Abstract

Given an m xn matrix M with m > n, we show that there exists a permutation
IT and an integer k such that the QR factorization

wn=(* £)

reveals the numerical rank of M: the k x k upper-triangular matrix A is
well-conditioned; ||Ck||; is small; and Bj is linearly dependent on A, with
coefficients bounded by a low-degree polynomial in n. We relate existing
rank-revealing QR algorithms to such factorizations and present an efficient
algorithm for computing them. Our algorithm is nearly as efficient as Q R with
column pivoting for most problems and takes O(mn?) floating-point operations
in the worst case.
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1. Introduction

Given a matrix M € R™*" with m > n, we consider partial QR factorizations of the
form '

MH:QREQ(A" g:) (1.1)

where Q € R™ ™ is orthogonal; A, € R**¥ is upper triangular with nonnegative diagonal
elements; B, € R**("=%). ¢}, € R(™~=Kx(n=k). and [T € R**" is a permutation matrix chosen
to reveal linear dependence among the columns of M. Usually & is chosen to be the smallest
integer 1 < k < n for which ||Ck|; is sufficiently small [24, p. 235].

Golub [20] introduced these factorizations and, with Businger (8], developed the first al-
gorithm (@R with column pivoting) for computing them. Applications include least squares
computations [11, 12, 17, 20, 21, 23, 37], subset selection and linear dependency analy-
sis [12, 18, 22, 35, 44], subspace tracking [7], rank determination [10, 39], and nonsymmet-
ric eigenproblems [2, 15, 27, 36]. Such factorizations are also related to condition estima-
tion [4, 5, 25, 40] and the URV and ULV decompositions (13, 41, 42].

1.1. RRQR Factorizations

By the interlacing property of the singular values [24, Cor. 8.3.3], for any permutation
II we have!

cr,-(Ak) S Ug(M) a.nd crj(Ck) Z 0'k+j(M), (1.2)
for1<i<kand1<j<n-—k. Thus,

U'min(Ak) S O‘k(M) and O'max(ck) Z 0k+1(M). (1.3)

Assume that or(M) > ox41(M) =~ 0, so that the numerical rank of M is k. If we

could find a II for which omin(Ax) is sufficiently large and omax(Csk) is sufficiently small,

then we could verify this assumption. Thus we call the factorization (1.1) a rank-revealing
QR (RRQR) factorization if it satisfies (cf. (1.3))

Umin(Ak) 2 :Ec]EMn; and amax(ck) S 0'k+1(M) p(k’n)a (1‘4)

where p(k,n) is a function bounded by a low-degree polynomial in k and n [14, 29]. Other, less
restrictive definitions are discussed in {14, 38]. The term “rank-revealing” QR factorization

is due to Chan [10].

The Businger and Golub algorithm [8, 20] works well in practice, but there are examples
where it fails to produce a factorization satisfying (1.4) (see Example 1 in §2). Other algo-
rithms fail on similar examples [14]. Recently, Hong and Pan [29] showed that there exist

L Here 0i(X), 0max(X), and omin(X) denote the i** largest, the largest, and the smallest singular values
of the matrix X, respectively.




RRQR factorizations with p(k,n) = \/k(n — k) + min(k,n — k); and Chandrasekaran and
Ipsen [14] developed an algorithm that computes one efficiently in practice,? given k.

1.2. Strong RRQR Factorizations

In some applications it is necessary to find a basis for the approximate right null space
of M, as in rank-deficient least squares computations [23, 24] and subspace tracking [7]; or
to separate the linearly independent columns of M from the linearly dependent ones, as in
subset selection and linear dependency analysis [12, 18, 22, 35, 44]. The RRQR factorization
does not lead to a stable and efficient algorithm because the elements of A;* Bi can be very
large (see Example 2 in §2).

In this paper we show that there exist QR factorizations that meet this need. We call
the factorization (1.1) a strong RRQR factorization if it satisfies (cf. (1.2))

(42 2. and 5,0 < ous(0) (ki) (15)
and
l(A;lBk)i'j’ < QZ(kan)? (1.6)

for1<i<kandl<j<n-—k, where ¢;(k,n) and ¢;(k,n) are functions bounded by low-
degree polynomials in k and n. Clearly a strong RRQR factorization is also a RRQR factor-
ization. In addition, the condition (1.6) makes it possible to compute an approximate right
null space of M with a small residual independent of the condition number of Ak, provided
that Ay is not too ill-conditioned [26, 27].

We show that there exists a permutation II for which relations (1.5) and (1.6) hold with

qi(k,n) =/1+k(n—k) and ga(k,n)=1.

Since this permutation could take exponential time to compute, we present an algorithm

that, given f > 1, finds a II for which (1.5) and (1.6) hold with
qi(k,n) = VIF Pk —F) and ga(k,n) = f.

Here k can be either an input parameter or the smallest integer for which omax(Ck) is
sufficiently small. When f > 1, this algorithm requires O ((m + nlog, n) n?) floating-point
operations. In particular, when f is a small power of n (e.g., v/n or n), it takes O(mn?) time
(see §4.4).

Recently, Pan and Tang [38] presented an algorithm that, given f > 1, computes a
RRQR factorization with p(k,n) = fy/k(n — k) 4+ max(k,n — k). This algorithm can be

shown to be mathematically equivalent to our algorithm, although it is less efficient, and

2In the worst case the runtime could be exponential in n and k. The algorithm proposed by Golub,
Klema, and Stewart [22] also computes a RRQR factorization [31], but requires an orthogonal basis for the
right null space.




thus it actually computes a strong RRQR factorization with ¢,(k,n) = /1 + f2k(n — k) and
g2(k,n) = f. Pan and Tang [38] also present two practical modifications to their algorithm,
but they do not always compute strong RRQR factorizations.

1.3. Overview

In §2 we review QR with column pivoting [8, 20] and the Chandrasekaran and Ipsen [14]
algorithm for computing a RRQR factorization. In §3 we give a constructive existence proof
for the strong RRQR factorization. In §4 we present an algorithm that computes a strong
RRQR factorization and bound the total number of operations required when f > 1; and
in §5 we show that this algorithm is numerically stable. In §6 we report the results of some
numerical experiments. In §7 we show that the concept of a strong RRQR factorization is
not completely new in that the QR factorization given by the Businger and Golub [8, 20]
algorithm satisfies (1.5) and (1.6) with ¢;(k,n) and gz(k,n) functions that grow exponentially
with k. Finally, in §8 we present some extensions of this work, including a version of our
algorithm that is nearly as efficient as Q R with column pivoting for most problems and takes
O(mn?) floating-point operations in the worst case.

1.4. Notation

By convention, A, Ax € RF*¥ denote upper triangular matrices with nonnegative diag-
onal elements; and By, Br € R¥*(*~%) and C, Cr € Rm=¥)X("=%) denote general matrices.
By
Ck

diagonal elements of A; are nonnegative), we write

In the partial QR factorization X = @ (Ak ) of a matrix X € R™*" (where the

A, B
Au(X) = Ay, Ci(X)=C, and Rk(X)=( . c:)

~_For A a nonsingular £ x ¢ matrix, 1/w;(A) denotes the 2-norm of the i** row of A~! and
w.(A) = (w1 (A),--,we(A))T. For C a matrix with £ columns, v;(C) denotes the 2-norm of
the j** column of C and 7.(C) = (11(C),- -+, 7(C)).

II; ; denotes the permutation that interchanges the i** and j* columns of a matrix.

A flop is a floating-point operation « o 3, where a and 8 are floating-point numbers
and o is one of 4+, —, x, and +. Taking the absolute value or comparing two floating-point
numbers is also counted as a flop.

2. Rank-revealing QR Algorithms

QR with column pivoting [8, 20] is a modification of the ordinary @R algorithm.

ALGORITHM 1. @R with column pivoting.
k:=0,R:=M,and Il := I;




while | nax v (Ck(R)) =2 6 do
Jmax := argmax7; (Ck(R));
1<7<n—k
k:=k+1, R:=Ri(RIkktjmax-1), and II := T Ik k4 jman—15

endfor;

If Algorithm 1 stops when k = r, then omax (C(M IT)) € VR — k Yjnue (C-(R)) is suffi-
ciently small, and thus the numerical rank of M is at most r. If the vector of column norms
7. (Ck(R)) is updated rather than recomputed from scratch, then Algorithm 1 takes about
4mnr — 2r?(m + n) + 4r3/3 flops [24, page 236).

Algorithm 1 uses a greedy strategy for finding well-conditioned columns: having deter-
mined the first k columns, it picks a column from the remaining n—k columns that maximizes
det [Ar+1(R)] (see [14]). When there are only a few well-conditioned columns, this strategy
is guaranteed to find a strong RRQR factorization (see §7). It also works well in general,
but it fails to find a RRQR factorization for the following example.

EXAMPLE 1. (Kahan [34]) Let M = S,K,, where

1 0 -~ 0 1 —p o —p
0 S S
s.=17 and K,=|% 1 : (2.1)
: .. .. 0 : T TP
0 0 g""l 0 .« 0 1

with ¢,¢ > 0 and ¢? +¢2 = 1. Algorithm 1 does not permute the columns of M, yet

on1(M) _ P(L+e)""
o'rnin(An-l) - 2¢ ’

and the right-hand side grows faster than any polynomial in » and k.

When m = n and the numerical rank of M is close to n, Stewart [39] suggests applying
Algorithm 1 to M~!. Recently, Chandrasekaran and Ipsen [14] combined these ideas to
construct an algorithm Hybrid-III(k) that is guaranteed to find a RRQR factorization, given
k. We present a simplified version here to motivate our constructive proof of the existence
of a strong RRQR factorization.

ALGORITHM 2. Hybrid-III(k)
R:=Mand 1 :=1I;
repeat

imin := argminw; (Ax(R));
1<i<k

if there exists a j such that det [Ax(RIL;_,, j+)] / det [Ax(R)] > 1 then
R := Ri(RLi,,54%) and 1L = I a5
Jmax := argmax~; (Ck(R));

1<5<n—k




if there exists an ¢ such that det [Ax(RIL; ;... +k)] / det [Ax(R)] > 1 then
R := Ri(RIL jye+k) and I :=I1IL ook

until no interchange occurs;

Since the objective is to find a permutation II for which omin (Ax(M II)) is sufficiently
large and omax (Ck(M II)) is sufficiently small, Algorithm 2 keeps interchanging the most
dependent of the first k¥ columns (column i) with one of the last n — k columns, and
interchanging the most independent of the last n — k columns (column jmax) with one of the
first k columns, as long as det [Ax(R)] strictly increases.

Since det [Ax(R)] strictly increases with every interchange, no permutation repeats; and
since there are only a finite number of permutations, Algorithm 2 eventually halts. Chan-
drasekaran and Ipsen [14] also show that it computes a RRQR factorization, given k. Due
to efficiency considerations, they suggest that it be run as a postprocessor to Algorithm 1.

But Algorithm 2 may not compute a strong RRQR factorization either.

EXAMPLE 2. Let
Sk-1Kk-1 0 0 —pSkoi1ck-1

_ Ak Bk _ M 0 0
M= ( Ck) - p 0 ’
L
where Si_; and K-, are defined as in (2.1); cx—; = (1,---,1)T € R*"; and
b= min wi(Se1Ker).

Vk 1<i<k=-1

Algorithm 2 does not permute the columns of M, yet

or-1(M) > @3(1 + )
ok-1(Ax) ~ 2

and [|4;" Billoo = (1 +¢)*7?,

and the right-hand sides grow faster than any polynomial in n and k.

Since Algorithm 1 does not permute the columns of M, this example also shows that
Algorithm 2 may not compute a strong RRQR factorization even when it is run as a post-
processor to Algorithm 1.

3. The Existence of a Strong RRQR Factorization

A strong RRQR factorization satisfies three conditions: every singular value of Ay is
sufficiently large, every singular value of C is sufficiently small, and every element of A;! By
is bounded. Since

k
det(Ak) _ HO’,‘(Ak) _ \/det(MTM)

koG




a strong RRQR factorization also results in a large det(Ag). Given k and f > 1, Algo-
rithm 3 below constructs a strong RRQR factorization by using column interchanges to try
to maximize det(A).

ALGORITHM 3.
R:=Ri(M) and Il := I;
repeat
if there exist ¢ and j such that det(A;))/ det(Ax) > f,

A, B
where R = (A" g") and Ri(RI; j4x) = (A" J‘) then
k

Ck
R := Rk(R Hi.jmu+k) and I1:=1I Hi,jm.,+k;

until no interchange occurs;

. While Algorithm 2 interchanges either the most dependent column of A or the most
independent column of Cj, Algorithm 3 interchanges any pair of columns that sufficiently
increases det(Ax). As before, there are only a finite number of permutations and none can
repeat, so that it eventually halts.

To prove that Algorithm 3 computes a strong RRQR factorization, we first express
det(Ay)/ det(Ayx) in terms of w;(Ax), 7;(Ck), and (A;lBk)i’j.

LEMMA 1. Let

R=(A'° g") and Rk(RH,-,,-+k)=(A'° ?"),
k

where Ay has positive diagonal elements. Then

det(Ak)
det(Ag)

= \/(AZIBk)?,j + (15(Ci) fwi( Ax))*.

Proof: First, assume that : < k or that j > 1. Let AgIL;x = Q/ik be the QR factorization
of AgIl;4; let By = QTB, 11, j and C = Cx Iy ;; and let 11 = diag(IL; k, 11 ;). Then

Rﬁ=(AkHs',k Bknl,j)=(é )(/ik ?k)

- Cilly; Ik Ch

is the QR factorization of R I1. Since both A and A; have positive diagonal elements, we
have det(Ax) = det(Ay). Since A;'B; = N7, Ag' Bell, j, we have (A;'By)ij = (A7 B )k 1-
Since A;! = H?:kA;IBkQ and postmultiplication by an orthogonal matrix leaves the 2-norms

of the rows unchanged, we have w;(Ax) = wi(Ax). Finally, we have v;(Ci) = 71(Ck). Thus
it suffices to consider the special case ¢ = k and j = 1. :




Partition
Axcr b b B

B
i (R) - k Y2 c%
Cit1

Then wi(Ak) = 711, 75(Ck) = 72, and (Ag'By), . = B/m. But det(As) = det(Ax-1) 1 and
det(Ax) = det(Ax—1) /B2 + 72, so that

3::&3 = (B/m) + (/1) = /(A7 B)?, + (15(C) (A0

Let

_____

Then by Lemma 1, Algorithm 3 can be rewritten as:
ALGORITHM 4.
(*
Compute R =
while p(R,k) > f do
Find 7 and j such that \/ lBk (')rj(C’k)/u.J,-(/‘lk))2 > f;

By

Ck) = Ri(M) and Il = I;

Compute R = (Ak g:) = Ri(RIL; j+x) and IT := IT IL;  4;

endwhile;

As before, Algorithm 4 halts and finds a permutation II for which p(Ri(M II), k) < f.
This implies (1.6) with go(k,n) = f. Now we show that this also implies (1.5) with ¢1(k,n) =
V1 + f2k(n —k); i.e., that Algorithm 4 computes a strong RRQR factorization, given k.

THEOREM 2. Let R = (Ak gk> = Ri(M II) satisfy p(R, k) < f. Then
k

' U,'(M) R
72— = 1<i<h, (3.1)
0;(C) < ojx(M) 1+ fPk(n— k), 1<j<n—k (3.2)

Proof: For simplicity we assume that M (and therefore R) has full column rank. Let
a = O'max(ck)/amin(Ak), and write

_ Ak I A;lBk =
R= ( Ck/a) ( o ) = R




Then by [30, Theorem 3.3.16],
oi(R) < oi(Ra) [Wallz, 1<is<n (3.3)
Since Omin(Ak) = Omax(Ck/a), we have crg(fll) = ;(Ax), for 1 < ¢ < k. Moreover,
IWAll3 < 14114 Bell + o
= 1+ || A7 Bell3 + ICKIZ I AR 112

<1+ |AF Bellf + ICHlIFII AR I
k n-k

=1+ > {(Al:lBk)?.j + 7j(C'k)2/wi(A")2}

=1 j=1

<1+ f2k(n - k),
so that ||Wi|l2 € /1 + f2k(n — k). Plugging these relations into (3.3), we get (3.1). Simi-

larly, let
~ aAg Ar B aly —A;lBk)
= = = RW,.
i ( Ck) ( Ck) ( Lnk ?
Then ,
05(Ck) = 0j4k(R2) < ik (R)|Wall2 < 054k (M) /1 + f2k(n — k),
which is (3.2). =

4. Computing a Strong RRQR Factorization

Given f > 1 and a tolerance § > 0, Algorithm 5 below computes a strong RRQR factor-
ization. It is a combination of the ideas in Algorithms 1 and 4, but uses '

R = max  max{|(47'Be), |, w(Ch/en(4)}

T 1gigk, 1<5<n-
instead of p(R, k) for greater efficiency.

ALGORITHM 5. Compute a strong RRQR factorization.
k:=0,R=Cy:=M,and Il := I,
Initialize w.(Ax), 7.(Ck), and A7 By;
i ; >
while | Jnax v;(Cx) = 6 do

Jmax := argmax v;(Ck);
1<7<n—k

k:=k+1;

Compute R = (Ak Bi

Ck) := Ri(R Mk ktjmax-1) and I = I kg n-15

Update w,(Ax), 7.(Ck), and A7 By;
while (R, k) > f do




Find 7 and j such that I(A;lBk) I > f or v;(Ck)/wi(Ak) > f;

1,]

Compute R = (Ak gk) := Re(RIL; j4x) and II := IT IL; j k5
k
Modify w.(Ax), 7.(Ck), and A;'Bi;
endwhile;
endwhile;

As before, Algorithm 5 eventually halts and finds a permutation II for which j(R, k) <
f. This implies that p(Rx(M ), k) < /2 f, so that (1.5) and (1.6) are satisfied with3
q(k,n) = /1 +2f%k(n — k) and qz2(k,n) = V2f.

Remark 1. Algorithm 5 can detect a sufficiently large gap in the singular values of M
if we change the condition in the outer while-loop to
: > : (AR > C.
1Sr;lsagc_k%(c‘k) 26 or  TAX i (Ck)[wi(Ax) 2 ¢
This is useful when solving rank-deficient least squares problems using RRQR factorizations
(see [11, 12] and the references therein).

In §§4.1-4.3 we show how to update A, Bk, Ck, wu(Ax), 7.(Ck), and A;' By after k
increases and to modify them after an interchange. In §4.4 we bound the total number of
interchanges and the total number of operations. We will discuss numerical stability in §5.

4.1. Updating Formulas

Let

Ak-1 By Ar B
R= ( e 1) and  Re(R Ik ktim-1) = ( ¢ k)-
Cr-1 o

Assume that we have computed Ax_;, Bk-1, Ci-1, ws(Ar-1), ¥x(Ck-1), and A;_l_lBk_l. In
this subsection we show how to compute Ak, Bk, Ck, was(Ak), 7.(Ci), and A} 'Bj when
k increases. For simplicity we assume that jmax = 1, so that 71(Ck-1) = 7;(Ck-1), for
1<j<n-k+1

Let H € R(m=k)x(m=k) he an orthogonal matrix that zeroes out the elements below the
diagonal in the first column of Ck_;, and let

T
Bioi=(b B) and Hck_1=(7 CC)

3To get q1(k,n) = /1+ f2k(n — k) and g2(k,n) = f, replace p(R, k) by p(R, k) or replace f by FIV2
(assuming that f > /2) in Algorithm 5.
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where ¥ = 74;(Ck-1). Then
Ao, b B
(Ak Bk) _ ( k-1 T)
C - 7 c 9
g C

Ak=(Ak—l b), Bk=<3;), and Ck=C.

Let A,:IB;,-l =(u U). Then
Al —ufy U —ucT/7)
-1 _ [ Ak -1p _ .
ar= (B ) e Az ("
Let u = (p1, -, pk-1)T and ¢ = (v1,-++,Vn-k)T. Then w.(Ax) and 7.(Ci) can be computed
from

so that

we(Ax) =7 and 1/w;(A)? = 1wi(Aes)2 + 42/, 1<i<k-1

and
'YJ‘(Ck)2 = ‘YJ‘+1(Clc-1)2 - V]?, 1<j<n-k.

The main cost is in computing HCx_; and U —ucT /v, which take about 4(m — k)(n — k)
and 2k(n — k) flops, respectively. Thus the updating procedure takes about 2(2m —k)(n — k)
flops.

Remark 2. Since f > 1, p(R, k—1) < V2 f, and ¥ > 7j41(Cko1) > vj, for 1 < j < n—k,
we have

|(47180),;| <2 and %(Cufr(an) < VR,

so that ;
p(Re(R Mk jmse), k) < V6 f.

This bound will be used in §5.1.

4.2. Reducing a General Interchange to a Special One

Assume that there is an interchange between the i* and (j + k)** columns of R. In this
subsection we show how to reduce this to the special case 1 = k and j = 1.

Ax Byx

Let R = ( c
k
of R. This only interchanges the corresponding columns in B, Ck, 7«(Ck), and A;'By.

Henceforth we assume that i < k and j = 1.

Am ay A1,2
A = a daf |,
Az,z

). If j > 1, then interchange the (k + 1)°* and (k + j)** columns

Pa.rtvition
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where A;; € RU-VX(-1 and A, € RUF-9x(k=%) are upper triangular. Let II; be the
permutation that cyclically shifts the last k —: + 1 columns of A to the left, so that

Aip A2 a
Ak Hk = ag a B
Az

Note that A;II; is an upper Hessenberg matrix with nonzero subdiagonal elements in
columns ¢,¢+1,---,k — 1.

To retriangularize Ay I1x, we apply Givens rotations to successively zero out the nonzero
subdiagonal elements in columns 4,7+ 1,---,k — 1 (see [19, 24]). Let QF be the product of
these Givens rotations, so that Q¥ A IT; is upper triangular. .

Let IT = diag(Ili, In_x), so that the i** column of R is the k** column of R II. Then

= ([ Axlly By - (A B\ _ (QTAIL Qsz)
RH—( Ck) and ’Rk(RH)_( C'k)_< C. .

Since A;! = T A;'Qx and postmultiplication by an orthogonal matrix leaves the 2-norms
of the rows unchanged, it follows that

w.(A-k) = HZUJ.(A;;), ’Y*(C_'k) = v.(Cx), and AEIBk = HZ‘ (A;lBk) .

The main cost of this reduction is in computing Q¥ Ay I, and Q7 By, which takes about
3((n—=1)%—(n —k)?) < 3k(2n — k) flops. '

4.3. Modifying Formulas

In this subsection we show how to modify Ax, Bx, Ck, w.(Ax), 7.(Ck), and A;' By when
there is an interchange between the k** and (k+1)** columns of R. We assume that we have
already zeroed out the elements below the diagonal in the (k + 1)* column.

Writing
A1 b by B
R= (Ak Bk) _ v o g
= = T ,
Ck Ww oo
Crs1
we have
Ay b2 by B
A, B o e
nan=( 8)- 1 £

Crnr

where p = \/u? + 1%, 7 = vp, & = (uc1 + ver)/p, and & = (vey — per)/p.




12

From the expression for R, we also have

Al —u/v
-1 _ k-1
A —( 1/7 )

where u = A;! b;. Since Ax_, is upper triangular, we can compute u using back-substitution.

U Al —u/y b, B
kK pooul 1/v )\ o

A;_ll b =u; + pu and A;_I_IB =U+ uc{/‘y.

Moreover,

so that

It follows that
A7l = (Alil AL b2/:7> _ (‘l;ll —(u1 +,uu)/'_y)
k= =

1/7 1/7
and
- 1A AL —(up + pu)/A N B
A Bk:( k | 1/*‘5 )/7) (w/p ElT)
_ ((1 — v/ (p)) u = (el (Fp)) w - AFHB — (u jruuﬁ?/’r), (a1
v/ (3p) /7
Simplifying,

2

L—yu?/(3p) =1 - p?/p* = v*[p* and yu/(%p) = p/p*.

We also have
AL B = (wi+ pu)e 7 = U +uc] [y — pue /7 — wid{ /5
=U+u(per — par)" /7 —wdl /7
=U + vuél /3 — w77.
Plugging these relations into (4.1), we get
- (viu — puy) /p* U + (vué; — ulél)T/’y
Ak Bk = 2 _ _ .
blp /5

Let

#1 o} V2 2
u= : , U +uu= : , C= : and & = : .
Hk-1 k-1 Un—k ‘ Un—k

Then w.(Ax) and 4.(Ck) can be computed from

we(Ak) =7 and  wi(Ax)? = wi( k) + B2/A* — pd/v?, 1<i<k-1,
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and
n(Ck) =yv/p and v (Ci)? =7,(Ck)?+ 2 —v, 2<j<n—k

The cost of zeroing out the elements below the diagonal in the (k + 1)** column is about
4(m — k)(n — k) flops; the cost of computing u is about k? flops; and the cost of computing
A['By is about 4k(n—k) flops. Thus the total cost of the modification is about 4m(n— k)+k?
flops.

4.4. Efficiency

In this subsection we derive an upper bound on the total number of interchanges and
bound the total number of flops. We only consider the case f > 1.

Let 7, be the number of interchanges performed for a particular value of k (i.e., within
the innermost while-loop), and let A be the determinant of A after these interchanges are
complete (by convention, Ag = 1). Since det(Ax) = Ak—17jmas(Ck-1) before the interchanges,
and each interchange increases det(Ax) by at least a factor of f, it follows that

Ak 2 Ako1 Yimax(Cr-1) [T+
By (1.3), we have

0141(M) < Tmax (Ci(M)) S C(M)|[p £ V1 = 1 Yjar (G(M))

for 1 <1< n, so that

k k
Ak > Ay —\}7 (M) f* > (:}‘a‘) {Ha.-(M)} g

where t; = E:;l 7;. On the other hand, from (1.2) we also have

k k
Ai = [[oi(Ar) < T os(M).
i=1

=1
Combining these relations, we have f* < (y/n)*, so that tx < klog, /n.

Assume that Algorithm 5 stops when k = r. Then the total number of interchanges ¢,
is bounded by rlog; \/n, which is O(r) when f is taken to be a small power of n (e.g., vn
or n).

The cost of the updating procedure is about 2(2m — k)(n — k) flops (see §4.1); the cost
of the reduction procedure is at most about 3k(2n — k) flops (see §4.2); and the cost of the
modifying procedure is about 4m(n — k) + k? flops (see §4.3). For each increase in k and each
interchange, the cost of finding p(R, k) is about 2k(n — k) flops (taking k(n — k) absolute
values and making k(n — k) comparisons).
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Assume that Algorithm 5 stops when k = r. Then the total cost is at most about

" [2(2m — k)(n — k) + 2k(n — k)] + t, max [3k(2n — k) +4m(n — k) + k% + 2k(n — k)]
k=1 - -

< 2mr(2n —r) + 4t,n(m + n)

flops. When f is taken to be a small power of n (e.g., /n or n), the total cost is O(mnr)
flops. Normally t, is quite small (see §6), and thus the cost is about 2mr(2n — r) flops.
When m > n, Algorithm 5 is almost as fast as Algorithm 1; when m ~ n, Algorithm 5 is
about 50% more expensive. We will discuss efficiency further in §8.

5. Numerical Stability

Since we update and modify w.(Ax), 7.(Cx), and A} 'Bjx rather than recompute them,
we might expect some loss of accuracy. But since we only use these quantities for deciding
which pairs of columns to interchange, Algorithm 5 could only be unstable if they were
extremely inaccurate.

In §5.1 we give an upper bound for p(R, k) during the interchanges. Since this bound
grows slowly with k, Theorem 2 asserts that A can never be extremely ill-conditioned,
provided that ox(M) is not very much smaller than ||M||;. This implies that the elements
of A;'Bj can not be too inaccurate. In §5.2 we discuss the numerical stability of updating
and modifying w.(Ax) and v.(Cx).

5.1. An Upper Bound on p(R, k) During Interchanges

We only consider the case f > 1.

LEMMA 3. Let A,C,U € R¥**, where A has positive diagonal elements and U = (u; ;)-
If

Ve + GO/ A < £, 14,5 <k,
then

VAL [(AUYTAU + CTO] < det(A) (VaF 7)"

Proof: First, note that

/At [(AU)T AU + C7C] = f[ o ((ACU )) .

=1

Let @ = omin(A), and write

ve(2)=(" a) (o) 227
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By [30, Theorem 3.3.4], we have

k

Ha, ) < [Lo:(D) o:(W).

=1 =1

Since o;(D) = 0i(A), for 1 < i < k, we have

k k
[] (D) = [] o:(4) = det(A).

=1 i=1

Now since WTW is symmetric and positive definite,

1=1

and, since
1 -1 1 Vk
—_= <
a 147 < vk fgfaé)i w; (A) min w;(A)
1<i<k
we have
k
7 C )? kv, (C)®
We;ll2 = 2 ( <kfi+ —2 < 2kf?
IWesll = 3oudy + 2 < b7 2T S
1= 1<i<k
The result follows immediately. : ]

To derive an upper bound on p(R, k) during the interchanges, we use techniques similar
to those used by Wilkinson [43] to bound the growth factor for Gaussian elimination with

complete pivoting.* Let
1

wo= (- f1)

which is Wilkinson’s upper bound on the growth factor for Gaussian Elimination with com-
plete pivoting on a 7 x 7 matrix. Although W(7) is not a polynomial in 7, it grows rather

slowly [43): W(r) = O(r!+ils™),
THEOREM 4. If Algorithm 5 performs T interchanges for some k > 1, then

p(Re(MTI), k) < 2V6 f (T +1) W(r +1).

Proof: Assume that Algorithm 5 will perform at least one interchange for this value of k;
otherwise the result holds trivially.

4 See [14] for a connection between the growth factor for Gaussian Elimination with partial pivoting and
the failure of RRQR algorithms.
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Let 1) be the permutation after the first ! interchanges, where 0 <! < 7+ 1. Partition

MW = (M/EI) M(’)k ),

n—

where M,El) € R™** and M,Sl_)k € R™*("=%)_ Assume that 7(l,7) columns of M,ETH) are from
MY and that the rest are from M, ,g). Since there are 7 — I 4+ 1 more interchanges, we have®

n-k?
nl,7) <7 -1+1.

Without loss of generality, we assume that the first & — n(I,7) columns of M,g”'l) are

the first k — n({,7) columns of M,El), and that the last ({,7) columns of M,ﬁTH) are the first

n(l, ) columns of Mﬂk Then we can write

Al,l A1,2 Bl,l Bl,2

A9 By Azz Byi B

RO =Ry (M TV = = 22 Pnl 2|
k( ) C,(cl) Cl,l 01’2

C2,2 -

where A;,,C1,1 € R7(:7)xn(h7) and the partition is such that
Ain By Az Big

741 T+1)
wemmnnens (V7 G )| G 2
Ca2
These relations imply that
det(AV) = det(Ay ;) det(Azy) (5.1)
and
det(AY*)) = det(Ay,1) y/det [BI, By + CT,C1i]. (5.2)

Let f = p(RM, k). By the definition of p(R, k), we have
V(A73B21)] + (1(Cr) fwi( A22))* < fO,
for 1 <1,j <n(l,7). Applying Lemma 3 and recalling that n({,7) < 7 — 141, we have
T=l+1
\/det [BE,Bas + CT,Cuy] < det(4an) (VEr =1+ 1) f0)

Combining with (5.1) and (5.2), we get

7=l+1
det(A{") < det(a0)) (VAT —T+1) f0) .

On the other hand, Algorithm 5 ensures that

det(4™) 2 de(Al) (10/v2) - (£7/V).

51t is possible that 5({,7) < 7 — I 4 1 since a column may be interchanged more than once.
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Comparing these two relations, we have
T—I+1
fO. 0 < (2\/7 By gy f")) , 0<l<T. (5.3)

Since

Z"‘ 1 1 1
+—= ]
(r=D(r-=14+1) 7 71-s5

=1

taking the product of the (7 — I)(r — I+ 1)* root of (5.3) with { = 1,2,---,7 — 1 and the r**
root of (5.3) with { = 0, we have

o)™ o< (ﬁ (evr=T+1 f“’)’l‘ﬁ) (2vrFiso)™

s=0 =1

T—1

. -1 % -1 1
< 21+21=o =i ((T +1) H(T -1+ 1)%-7) (H (f(l))r_:l> f(O),

1=0 1=0

which simplifies to

1
- T+1 2
f < §O gt ((r +1) I 371?) <2fO (7 + HW(r +1).
s=2
Remark 2 at the end of §4.1 implies that f(® < /6 f. Plugging this into the last relation
proves the result. =

From §4.4, we have 7 < klog, \/n. For example, when vn < f <n, we have 1y <k, so
that p(R, k) < O (n k W(k)).

5.2. Computing the Row Norms of A;' and the Column Norms of Ci

In this section we discuss the numerical stability of updating and modifying w.(Ax) and
7.(C%) as a result of interchanges, assuming that f is a small power of n.

For any a > 0, we let O,(a) denote a positive number that is bounded by a times a
slowly-increasing function of n. By Theorems 2 and 4, ||A;}||2 = On (1/0x(M)) and ||Cill2 =
O, (dk41(M)) after each interchange. As Algorithm 5 progresses, ||A;'||; increases from
On (1/01(M)) to O, (1/ax(M)), while ||Ck||2 decreases from O, (1(M)) to On (Tk41(M)).
A straightforward error analysis shows that the errors in 1/w;(Ax)? and v;(C%)? are bounded
by O, (e/c}(M)) and O, (e 0?(M)), respectively, where € is the machine precision. Hence
the error in 1/w;(Ax)? is less serious than the error in v;(Ck)?, which can be larger than

ICkll7 when ||Cill2 < On (Ve a1(M)).

Algorithm 5 uses the computed values of w.(Ax) and 7.(Cx) only to decide which columns
to interchange. But although these values do not need to be very accurate, we do need to
avoid the situation where they have no accuracy at all. Thus we recompute rather than
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update or modify 7.(Cx) when maxi<j<n—k V;(Ck) = On (V€ 01(M)). This needs to be done
at most twice if one wants to compute a strong RRQR factorization with A; numerically
nonsingular. A similar approach is taken in xgeqpf, the LAPACK [1] implementation of
Algorithm 1.

6. Numerical Experiments

In this section we report some numerical results for Algorithm 5. The code is written in
FORTRAN, and the computation was done on a SPARCstation/1 in double precision where
the machine precision is € = 1.1 x 107¢. We use the following sets of n x n test matrices:

1. a random matrix with elements uniformly distributed in [—1,1];

2. arandom matrix with the i** row scaled by the factor 5*/", where n > 0;
3. the Kahan matriz (see Example 2 in §2);
4

. the GKS matriz: an upper triangular matrix whose j** diagonal element is 1//7 and
whose (i,5) element is —1/1/7, for j > i (Golub, Klema, and Stewart [22] have shown
that Algorithm 1 fails to produce a RRQR factorization for this matrix);

5. the Ertended Kahan matriz: the matrix M = S3;R3;, where

Il —-L,DH; 0
S31 = diag(1,5,¢%,--+,¢*") and Ry = Iy  eH |;
pli

lis a power of 2; ¢ >0, ¢ > 1/\‘/41—1,and<2+<p2=1;0<”<<1; and H, € R is
a symmetric Hadamard matrix (i.e., H? = [ I; and every component of H; is £1).

In particular, we chose = 20¢, ¢ = .26362, and u = 20¢//n.

For each of the first four test matrices, we took n to be 50,100, --,300 and set f ~ \/n.
In each case the number of interchanges was at most 2.

For the extended Kahan matrix, we applied Algorithm 5 with f = @l > 1. There are
no interchanges until the (21)t* step, when the 7** column is interchanged with the (21 +1)*
column for 7 = 1,2,---,l. Thus Algorithm 5 caused | = n/3 column interchanges, which
shows that it may have to perform O(n) interchanges before finding a strong RRQR factor-
ization for a given f. However, we note that the extended Kahan matrix is already a strong

RRQR factorization with f =n.

7. Algorithm 1 and the Strong RRQR Factorization

With the techniques developed in §3, we now show that Algorithm 1 satisfies (1.5)
and (1.6) with ¢;(k,n) and g2(k,n) functions that grow exponentially with k. We need the
following lemma.
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LEMMA 5 (FADDEEV ET AL. [16]). Let W = (w;;) € R™" be an upper triangular

matriz with w;; =1 and |w; ;| <1, for 1 <i < j < n. Then

V4r +6n -1

(W™h;0 <2772, 1<4,5<n, and  ||W7lF < 3

THEOREM 6. Let I be the permutation chosen by Algorithm 1, and let

R= (A" B") = Ri(MII).

Ck
Then
o) 2 2 (11)
o;(Ck) < ohy; (M) V' — k 2 (7.2)
(47 By), ;| < 2+ (7.3)

for1<i<kand1<j<n-—k.
Proof: For simplicity we assume that M (and therefore R) has full rank.

Let

_(Ax By _ Wipn Wiz _ 7. _ Wia wj)
e (A )0 (" Y eow o (" )

where D = diag(dy,ds, - ,dn) is the diagonal of R; W;; € R*** is unit upper triangular;
Wiz € R(-R Wy, € Rm-Fx("=k). and w; € R¥ is the j** column of W;,. Since
Algorithm 1 would not cause any column interchanges if it were applied to R, it follows that

dy > dy > --- > di and that no component of ’VVJ has absolute value larger than 1.

Let u;; = (A;lBk)t.J.. Then —u; ; is the (i, k+ 1) component of Wj’". Applying the first
result in Lemma 5 to the lower right (k — ¢ + 2) x (k — 7 + 2) submatrix of Wj, we have
lu; ;] < 257%, which is (7.3).

As in the proof of Theorem 2, let @ = 0max(Ck)/Tmin(Ak), and write
~ aAx Ay Bg al, —A;lBk
R, = = = .
’ ( Ck ) ( Ck ) ( Ik e

0;(C) = 0j4k(R2) < 0j4k(R) |Wall2 = 0j14(M) [|Walla.

Then

But

|W2l3 < 1+ ||A7  Bell + o
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k n-k

ST+ YY) ul; + ICHIEIAR 1%

=1 j=1
k n-k

=142 > {ul; + (1(C)/wi(4x))’}.

i=1 j=1
Since 1/w;i(Ax) < 1/(dkwi(Wi,1)) and v;(Ck) < di, we have
ul; + (5O A0) < (W) + 1/wi(Waa)® = 1/wi(W5)2.

Using the second result in Lemma 5, it follows that

k k
D {udi + (O /ea(A)'} € Y 1/n(W)? = W MR -1 < 4 - 1,

i=1

so that ||W;||2 < 4%(n — k), which gives (7.2).

_ Ag I Ak—lBk =
R - ( C/,/a) ( aIn_k ) - RIWI’

ox(M) = ox(R) < ok(Ry) |Will2 < ox(Ax) Vn — & 2F.

Similarly, writing

we have

Taking k£ = ¢ and noting that o;(A;) < 0i(Ax) by the interlacing property of the singular
values [24, Cor. 8.3.3], we get (7.1). =

If R has very few linearly independent columns, then we can stop Algorithm 1 with a
small value of k and are guaranteed to have a strong RRQR factorization. Results similar
to Theorem 6 can be obtained for the RRQR algorithms in [10, 18, 25, 39].

8. Some Extensions

We have proved the existence of a strong RRQR factorization for a matrix M € R™*"
with m > n, and presented an efficient algorithm for computing it. In this section, we
describe some further improvements and extensions of these results.

Since Algorithm 1 seems to work well in practice [5, 10, 11, 14], Algorithm 5 tends to
perform very few (and often no) interchanges in its inner while-loop. This suggests using
Algorithm 1 as an initial phase (cf. [14, 38]), and then using Algorithm 4 to remove any
dependent columns from Ay, reducing k as needed (cf. [10, 18]). In many respects the
resulting algorithm is equivalent to applying Algorithm 5 to M~! (cf. Stewart [39]).

ALGORITHM 6. Compute a strong RRQR factorization.
k:=0,R=Cy:=M,and Il := I
Compute 7.(Cy);
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while lsrjnsa;x_k v;(Ck) 2 6 do

Jmax := argmax~;(Ck);

1<j<n-k
=k+1;
Ar  Bx '
Compute R = C = Re(R Hk,k+jmu—l) and IT := II Ik k4 jmax—1;
k
Update 7.(Cx);
endwhile;
Compute w.(Ax) and A;lBk;

repeat
while §(R, k) > f do
Find ¢ and j such that I(A;lBk) ! > f or v;(Ck)/wi(Ak) > f;

1,]

Compute R = (Ak gk) := Re(RIL j4+x) and IT := ITIL; 455
k
Modify w.(Ak), 7.(Ck), and A} ' By;

endwhile;
if lxglsnkw;(Ak) < 6 then
begin

Imin := argminw;(Ak);
1<i<k
k:=k-—1,;
Compute R = (Ak By
Ck
Downdate w,(Ak), 7.(Ck), and A;'By;

end;

) = Rk(R Him“,k+1) and I1 :=11 Himu,k-}-l;

until k is unchanged;

As before, Algorithm 6 eventually halts and finds a strong RRQR factorization. If it
stops when k = r, then the total number of interchanges ¢, is bounded by rlog; /n, which
is O(r) when f is taken to be a small power of n (see §4.4). The formulas for downdating
w.(Ax), 7.(Ck), and A;' By are analogous to those in §4.1.

Algorithm 6 must still initialize w.(Ax) and A;'Bjx in order to efficiently modify and
downdate them. However, we do not need very much accuracy in these values when deciding
which columns to interchange and whether to decrease k. Thus to make the algorithm
more efficient, we can instead estimate them at each step by using the condition estimation
techniques in [4, 5, 10, 28, 40]. While this might cause Algorithm 6 to fail and might increase
its worst-case cost considerably, we believe that this is quite unlikely in practical applications.
And since the number of steps is usually small and the condition estimates cost O(n?) flops,
the resulting algorithm will be nearly as efficient as QR with column pivoting.
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Most of the floating-point operations in Algorithms 5 and 6 can be expressed as Level-2
BLAS. Using ideas similar to those in [3, 6], it should be straightforward to develop block
versions of these algorithms so that most of the floating-point operations are performed as
Level-3 BLAS.

The restriction m > n is not essential and can be removed with minor modifications to
Algorithms 5 and 6. Thus these algorithms can also be used to compute a strong RRQR fac-
torization for MT, which may be preferable when one wants to compute an orthogonal basis
for the right approximate null space.

Finally, the techniques developed in this paper can easily be adopted to compute rank-
revealing LU factorizations [9, 14, 32, 33]. This result will be reported at a later date.
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