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TOPOLOGICAL BOUNDS FOR FOURIER COEFFICIENTS

AND APPLICATIONS TO TORSION

STEFAN STEINERBERGER

Abstract. Let Ω ⊂ R2 be a bounded convex domain in the plane and consider

−∆u = 1 in Ω

u = 0 on ∂Ω.

If u assumes its maximum in x0 ∈ Ω, then the eccentricity of level sets close to the maximum

is determined by the Hessian D2u(x0). We prove that D2u(x0) is negative definite and give a

quantitative bound on the spectral gap

λmax
(
D2u(x0)

)
≤ −c1 exp

(
−c2

diam(Ω)

inrad(Ω)

)
for universal c1, c2 > 0.

This is sharp up to the constant. Our proof is based on a new lower bound for Fourier coefficients

whose proof has a topological component: if f : T → R is continuous and has n sign changes,

then
n/2∑

k=0

|〈f, sin kx〉|+ |〈f, cos kx〉| &n

|f‖n+1
L1(T)

‖f‖n
L∞(T)

.

This statement immediately implies estimates on higher derivatives of harmonic functions u in
the unit ball: if u is very flat in the origin, then the boundary function u(cos t, sin t) : T → R
has to have either large amplitude or many roots. It also implies that the solution of the heat

equation starting with f : T→ R cannot decay faster than ∼ exp(−(#sign changes)2t/4).

1. Introduction

1.1. Introduction. When studying the solution of elliptic equations on planar domains, there
is a clear tendency for level sets to become more elliptical and regular. Different aspects of this
phenomenon have been studied for a long time and there are many classical results [4, 5, 6, 7, 9,
12, 18, 19, 22, 26, 28]; these results are usually centered around the question whether the level sets
are convex or remain convex if the underlying domain is convex. Despite a lot of work, the subject
is still not thoroughly understood. A very simple question is whether the solution of −∆u = f(u)
on a convex domain Ω with Dirichlet boundary conditions ∂Ω always has convex level sets – this
is fairly natural to assume (see e.g. P.-L. Lions [17]) and was only very recently answered in the
negative by Hamel, Nadirashvili and Sire [10].

Figure 1. A cartoon picture of what ’typical level sets’ of −∆u = f(u) could look like
(left) and how they probably will not look like (right).
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2. Main Results

2.1. The torsion function. We consider, for bounded, convex Ω ⊂ R2, the torsion function

−∆u = 1 in Ω

u = 0 on ∂Ω.

The torsion function is perhaps the classical object in the study of level sets of elliptic equations.
Makar-Limanov [20] proved that on planar convex domains

√
u is concave: it follows that level

sets are convex and that there is a unique global maximum (see [12, 15] for higher dimensions).
We observe, by simple Taylor expansion, that the eccentricity of the level sets close to the point
x0 in which the (unique) maximum is achieved is determined by the eigenvalues of the Hessian
D2u(x0). Clearly, every eigenvalue λ of D2u(x0) satisfies λ ≤ 0. Moreover,

λ1 + λ2 = trD2u(x0) = ∆u(x0) = −1,

which means that ellipses can only be highly eccentric if one of the two eigenvalues is close to 0.
Our main result provides a sharp upper bound on eigenvalues of the Hessian in the maximum.

Theorem 1. Let Ω ⊂ R2 be a bounded, planar, convex domain and assume the solution of

−∆u = 1 in Ω

u = 0 on ∂Ω.

assumes its maximum in x0 ∈ Ω. There are universal constants c1, c2 > 0 such that

λmax
(
D2u(x0)

)
≤ −c1 exp

(
−c2

diam(Ω)

inrad(Ω)

)
.

This result has the sharp scaling. A simple example (given below) shows that the level sets can
be extremely degenerate: close to the maximum, they can look like ellipses with eccentricity that
is exponential in diam(Ω)/ inrad(Ω) but not more eccentric than that. It is known [14] that

log

(
1

4
− det(D2u)

)
is harmonic

in points satisfying det(D2u) < 1/4. This implies that there is nothing particularly special about
the value of det(D2u(x)) in x0 and any neighborhood contains points where it is larger and points
where it is smaller. Moreover, the determinant will tend to 0 in the vicinity of those parts of
the boundary that are line segments. On domains with strictly convex boundary, the behavior is
much more regular and classical methods apply; we prove the following simple result.

Proposition 1. Let ∂Ω have curvature κ > 0 and assume the solution of

−∆u = 1 in Ω

u = 0 on ∂Ω.

assumes its maximum in x0 ∈ Ω. Then, for a universal constant c > 0,

λmax
(
D2u(x0)

)
≤ − c

inrad(Ω)2

min∂Ω κ

max∂Ω κ3
.

We do not believe this to be the sharp result but it clearly shows that an exponentially small
spectral gap requires parts of the boundary to have very small curvature. While we are not aware
of any result on general convex domains in the literature, the special case of strictly convex domains
has been studied by Payne & Philippin [24] and our approach to Proposition 1 is inspired by their
paper. One possible application of the result is in the study of Brownian motion: we recall that
the torsion function u(x) also describes the expected lifetime of Brownian motion ωx(t) started in
x until it first touches the boundary. Our results may be understood as a stability property of the
maximal lifetime of Brownian motion on a long, thin convex domain: if one moves away from the
point in which lifetime is maximized, then the expected lifetime in a neighborhood is determined
by the eccentricity of the level set.
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2.2. Topological bounds for Fourier coefficients. Somewhat to our surprise, part of our proof
turned out to require new results for Fourier series. The first result is so simple that we can prove
it in very few lines (more quantitative versions of the statement are discussed further below).

Lemma 1. If f : T → R is continuous, orthogonal to {1, sinx, cosx, sin 2x, . . . , cosnx} and has
2n+ 2 roots, then f cannot be orthogonal to both sin (n+ 1)x and cos (n+ 1)x.

Proof. We assume the statement fails and start by constructing the conjugate function Hf via
the Hilbert transform: if

f(x) =
∑

k≥n+2

ak sin kx+ bk cos kx, then Hf(x) =
∑

k≥n+2

bk sin kx− ak cos kx.

The Poisson extension of f + iHf is holomorphic inside the unit disk. This function has a root of
order at least n+ 2 in the origin, which means that the total number of roots inside the unit disk
is at least n+ 2. However, this is also the winding number of f(eit) + iHf(eit) around the origin,
which implies the existence of at least 2n+ 4 real roots of f , which is a contradiction. �

The statement is clearly sharp in all sorts of ways – an equivalent way to state it is that any
continuous function f ∈ C(T) in the orthogonal complement of {1, sinx, cosx, sin 2x, . . . , cosnx}
has at least 2n + 2 roots: it seems so fundamental that it must surely be known. There is no
straightforward way to make it quantitative: if positive and negative L1−mass are close to each
other, then the Poisson extension can induce a lot of cancellatio, which might make the function
very small in the interior. Nonetheless, assuming some degree of regularity (here: f being bounded)
allows to control the extent to which cancellation occurs.

Theorem 2. Let f : T → R be a continuous function having n sign changes. There exists a
universal constant cn > 0 such that

n/2∑

k=0

|〈f, sin kx〉|+ |〈f, cos kx〉| ≥ cn
|f‖n+1

L1(T)

‖f‖nL∞(T)

.

In particular, multiple roots without a sign change do not affect the scaling. The proof is using
compactness and Lemma 1 in an essential way: in particular, there is no control over the constant
cn. The Poisson Kernel immediately allows to deduce a completely equivalent formulation for
harmonic functions, which is the form in which we will use the statement.

Corollary 3. Let u : D → R be harmonic, let u
∣∣
∂D be continuous and having n sign changes.

Then, for some universal cn > 0,

n/2∑

k=0

∣∣∣∣
∂ku

∂xk
(0, 0)

∣∣∣∣+

∣∣∣∣
∂ku

∂yk
(0, 0)

∣∣∣∣ ≥ cn
‖u
∣∣
∂D‖

n+1
L1(T)

‖u
∣∣
∂D‖nL∞(T)

.

Here, we understand the 0−th derivative as point evaluation. The statement tells us that if a
harmonic function is very flat around the origin, then it either has large amplitude or a large
number of roots on the boundary – our proof of Theorem 1 requires the statement only for n = 4.

2.3. Decay of the heat equation. Another interesting application of the result is in the study of
lower bounds on the decay of the heat equation on T for continuous initial datum f : T→ R. The
solution of the heat equation et∆f at time t = 1 is given by the convolution with the heat kernel
θ1, where θt is the Jacobi theta function (see the proof for more details). If we take f(x) = sin kx,
then it is easy to see that

‖θ1 ∗ f‖L2(T) ∼ e−k
2

and ‖f‖L2(R) ∼ 1.

Clearly, the question is how the L2−norm of f is distributed in the Fourier spectrum and it is not
terribly difficult to connect the notion of oscillation with that of decay of the heat equation. A
rather simple result, similar to results in [1, 16] but much simpler, would be the following.
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Proposition 2. There exists a universal c > 0 such that for all differentiable f : T→ R

‖θ1 ∗ f‖L2(T) & exp

(
−c
‖f ′‖4L1(T)

‖f‖4L2(T)

)
‖f‖L2(T)

and

‖θ1 ∗ f‖L2(T) & exp

(
−c
‖f ′‖2L2(T)

‖f‖2L2(T)

)
‖f‖L2(T).

We observe that the second estimate is sharp for sin (kx). One particular consequence of Theorem
2 is sharp control depending on the number of roots: as one would expect, rapid decay of the
solution of the heat equation requires the presence of oscillations.

Corollary 4. Suppose f : T→ R is continuous and changes sign n times. Then, for fixed t > 0,

‖θt ∗ f‖L∞(T) &n,t
|f‖n+1

L1(T)

‖f‖nL∞(T)

.

We observe that the implicit constant decays at least like e−n
2t. The Corollary follows immediately

from Theorem 2, however, we find it easier to reverse the arguments, establish Corollary 4 directly
and then derive Theorem 2 as a consequence.

2.4. Outline of the paper. We discuss several open problems in Section §3. The proof of
Corollary 4 is given in Section §4 and will then imply Theorem 2. Theorem 1 is established
in Section §5, which also contains a series of explicit computations for the rectangle that show
Theorem 1 to be sharp. Section §6 gives the proofs of Proposition 1 and 2.

3. Open problems

1. Convexity of the Domain. Does Theorem 1 also hold true on domains that are not convex but
merely simply connected or perhaps only bounded? The proof uses convexity of the domain Ω in
a very essential way and it is not clear to us whether the statement remains valid in other settings.

2. General elliptic equations. The question how level sets of elliptic equations behave close to the
maximum to be of great intrinsic interest. It would be desirable to have analogous statements for
other elliptic equations; one might be inclined to believe that the torsion function behaves in a
rather atypical manner and that most elliptic equations cannot have very eccentric level sets close
to their maximum. Consider, for example, the first Laplacian eigenfunction

−∆φ1 = λ1φ1 in Ω

u = 0 on ∂Ω

on a rectangle Ω = [−D,D]× [−1, 1] given by

φ1 = cos

(
2

Dπ
x

)
cos
(π

2
x
)

satisfying D2u(0, 0) =

(− 4
π2D

−2 0

0 −π2

4

)
.

This suggests (diam(Ω)/ inrad(Ω))2 as the natural candidate for the largest possible eccentricity
of level set close to the maximum for this particular equation.

3. Estimates for Harmonic Functions and Fourier series. A entirely different family of problems
arises naturally from Lemma 1 (and Corollary 3). Let Bn be the unit ball in Rn and let u : Bn → R
be harmonic. Is there an upper bound of the form

[order of vanishing of u in 0] . Hn−2 ({‖x‖ = 1/2 : f(x) = 0})α ,
where α > 0 is a constant possibly depending on the dimension andHn−2 is the (n−2)−dimensional
Hausdorff measure? Lemma 1 establishes the result for n = 2 and α = 1 but the topological aspect
of our proof does not seem to generalize. It would, of course, also be of great interest to have
versions of Theorem 2 in a more general context and this, too, seems challenging.



5

4. Proof of Theorem 2

We start by establishing Theorem 2 since we require it to prove Theorem 1. One crucial ingredient
of the proof will be the heat equation, which is completely explicit: we let

θt(x) =
1

2π
+

1

π

∞∑

n=1

e−n
2t cos (nx) denote the Jacobi θ−function

and observe θt(x) ≥ 0, the symmetry θt(x) = θt(2π − x),
∫ 2π

0

θt(x)dx = 1 and θt(x) ∼
{

1/
√
t for |x| .

√
t

0 otherwise.

We also remark that (
∂

∂t
−∆

)
(θt ∗ f) = 0,

i.e. that θt ∗ f gives the solution of the heat equation with initial datum f . In particular, θt can
be interpreted as a Fourier multiplier which implies that it preserves orthogonality to subspaces.
Another crucial property is that for continuous f : T→ R the function θt ∗ f has at most as many
roots as f . The third important property is that the rapid decay on Fourier coefficient it induces
serves as a way to obtain compactness.

Before embarking on the proof, we note an elementary observation coming from linear algebra.
Let f : R → R be compactly supported and suppose that the sum of the number of connected
components of {x : f(x) > 0} and {x : f(x) < 0} is n.

Lemma 2. There exists a polynomial of degree n− 1 such that∫

R
p(x)f(x)dx 6= 0.

Proof. Let V denote the n−dimensional vector space of polynomials of degree n − 1. We denote
the connected components of {x : f(x) > 0} and {x : f(x) < 0} by I1, I2, . . . , In and construct a
linear map T : V → Rn via

T (p) =

(∫

I1

p(x)f(x)dx,

∫

I2

p(x)f(x)dx, . . . ,

∫

In

p(x)f(x)dx

)
.

If the statement were to fail, then T maps V into the (n− 1)−dimensional subspace
{

(x1, . . . , xn) ∈ RN : x1 + x2 + · · ·+ xn = 0
}

and, as a consequence, ker(T ) 6= ∅. Let p ∈ ker(T ). We observe that p has to have at least one
root inside every interval Ij , which implies that p has n roots and this is a contradiction. �
4.1. Proof of Corollary 4.

Proof. We want to show that, for fixed t > 0,

‖θt ∗ f‖L∞(T) &n
|f‖n+1

L1(T)

‖f‖nL∞(T)

.

We assume the statement fails and use the scaling symmetry to extract a subsequence fk normal-
ized to ‖fk‖L1(R) = 1 and having at most n roots such that

‖θt ∗ fk‖L∞(T)‖fk‖nL∞(T) → 0.

The normalization ‖fk‖L1(R) = 1 implies ‖fk‖L∞(R) & 1, which immediately implies

‖θt ∗ fk‖L∞(T) → 0.

This condition actually implies that the term goes to 0 for all values of t > 0, which can be seen
as follows. Suppose the statement fails and that ‖θs ∗ fk‖L1(T) ≥ δ > 0 for infinitely many n ∈ N
for some 0 < s < t. It is easily seen that

‖∇θs ∗ fk‖L2(T) .s ‖fk‖L1(T) = 1.
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Moreover, by Cauchy-Schwarz

‖θs ∗ fk‖L2(T) & ‖θs ∗ fk‖L1(T) ≥ δ for infinitely many k.

Expanding into Fourier series (and using orthogonality to constants) gives that for such k

δ2 . ‖θs ∗ fk‖2L2(T) =
∑

j∈Z

∣∣〈θs ∗ fk, eijx
〉∣∣2 ≤

∑

j∈Z
|j|2

∣∣〈θs ∗ fk, eijx
〉∣∣2 = ‖∇(θs ∗ fk)‖L2(T) . 1,

which implies that at least half of the L2−mass lies at frequencies |k| . δ−1. Then, however, using
the semigroup property

‖θt ∗ fn‖2L2(T) = ‖θt−s ∗ θs ∗ fk‖2L2(T) =
∑

j∈Z
e−j

2(t−s) ∣∣〈θs ∗ fk, eijx
〉∣∣2

≥
∑

j∈Z
|j|.δ−1

e−j
2(t−s) ∣∣〈θs ∗ fk, eijx

〉∣∣2 & e−δ−2(t−s) ∑

j∈Z
|j|.δ−1

∣∣〈θs ∗ fk, eijx
〉∣∣2

& e−δ−2(t−s)‖θs ∗ fk‖2L2(T) & e−δ
−2(t−s)δ > 0.

This trivially yields

‖θt ∗ fk‖2L∞(T) & e−δ
−2(t−s)δ > 0,

which then implies

‖θt ∗ fk‖L1(T) & e−δ
−2(t−s)δ > 0,

and contradicts the assumption ‖θt ∗ fk‖L∞(T) → 0. We now define, for any such function fk and
any fixed δ > 0, the set that is δ−far away from the roots

Aδ = {x ∈ T : distance between x and closest root of fk ≥ δ}
and obtain that

lim
k→∞

∫

Aδ

|fk|dx = 0

because otherwise one would not obtain ‖θt ∗ fk‖L∞(T) → 0 (here a suitable t leading to a con-

tradiction would then be on the scale t ∼ δ2+). This implies that the interesting example, in
order to have rapid cancellation, need to have essentially all their L1−mass close to a root. We
now interpret the roots of fk as a sequence in Tn. Clearly, there exists a convergent subsequence,
which we again denote by fk, for which the roots also converge. There are now a variety of possible
scenarios: all roots could remain separated, two of the roots could converge to the same point
while all other roots remain separated, all roots could converge on the same point or any other
number of scenarios. We will only deal with the case where all roots converge to the same point,
our argument immediately extends to all other cases and also shows that all the other cases cannot
yield the sharp scaling. We have already seen that all the L1−mass has to converge towards the
limit point of the roots. We observe that if

‖θt ∗ fk‖L∞(T)‖fk‖nL∞(T) → 0,

then we also have
‖θs ∗ fk‖L2(T)‖fk‖nL∞(T) → 0 for all s ≥ t.

This allows us to take the entire set θs for, say, t < s < 2t and all its translations and use the
triangle inequality to conclude that for all functions

g ∈





N∑

j=1

αjθsj (x− βj) : N ∈ N, αj ∈ R, βj ∈ T





we necessarily also have ‖g∗fk‖L2(T)‖fk‖nL∞(T) → 0. We note that this set is an infinite-dimensional

subspace and simple expansion in Fourier series shows that for 0 < s1 < s2 < · · · < sk < ∞,
the functions θs1 , θs2 , . . . , θsk are, when put together with their first k − 1 derivative, linearly
independent (in the sense of the Wronskian). Since fk ∗ g being uniformly small for all g means
that 〈fk, g(· − β)〉 is uniformly small: this is only possible if there are local oscillations on a small
scale that use the high degree of smoothness of g to induce cancellations. At the same time the
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functions fk cannot be too concentrated, the normalization ‖fk‖L1(R) = 1 forces the roots to be
on scale & 1/‖fk‖L∞(R). A simple Taylor expansion of g in a point and Lemma 4 imply that the
leading contribution will come from one of the first n derivatives since fnk cannot vanish on all
polynomials of degree n and this implies the result: higher derivatives yield smaller contributions
and by taking g to have a nontrivial n−derivative, we see

‖g ∗ fk‖L∞(T) & (scale)n = ‖fk‖−nL∞(R)

and this gives the statement. �

The proof, as a byproduct, allows us to construct examples showing that the result is sharp and
suggests more refined statements. The construction is inspired by the second-order differential
quotient

g′′(x) ∼ g(x)− 2g(x+ ε) + g(x+ 2ε)

ε2
.

We define a function f : T→ R by

f(θ) =





1 for 0 ≤ x ≤ ε
−2 for ε < x ≤ 2ε

1 for 2ε < x ≤ 3ε

0 otherwise.

f satisfies ‖f‖L∞(T) = 2, ‖f‖L1(T) = 4ε, it changes sign exactly 2 times and has

‖θt ∗ f‖L∞(T) ∼t ε3 ∼ ‖f‖3L1(T).

The coefficients in more general numerical differentiation schemes immediately give a construction
for the more general case. The proof allows for improved statements: as long as not too many
roots cluster in a certain area, the decay cannot be faster than ‖f‖k+1

L1(T)/‖f‖kL∞(T), where k is the

maximal number of roots that cluster in a point. Moreover, whenever these inequalities are cose
to being attained, then f has to be close to a numerical differentiation scheme that vanishes on
the first few derivatives.

4.2. Proof of Theorem 2.

Proof. The proof proceeds by contradiction and compactness. The scaling symmetry allows us to
assume that ‖f‖L1(T) = 1 and it suffices to show that then

‖f‖nL∞(T)



n/2∑

k=0

|〈f, sin kx〉|+ |〈f, cos kx〉|


 &n 1.

We assume now that there exists a sequence f`, all elements of which are normalized ‖f`‖L1(T) = 1
and have at most n roots such that

‖f`‖nL∞(T)



n/2∑

k=0

|〈f`, sin kx〉|+ |〈f`, cos kx〉|


→ 0.

We take a small t > 0 and consider the mollification of the sequence f` given by θt ∗ f`. Corollary
4 gives

‖θt ∗ f`‖L∞(T)‖f`‖nL∞(T) & 1.

This means, however, that there exists a sequence λ` with λ` . ‖f`‖nL∞(T) such that

‖θt ∗ (λ`f`)‖L∞(T) = 1.

We note that, since the heat equation is a diffusion process, the number of roots of θt∗(λ`f`) cannot
exceed that of f`, which implies that φ has at most n sign changes. The induced compactness
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implies the existence of a converging subsequence, which we again denote by f` such that λ`f` → φ
and then, necessarily, ‖φ‖L∞(T) = 1. We observe that, for fixed t > 0,

‖f`‖nL∞(T)



n/2∑

k=0

|〈f`, sin kx〉|+ |〈f`, cos kx〉|


 ≥



n/2∑

k=0

|〈λ`f`, sin kx〉|+ |〈λ`f`, cos kx〉|




≥



n/2∑

k=0

|〈θt ∗ (λ`f`), sin kx〉|+ |〈θt ∗ (λ`f`), cos kx〉|




→



n/2∑

k=0

|〈φ, sin kx〉|+ |〈φ, cos kx〉|


 .

This implies 

n/2∑

k=0

|〈φ, sin kx〉|+ |〈φ, cos kx〉|


 = 0,

which contradicts Lemma 1. �

5. Proof of Theorem 1

5.1. An explicit computation for rectangles. In this section, we quickly record the torsion
function v on the rectangle [−a, a]× [−b, b] ⊂ R2. We think of a as the ’long’ side and b ∼ 1 as the
short side. A fairly standard way to solve the problem is to start with an ansatz b2−y2 solving the
equation in the interior and then adding a harmonic function with correcting boundary condition,
which can be done in closed form because the rectangular domain allows for the use of Fourier
series (we refer to standard textbooks, e.g. [27], for details). The final expression is

v(x, y) = (b2 − y2)− 32b2

π3

∑

n≥1
n odd

(−1)(n−1)/2

n3 cosh nπa
2b

cos
nπy

2b
cosh

nπx

2b
.

It is easy to see that ∆v = −1 and that v(x,±b) = 0. It remains to check the boundary conditions
v(±a, y). There, however,

b2 − y2 =
32b2

π3

∑

n≥1
n odd

(−1)(n−1)/2

n3
cos

nπy

2b
for − b ≤ y ≤ b

is merely the standard Fourier series. We also compute, for future reference,

∂2v

∂x2
(0, 0) = − 8

π

∑

n≥1
n odd

(−1)(n−1)/2

n cosh nπa
2b

.

We note that this is an alternating series and, using coshx = (ex + e−x)/2 ≤ ex for x > 0,

∂2v

∂x2
(0, 0) ≤ − 8

π

(
1

cosh πa
2b

− 4

cosh 2πa2b

)
≤ − 4

π

1

cosh πa
2b

≤ − 4

π
exp

(
−π

2

a

b

)

which we can also phrase as
∂2v

∂x2
(0, 0) ≤ − 4

π
exp

(
−π

2

a

b

)
.

Note that, by merely taking the first term of the alternating series, we get that

∂2v

∂x2
(0, 0) ≥ − 8

π

1

cosh πa
2b

≥ −16

π
exp

(
−π

2

a

b

)
,

which shows that our main result is sharp. We also remark that

∂2v

∂x2
+
∂2v

∂y2
= ∆v = −1
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and thus

−1 +
1

2π
exp

(
−π

2

a

b

)
≤ ∂2v

∂y2
(0, 0) ≤ −1 +

2

π
exp

(
−π

2

a

b

)
.

5.2. Order of Vanishing. We first establish a simple estimate that generalizes Lemma 1 to
simply connected domains in the plane. The actual argument is not substantially different and
Riemann mapping would serve as an alternative way to approach the statement by reducing it
to the case of the unit disk. We consider it instructive, however, to see how the result could be
approached from the perspective of partial differential equations (in particular, no complexification
occurs). We emphasize again that the result is very likely to be already known.

Lemma 3. Let Ω ⊂ R2 be a simply connected domain, let f : ∂Ω→ R be continuous and denote

∆u = 0 in Ω

u = f on ∂Ω.

Then, for any x0 ∈ Ω,

[order of vanishing of u in x0] + 1 ≤ 1

2
# {y ∈ ∂Ω : f(y) = 0} .

Proof. Assume u vanishes up to order m ∈ N in x0 ∈ Ω. This means that the function vanishes
together with derivatives up to some derivative of order m+ 1 that does not vanish. It is classical
(see e.g. Bers [8]) that locally in a neighborhood of x0, i.e. for all x ∈ B(x0, ε)

u(x) =
∑

k=m

akpk(x− x0) + l.o.t.

for harmonic polynomials pk starting at order m and coefficients ak ∈ R. Harmonic polynomials
in the plane are merely given by rotations of

p(r, θ) = rk cos (kθ),

which restricts the structure of the nodal line: locally, the zero set is given by 2m curves that
partition the neighborhood into 2m domains.

x0

u > 0
u < 0

u > 0

u < 0

u < 0

u > 0

Figure 2. The set {x : u(x) = 0} near x0 if u vanishes in x0 together with gra-
dient and Hessian but has a nonvanishing third derivative.

We conclude by noting that every single one of these lines has to touch the boundary because no
two such lines can meet: if they did, they would enclose a domain. Since u is harmonic and vanishes
on the boundary of the domain, it would be identically 0 in the inside, which is a contradiction.
on which the function u is harmonic. This gives rise to 2m roots of the boundary function f . �

The usual harmonic polynomials on the disk show the result to be sharp. We will use the following
special case: if f has exactly 4 roots and u(x0) = 0, then u can vanish simultaneously with ∇u
but not all second derivatives vanish.
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5.3. Proof of Theorem 1.

Proof. Let Ω ⊂ R2 be a bounded, planar, convex domain with diameter diam(Ω), inradius inrad(Ω)
and assume that

−∆u = 1 in Ω

u = 0 on ∂Ω

has its global maximum in x0 ∈ Ω. The result of Makar-Limanov [20] implies that x0 is unique.
There is a scaling symmetry for solutions on rescaled domains Ω→ λΩ

u(x, y)→ λ2u
(x
λ
,
y

λ

)
for λ > 0,

which keeps the Hessian invariant and allows by scaling to assume that the domain satisfies
inrad(Ω) = 1. By rotating and translating the domain Ω, we may assume that x0 = (0, 0) and
that D2u(x0) has the form

D2u(x0) =

(
λ0 0
0 1− λ0

)

and that |λ0| � 1 is the eigenvalue close to 0. The goal is now to bound this quantity from above.
Note that inrad(Ω) = 1 and convexity of Ω imply u(x0) = u(0, 0) ∼ 1 up to absolute constants.
We will now consider the rectangle

R = [−10 diam(Ω), 10 diam(Ω)]× [−a, a] ⊂ R2

where a is an unknown to be determined implicitly; we also consider the torsion function on the
rectangle as

−∆v = 1 in R

v = 0 on ∂R.

Standard estimates imply that v(0, 0) ∼ a2 as long as a ≤ diam(Ω) and that v(0, 0) is mono-
tonically increasing in a. This allows us to implicitly define a∗ as the unique value for which
v(0, 0) = u(0, 0) and we henceforth use R to denote the rectangle with that side length. We note
that if Ω1 ( Ω2, then the maximum of the torsion function on Ω2 is larger than the maximum of
the torsion function on Ω1. This implies that Ω does not contain R – the convexity of Ω and the
fact that R is comprised of 4 straight line segments (2 of which guaranteed to be outside of Ω)
poses severe geometric restrictions on the setup.

x0 = (0, 0)

R

Ω \R
Ω ∩R

Figure 3. The first case: Ω \R has one connected component.

We start by looking at the first case, Ω \ R having one connected component, and show that it
cannot occur: note that the function v − u satisfies

∆(v − u) = 0 on Ω ∩R
v − u ≥ 0 on ∂ (Ω ∩R)

and, moreover, that v − u > 0 on some subset of ∂ (Ω ∩R). Moreover, by construction, u(0, 0) =
v(0, 0) and ∇(v − u)(0, 0) = 0, which implies that there are at least 4 roots on the boundary and
this is a contradiction. We proceed to analyze the second case of Ω \ R having two connected
components (and convexity of Ω implies that this is an exhaustive case distinction).
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x0 = (0, 0)

R

Ω \R

Ω \R

Ω ∩R

Figure 4. The second case: Ω \R has two connected components.

The second case can actually occur. We note again that

∆(v − u) = 0 on Ω ∩R
and that v − u is therefore harmonic. It has exactly 4 roots on the boundary, which implies that
it may vanish in (0, 0) simultaneously with its derivatives but cannot have the Hessian vanish as
well. Moreover, we note that both Hessians of both functions are diagonal. We will now consider
the Riemann mapping

φ : D→ Ω ∩R
that sends the origin to the point x0 in which the maximum is assumed. By construction, (v−u)◦φ
is a harmonic function in the unit disk. The Koebe Quarter Theorem implies that φ : D →
Ω ∩ R interpreted as an analytic function satisfies |φ′(0)| ≤ 4. This implies that the second
order derivatives of (v − u) and (v − u) ◦ φ are comparable in the origin. We have a fairly good
understanding of the values of v − u on the shorter sides (where it is simply given by v): up
to small errors (that one could make precise), it behaves roughly like 1 − y2. In particular, this
implies that

‖v − u‖L1(∂Ω) & 1.

It is therefore required to understand the amount to which distortion of these areas can happen.
Classical estimates on harmonic measure then imply that this distortion is at most exponential in
diam / inrad and this implies

‖(v − u) ◦ φ‖L1(∂D) & exp

(
−β diam(Ω)

inrad(Ω)

)
for some universal β > 0.

We can now employ Corollary 3 (with n = 2) and derive the existence of a direction ν such that
∣∣∣∣
∂2

∂ν2
[(v − u) ◦ φ] (0, 0)

∣∣∣∣ &
‖(v − u) ◦ φ‖5L1(∂D)

‖(v − u) ◦ φ‖4L∞(∂D)

& exp

(
−5β

diam(Ω)

inrad(Ω)

)
.

�

6. Proof of the Propositions

6.1. Proof of Proposition 1. This argument is much simpler and relies on a series of existing
results based around the Makar-Limanov function. Since Makar-Limanov’s original paper [20] is
not easy to find, we explicitly point out the papers of Henrot, Lucardesi & Philippin [11] and
Keady & McNabb [14] who describe the original approach.

Proof. Let

−∆u = 1 in Ω

u = 0 on ∂Ω.

We employ the Makar-Limanov function P (u)

P (u) =
〈
∇u, (D2u)∇u

〉
− |∇u|2∆u+ u

(
(∆u)2 −D2u ·D2u

)
,



12

where · denotes the Hadamard product. P is superharmonic and therefore assumes its minimum
on the boundary

P ≥ minP
∣∣
∂Ω
.

A standard bound for this quantity is given by Payne & Philippin [23]

P
∣∣
∂Ω
≥ 1

8

min∂Ω κ

max∂Ω κ3
,

where κ is the curvature of the boundary of Ω. Let us now assume w.l.o.g. that x0 = (0, 0) ∈ R2

and that a local Taylor expansion (after possibly rotating the domain) is given by

u(x, y) = ‖u‖L∞(Ω) −
a

2
x2 − 1− a

2
y2 + l.o.t.

The Makar-Limanov function in x0 simplifies to

P (u)
∣∣
x0

= u
(
(∆u)2 −D2u ·D2u

) ∣∣
x0

= ‖u‖L∞(Ω)

(
1− (a2 + (1− a)2)

)

& ‖u‖L∞(Ω) min(a, 1− a).

Simple algebra shows that this implies

min(a, 1− a) &
minP

∣∣
∂Ω

‖u‖L∞(Ω)
& 1

‖u‖L∞(Ω)

min∂Ω κ

max∂Ω κ3
.

Finally, we use the classical estimate for convex domains that

‖u‖L∞(Ω) ∼ inrad(Ω)2

and this gives the result. �
6.2. Proof of Proposition 2.

Proof. Integration by part yields

|f̂(k)| . ‖f
′‖L1(T)

|k| .

We observe that
∑

|k|≥n
|f̂(k)|2 .

∑

|k|≥n

‖f ′‖2L1(T)

k2
∼
‖f ′‖2L1(T)

n

is less than ‖f‖2L2(T) for n & ‖f ′‖2L1(T)‖f ′‖−2
L1(T), which implies, for suitable c > 0 that

∑

|k|≤c‖f ′‖2
L1(T)‖f

′‖−2

L1(T)

|f̂(k)|2 ≥ ‖f‖L2(T)

2
,

which then implies the first result via

‖θ1 ∗ f‖L2(T) =
∑

k∈Z
e−k

2t|f̂(k)|2 ≥
∑

|k|≤c‖f ′‖2
L1(T)‖f

′‖−2

L1(T)

e−k
2t|f̂(k)|2

& exp

(
−c
‖f ′‖4L1(T)

‖f‖4L2(T)

) ∑

|k|≤c‖f ′‖2
L1(T)‖f

′‖−2

L1(T)

|f̂(k)|2

& exp

(
−c
‖f ′‖4L1(T)

‖f‖4L2(T)

)
‖f‖L2(T)

2
.

The second result follows more immediately from

∑

k≥n
|f̂(k)|2 . 1

n2

∑

|k|≥n
|k|2|f̂(k)|2 .

‖f ′‖2L2(T)

n2

and then proceeding as above. �
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