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Abstract

Fritsch and Carlson [3] developed an algorithm which produces a monotone 01
piecewise cubic interﬁolant to a monotone function. We show that the

algorithm yields a third—-order approximation, while a modification is

fourth—order accurate.



1, Introduction.

In addition to being a good approximation to the functiom, it is
often desirable that an interpolant reproduces such properties as
nonnegativity, monotonicity, and convexity. In this paper, we analyze
three algorithms which produce monotone 01 piecewise cubic interpolants to

a monotone function.

Since the interpolant is a piecewise cubic, one would hope that such
an algorithm would yield a third- or fourth-order L approximation whenever
the function interpolated is sufficiently smooth. However, if the
algorithm (considered as a map from the set of monotone functions to the
set of monotone C1 piecewise cubics) is linear, then it is at best first-—
order accurate (see de Boor and Swartz [2]). Consequently, if greater

accuracy is desired, the algorithm must be nonlinear.

Fritsch and Carlson [3] proposed such an algorithm. Given an initial
C1 piecewise cubic interpolant, they modify the derivative values of that
interpolant (where necessary) to produce a monotone C1 piecewise cubic
interpolant. Since the modification process is nonlinear, one might hope

that the Fritsch—-Carlson Algorithm is more than first—order accurate.

In Section 2, we review the Fritsch—-Carlson Algorithm and present two
modifications, the Two-Sweep and Extended Two-Sweep Algorithms, which also
produce monotone C1 piecewise cubic interpolants. In Section 3, we prove
that all three algorithms yield third-order L_ approximations to a C3
monotone function. However, in Section 4, we demonstrate that neither the

Fritsch-Carlson Algorithm nor the Two-Sweep Algorithm is a fourth—order
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method, where, in the case of the latter algorithm, we assume that the

initial approximate derivative values are not fourth—order accurate. On

the other hand, the Extended Two—Sweep Algorithm is a fourth—order method
--if the initial approximate derivative values are third-order accurate.

Finally, some numerical examples are presented in Section 5.

For brevity and simplicity, we assume that the function interpolated
is monotone increasing throughout the remainder of the paper. The

extension to decreasing functions is trivial,

2, Algorithms.
In this section, we review the Fritsch—Carlson Algorithm and present

two modifications, the Two—Sweep and Extended Two—Sweep Algorithms.

The basis of the Fritsch—Carlson Algorithm is a technique for
determining whether a cubic polynomial p(x) is monotone on the interval
[xi,xi+1]. Central to this technique is the closed region M (see
Figure 2—11) bounded by the axes and the 'upper half’ of the ellipse

12 + y2 +xy—-6x—-6y+9 =0, (2.1)

1 Also shown in Figure 2-1 are the closed regions A,...,E used in the
expression of the algorithms., A segment of the line x + y = 4 forms the
border between the regions A and B and also between the regions D and E.
The region C is bounded by the lines x =3 and y = 3.
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Fritsch and Carlson [3] show that p(x) is monotone on [xi,xi+1] if and only

it (p'(x,),p’(x;,,)) & W, where

M o= MA, = { (xA,,¥A) : (x,y) e M1,
A = Iplxyyy) —pGx)Uby, By = x5 = e
S. — T T 1
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Figure 2-1: The monotonicity region M and associated exterior
regions A,...,E. All regions are closed.

We also scale the regions A,...,E by A, and refer to them as A.,...,E.,

respectively. However, if A, = 0, we extend this convention by taking C.

to be the whole first quadrant; all other regions contract to either points
or lines in the obvious way.
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Thus, starting with a set of function values {f(xi)} and approximate
derivative values {di}, it is easy to determine whether the cubic Hermite
interpolant of these values is monotone. Moreover, if the initial
interpolant is not monotone, then the condition on p’ indicates how the

values {di} should be modified to make it monotone.

Figure 2-2 presents a three step meta—algorithm3 for finding a
monotone cubic Hermite interpolant. Only Step 2 is specified completely.
In Step 1, any technique for computing the initial approximate derivative
values {di} is acceptable, although the accuracy of the initial values is
one of the prime factors in determining the accuracy of the interpolant.
Three possible implementations of Step 3 are developed in the remainder of

this section.

Step 1: Compute the initial approximate derivative values {di}.

Step 2: Ensure that each di is nonnegative.

FOR i := 1 STEP 1 UNTIL n DO
di := max{di.O};
Step 3: Modify {di} so that each ordered pair (di’di+1) & !i'

Figure 2-2: Preliminary Algorithm,

3 Although Steps 2 and 3 can be combined easily saving one pass through
the data, considering these two steps separately simplifies the analysis.
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If Step 3 terminates, then the algorithm produces a set of
approximate derivative values which, together with the function values
{f(xi)}. determine a monotone cubic Hermite interpolant of f. The
difficulty in implementing Step 3 is that modifying one derivative value di
affects both of the ordered pairs (d, ,,d.) and (d,.,d,,,). Because of the
shape of M, decreasing the magnitude of di in moving (di’di+l) into Mi may

force (4, ,.d.) out of M. ,, and vice versa.

For this reason, Fritsch and Carlson base their algorithm on a region

M with the following important property:

S properly contained in
If (x,y) ¢ S and 0 £ x+ < xand 0 ¢ y+ £y, then (x+.y+) e S.

The Fritsch-Carlson Algorithm consists of Steps 1 and 2 of the Preliminary

Algorithm together with Step 3 as shown in Figure 2-3.4

Alternatively, any technique for projecting the points (di’di+1) into
!i which is guaranteed to terminate could be used in Step 3. One such

method, the Two—Sweep Algorithm, is shown in Figure 2-4.

On the Forward Sweep, only the second component of each ordered pair
is altered, so that modifying (di’di+1) does not affect (dj’dj+1) for j<i.

Consequently, it is easy to see that (di’di+1) e !iu Di U Ei after the

Here, again, we have used the notation §i to stand for §°Ai.
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Step 3: Modify {di} so that each ordered pair (di’di+1) e !i.

FOR i := 1 STEP 1 UNTIL n-1 DO

IF (d,.d,,,) ¢ §; THEN
Compute d; and d;+1 so that
() 0¢d] <4,
() 0 ¢ d;+1 <y, and
(c) (d),d},,) & 8;;
a, :=dp;  dy, = dy,q

Figure 2-3: Step 3 of the Fritsch—Carlson Algorithm,

Step 3: Modify {di} so that each ordered pair (di’di+1) € !i'
Forward Sweep — modify the second component only.
FOR i := 1 STEP 1 UNTIL n-1 DO

i+1) € Ci THEN

dipqg = 3445

ELSE IF (di’d

IF (d,,d
i

1+1) & Ai U gi THEN

Decrease di+1 to project (di’di+1) onto the boundary of Mi;
Backward Sweep — modify the first component omly.
FOR i := n-1 STEP -1 UNTIL 1 DO

IF (di’d ) e D,

3 U gi THEN

i+l
Decrease di to project (di'di+1) onto the boundary of !i;

Figure 2—4: Step 3 of the Two-Sweep Algorithm,



Forward Sweep.

On the Backward Sweep, only the first component of each ordered pair
is altered, so that modifying (di’di+1) does not affect (dj’dj+1) for jri.
Moreover, decreasing the magnitude of di ensures that the neighboring point
(di—l’di) remains in M 4 uligu E,_;» so that (di—l’di) can be projected

into !i-l by decreasing the magnitude of di—l on the next pass through the
loop. Therefore, after the Backward Sweep is completed, (di’di+1) e !i and

the associated cubic Hermite interpolant is monotome.

The major short—coming of the Two-Sweep Algorithm is that it may move
a point (di'di+1) much farther than mecessary whem projecting it imto !i'
This problem is most acute in the regions A and E close to the points (0,3)
and (3,0), respectively, where the boundary of M is tangent to the axes
(see Section 4). Therefore, we now consider the Extended Two—Sweep

Algorithm described in Figure 2-5.

If the ordered pair of approximate derivative values (di’di+l) does
not lie in !i’ then this algorithm allows the magnitude of di to be
jncreased on the Forward Sweep and the magnitude of di+1 to be increased on
the Backward Sweep. However, the‘amount by which they can be increased is
constrained by the requirement that, on the Forward Sweep, the preceding
ordered pair (di—l’di) must remain in !i—lll D. yu E._, and, on the

Backward Sweep, (di+1'di+2) must remain in M Because of these

=i+l°
constraints, it is clear that (di’di+1) 3 !i after the two sweeps of the
extended algorithm have been completed. Consequently, the associated cubic

Hermite interpolant is monotone.
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Step 3: Modify {di} so that each ordered pair (di’di+1) e M..

Forward Sweep — modify the second component only unless the
ordered pair lies in Ai'

FOR i := 1 STEP 1 UNTIL n-1 DO

CASE (di’d ) e C.:

i+l i
diyg =383

CASE (di’d ) e B;:

i+l i

Decrease di+1 to project (di’di+1) onto the boundary of !i:

CASE (di'di+1) e Ai:
Increase di until either
(a) (di’di+1) reaches the boundary of Ai’ or

(b) (4, ,.d,) reaches the boundary of M. _,ub_;uE_,

(if i > 1);

IF (di’d ) ¢ Hi THEN

i+l
Decrease di+1 to project (di’di+1) onto the boundary of Mi;

Backward Sweep — modify the first component only unless the
ordered pair lies in Ei’

FOR i := n-1 STEP -1 UNTIL 1 DO

CASE (di’di+1) e Qi:

Decrease di to project (di’di+l) onto the boundary of !i;

CASE (di’d ) e E

iv1’ & &4
Increase di+1 until either
(a) (di’di+1) reaches the boundary of Ei’ or

(b) (qi+1’di+2) reaches the boundary of M. , (if i < n-1);

IF (di,di+1

) ¢ M. THEN
i

Decrease di to project (di’di+1) onto the boundary of Mi;

Figure 2-5: Step 3 of the Extended Two—Sweep Algorithm,



3. Third—Order Convergence:..

In this section, we prove that each of the algorithms presented in
Section 2 yields a third-order L_ approximation to a 03 monotone function,
provided that the initial approximate derivative values are second—order
accurate and, in the case of the Fritsch-Carlson Algorithm, that § is

suitably chosen.

We begin by considering what restrictions on the region § are
necessary for the Fritsch—-Carlson Algorithm to be third-order accurate. To

this end, the following result is useful.

Lezma 3.1: If pl(x) and pz(x) are two polynomials of degree three or

less that satisfy
pl(xi) = pz(xi) and pl(xi+1) = pz(xi+1),
then

max { lpl(x) - pz(x)| P oxg <x{ } (3.1)

2 X4

h
i ' ot — !
2 §73 max { lpl(xi) p2(xi)|, lpi(xi+1) pz(xi+1)| }.

Proof: Evaluating

x-X 2
py(x) - p,(x) = (x=x)) [ hiﬂ] [py(x,) - pj(x,)]

x—xi 2
+ (x-xi+1) [ hi ] [pi(xi+1) - pi(xi+1)]

at the points



- 10 -

yields
(3.) = pa( )-ﬁ{[1+4ﬂ['()- "(x,)] (3.2)
Py T Y0 T 6 2 Yz Pytxy) T Rxy .
S - A pr(x, ) - pix, )1}
3 " J12° 'P1'%4) T Pt Xy
and
h, 1 1
pl(zi) - pz(zi) =5 { [E - 7?5] [pi(xi) - pé(xi)] (3.3)

L
- [5 +m] [pi(xiﬂ) - pz'(xi+1)] },
respectively. If
Ipj(x;) = py(x )] 2 Ipf(x;,9) - Pyl 1
then, from (3.2),

h

__1.1...1-__' -
|p1(yi) - pz(yi)l e U5 +.Ji§] |p1(xi) pz(xi)l
1_ 1 ' — ?
- G- Ipj(x; ) Pz(‘i+1)' }

h,
b3 Ef% lpi(xi) - pi(xi)l.

which implies (3.1). On the other hand, if
- ’ -
lpj(x) - pa(x ) < lpftx; ) - ptx L
then (3.1) follows from (3.3). Q.E.D.

Unless (1,1) ¢ S (the closure of S), the Fritsch-Carlson Algorithm is

at best first-order accurate. Consider the approximation to f(x) = x on a
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uniform mesh, In this case,

f'(xi) = f'(xi+1) = Ai = 1’ fOI i=1’..c’n—1.

Consequently, for each i, one of di and di+1 must be bounded away from 1,

and the result follows from Lemma 3.1.

Similarly, unless T ¢ S, where T is the closed triangle with vertices
(0,0), (2,0), (0,2), the Fritsch-Carlson Algorithm is at best second-order
accurate. Assume some point (s,2-s), 0 { s < 1, on the 'upper half’ of the
hypotenuse of T is not in S and consider the approximation to f(x) = (x-a)2

on the interval [a,b]l. For any h < Hs = zé%iél(b—a), choose a set of knots

: - sh - % = .
{xi] and an integer j such that x, = 8 + 3(17s) and hj =h max{hi}. With
this choice of xj and hj’ xj+1 £{h,
’ - ’ -
f (xj) ~ 2(xj a) _. i f (xi+1) ~ 2(xi a)+2hi e
A,  2(x,-a)+h, °’ A T 2(x,-a)+h, :
i (xj a) i i (xJ a) i

Moreover, Aj >h, =h., Therefore, when the Fritsch—Carlson Algorithm

3

terminates, at least one of the approximate derivative values {di] must

satisfy
’ -
£ (xi) dil 2 ch,

for some constant ¢ » 0, and, by Lemma 3.1, the associated cubic Hermite
interpolant is at best second—order accurate. A similar result holds for

the 'lower half’ of the hypotenuse of I.

On the other hand, if T c 8, then the Fritsch-Carlson Algorithm is
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third—-order accntate.s Before proving this result, we state the following

useful lemma.

Lemma 3.2: If f e Clla,b] is monotone increasing, then, for any of

the algorithms described in Section 2,
a¥ >0 and If(x) -ail ¢lex) - a1, i1 n
i i i = i i’ pocce™
where di and d:, respectively, are the approximate derivative values before
and after the execution of Step 2.
Proof: If di is modified in Step 2, then di < 0 and d; = 0 (see
Figure 2-2). Hence, since f'(xi) 20,
[} - + = ’ ’ -
.f (x,) dil £ (xi)l < It (x,) dil.
On the other hand, if d, is not modified, then d’; =4, 0. Q.E.D.
Theorem 3.3: Assume that
1. f e C3[a,b] is monotone increasing;

2. the initial derivative approximations {di] satisfy

If'(xi) - di' i ch2) i=1,...,n.

S The four regions S ,...,S8, considered in [3] all contain the
24 4
triangle T,
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for some constant c;
3. T S; and

4, whenever a point (di’di+1) is projected into §i, the new point

+

(d:.di+1) satisfies

+ o+
20y $d4; ¥ djye

j.e., the point is not moved ’much farther’ than necessary.
. .
Then the modified approximate derivative values {di} produced by the

Fritsch-Carlson Algorithm satisfy
*
7z - ajl < Lo + SEDNR%, 11,0, (3.4)
Consequently, the associated monotone cubic Hermite interpolant is a third-
order L approximation to f.
Proof: From Lemma 3.2,
a.>0 and l£(x) - a,l ¢ o (3.5)
i i i
at the termination of Step 2.

Assume that di is modified in Step 3 when (d;_l,di) is projected to

@ ..ah) e s ..5 The values ¢t ., aa differ from th
i-1°93) & 8;9- e values d._,, d, ,, and d; may differ from the
6

+ * ces
d, . and d._. are approximate derivative values that have been modified
either once or twice, respectively.
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initial values di—l and di satisfying (3.5), but

+ +
0¢a,_ <d;  <d;_, aad 0<d (4.

+
’
If £ (xi) < di’ then

+ _ e - g 2
0« di £ (xi) < di £ (xi) £ ¢h”,

Therefore, assume that f'(xi) 2 d:. Note that

_ _1.(3) 2
24, 4 = £r(x, o)+ £'(x;) - &f (v, )04

for some y. , ¢ [xi_l,xi]. From Assumption 4,

2 * *
Ajq $4;4 + 4,

so that

+ * 1.(3) 2
£r(x,) -, <da, 4 - £'(x; 4) +Ef (v, 4005 4-

Therefore,

) +
' -
0<f (xi) di

* 1.(3) 2
Ld, - (x )+t (3 b,
, 1,(3) 2
Ldy g =2z ) + 587 ()0 4
< e + %nf‘3’n¢Jh2

by Assumption 2.

+ * . + .
If di is decreased to di to project (di'di+1) into §i on the mnext
pass through the loop, then a similar argument shows that inequality (3.4)

remains valid. Q.E.D.
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Essentially the same argument shows that the Two—Sweep Algorithm is
third-order accurate. However, the Extended Two—Sweep Algorithm may
increase some approximate derivative values. Therefore, we adopt a

different approach based upon the following 1ema.7

Lemma 3.4: Assume that

1. f e Ca[a.b] is monotone increasing; and,

' ' c  _ me, a
2. for some @ > 0, (f (xi—l)’f (xi)) ¢ I, ;=1 Ai-l’ where T is the
closed triangle with vertices (0,0), (2+a,0), (0,2+a).

Then

10 (3)p .2
Agg < Gallt Ik

and

: : 1, 173y ;2
£z, )+ £z <[5+ = e,

Proof: If (£'(x, ;).£'(x;)) & I; ., then

(2+a)A, . < £'(x._4) + £'(x,).

7 In passing, note that this lemma can also be used to prove a different
version of Theorem 3.3: if Assumptions 3 and 4 are replaced by

3. _'1_‘ac S for some a > O,

then the Fritsch—-Carlson Algorithm is still third-order accurate.
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However,

- ’ ’ .._(3) 2
24, = £0x, )+ £(x) = gf (3, B, \ (3.6)

for some y,_, ¢ [xi_l.xi]. so that

1.(3) 1 3)
RS~ S ARLAES - Lol B

Finally, using (3.6),
, 1, 170.(3)
£z, )+ £z <[5+ 2P ] .

Q.E.D.
Theorem 3.5: Assume that

1. f e C3[a,b] is monotone increasing; and
2, the initial derivative approximatioms {di} satisfy
If'(xi) - dil _<_ chz’ i=1ao-o’n

for some constant c.

*
Then the modified approximate derivative values {di} produced by either the

Two—Sweep or the Extended Two—Sweep Algorithm satisfy
* 1y.(3) 2
[ 4 - - =
£ (xi) dil £ max{c, 2“f “Q]h , i=l,...,n. (3.7)

Consequently, the associated monotone cubic Hermite interpolant is a third-

order L_ approximation to f.

Proof: By Lemma 3.2, the approximate derivative values satisfy

2
di 20 and |f'(xi) - dil £ ch
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at the completion of Step 2 of either algorithm., Therefore, they also
satisfy (3.7). Below, we show that, if all the approximate derivative
values satisfy (3.7) when one is modified in Step 3, then the modified

value also satisfies (3.7). Thus, the theorem follows by induction.

In the Extended Two—Sweep Algorithm, di is modified in Step 3 only if

1. (di—l’di) is projected downwards in the Forward Sweep,

2. (di'd ) is projected to the right in the Forward Sweep,

i+l

3. (di,d ) is projected to the left in the Backward Sweep, or

i+l
4, (di-l’di) is projected upwards in the Backward Sweep.
For the Two—Sweep Algorithm, only Cases 1 and 3 are applicable. Therefore,

proving (3.7) for the Extended Two-Sweep Algorithm also shows that this

inequality is valid for the Two—Sweep Algorithm.

Consider Case 1 first: (di—l'di) is projected downwards in the

Forward Sweep. If f'(xi) < d;. then
0< d‘; - £'(x)) £ d; - £'(x;) £ maxie, %llf“)ll“}hz.

since d: £ d. Therefore, assume that f'(xi) 2 d:. If

(£'(x,_1),£'(x;)) & T, . then

.
£'(x,) <34, £ 4,

a contradiction. Thus, (f'(xi_l).f'(xi)) ¢ Ii—l’ whence

(3)n h?

1
’ -
£'(x,_4) ¢+ £r(x,) < znf i-1
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by Lemma 3.4. Since f'(xi) 2 d; 2 0 and both f'(xi_l) and f'(xi) are

nonnegative,
[ - + ? . ? !'- (3) 2
0< £ (x) —d; C£(x) & £0(xy 4) + £(x)) < 2llf In°.

Next consider Case 2: (di,d ) is projected to the right in the

i+l
Forward Sweep. If d; < f'(xi), then

+ 1po(3)p 1,2
0« £'(x,) - @ & £'(x;) - d; < max{c, 37N 307,

since di < d;. Therefore, assume that d: 2 f'(xi). If

’ [ ,2
(£9(x,),8'(x;, 1)) 4 T, >, then

1p.(3)y .2
A, & I N n

+ ,1 +
by Lemma 3.4. But di £ EAi since (di’di+1) e Ai’ so that
+ + ,1 14.(3)y ,2
0<d; - £(x) <a <A, <Pl

On the other hand, if (f'(xi),f'(x )) e Iilz, then

i+l

1
REE /WY A

' 5
£1(xg) + £7(x; ) C5A; £ dyy — 2By

since (di’di+1) e Ai implies that 3Ai £ di+1‘ Re-arranging terms,

1 Y
2Ai + f'(xi) < di+1 f (xi+1).
whence
a + £r(x) Cd, - £'(x,.)
i i’ = Ti+l i+1’°

. + , 1
since di £ 2Ai' Therefore,
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+ -— ’ + -
0« di f (xi) < di + f'(xi) < di+1 f'(xi+1)

< maxf{c, %ﬂf(s)“m}h;.

Cases 3 and 4 are handled in a similar manner. Q.E.D.

4, Fourth—-Order Convergence.

In this section, we demonstrate that neither the Fritsch—Carlson
Algorithm nor the Two-Sweep Algorithm is a fourth-order method, where, in
the case of the latter algorithm, we assume that the initial approximate
derivative values are less than fourth-order accurate. On the other hand,
the Extended Two-Sweep Algorithm is a fourth—-order method if the initial

approximate derivative values are third—order accurate.

To see that the Fritsch—-Carlson Algorithm is not a fourth—order
method, consider the function f(x) = (x—1)3 on the interval [0,3]. For any

positive integer m, let the knots be

3
x, = 3ih, i=0,1,...,3m¥2, where h = 3mi2 °
A simple computation shows that
4,2 1.2 1.2
L4 = - ’ = - = -
£ (xm) 3h , f (xm+1) 3h , and Am 3h ,
whence

f'(x) f'(x ..)
T, D) L
m m

S used in Step 3 of

is on the boundary of M. On the other hand, any region
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the Fritsch-Carlson Algorithm must be contained in the region §1, the
square with vertices (0,0) (0,3), (3,3), (3,0), so that the modified

* *
derivative approximation dm must satisfy dln £ SAm. Thus,

f1(x) —d" > £'(x) - 3A = in®
m m =~ m m 3 °

and, from Lemma 3.1, the Fritsch-Carlson Algorithm yields at best a third-

order approximation to f.

To see that the Two-Sweep Algorithm is not a fourth-order method if
the initial approximate derivative values are less than fourth-order
accurate, once again consider the function f(x) = (x-l)3 on the interval
[0,31. For 2 { p £ 4, choose the knots {xi} such that, for some j,

x, = l—hp/2 and hj =hm mnx{hi}. Hence,

3

' - P ’ _ 2 _ 1"‘1)/2 P
f (xj) = 3h°, f (xj+1) = 3[h 2h + h'],

and

Ay = »2 — 3p1*P/2 4 3pP,

It is easy to check that (f'(xj),f'(xj+1)) is on the boundary between !j

p [ ’ . =
and Aj and that (f (xi).f (xi+1)) e §1 Ai for i # j. Let dj 0 and
di = f'(xi) for i # j. Then dj is a pth-order approximation to f'(xj) and
all other di are exact., In addition, since dj < f'(xj). it follows that
(d.,d

j’in1 i+l
approximate derivative value that is modified by the Two—Sweep Algorithm is

) e Aj\!j and (di’d ) e §1°Ai for i # j. Consequently, the only

. + _
dj+1 and it is set to dj+1 = 3Aj on the Forward Sweep. Hence,

gt _ L 14p/2 _ op
f'(xj+1) dj+1 = 3h 6h*,
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and, by Lemma 3.1, the Two—Sweep Algorithm yields at best an order 2+§
approximation to f. In éarticular, if the Two—Sweep Algorithm is used to
modify the derivative values of a cubic spline interpolant, then the
resulting monotone C1 piecewise cubic interpolant may be of order 31,
rather than 4, since the initial approximate derivative values are only

third—-order accurate.

However, for both the Fritsch-Carlson and Two—Sweep Algorithms, this
degradation in the order of the approximation arises only under very
special circumstances. If the region § associated with the Fritsch—-Carlson
Algorithm contains a triangle Za for some a > 0, then, using an argument
similar to the one employed in the proof of Theorem 4.1, one can show that
the degradation in the order of either of these two algorithms occurs only
in intervals immediately adjacent to an interval containing a root of f' of
exact multiplicity two. Moreover, for the Two—Sweep Algorithm, the
degradation occurs only if, as h —> 0, there are infinitely many grids each
containing an interval [xi,xi+1] and a point t in that interval at which f'
has a root of exact multiplicity two and the distance between t and one of

the endpoints of the interval is less than clhi but greater than czhi for

all positive constants ° and cy.

Another point about all three algorithms should be emphasized:
whenever h is sufficiently small, most of the initial derivative
approximations are not changed by any of the algorithms. Thus, if the
initial derivative approximations are third-order accurate, then the

interpolant produced by any of the algorithms is locally a fourth—order
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approximation on most intervals. Moreover, if the initial interpolant is a
cubic spline, then this additional smoothness is lost only at the knots

where the derivative values are modified.

We end this section with a convergence result for the Extended Two-

Sweep Algorithm,

Theorem 4;1:_ Assume that

1. f e C4[a.b] is monotone increasing;

2. whenever f'(x) = £''(x) = f(3)(x) = f(4)(x) = 0, there is a & > 0
such that, if y e [x,x+3)n [a,b]l, then either

a. f'(y) = 0 or
b. there exist constants ml, m,, and r such that

m, (y—-x) Cf'(y) & m (y-x) s

where %% ( 2 $ 10 and r 2 3;

..F

and, if y ¢ (x-8,x] n [a,b]l, then either

a. f'(y) = 0 or

b. there exist constants m , and s such that

B3s My

(x—y) £ £'(y) & m, (x-y)

10 , ™4
where 11 £ ;; < ia and s ) 3; and

3. the initial derivative approximations {di} satisfy
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|f’(xi) - dil _(_ chsa i=1.ooc’n.

Then, for h sufficiently small, the modified approximate derivative values

-
{di} produced by the Extended Two—Sweep Algorithm satisfy

£ (=) - d;l (ad,  i=1,...,m, | (4.1)
where
T = max{8nf(4)“°. 32 f(4)||D + l%ét}. (4.2)

Consequently, the associated monotone cubic Hermite interpolant is a

fourth-order L approximation to f.8

Proof: To prove this result, we combine a compactness argument with
jnduction. The essence of the proof is outlined below; the details, which

are straightforward but tedious, are in the Appendix.

For each t ¢ [a,b]l, we choose a St > 0 that determines an open
interval It = (t—St,t+8t), where St depends upon f in a neighborhood of
t. Since {It} forms an open covering of the compact interval [a,b], there

exists a finite subcovering of [a,b]l. Moreover, for h = max{hi}

8 The proof of this result requires Assumption %, although we suspect
that the theorem remains valid for any monotome C [a,b] functiom. It is
also worth noting that Assumption 2 holds for any piecewise analytic
function.
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sufficiently small, each interval [xi-l’xi+1] c It’ one of the intervals of
the subcovering. The proof relies heavily upon exploiting the local

.properties of f on each interval of the finite subcovering.,

The actual induction hypothesis used is slightly stronger than (4.1):

1. If [x, e I, £(t) = £17(8) = 0, £3)(¢) £ 0, and

-1°%i+1

te(x, ;,x;], then

_ 5p.(4) 3
£ (x) - a,1 ¢ [6ﬂf i+ 6.5c]h .
2. If Ix. ..x. dc I, £9(t) = £°(t) =0, £3(t) # 0, ana
: i-1°7i417 © e’ ' ’
t e [xi,xi+1), then

_ o (4)y . 113 1.3
lercx) - a1 ¢ [0, + e]e’.
3. Otherwise,

l£9(x,) - 1 ¢ maxto, el 10,

By Lemma 3.2,

3
d; >0 and vlf'(xi) -4l L eh

at the termination of Step 2. Consequently, the induction hypothesis is
satisfied at the beginning of Step 3. In the Appendix, we show that, if
all the approximate derivative values satisfy the hypothesis when one is
modified in Step 3, then the modified value also satisfies the hypothesis.

Thus, the theorem follows by induction. Q.E.D,
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5., Numerical Results:.
In this section, we compare the piecewise cubic interpolants produced
by CUBSPL [1], the Fritsch—-Carlson Algorithm, and the Extended Two—Sweep

Algorithm for the two sets of momotone data given in Section 5 of [3].

In the case of CUBSPL, we used the ’not—a-knot’ boundary conditions
to complete the specification of the cubic spline interpolant. Since
CUBSPL is based upon a fourth—order linear algorithm, it does not, in

general, produce a monotone approximation to a set of monotone data.

We implemented the Fritsch-Carlson Algorithm described in [3] and,

S required in Step 3 to be

following their suggestion, we took the region
§2, the intersection of the disk of radius three centered at the origin
with the first quadrant. The results in Sections 3 and 4 above show that

this method is third-order, but not fourth-order, accurate.

We used the derivative of the cubic spline interpolant produced by
CUBSPL for the initial derivative approximations required in Step 1 of the
Extended Two—Sweep Algorithm. Since these approximate derivative values
are third—order accurate, the monotone interpolant produced by the Extended

Two-Sweep Algorithm is fourth—order accurate.

Figure 5-1 shows the interpolants produced by CUBSPL and the Extended
Two-Sweep Algorithm for the first data set (AKIMA 3) in [3]. Figure 5-2
shows the interpolants produced by the Fritsch-Carlson Algorithm and the
Extended Two—Sweep Algorithm for the same data set. Figures 5-3 and 5-4

show the interpolants generated by the same two pairs of methods, but for
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the second data set (RPN 14) in [3].

The interpolant produced by CUBSPL is clearly not monotome for either
data set and does not yield a 'visually pleasing’ approximation in either

case.

For the first data set, the interpolants produced by the Fritsch-
Carlson and Extended Two—Sweep Algorithms differ significantly on the
interval [11,15]. Because the Extended Two—Sweep Algorithm projects
approximate derivative values onto the boundary of M, it produces an
interpolant with a zero slope in this interval. This is not the case for
the Fritsch-Carlson Algorithm, since it projects approximate derivative
values into the interior of M. We leave the subjective question of which

approiimation is 'visually more pleasing’ to the reader.

For the second data set, the interpolants produced by the Fritsch-—
Carlson and Extended Two—Sweep Algorithms are virtually indistinguishable
at the resolution of these plots: monotonicity imposes a severe constraint

in this example.
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0.0 3.0 6.0 8.0 12.0

Figure 5-1: A plot of the interpolants produced by CUBSPL (dotted curve)

and the Extended Two—Sweep Algorithm (solid curve) for the data set
AKTMA 3,
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Figure 5-2: A plot of the interpolants produced by the Fritsch-Carlson

Algorithm (dotted curve) and the Extended Two—Sweep Algorithm (solid
curve) for the data set AKIMA 3.
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8.0 14.0 16.0  18.0 20.0

" Figure 5-3: A plot of the interpolants produced by CUBSPL (dotted curve)

and the Extended Two-Sweep Algorithm (solid curve) for the data set
RPN 14,
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Figure 5-4: A plot of the interpolants produced by the Fritsch—Carlson
Algorithm (dotted curve) and the Extended Two—Sweep Algorithm (solid
curve) for the data set RPN 14, ’
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Appendix
I, Proof of Theorem 4.1%

In this appendix, we complete the proof of Theorem 4.1. To begin, we

state and prove two useful lemmas.

Lemma 5i1: If £ e Ctla,b] and £9(t) = £°(t) = 0 but £3)(t) # 0 for

some t ¢ [xi,xi+1], then

2 ,
l£*(x,) - ~ 4,1 < g 2 (5.1)
1-3y+3y
and
2
_3a-m° Ty (4) 2.3
l£r(x, ;) 1sye3y? Al < e (1) T, (5.2)

where y = (t—xi)/hi. Moreover, the locus of points

2 .
{ (X ,3A" oyt (5.3)

1—37+372 1—37+372

is the elliptical boundary of M.

Proof: Inequalities (5.1) and (5.2) follow from the Taylor series

expansions
ey o 14(3)0).2,2 _1.(4) ) 33
£'(x,) = 3£ 7 (£)y"hHy - £ (y,)r by,
£(x;,) = P wan?2 + 1P yandsl,
a, = 3@ @1a*n? + 2 g an e e peting,

for some y;, Yy, V3» V4 € [xi.xi+1]. The validity of (5.3) is established
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easily from (2.1). Q.E.D.

Lemma 5.2: Assume that

1. f e C4[a,b] is monotone increasing;
2. £'(t) = £''(t) = 0 but f(s)(t) # 0 for some t ¢ [xi,xi+1];

3. (di'd ) e Ai‘ and

i+l
4. the initial derivative approximations satisfy

3

f'(xi) £d, and l£(x, ) - d,,,] {ch

i+l i+l

for some constant c.

] + +
Then, for the unique di+1 such that (di’di+1) e !irl Ai’

y = a* 1 ¢ maxte, LN 3m3. (5.4)
12 ©

14
l£7(x 141

i+l

A similar result holds for (di’di+1) e E..
Proof: Throughout this proof, we use inequalities (5.1) and (5.2) of

Lemma 5.1 without explicit reference.
+
Consider two cases depending upon whether di+1 > f'(xi+1).

+
Case 1: If di+1 b f'(xi+1). then

3
) Cdyy - E(x ) Lob,

+
- £ (x, £diy i

0<d;yy i+1

+
since di+1 £ di+1‘
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Case 2: If d;+1 < f'(xi+1). then consider two subcases depending

upon whether

3T 5 <¢a (5.5)

Case 2.1: If (5.5) is valid, then

2
31-1—'1)—5Ai Cdlpys (5.6)
1-3y+3y

since the segment of the curve (5.3) that forms the boundary between !i and

Ai is an increasing function of y in both the x and y co-ordinmates.

Consequently,
2
_at _sa-p? 1.0y 3
0 < £rlx, ) —d, ., < E(xy,0) R TE YL i
1-3y+3y

Case 2.2: If (5.5) is not valid, then consider two subcases

depending upon whether v > %.

Wi

Case 2.2.1: If y > 3, then

2
_éL——-—)l.
1—37+372

This bound together with the observation that d. < %Ai (since

(di’di+1) e Ai) shows that

2 2
M= -a (o -2 € LA R
1-3y+3y 1-3y+3y

In addition,

+ Ty.(4) 2.3
3A, < dp, & EN(x ) <Ay el T,

whence,
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+ Tyc(4)gy .3
0¢ £ (x, ) —d,,, <plle Iy,

Case 2.2.2: Alternatively, if 0 { v £ %, then there exists a uwnique
:E e [0,y] such that
_3e®
d, = A, (5.7)

i i

1-3z+3¢2

since, by assumption,

and the right side of this inequality is a strictly increasing function of

vy for 0 { v £ %. Moreover, since (di,d;+1) e !i'n A

'-i ’
+ 351—§22
div1 = 2 44
1-3E+3¢

by (5.3). Therefore,

0« f'(xi+1) - di+1 (5.8)
. 3am? , ,aam? , a0’
= f£'(x, ) - 2 At 2 85 - 2 4
1-3y+3y 1-3y+3y 1-3¢+3¢
Tu-(4)y .3 _
Colle " + 9(-0)a,,
1
since, for 0 { &£ (v £ 3
2 2
3(1—y)°  _3(1-8)"
0 < 5~ 2 £ 9(v-8).
1-3y+3y°  1-3E+3¢
1

To bound 9(7-§)Ai, note that, for 0 ( £ { vy { ¥ and f'(xi) - di £0,

w
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0 & 3y(y - BA, < 3% - £,

2

3y __§.____

£ 2 437 2 A4
1—31+37 , —3§+3§
—-3-1—-——A - £z + £1(x) - 4,
1-3y+3y

< E%ﬂf(4)n°yzh3.
whence
0 < 9y - 01a, < s 8%,
Combining this with (5.8), we get that

' 1 (4) 3
0L £1(xz ) - ST L g

Proof of Theorem 4.1: As stated in Section 4, we combine a

compactness argument with induction to proof this result.

For each point t ¢ [a,b], we choose a St > 0 that determines an open
interval It = (t—&t,t+8t). Since [It} forms an open covering of the
compact interval [a,b]l, there exists a finite subcovering of [a,b].
Moreover, for h = max{h.} sufficiently small, each interval
[xi 1,xi+1] c:I , one of the intervals of the subcovering. The proof
relies heavily upon exploiting the local properties of f on each interval

of fhe finite subcovering.

In choosing St, we consider four cases.
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1. If £'(t) # 0, then choose St > 0 such that
0 < £'(x) < 3f'(y)
for all x, y ¢ It‘n [a,b].
2. If £'(t) = 0 but £''(t) # 0, then choose St > 0 such that
0< £''(x) < 1.5€''(y)
for all x, y e I . [a,b].
3. If £'(t) = £''(t) = 0 but f(s)(t) # 0, then choose 8 > 0 such that
0< £ ¢ 113y

for all x, y & It N [a,b].

4, If £'(t) = f"(t) (3)(t) = 0, then choose 8 such that, for all
ye [t,t+8 )0 [a,b], either

a. f'(y) = 0 or
b. for some constants ml, mz. and r,

ml(y—t) < £y < my(y0)T,

10 ;;
1 g m1 10 and ¢ 2 3,

and, for all y & (t—St,t] n [a,b], either

where T

a. f'(y) =0 or
b. for some constants m3. m4, and s,

my(t-y)° < £(3) < m(t-9)°,
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m
10 , 4 , 11
where T < n, £ 10 and s 2 3.

.It is possible to choose St to satisfy Cases 1-3 because the first three
‘derivatives of f are continumous. If f(4)(t) # 0, then Case 4 follows from
the continuity of f(4). Otherwise, it follows directly from Assumption 2

of Theorem 4.1.

To prove that the induction hypothesis (stated in the abbreviated
proof of Theorem 4.1 in Section 4) remains valid when an approximate
derivative value di is modified in Step 3 of the Extended Two-Sweep
Algorithm, we consider a number of cases depending upon the properties of f

at t, where [x ] c It is the interval under comsideration. We prove

i-1°%i+1
the last case in the induction hypothesis first.

Case 1: Assume that [x ] c It and f'(t) # O.

i-1°%i+1

Case 1.1: Assume that (d, ,.d.) e A, , B, , ,C; ; and d, is
decreased to d; on the Forward Sweep. Hence, di 2 d; 2 3Ai—1‘ Since
A,_; = £'(y) for some y ¢ [x,_,,x;1, it follows from the choice of I that

.
£'(x,) < 3A, .. Therefore,

+ 3
0 < di - f'(xi) £d; - f'(xi) £ ch™,

. +
Case 1.2: Assume that (di’di+1) e Ai and di is increased to di on

the Forward Sweep. If d: < f'(xi), then

' - at ' - 3
0 f (xi) di < f (xi) di £ eh”,

On the other hand, if d: > £'(x,), then
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+ _ . +
0<d, - f (xi) £4d,.

To bound d;, note that f'(x, . .) £ 3Ai by the choice of It' Therefore,

i+l

3
3A, £ d, L 3A; + ch.

This inequality together with the observation that the curve x = (y—3)2 is
contained in M for 3 { y £ 4, shows that d; < (ch3)2. since (d;’di+1) e Ai'

Hence, for h sufficiently small,
I£7(x,) - atl ¢ nd.
i i

Case 1.,3: Since f'(xi_l) < 3Ai_ and f'(xi) < 3Ai’ a similar

1

argument shows that

* 3
’ -
£ (xi) dil £ ch

after the Backward Sweep.

Case 2: Assume that [x ] I and f'(t) =0, but £''(t) # 0.

i-1°%i+1 t
(In this case, t must be one of the endpoints of the interval [a,bl, since

otherwise f would not be monotome.) As in Case 1, the choice of It ensures

that

£9(x, 1) < 3A, 5, £'(x,) <34, 1,

’
f'(xi) < 3Ai’ £ (xi+1) < 3Ai'

- Therefore, a similar argument shows that

*
ler(x) - a1 ¢ b’
1
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at the termination of Step 3 in this case as well.

Case 3: Assume that [x, 1c It. fr(t) = f"(f) =0,

i-1°%i+1
: o(3)
£ °'(t) # 0 and X £t.

Case 3.1: Assume that (d, ,.,d.) e A, , UB, , UC , and d, is
decreased to d:. From the choice of It’ it follows that f'’(x) < 0 for

x eI andx<t. Therefore, f£'(x.) < A, _,. Hence, as in Case 1.1,

+_ o _ e 3
0 < di f (xi) < di f (xi) £ ch,

Case 3.2: Assume that (di’di+1) e Ai

Again, since f'’'(x) < 0 for x ¢ It and x { t, it follows that

and di is increased to d;.

f'(x,..) £ Ai' Consequently, the argument used in Case 1.2 shows that, for

i+l
h sufficiently small,

i) - a1 ¢ ot
£ (xi) dil £ ch

in this case as well,

Case 3.3: Assume that (di'd ) eD u Ei and di is decreased to d;.

i+l i
+
If f'(xi) < .. then

+ 3
0 < di - f'(xi) < di - f'(xi) L ch,

Therefore, assume that f'(xi) > d;, and let v = (t-x )/hi’ Since

i+l

Ai = f'(z) for some z ¢ [xi,xi+1] and f'(x) { 1.1£'(y) for all x, y & It’
it follows from the Taylor series expansions of f'(xi) and £'(z) about t

.that

£9(x,) /8, = f(3)(x)(xi—t)zlf(3)(y)(z—t)z 1) 242,



- 41 -

Consequently, if y 2 1/(w-1), where o = %%, then f'(xi) < 3Ai £ d;, a

‘contradiction. Therefore, 0 { v £ 1/(v-1). A simple calculation, similar

to the one used in the proof of Lemma 5.1, shows that
30, £ d; & £ (x) C3A, 4 elis""'ll_n”,

whence

0 ¢ £r(xp - af <ol Vp’

ijn accordance with the induction hypothesis.

+
Case 3.4: Assume that (di-l’di) e Ei—l and d, is increased to d..

+
If di < f'(xi). then
0 ¢ e(x) - b Loz - 4 Cmexo, sl W00

On the other hand, if d; 2 f’(xi), then an argument similar to the one used

in Case 3.3 together with the induction hypothesis shows that

(4)y ,3 ., ~3
d;_, $3A, 4+ 6lle "' ll_n" + on”,

where ¢ is given in (4.2). Therefore, since y = (x—3)2 is contained in M

+
for 3 { x £ 4 and (di—l’di) € Ei—l’ it follows that

+ + (4) ~2
0¢d, - £(x) <d; < (6lf I+ o,
which, for h sufficiently small, satisfies the induction hypothesis.

Case 4: Assume that [xi-l’xi+1] c I, £'(t) = £''(¢t) =0,

f(s)(t) #0and t {x An argument similar to the one used;in Case 3

1.
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shows that the induction hypothesis holds in this case as well,

(3)

. ’ = fre¢ = =
Case 5: Assume that [xi—l’xi+1J c It’ £r(t) = £'°(t) = £°°(t) =0
* and X1 { t. In this case, either f£'(y) = 0 for all y { t in It or £'(y)
- satisfies the bound in Condition 4b on I . If £'(y) = 0, then both A, _,
and A, are zero. Hence, if d, # 0, then (di-l’di) e C._, and d, is set to
zero on the Forward Sweep of the Extended Two—Sweep Algorithm,
Furthermore, since di is not modified again, di = f'(xi) = 0 at the

termination of the Step 3. Therefore, assume that f’(y) satisfies the

bound in Condition 4b on It throughout the remainder of this case.

Case 5.1: Assume that (d, ,.d.) e A, ;u B, 4v €, , and d, is

decreased to d+. Then, since A,
i i-1

follows from Condition 4b on It that

= £
f'(y) for some y € [xi-l’xi]’ it

, Y S
f (xi)/Ai_1 < m4(t xi) /m3(t y) £1.1,

+
Therefore, since di 2 di 2 3Ai—1’

0¢ d‘; - £'(x) L4 - £1(x) cn3.

Case 5.2: Assume that (di,d ) e A, end d is increased to d:. An

i+l i

argument similar to the one above shows that f'(xi+1) £ 1‘1Ai'

Consequently, as in Case 1.2,

' _ 4t 3
£ (x,) di| < ch

. for h sufficiently small.

Case 5.3: Assume that (di’d ) e Qitl Ei and di is decreased to d:.

i+l
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Hence, if f'(xi) < d:. then

+ 3
0« di - f'(xi) £ di - f'(xi) £ ch™,

‘Therefore, assume that f’(xi) > d;, whence
0¢ £'(x,) - dl € £'(x,)
- i i i’*

To bound f'(xi), let v = (t—xi+1)/hi' Then, since A, = £'(z) for some

zZ e [xi,xi+1],

£1(x) /A, < m4(xi—t)s/m3(z—t)s < 1.1(y+1) 3798

by Condition 4b. Consequently, if y > 1/(w-1), where 0 = %%, then

f'(xi) < 3Ai £ d:, a contradiction. Therefore, 0 { vy { 1/(v-1). Hence, if
s > 3, then f'(xi) = o(h3), and the induction hypothesis holds for h
sufficiently small. On the other hand, if s = 3, then expanding f'(xi) as

a Taylor series about t shows that

=l

f'(x 3

) =1 a0 e,

i

as required.

. +
Case 5.4: Assume that (di_l.di) e E._, and 4, is increased to d..

Then, if d: < £'(x)),
0 < f'(xi) - d; < f'(xi) -d, £ max{c, 8nf(4)“a}h3.

‘On the other hand, if d: 2 f'(xi), let v = (t-xi)/hi-l' Then, an argument

"similar to the one above together with the induction hypothesis shows that

~3
4, £3A, , + o
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for v 2 1/(0-1), where o = éI' Hence, we again have that

-

+ + ~ 3.2
0<d; - £(x) < d; £ (@),

‘Conversely, if 0 { v  1/(w-1), then, for s > 3,

Ai—l = £'(z) m4(t-z)s < m4(7+1)shs = o(hs)’

while, for s = 3,

A, = ' = 2P @0 o

In either case,

0 ¢ at + .1 (4)y .3
0<d; - £(x) <dy (A, <Al

for b sufficiently small.

Case 6: Assume that [x,_ ,x,, 1e I, £(t) = £(¢) = £33 =0
and t £ X g
induction hypothesis holds in this case as well.

A similar argument to the one used in Case 5 shows that the

Case 7: Assume that [x,

[ = (3) =
im1°%g4q) © L £9(8) = £77(2) = £77(t) =0

and t & (xi-l’xi+1)‘ The proof of the induction hypothesis follows easily

from the observation that f'(xi), A,_, and A, are each bounded by

Hen_n3.

This completes the proof of the third case of the induction

hypothesis. We now consider the first two cases.

Case 8: Assume that [xi—1’1i+1] eI, f'(t) = £r'(t) =0,
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f(3)(t) #0and t e (x,_,,x,]. First note that, for h sufficiently small,
[xi_z.xi] c It' Hence, an argument similar to the one presented in

:Case 3.1 shows that f£'(x, ,) < A, ,, from which it follows that, if

(d; 504, 1) & 4y 5 U By G s then

+ 3
0<d, ;- £r(x, 4) L4, 4 - £'(x;_4) L ch™.

Consequently, d satisfies (3.5) at the start of the Forward Sweep for

i-1

di’

Case 8.1.1: Assume that (d, ,.d;) e A, ;. Note that 4, is decreased

to d; only if 4, ; has been increased to d, , and either

+
1. (di-z’di-l) is on the boundary of M, , u B, , u E; 5, or

+
2. (di-l’di) is on the boundary between A. , and B, _,.

In the first case, d;_l 2 Ai—2' But, as previously mentioned,
+
’
o+ Whence f (x,_4) £ 4, ;. Therefore, by Lemma 5.2,

£(x, ) <A <

1 i-

l£9(x,) - a}l ¢ maxte, pele™ 303,

+
On the other hand, if (di-l’di) is on the boundary between A, , and B._,,
then the following case applies after noting that (d;_l.di) is closer to

the boundary of M, than (d, ,,d ) was.

i

.

Case 8.1.2: Assume that (di_l.di) & Ei—l U gi_l and d, is decreased

to d:. A simple calculation shows that the vertical distance from
.(di—l’di) to the boundary of !i—l 1) gi_l is less than or equal to 2.75
times the minimum distance from'(di_l,di) to the boundary of !i—l‘ From

inequalities (5.1), (5.2) and the error bounds omn di— and di,“it follows

1
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that the distance from (di_l.di) to the boundary of !i—l is less than or

equal to
(2¢ + =40 Hnd
24 o = °
Consequently,
_ 4t Spe(4) 3
l£9(x) - d;1 < (6.5¢ + gle™ "N )n”.

Case 8.2: Assume that (d ) & Ai and that di is increased to d;.

i'di+1
If d; < f'(xi). then we again have that

. _ _ Spe(4) g 1.3
0 < £'(x) - d; L £(xy) - d, & (650 + GleT L.
On the other hand, if d: 2 f’(xi), then
+ _ o +
0¢d; - £(x)) Ld.

Because t & (xi_l.xi], an argument similar to the one presented in Case 3.2

shows that

3 (4) 3 3
di'l'l .(. f'(xi"'l) + ch .<_ 3Ai + 6“f n”h + ch

and
a} ¢ 6le 1 + %58,
which completes the analysis of this case.

Case 8.3: Assume that (di’di+1) e D .y E, and that d, is decreased

+ + . ;
to di’ Therefore, di 2 di 2 3Ai’ However, since t & (xi-l’xi?’

’
f (xi) < Ai' Hence,
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+ _ _ S5p.(4) 3
0<d - £(x) £d - £9(x) < (6.5¢ + M OB,

and that d, is increased to

Case 8.4: Assume that (d _,.d ) e E_, i

s + .
di' If di < f (xi), then

, _ .t . _ S5pe(4) 3
0 < £'(x,) - d; < £'(x;) - d; £ (6.50+ an )

Therefore, assume that d; 2 f'(xi). In addition, note that, if
(d;_,,d,) e E_,, then we could not have had (d, ;-d,) e A, _, on the

Forward Sweep. Therefore, the bound

3
'di-l - f'(xi_1)| £ ch

established at the beginning of Case 8 still holds. Moreover, since the
slope of the curve that forms the boundary between M and E is less than or

equal to one,
+ Tp(4) 3
0<d - £'(x;) & (c# L ).

Case 9: Assume that [x, _,x.
i-1°74

).

ol S L. £7(0) = £ =0,

f(s)(t) #0and t ¢ [xi,xi+1

3 u U Y
Case 9.1: Assume that (di-l’di) € Ai—l 51—1 gi_l and di is

+ +
decreased to di' Therefore, di 2 di 2 3Ai—1' However, f'(xi) 4 A4 by

the choice of It‘ Hence,

+ _ e - g 3
0 < di f (xi) < d; £ (xi) {ch” .,

Case 9.2: Assume that (di’d ) & Aﬁ and di is increased to d:. If

i+l
+ , -
di £ £ (xi), then :

1] - + - 3
0 £ (x)—a; f'(x) -d, Lob,



- 48 -

Therefore, assume that d; 2 f‘(xi). Note that the inverse of the slope of

the curve that forms the boundary between M and A is less than or equal to

:one, Therefore, as in Case 8.4,
+_ (4)p 1,3
0¢d - £z & (o + gl VIR,

Case 9.3: Assume that (di’di+1) € QinJ Ei‘ Since di 2 3Ai’ di could

not have been modified in Case 9.2. Hence, di must still satisfy (3.5).

Consider the following two subcases.

Case 9.3.1: Assume that (di’d ) e E,. Note that d, is decreased

i+l
+ +
to di only if di+1 was increased to di+1 and either

+
1. (di+1'di+2) is on the boundary of !i+1’ or

+
2. (di’di+1) is on the boundary between D. and E

+ cas
In the first case, di+1 2 Ai+1‘ In addition, f'(xi+1) A by the choice

= Ti+l

+
’
of It' Therefore, f (xi+1) £ di+1 and

l£7(x)) - afl ¢ maxte, e 0 3n

by Lemma 5.2. On the other hand, if (di,d:+1) is on the boundary between

+
D, and gi, then the following case applies after noting that (di’di+1) is

closer to the boundary of !i than (di’di+1) was.

Case 9.3.2: Assume that (di’di+1) e D, and that d, is decreased to
:. As in Case 8.1.2, note that the horizontal distance from (di'di+1) to

d
_the boundary of !i is less than or equal to 2.75 times the minimum distance

from (di,d ) to the boundary of !i' Moreover, inequalities (5.1), (5.2)

i+l
and the induction hypothesis on the error in di+1 imply that the distance
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from (di’d

i+1) to the boundary of !i is less than or equal to

(7.5¢ + e Hr’.
- Consequently,

+
I

99y . (4) 113 ,,3
I£0(x)) - a;1 < GIIE T, + =g,

Case 9.4: Assume that (d, .,d.) ¢ E, . and d, is increased to df.
i-1°714 i-1 i i

If d; < f'(xi). then we again have that
o+ _ 99y .(4) 173 .3
0« £(x,) - a; < £'(x)) -, < (AT, + e,
On the other hand, if d; 2 £'(x)), then
0 ¢t - £z < af < e+ maxte.sle U 0%,

which follows from an argument similar to the one used in Case 3.4 after

noting that

d;_ $3A, o+ (6If(4)ﬂ° + max{c.s}ﬂf(4)ﬂ°})h3.

Q."‘E’ 'D 3





