction. The procedure is essentially
the same as for the affine domain morphism.

1. Substitute Tdy,ds] o ¢" for "a’ in ko.
K1 = subst(ko, a’, [dy,ds] 0 ¢"):

[dl,dg]og:)\(i’j’k):D'{j:kec(i,j,k) }

J>k—[d,do]og(i,j—1,k)

2. Compose both sides of the equation on the right with [I1,/5], the inverse of g.
kg = right-comp(ky, 1, 12]"): ’

dy,dg] 0 goll,ls] = [\ k): DA =k elB:dF) o [l1, 1
o] ool e} = 263 {j>k+wh@hg@j—Lm Jolint

3. Simplify composition of g and [I1,l,]. k3 = simplify-comp(k»):

_ y . J:k—>C(l,],k) o
[%Jﬂ—P(J%%D{j>kqwh@hg@j_Lm}]UhM

4. Expand g. k4 = expand(ks,"g"):

]:k—*C(l,],k) )
J >k —[dy,ds)o
.. k>m(i,g
[d1, do] = [AGG, 3, k):D. = (”f‘(f ]Jc; - Jolts, 12
27 9 . .
(/\(i,j,k):D. " J' ) )(’L,j - 1,k)
k < m(i,j) —
\ L2(l,],@+]—-k) J
5. Distribute composition over abstraction. k5 = dist-comp-abs (x4, [dy, da]"):
[d,da] = [AGi,j,k): D.
(j =k — (i, j,k) ‘
i>k— (A(i,j,k):D.
kZm(l,J)—‘) ] 0[11 12]
[d17d2]°L1(i7j’k) .. ’
. )(7‘7.7 - 1> k)
k< m(i,j)—
L [dlad2]ol’2(i7j>i+j—k)
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6. Normalize. kg = normalize(k,):

[di,do] = [A(i,j,k): D.

ons

§=k = elir, k) )
kE>m(i,j—1)—
: [d1,d2) o 01(4,5 — 1,k) ] o [l1,19]
i>k—
k< m(zaj - 1) -
[dhd?]oL?(i,j_1ai+j_1~k) y,
7. Substitute dy for [dy, dy] 0 ¢y and dy for [dy, da] o ¢s.
K7 = subst(subst(ks, [d1,da] 0 117, "d1"), [dy, da] 0 ¢, Tdy"):
(j =k — ¢(i,5,k) )
k>m(i,57—1)— ;
[di,d2) = [AGi,,k): D4 di(i,5 = 1,k)) | ol ]
i>k—
E<m(i,j—1)—
da(i,j— 1,04+ 5 — 1-%))) }

8. Left distribute composition over coproduct map (7o [ly,ly] = [roly, 7o la)).
kg = dist-comp-coprod(k7, l1,12]"):

[di,da] = [A(i,5,k): D.

At 7,k): D.

¢

J=k—c(i,5,k)
kE>m(i,j—1)—
di(2,5 — 1,k))
E<m(i,j—1)—
\ dy(i, 5 — 1,i+j -1 - k))

I>k—

J=k—c(i,j,k)
k 2 m(’t,j - l) -
dl(i>j— lak))

i>k—
kE<m(i,j—1)—

d2(i,j~1,i+j_l_k))

9. Eta abstract the two components of the coproduct function.
K9 = mk-coprod(mk-eta((i, j, k) : E", first(rhs(xs))),
mk-eta('(4, j, k) : E7, second(rhs(xs)))):

[di,da] = [A(G,5,k): E.

Oll,

) lz]




()\(i, 3,k): D.
Ai,7,k): E.

(AG,5,k): D.

(

6.2 Domain Contraction

j=k—c(i,],k)
k>m(i,j—1)—

dl(iaj - 17"7))
k<m(i,j—1)—

da(iyj = 1i+j—1— k)

i>k—

j=k—c(,j,k)
kE>m(i,j—1) —
di(i,5— 1,k))

i>k—
E<m(i,j—1)—

d2(i7j_ 17i+j_ 1_k))

/
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0 1) (is j k),

0 1) (i, 5, k)]

10. Unfold the composition functional and normalize. k19 = normalize(unfold(xg, o):

[, ) = [A(i,4,8): B.
(A 5,k): D5
A4, 4,k): E.

(G5, k): D.

=k —c(i,j,k)
E>m(t,j—1) —
di(i,5 - 1,k))
k<m(i,j—1)—
\ dy(4,5 = 1,i+j -1~ k))

i>k—

(j =k — ¢(i,5,k)
k>m(i,j—1) —
dl(iaj - 17k))

i>k—
E<m(i,j—1)—

da(i,j = 1,6+ 7 —1-k))

11. Unfold /; and l,. k11 = unfold(unfold(k10, 1;7), 15

[di,da) = [A(i,4,k): E.

(/\(i,j, k):D.

(j =k~ c(i,j,k)

k>m(i,j—1)—
di(7,5 = 1,k))

E<m(i,j—1)—

{ da(t,5 = 1,0+ 5 — 1 - k))

i>k—

/

J

) (1,5, K)),

) (Ga(i, , )]

)(i: 4, k),

7/
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(i, j, k): E.
(5= k= c(i,j, k) ]
i>k—
E>m(i,j—1)—
di(i,j - 1,k))
k<m(i,j—1)—
da(t,j—1,i4+5—-1-k))) )

(A(i,j, k):D. )(i,j,i+j - k)]

12. Beta-reduce the beta-redexes. k12 = normalize(x11):
(5 =k — (i, 4, k)
kE>m(i,j—-1)—
di(i,j— 1,k)) ,
k<m(i,j—1)—
dy(4,j— 1,5+ j—1-k)))
j=i+j—k—c(i,fit+j—k) )
j>i+j—-k—
i+j—-k>m(t,j-1) — >]
di(i,5—1,i4+j—k))
i+j-k<m(i,j—1)—
da(i,g = Lit j =1~ (i4+j-k))J )
13. Simplify the arithmetic. x;3 = simplify-arith(k;2):

' = |X4,5,k): E.
[dl’dQ] [ (7/’]’ ) j>k—'>

(i, 7,k): E.

j=k— c(i,j,k) )
k>m(i,j—1)—
[di,ds] = [A(i,5,k): E. isho ] @=Lk :
kE<m(i,j—1)—
do(i,j —1,i+j—1-k))
k=1i—c(i,j,i+5—k) )
iti—k>m(i,j—1)—
NCEAOERR U B CY R RE B 5) ]
i+j—k<m(i,j—1)—
s da(i,5 — 1,k — 1))) )

The two derivation sequences are almost identical. In the domain contraction, we have
two extra operations that are needed to deal specifically with the coproduct map. In step

7 we use the coproduct diagram to simplify an expression, while in step 8 we distribute a
composition over a coproduct.
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6.3 Compile-time Optimizations
The Program

As a Crystal program, matrix multiplication is specified as

C = A(i,5): D\ +[AG, k) x B(k, j)[k € N],
N = 1.n,
D = N xN.

For this exercise, we assume a Manhattan metric on the structure of the target machine.

Fan-in reduction

In the program C, hot spots occur at each index (¢,7) € D since n terms are summed
together. By performing fan-in reduction fan-in-red(def('C"),"Z;,"C") the new program
becomes:

é = ZL[C\’aDaH,NO’ +]7
C = X(5,4): D.C(i, j)(n) where < I = X(i, ). \k.A(i, k) x B(k, ),

N() =0..n
Expanding the definition of Z?, we obtain
~ k=0->0
C = Ai4,7): DAk : No. -
kE>0— C(i,5)(k—1) 4+ A(i, k) x B(k, j)

where we have replaced id(+) with 0.

Partition Morphism

The next step is to adjust the granularity of a parallel computation so as to balance the
communication and computation. A data field can be partitioned into a collection of sub-
fields where each sub-field has a sequential space-time realization. A simple partition domain
morphism divides a domain into subdomains each of size b or less.

hy = Ai:N.(idivb,imod b): Uy x V,
hyt = Au,v):Up X Veu x b+v: N,
Uy = 1..ndivb,

Vi =0.b-1

A compound partition morphism is defined as the product of two simple partition morphisms
where the product of two functions f and g is defined as f x g = A2, 5).(f(1),9(5)).

)
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The morphism we are going to apply to the matrix multiplication example is the pair
of functions:

g = hyo X by
= A(4,5): D.((¢div 40,4 mod b0), (j div b1, j mod b1)) : (Upo X Vo) X (Upy X Vi)
g' = hpl x byl
= A((u0,v0), (ul,v1)): (Uso X Vio) X (Upz X Vi1).(u0 X b0 + v0,ul x b1 + v1): D

Let ko denote the equation defining C above. The sequence of operations described in
the meta-language operator to obtain the target program after partition morphism is as
follows:

1. Substitute "¢ o g" for "C"in kg. K = subst(ko,"C,"¢ 0 g):

3 Mi,j): DAk: Nod =070
cog=XA,7): D.)\k: Ny.
I k> 0= é0g(i, )k~ 1) + A(i, k) x Bk, j)

2. Right compose both sides of the equation with g~1, the inverse of g.
Ky = right-comp(k1, g~ 1"):

=0 0
éogog™l= [)\(i,j):D.)\k:No. k B ]og"1
k>0—¢og(i,j)(k—1)+ A(:, k) x B(k, j)

3. Simplify composition of g and g~!. k3 = simplify-comp(ky):

k=
é= A0, ) DAk NG S =0T Jog!
k>0-—¢éog(i,j)(k—1)+ A(i,k) x B(k,7)

4. Expand g. k4 = expand(ks,"g"):
é = [A(i,j) : Dk : No.
(k=0-0,
k>0—
éo (A(G,4): D. Jog
(i div b0, i mod b0), (j div b1, j mod b1))) (i, )(k — 1)
+A(i, k) x B(k, 7)

5. Distribute composition over abstraction. k5 = dist-comp-abs(ky4, "¢'):
¢ = [\G,5): D.Nk: No.
k=0-0,
k>0 (A(3,5): D.
&((i div b0, i mod b0), (j div b1, j mod b1))) (i, )(k — 1)
+A(2,k) X B(k,7)

-1

oo
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6. Normalize. kg = normalize(xs):
& = [A(i,§): D.Mk: N,
k=0-0,
k> 0 — &((i div b0, i mod b0), (5 div b1, j mod b1))(k— 1) p] 0 g™
+A(%, k) x B(k, 5)
7. Eta abstract the body of the right hand side.
r7 = mk-eqn(lhs(kg ), mk-eta-abs("((u0, v0), (ul,v1)):(Uso X Vio) X (Us1 X Vi1 )", rhs(ke))):
¢ = A((uO,vO),(ul,vl)) : (Ubo X V'bo) X (Ub1 X Vbl)
[(A(i,5): DAk = No.
k=0-—0,
k>0 — &((i div b0, i mod b0), (j div b1, j mod b1))(k — 1) ) 0 ']
+A(4, k) x B(k, 7)
((u0,v0), (ul,v1))
8. Unfold the composition and normalize. kg = normalize(unfold(x7,0")):
& = M(u0,v0),(u1,01)): (Uso X Vio) X (Uss X Vi ). (A(i, 5): DMk : No.
k=0-0,
k>0 — &((i div b0, i mod b0), (j div b1, j mod b1))(k — 1) {)
+A(i,k) x B(k,7)
(971 ((u0, 00), (ul,v1)))
9. Unfold g~*. kg = unfold(xs, g~ 1"):
¢ = A((u0,0), (u1,v1)): (Uso X Vio) X (Ut X Vin).(A(i,5): DMk : No.
k=0-0,
k>0 — &((i div b0, i mod b0), (j div b1, j mod b1))(k — 1) | )
+A(i, k) x B(k,7)
(u0 X 50 + v0, ul X bl 4 ul)

10. Normalize. k19 = normalize(kyg):
¢ = A((u0,v0), (ul,v1)): (Uso X Vio) X (Ups X Vb1).Ak : Ng.
k=0-0,
k>0 — &(((u0 x b0 4 v0) div b0, (u0 X b0 + v0) mod b0),
((ul x b1 4 ul) div b1, (ul X b1 + ul) mod b1))(k — 1)
+A((u0 X b0 4 v0), k) x B(k, (ul x b1 + ul))
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11. Simplify the arithmetic. k11 = simplify-arith(x1o):

¢ = A((u0,v0),(ul,v1)): (Uso X Vio) X (Ups X Viy).Ak : No.
k=0-—0,
k>0 — é((u0,v0),(ul,v1))(k—1)
+A((u0 x b0 + v0), k) x B(k, (ul X b1 + ul))

Currying

We now want to modify the above definition so as to set the stage for making v0 and vl
indices of sequential loops while keeping the parallel interpretation of indices 40 and ul.
By currying, we redefine ¢ to be é:

¢ = AMu0,ul): Upp X Upy . AN(v0,v1): Vi X Viy). Ak : No.
k=0-—0,
k>0 — é(u0,ul)(v0,v1)(k—1) |
+A((u0 x b0 4 v0), k) X B(k, (ul x b1 + u1)) t’

The so-called “interchange of loop index” technique in parallelizing compiler is a special
case of currying.

Fan-out Reduction

Note that in the above definition, the distribution of the matrix elements of 4 and B causes
hot spots at every index (10, u1). To remove these hot spots, we perform fan-out reduction.
First, another currying step results in

¢ = Aul:Up.Au0: Upg. A(v0, v1): Vig X Viy). Ak : No.
k=0-—0,
k>0 — é(u0,ul)(v0,v1)(k—1)
+A((u0 X b0 + v0), k) x B(k, (ul X b1 + ul))

Then fan-out-red(def("é4"), X", "a") gives us

¢a = Aul:Up.Au0: Upp. A(v0,v1): Vig X Vi1). Ak : No.
k=0-0,
k>0 — é(u0,ul)(v0,v1)(k - 1)
+a(ul)(u0,v0,k) x B(k,(ul x b1 + ul))

a = Xgla,Ur, A(u0,v0,k): Uy X Vo X No.A((u0 X 50 + v0), k)].

Fan-out reduction for matrix elements of B can be carried out similarly.
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7 Conclusion

Parallel computing has the potential of becoming the way of computing. It’s success will
depend on the advances in hardware design methodology, parallel programming techniques,
and parallel systems software—software that can automatically distribute a programming
task over multiple processors in such a way that the inter-processor communication cost
is kept low enough to achieve high performance—as well as the development of parallel
machines with ever higher performance.

Our theory of parallel program optimization is applicable to the design of special-purpose
hardware (e.g. systolic arrays [15]), the design of programs for general purpose parallel
machines (e.g. [10,29,26]), and systems software for parallel machines. The examples in
this paper have been linear, or piece-wise linear morphisms, but the derivation can handle
arbitrary graph homomorphisms and injections.

The task of parallel program optimization can be divided into two phases. The creative
phase of discovering a data field morphism that will reshape or refine the original data field
into a more efficient one, and the mechanical phase of applying the program transformation
on the original program to produce the optimized version.

The discovery of good data field morphisms will require analyzing the different spacetime
realizations for a given model of computation. The communication metric induced by
the spacetime embedding provides the measure of cost for different implementations. An
obvious question that presents itself is whether this phase can be automated. We know that
for certain classes there are techniques for finding data field morphisms that are optimal or
near optimal [20,19,24,16,5,13,17,18], but in general the techniques will most likely be too
expensive.

Granted that an intelligent program transformation system or a compiler for parallel
machine that can automatically produce the optimal data field morphism may be unrealistic,
we envision a system which contains an extensible set of transformation rules that are
applied following some default strategy, with the programmer always having the option of
choosing the rules that are to be applied or even explicitly defining new transformations
in the metalanguage. The system will need a smooth interface between the automatic
functions and program directives and also between the metalanguage transformation and
compilation systems.
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