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1 Introduction

Laplace’s equation arises in a vast array of contexts (electrostatics, harmonic functions,
low-frequency acoustics, percolation theory, homogenization theory, and the study field en-
hancements in vacuum insulators for example) and serves as a useful model problem for the
study of general elliptic partial differential equations (PDEs). As such, effective numerical
methods for quickly and robustly solving Laplace’s equation with high accuracy are desirable.
Approaches based on potential theory proceed by reducing PDEs to second-kind boundary
integral equations (BIEs), where the solution to the boundary value problem is represented
by layer potentials on the boundary of the domain. Once these boundary integral equa-
tions are discretized the resulting linear systems are better-conditioned than those obtained
by directly discretizing the PDE. When the boundary of the domain is smooth there are
numerous methods for solving BIEs quickly and accurately (see [7], for example).

Near corners, however, the solutions to both the partial differential equations and cor-
responding boundary integral equations may have singularities, preventing the application
of many traditional methods. Fortunately, a number of approaches have been developed
to obviate this difficulty. One class of methods proceeds by introducing many additional
degrees of freedom in the vicinity of the corners. In order to prevent the resulting linear
systems from becoming intractably large one can use a variety of methods for compressing
the linear system, effectively eliminating the extra degrees of freedom added in the vicinity
of the corners. Moreover, the corner refinement and compression can be done in tandem
resulting in fast and accurate solvers for elliptic PDEs (see [9], [11], [16], [8] and [10] for
one approach called recursive compressed preconditioning, and [5], [4], [1], and [2] for other
compression-based methods for solving Laplace’s equation). Unfortunately, this approach
becomes considerably more expensive in three dimensions limiting its application in that
context.
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Another class of methods is based on approximating the solution to the two-dimensional
problem by rational functions [6] with poles exponentially clustered near the corners. While
this approach allows for fast evaluation of the solution near the boundary of the domain,
current implementations are specialized to two-dimensions, and do not scale well for large
problems.

Finally, a recent approach is based on leveraging explicit representations of the solutions
to the BIEs in the vicinity of the corner as sums of fractional powers depending on the
angle [17]. Using these representations one can construct high-order discretizations which
introduce relatively few extra degrees of freedom near the corners (i.e. an amount which is
comparable to the number required for smooth portions of the boundary). This approach has
been used to generate efficient discretizations for Dirichlet problems for Laplace’s equation
on polygonal domains [14].

In this paper we describe a method for solving Laplace’s equation on polygonal domains
with Neumann boundary conditions given only a discretization of a corresponding Dirichlet
problem. Our approach is based on using the discretization of a suitable adjoint problem. In
particular, we show that if the transpose of the discretization of a suitable Dirichlet BIE is
used, then the resulting solution will be accurate in a “weak sense”; namely, it can be used to
compute inner products with smooth functions accurately, though it cannot be interpolated.
We then show how this solution can be used to obtain accurate solutions to the Neumann
problem arbitrarily close to a corner by solving a set of local subproblems in the vicinity of
that corner.

The paper is organized as follows. In section 2 we review relevant mathematical results
associated with Laplace’s equation. section 3 describes the reduction of boundary value
problems to boundary integral equations via potential theory, and reviews the analytic be-
havior of solutions near a corner. In sections 4 and 5 we present our numerical algorithm
and the associated analysis. Finally, in section 6 we illustrate its application with several
numerical experiments.

2 Mathematical preliminaries

2.1 Boundary value problems

Given a polygonal domain Ω ⊂ R2 with boundary Γ and outward-pointing unit normal ν,
as well as a function f : Γ→ R, we consider the following four boundary value problems.

1. The interior Dirichlet problem for Laplace’s equation:

∆u(x) = 0, x ∈ Ω, (1)

u(x) = f(x), x ∈ Γ. (2)

2. The exterior Dirichlet problem for Laplace’s equation:

∆u(x) = 0, x ∈ R2 \ Ω, (3)

u(x) = f(x), x ∈ Γ, (4)

u(x) = O(1), |x| → ∞. (5)
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3. The interior Neumann problem for Laplace’s equation:

∆u(x) = 0, x ∈ Ω, (6)

∇u(x) · ν(x) = f(x), x ∈ Γ, (7)∫
Γ

f(x)dSx = 0. (8)

4. The exterior Neumann problem for Laplace’s equation:

∆u(x) = 0, x ∈ R2 \ Ω, (9)

∇u(x) · ν(x) = f(x), x ∈ Γ, (10)∣∣∣∣u(x) +

(
1

2π

∫
Γ

f(x)dSx

)
log |x|

∣∣∣∣→ 0, |x| → ∞. (11)

Remark 2.1. The existence and uniqueness of the solutions to the above equations is a
well-known result (see [15] for example).

3 Boundary integral equations

A classical technique for solving the four Laplace boundary value problems given above is to
reduce them to boundary integral equations. Before describing this procedure we first define
the single and double layer potential operators and summarize their relevant properties.

3.1 Layer potentials

Definition 3.1. Given a function σ : Γ→ R, the single-layer potential is defined by

S[σ](y) =

∫
Γ

G(x,y)σ(x)dSx , (12)

where

G(x,y) = − 1

2π
log |x− y|. (13)

Similarly, the double-layer potential is defined via the formula

D[σ](y) =

∫
Γ

ν(x) · ∇xG(x,y)σ(x)dSx. (14)

In the following we will often refer to the function σ as the density which generates the
corresponding potential.

Definition 3.2. For x ∈ Γ we define the kernel K(x,y) by

K(x,y) = ν(x) · ∇xG(x,y), (15)

where ν(x) is the inward-pointing normal to Γ at x. It will often be convenient to work
instead with a parametrization of K. In particular, if γ : [0, L] → Γ is a counterclockwise
arclength parametrization of Γ, we denote by k : [0, L]× [0, L]→ R the function defined by

k(s, t) = K(γ(s), γ(t)). (16)
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The following theorems describe the behavior of the single and double layer potentials in
the vicinity of the boundary curve Γ.

Theorem 1. Suppose the point x approaches a point x0 = γ(t0) (where x0 is not a corner
vertex) from the inside along a path such that

−1 + α <
x− x0

‖x− x0‖
· γ′(t0) < 1− α (17)

for some α > 0. Then for any continuous function σ : Γ→ R,

lim
x→x0

S[σ](x) = S[σ](x0) (18)

lim
x→x0

D[σ](x) = D[σ](x0)− σ(x0)

2
) (19)

lim
x→x0

d

dτ

∣∣∣∣
τ=0

S[σ](x+ τν(x0)) =
d

dτ

∣∣∣∣
τ=0

S[σ](x0 + τν(x0)) +
σ(x0)

2
. (20)

Similarly, if x approaches a point x0 = γ(t0) from the outside then for any continuous
function σ : Γ→ R,

lim
x→x0

S[σ](x) = S[σ](x0) (21)

lim
x→x0

D[σ](x) = D[σ](x0) +
σ(x0)

2
(22)

lim
x→x0

d

dτ

∣∣∣∣
τ=0

S[σ](x+ τν(x0)) =
d

dτ

∣∣∣∣
τ=0

S[σ](x0 + τν(x0))− σ(x0)

2
. (23)

Next we define the following operator which arises in the study of Neumann boundary
value problems.

Definition 3.3. Let S be the single-layer potential operator and ν · ∇S denote its normal
derivative restricted to Γ. In particular, for x0 ∈ Γ,

ν(y) · ∇S[ρ](x0) =
d

dτ

∣∣∣∣
τ=0

S[ρ](x0 + τν(x0)), (24)

where γ(t0) = x0.

The following proposition relates the normal derivative of the single-layer operator to the
double-layer operator. Its proof follows directly from Definitions 3.1 and 3.3.

Proposition 3.1. Let S,D : L2(Γ) → L2(Γ) be defined as above. Let ν · ∇S denote the
normal derivative of S in the sense of the previous definition. Then ν · ∇S = DT where T
denotes the adjoint operator with respect to the inner product

〈f, g〉 =

∫ L

0

f(γ(t))g(γ(t))dt , (25)
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where γ : [0, L] → Γ is a counterclockwise arclength parametrization of Γ. In particular, for
all ρ, σ ∈ L2(Γ),

D[σ](γ(t)) =

∫ L

0

k(s, t)σ(γ(s)) ds (26)

and

ν(γ(t)) · ∇S[ρ](γ(t)) =

∫ L

0

k(t, s) ρ(γ(s)) ds. (27)

3.2 Reduction of boundary value problems

In this section we describe the conversion of the Laplace boundary value problems (inte-
rior Dirichlet, exterior Dirichlet, interior Neumann, and exterior Neumann) to second-kind
integral equations.

Theorem 2 (Interior Dirichlet problem for Laplace’s equation). For every f : [0, L]→ R in
L2[0, L], there exists a unique σ ∈ L2[0, L] which satisfies

f(s) = −σ(s)

2
+

∫ L

0

k(t, s)σ(t) dt, (28)

Moreover, the solution to the interior Dirichlet problem for Laplace’s equation with boundary
data f is given by u(y) = D[σ](y) for all y ∈ Ω.

Theorem 3 (Exterior Dirichlet problem for Laplace’s equation). For every f : [0, L] → R
in L2[0, L] there exists a unique σ ∈ L2[0, L] which satisfies

f(s) =
σ(s)

2
+

∫ L

0

(k(t, s) + 1) σ(t) dt, (29)

for all s ∈ [0, L]. Moreover, the solution to the exterior Dirichlet problem for Laplace’s

equation with boundary data f is given by u(y) = D[σ](y) +
∫ L

0
σ(t)dt for all y ∈ R2 \ Ω.

Theorem 4 (Interior Neumann problem for Laplace’s equation). For every f : [0, L] → C
in L2[0, L] such that

∫ L
0
f(t) = 0, there exists a unique σ ∈ L2[0, L] which satisfies

f(s) =
σ(s)

2
+

∫ L

0

(k(s, t) + 1) σ(t) dt, (30)

Moreover, the solution to the interior Neumann problem for Laplace’s equation with boundary
data f is given by u(y) = S[σ](y) for all y ∈ Ω.

Theorem 5 (Exterior Neumann problem for Laplace’s equation). For every f : [0, L]→ C
in L2[0, L] there exists a unique σ ∈ L2[0, L] which satisfies

f(s) =
σ(s)

2
+

∫ L

0

k(s, t)σ(t) dt, (31)

Moreover, the solution to the interior Neumann problem for Laplace’s equation with boundary
data f is given by u(y) = S[σ](y) for all y ∈ Ω.
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3.3 Corner expansions

In the remainder of this section, we assume Γ is an open wedge with sides of length one and
interior angle πα with 0 < α < 2. Let γ : [−1, 1] → Γ be an arc length parametrization of
Γ and ν : [−1, 1] → R2 be the inward-pointing normal to Γ. The following theorem gives
an explicit representation of the solutions of the boundary integral equation (28) in this
geometry.

Theorem 6 ( [17]). Suppose that 0 < α < 2 and that N is a positive integer. Let d·e and
b·c denote the ceiling and floor functions, respectively, and define L, L, M, and M by the
following formulas

L =

⌈
αN

2

⌉
, (32)

L =

⌊
αN

2

⌋
, (33)

M =

⌈
(2− α)N

2

⌉
, (34)

M =

⌊
(2− α)N

2

⌋
. (35)

Suppose further that σ is defined via the formula

σ(t) =b0 +
L∑
i=1

bi|t|
2i−1
α +

M∑
i=1

bL+i|t|
2i

2−α (log |t|)σN,α(i)

+
M∑
i=1

cisgn(t)|t|
2i−1
2−α +

L∑
i=1

cM+isgn(t)|t|
2i
α (log |t|)νN,α(i) (36)

where b0, b1, . . . , bN and c1, c2, . . . , cN are arbitrary real numbers and the functions σα,N(i)
and να,N(i) are defined as follows

σN,α(i) =

{
1 if 2i

2−α = 2j−1
α

for some j ∈ Z, 1 ≤ j ≤
⌈
αN
2

⌉
0 otherwise,

(37)

νN,α(i) =

{
1 if 2i

α
= 2j−1

2−α for some j ∈ Z, 1 ≤ j ≤
⌈

(2−α)N
2

⌉
0 otherwise.

(38)

If f is defined by

f(t) = −σ(s)

2
+

∫ 1

−1

k(t, s)σ(t) dt. (39)
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and σ is defined by (36) then there exist two sequences of real numbers β0, β1, . . . and γ0,
γ1, . . . such that

f(t) =
∞∑
n=0

βn|t|n +
∞∑
n=0

γnsgn(t)|t|n, (40)

for all −1 ≤ t ≤ 1. Conversely, suppose that f has the form (40). Suppose further that
N is an arbitrary positive integer. Then, for all angles πα there exist unique real numbers
b0, b1, . . . , bN and c0, c1, . . . , cN such that ρ, defined by (36), solves equation (39) to within
an error O(tN+1).

Remark 3.1. A similar result holds for the case where the identity term in (39) is replaced
by its negative; the change in sign corresponds to replacing the boundary integral equation for
the interior Dirichlet problem with the boundary integral equation corresponding to exterior
Dirichlet problem. Similar expansions also hold for both the exterior and interior Neumann
problems, in which case the singular powers are obtained by subtracting one from the singular
powers arising in the Dirichlet problem.

The following corollary, proved in [17] gives a characterization of the solutions to the
Dirichlet and Neumann boundary integral equations in the vicinity of a corner.

Corollary 3.1. Let Γ be the boundary of a polygonal region and suppose one of its corners
has interior angle πα where α ∈ (0, 2). Let γ : (−δ, δ)→ R2 be an arclength parametrization
of Γ in the vicinity of the corner, with γ(0) coinciding with the corner. If the boundary data,
f, is analytic on either side of the corner then there exist unique real numbers b0, b1, . . . , bN
and c0, c1, . . . , cN such that the density, ρ, defined by (36) satisfies the interior Dirichlet
boundary integral equation to within an error O(tN+1) for t within δ of the corner. For the
Neumann problems the representation is the same with the powers in the expansion reduced
by one.

4 Numerical preliminaries

In this section we summarize the numerical tools which are necessary for the main result. In
particular we summarize the method for discretizing the boundary integral equation for the
Dirichlet problem described in [14], which uses the expansion in Theorem 6.

4.1 Discretization of the Dirichlet problem

In this section we sketch an algorithm for solving the interior Dirichlet boundary integral
equation using a Nyström method; the exterior Dirichlet boundary integral equation can be
discretized in a similar way. See [14] for a thorough description of the method.

The Nyström method proceeds as follows. We begin by constructing a discretization of
the boundary Γ with nodes s1, . . . , sN , and weights w1, . . . , wN , which enable interpolation
of the left- and right-hand sides of the boundary integral equation

f(s) = −σ(s)

2
+

∫ L

0

k(t, s)σ(t) dt (41)
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with precision ε. In other words, given f(si),−σ(si) +
∫ L

0
k(t, si)σ(t) dt, for i = 1, . . . , N, the

values f(s) and −σ(s)/2 +
∫ L

0
k(t, s)σ(t) dt can be obtained for all 0 ≤ s ≤ L to within ε.

Once these nodes and weights have been generated we proceed by enforcing equality of
(41) at the discretization nodes, which yields the system of equations

f(si)
√
wi = −

σ(si)
√
wi

2
+
√
wi

∫ L

0

k(t, si)σ(t) dt, i = 1, . . . , N. (42)

We note that scaling by the square root of the weights in the above equation is equivalent
to solving the problem in the L2 sense, and results in discretized operators with condition
numbers which are close to those of the original physical systems [2]. The new unknowns
are σi = σ(si)

√
wi, i = 1, . . . , N. Next, for each interpolation node si we find a collection of

weights Wij such that ∣∣∣∣∣
∫ L

0

k(t, si)σ(t) dt−
N∑
j=1

Wijσj
√
wj

∣∣∣∣∣ < ε, (43)

resulting in the linear system

−σi
2

+
N∑
j=1

Wijσj
√
wiwj = f(si)

√
wi, i, j = 1, . . . , N. (44)

4.1.1 Obtaining interpolation nodes

The boundary Γ is separated into a collection of intervals which are at least a fixed distance
δ (measured in terms of arclength) away from a corner and the collection of intervals of
length 2δ centered about each corner. The former are discretized using a standard smooth
quadrature rule such as nested Gauss-Legendre quadrature while the latter are discretized
using a custom set of interpolation nodes constructed in the following way.

First, all functions of the form xµ, µ ∈ {0} ∪ [1/2, 50], x ∈ [0, 1] are discretized using
nested Gauss-Legendre panels in x and a single Gauss-Legendre panel in µ. This creates a
N×M matrix where N denotes the number of spatial discretization points ri and M denotes
the number of µj chosen. M and N are increased until it is guaranteed that using Lagrange
interpolation from the nested discretization the function xµ can be interpolated to within
an L2 error less than ε on the interval [0, 1] for any µ in the specified range. A singular
value decomposition is then performed on the N ×M matrix. Let K denote the number of
singular values greater than ε. The right singular vectors correspond to discretizations of an
orthonormal set of functions φ1, . . . , φK such that xµ is in the span of φ1, . . . , φK to within
an accuracy of ε.

Finally, a set of interpolation points xj, j = 1, . . . , K and quadrature weights wj,
j = 1, . . . , K are chosen for φ1, . . . , φK such that the matrix Uij = φi(xj)

√
wj is well-

conditioned. In practice suitable interpolation points can be obtained by using the roots of
φK+1 and calculating the corresponding weights by solving a linear system. The correspond-
ing discretization nodes and weights for the corner-containing intervals of Γ are obtained by
suitable translations and scalings of {xj} and {wj}.
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4.1.2 Construction of quadrature rules

Once the discretization has been constructed it is necessary to construct appropriate quadra-
ture for the integrals appearing in equation (42). When si and t do not belong to the same
corner panel (in particular when either is not itself contained in a corner panel) then the
weights and nodes associated with the discretization can be used as the quadrature rule.
When si corresponds to a corner panel special care must be taken. Instead, using an al-
gorithm for generating generalized Gaussian quadratures [3], quadrature nodes are chosen
which integrate ∫ δ

0

k(t, sj)φ̃j(t) dt (45)

where φ̃j is a suitably scaled and translated copy of the singular function obtained in the
discretization step, and for ease of exposition we assume that the corner panel corresponds
to (−δ, δ) in the parametrization with t = 0 corresponding to the corner itself. Moreover,
in light of symmetry between the two legs of the wedge it suffices to design quadratures
assuming sj lies in the half of a corner panel parametrized by (−δ, 0).

Remark 4.1. Due to scale invariance, it suffices to compute quadratures for∫ 1

0

k(t,−xj)φj(t) dt, (46)

where xj was one of the original discretization nodes generated on the interval [0, 1].

Remark 4.2. By interpolating from the discretization nodes to these quadrature nodes we
obtain a set of weights W̃i,j such that if s1, . . . , s2K correspond to the discretization of a
corner parametrized by (−δ, δ) with 0 corresponding to the corner then∣∣∣∣∣

∫ δ

−δ
k(t, si) φ̃m(t) dt−

2K∑
j=1

W̃ijφ̃m(tj)

∣∣∣∣∣ < ε (47)

for all i = 1, . . . , 2K and m = 1, . . . , K.

After all the quadratures have been constructed the result is an N ×N linear system the
solution of which gives an approximation to σ sampled at the discretization nodes.

Definition 4.1. Let Sε ⊂ L2([0, L]) denote the set of functions which can be interpolated
from their values at the N discretization nodes to any point in [0, L] with a relative L2

accuracy of ε. That is to say that for f ∈ Sε if f̃ : [0, L] → R denotes the function obtained
by interpolating using the values f(s1), . . . , f(sN) then ‖f − f̃‖L2 < ε.

The results of this algorithm are summarized in the following theorem (see []).

Theorem 7. Let A be the N × N matrix obtained by discretizing the interior Dirichlet
problem in the preceding manner. In particular if f ∈ Sε is piecewise analytic and f =
(
√
w1f(s1), . . . ,

√
wNf(sN))T then

σ = A−1f (48)

can be interpolated to a function σ̃ which is within ε of the true density σ in an L2-sense.
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4.2 Discretization of the Neumann problem

In principle a similar method could be employed to discretize the Neumann boundary integral
equations. Unfortunately, the singular nature of the powers (the smallest in the expansion
given in Theorem 6 lies in the range (−1/2, 0)) makes it difficult to produce universal dis-
cretizations and quadratures which work for large ranges of angles. When the above method
is run on these problems, discretization nodes tend to accumulate close to the corner (within
10−14). Apart from posing certain numerical challenges, it also makes the task of finding
suitable quadrature formulae difficult. Instead, a different set of discretization nodes and
a different set of quadrature nodes can be constructed for each angle, though this would
significantly increase the precomputation cost.

Finally, in many applications one already has a discretization of the Dirichlet problem.
For example, when considering Laplace transmission problems or triple junction problems
one has to solve two decoupled boundary integral equations: one of them a Dirichlet-type
boundary integral equation with the diagonal term scaled and the other a Neumann-type
boundary integral equation with the identity term scaled (see [12] and [13] for example). In
such cases it is convenient to reuse the Dirichlet discretization for the Neumann problem.

5 Numerical apparatus

5.1 Adjoint discretization

The following lemma relates the discretization of the inverse of an operator to the adjoint of
the discretization of its inverse. Its proof follows directly from the definition of the adjoint
and is omitted.

Lemma 1. Suppose A : L2([0, L])→ L2([0, L]) is a bounded invertible operator and that Aε
is an operator such that ∣∣〈f, A−1g〉 − 〈f, A−1

ε g〉
∣∣ ≤ ε‖f‖‖g‖, (49)

for all f and g in some subspace Sε ⊂ L2([0, L]). Here 〈·, ·〉 denotes the inner product on
L2([0, L]) and ‖ · ‖ denotes the norm for L2([0, L]). Then, for all functions f and g in Sε∣∣〈f, (A−1)∗g〉 − 〈f,

(
A−1
ε

)∗
g〉
∣∣ ≤ ε‖f‖‖g‖ (50)

where ∗ denotes the adjoint.

The following corollary follows immediately from the previous result.

Corollary 5.1. Let A be the N × N matrix obtained by discretizing the interior Dirichlet
problem and Sε be the collection of functions given by Definition 4.1. Then for all functions
f, g ∈ Sε ∣∣∣∣〈g, (AT )−1f〉 −

∫ L

0

g(t)σ(t) dt

∣∣∣∣ < ε‖f‖ ‖g‖, (51)

where f ,g are the discretizations of f and g scaled by the square roots of the discretization
weights, and σ is the solution to the exterior Neumann problem with boundary data f .
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Hence a discretization of the Neumann problem can be obtained simply by taking the
adjoint of the Dirichlet problem. The resulting density σ obtained is accurate in a weak
sense, ie. its inner products against functions in Sε are accurate to within an error of ε.

We conclude this section with a few remarks.

Remark 5.1. We observe that if the solution to the boundary value problem is being calcu-
lated at a point y ∈ R2 \Ω more than one panel length away from the boundary curve Γ then
the Neumann density σ obtained using the above result will give an accuracy of ε, ie. the
function K(y, γ(t)) ∈ Sε. Thus accurate values of the solution in the far-field can be obtained
almost immediately.

Remark 5.2. Similarly, if the point y ∈ R2 \ Ω at which the solution to the Neumann
boundary value problem is to be calculated lies close to a smooth panel then the density σ
near that point can be interpolated to a finer set of quadrature points and the value of u(y)
can once again be obtained to precision ε. We note, however, that in general the density in
the vicinity of a corner cannot be interpolated accurately. This follows from the fact that the
interpolation scheme constructed is only guaranteed to interpolate the powers arising in the
Dirichlet problem accurately near the corner. The collection of singular powers arising in
Neumann problems contain negative powers which are not contained in this set and hence
are not interpolated accurately.

5.2 Weak corner re-solving

In this section we address the problem highlighted in the previous one; namely, the accurate
evaluation of the solution to the exterior Neumann problem in the vicinity of a corner.
Our approach is based on the observation that the potential generated by the density on
the boundary outside of a sufficiently small neighborhood of the corner is smooth when
evaluated in the vicinity of the corner. This allows us to convert the problem of evaluating
the potential near the corner (given the approximation to the density obtained using the
adjoint approach described in the previous section) into a purely local one. In particular,
we re-discretize only a small neighborhood of the corner which in turn allows us to evaluate
the potential arbitrarily close to the corner to within a small factor of machine precision.

In the following we assume that we are given a discretization of the interior Dirichlet
boundary integral equation (28) with nodes x1, . . . , xN and corresponding weights w1, . . . , wN .
In particular, we assume that the discretization nodes are obtained by subdividing the
boundary into panels. Those panels which contain a vertex are discretized using a cus-
tom discretization scheme (see Section 4.1) while the remaining panels are discretized using
a standard smooth quadrature rule (such as Gauss-Legendre or Chebyshev nodes). In the
following we assume that an M -point Gauss-Legendre quadrature rule is used and the corner
panels are discretized using P nodes (together with a collection of orthonormal functions on
that interval φ1, . . . , φP ).

Additionally, we denote the discretization of the interior Dirichlet operator (using the
custom quadratures described in Section 4.1) by A. Let f = (f1, . . . , fN)T where fi =
f(xi)

√
wi and f : ∂Ω→ R is the right-hand side of the exterior Neumann problem. Finally,

let σ be the approximation to the density (scaled by the square roots of the weights) obtained
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by solving the linear system

ATσ = f. (52)

For notational convenience we let γ : [−δ, L − δ] → ∂Ω be a counterclockwise arclength
parametrization of ∂Ω such that γ(0) corresponds to a vertex and γ[−δ, δ] corresponds to a
corner panel.

For a panel γ([s1, s2]) with discretization nodes xi, . . . , xi+M corresponding to a Gauss-
Legendre panel the density is smooth and thus it is expected to be well-represented in the
basis of Legendre polynomials (shifted and scaled to the interval [s1, s2]). Hence standard
interpolation techniques can be used to obtain an accurate approximation to the density σ
on the interval s1 ≤ s ≤ s2 . Typically we use 16th order Gauss-Legendre panels and choose
their sizes so that their length is no more than their distance to the nearest corner. This
latter choice guarantees that for any ε > 0 there exists an M such that if the Gauss-Legendre
panels are discretized using an M -point Gauss-Legendre rule then the density on that panel
can be interpolated to relative precision ε in an L2-sense. (We discuss a sketch of a proof
in appendix B)

For corner panels the nodes were constructed to enable stable interpolation of densities
sµ, µ ∈ 0∪ [1/2, 50], on the interval s ∈ (−δ, δ) - assuming for simplicity that the corner is at
0 and the panel is of length 2δ. As mentioned above, the density is expected to contain terms
of the form sµ for some finite collection of µ in the interval (−1/2, 1/2), and hence will not
in general be stably interpolable on the interval (−δ, δ). However, it is possible to use the
density obtained using (52) to construct a sequence of nested problems in the neighborhood
of the corner, the solutions of which enable accurate interpolation of the density arbitrarily
close to the vertex. The number of these problems depends only on the distance of the closest
evaluation point to the corner. In particular, if r is the smallest distance of an evaluation
point from the corner then only log2 r/δ levels are required. Each problem involves the
solution of a small linear system (typically less than 100×100) and as such can be performed
quickly. Furthermore, we note that the algorithm can be easily parallelized to treat multiple
corners concomitantly.

We begin with the following proposition, the proof of which follows immediately from
the definition of the kernel k and is omitted.

Proposition 5.1. Suppose that f be a piecewise-analytic function in Sε and σ = (AT )−1f
is the approximation to the Neumann density obtained using the adjoint of the discretization
for the interior Dirichlet boundary integral equation. Further suppose that the discretization
nodes are ordered so that s1, . . . , sP correspond to the corner panel associated with the inter-
val (−δ, δ), sP+1, . . . , sP+M correspond to the Gauss-Legendre panel immediately to the left
associated with the interval (−2δ,−δ), and sP+M+1, . . . , sP+2M to the Gauss-Legendre panel
immediately to the right associated with the interval (δ, 2δ). Then

h(t) =
N∑

i=P+2M+1

k(si, t)
√
wi σi (53)

is an analytic function of t for all t ∈ (−2δ, 2δ).
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In light of this we consider the following integral equation

−σ(s) +

∫ 2δ

−2δ

k(s, t)σ(t) dt = f(s)− h(s), −2δ ≤ s ≤ 2δ. (54)

We note that the solution to (54) is equal to the solution of the original boundary integral
equation (31) restricted to the interval [−2δ, 2δ]. Taking the adjoint of (54) we obtain

−σ(s) +

∫ 2δ

−2δ

k(t, s)σ(t) dt = f(s)− h(s), −2δ ≤ s ≤ 2δ. (55)

which is a Dirichlet boundary integral equation for a wedge with a piecewise analytic right-
hand side. In particular, we can discretize the operator using the method summarized in
the previous section. Specifically, we subdivide the interval [−δ, δ] into three subintervals
I0 = [−δ, δ/2], L0 = [−δ/2, δ/2], and J0 = [δ/2, δ]. On I0 and J0 we place standard Gauss-
Legendre discretization nodes, while on L0 we use the custom discretization scheme for
corners, outlined in Section 4.1 (see [] for a detailed description of the method). On the
intervals [−2δ,−δ] and [δ, 2δ] we use the same discretization nodes and weights as in the
original system for those intervals (we call these panels K0 and Q0 respectively). Let f

0
denote the right-hand side of (54) evaluated at these discretization nodes and scaled by
the square roots of the corresponding weights. Let A0 be the discretization of the interior
Dirichlet problem operator (ie. the operator acting on σ on the left-hand side of (55)). We
note that due to the scale invariance of Laplace’s equation for polygonal domains the portion
of A0 corresponding to the self-interaction of L0 is a submatrix of the original matrix A. All
other blocks can be generated using the discretization nodes as quadrature nodes.

The analysis of the previous section then shows that if σ0 is the solution of the equation

AT0 σ0 = f
0

(56)

then σ0 gives a weak solution to the integral equation (54), i.e. for any function g which is
analytic on [−2δ, 0] and [0, 2δ] the inner product 〈g, σ〉 can be calculated to precision ε using
the solution σ0. Moreover, since the true density σ is smooth on [δ, 2δ] and [−2δ,−δ] the
Gauss-Legendre discretization allows accurate interpolation of the density on those regions.

Remark 5.1. Though the above method produces a viable method for reducing the problem,
as written the reduction is non-local — in order to compute the right-hand side for the sub-
problem one must evaluate contributions from the rest of the domain.

The following theorem shows that the right-hand side f
0

can be computed only using
local data (i.e. values of the weak solution in the vicinity of the corner).

Theorem 8. Suppose that f
0

is the discretization of the right-hand side of (55) corresponding

to nodes s0
1, . . . , s

0
N0
. Further suppose that U is the P×P matrix with entries Uij = φi(sj)

√
wj,

where φ1, . . . , φP are the orthonormal functions on (−δ, δ) spanning , sgn(s)|s|µ, |s|µ, µ =
0, 1/2− 40 on that interval. Let w : (−δ, δ)→ RP be the vector-valued function defined by

w(t) = (φ1(t), φ2(t), . . . , φP (t)), (57)

13



and σ̃ = (σ1, . . . , σP )T be the approximation to the solution in the vicinity of the corner
obtained by solving the original system (52). Then |(f(t)− h(t))−w(t)U−1AT0 σ̃| = O(ε) for
all t ∈ (−δ, δ). In particular, if f̃0 is the vector of length N0 with entries defined by

(f̃0)i = w(s0
i )U

−1AT0 σ̃, i = 1, . . . , N0, (58)

then ‖f
0
− f̃0‖ = O(ε).

Proof. We begin by observing that both f and h are analytic on the interval (−δ, δ). In par-
ticular, they can be accurately interpolated using φ1, . . . , φP on the interval (−δ, δ). Hence,

f(t)− h(t) ≈ w(t)U−1(f(s1)− h(s1), . . . , f(sP )− h(sP ))T . (59)

A similar argument shows that f(t) − h(t) is interpolable on [−2δ,−δ] and [δ, 2δ]. On the
other hand, by construction,

f = AT


σ̃

σP+2M+1
...
σN

 . (60)

Let A0 be the (P + 2M)× (P + 2M) submatrix of A corresponding to the first P + 2M rows
and columns of A, and Ared be the P + 2M × (N − P − 2M) submatrix of A corresponding
to selecting the first P + 2M rows of A and all but the first P + 2M columns of A. Using
this notation, the first P + 2M rows of (60) can be re-written as f1

...
fP+2M

 = ATred

σP+2M+1
...
σN

+ AT0 σ̃. (61)

The first term on the right-hand side is (h(s1), . . . , h(sP+2M))T . Substituting this into the
previous equation, we obtain

(f(s1)− h(s1), . . . , f(sP+2M)− h(sP+2M))T = AT0 σ̃. (62)

The result follows by substituting the above equality into (59).

This can be iterated to obtain an interpolable approximation to the density on L0 =
[−δ, δ]. In particular, we consider the restriction of the exterior Neumann integral equation,
as well as its, adjoint to the interval I0 and J0. For the right-hand side we use the original
right-hand side f minus the contribution from the remainder of the domain. In particular,
if we define

h1(s) =
∑

xi∈K0,Q0

k(s, xi)σ
(i)
0

√
wi (63)
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then σ restricted to the interval I0 ∪ L0 ∪ J0 satisfies

−σ(s) +

∫ δ

−δ
k(s, t)σ(t) dt = f(s)− h(s)− h1(s), −δ ≤ s ≤ δ. (64)

The corresponding adjoint equation is given by

−σ(s) +

∫ δ

−δ
k(t, s)σ(t) dt = f(s)− h(s)− h1(s), −δ ≤ s ≤ δ. (65)

Once again, we divide L0 into three intervals I1, L1, and J1 and discretize each interval
as before. After solving the corresponding discretization of (64) using the adjoint of the
discretization of the integral operator appearing in (65) we obtain a weak solution of σ on
the interval I0 ∪ L0 ∪ J0 which can be interpolated on I0, and J0 to within precision ε.

This process can be repeated an arbitrary number of times to yield a sequence of solutions
σj, j = 0, 1, 2, . . . together with corresponding intervals I0, I1, . . . and J0, J1, . . . on which it
can be interpolated.

Note that if x is a point a distance r away from the corner then after J = 1 + log2 r/d
such subdivisions x will be at least twice the corner panel length away from the corner. Thus
K(x, ·) will be smooth when restricted to the corner panel [−δ/2J , δ/2J ] and hence will be
integrated accurately using the corner panel discretization nodes and weights.

6 Numerical results

6.1 Accuracy

In this section, we demonstrate the accuracy of the proposed numerical method (both in the
weak sense described above, as well as in the classical sense after sufficiently many re-solves)
on the triangular domain shown below. The reference solution for each of the examples is
computed using a discretization with a graded mesh in the vicinity of the corners, where the
smallest panel at the corner is 2−150 times the length of the first macroscopic panel away
from the corner (see fig. 1). In these examples, the solutions are computed via dense linear
solves.

Remark 1. Though 2−150 is significantly smaller than machine precision, the matrix entries
corresponding to the corner interactions can be computed accurately by translating the corners
to the origin when computing interactions of nearby points.

Remark 2. Simple arguments from complex analysis show that when using graded meshes,
in order to obtain full machine precision (∼ 1.11 × 10−16) for solutions of the Neumann
problem at any point in the interior at least 10−16 away from a corner, it suffices to choose
the smallest panel (i.e. the size of the panel closest to the corner) to be of size 2−100. However,
resulting values of the density will not be accurate to machine precision at all nodes. In fact
the quality of the density deteriorates as one approaches the corner. Thus, in order to obtain
accurate point values of the density to machine precision at all points which are at least 2−100

away from the corner, we use a smallest panel size of 2−150.
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Figure 1: Problem domain and panel discretization of the boundary. The discretization
on the left is based on using the Dirichlet discretization at corner panels (indicated by blue
panels) discussed in section 4.1, while the discretization on the right is a sample discretization
with 2 levels of refinement in the vicinity of the corner. All the panels in black are discretized
using scaled Gauss-Legendre nodes. The square ticks indicate location of the charges xj for
defining the boundary data for the scattering problem.

The potential at target locations which are sufficiently far from the boundary (i.e. at
least one panel length away from every panel) is the inner product of the density with a
smooth function and hence can be computed accurately without re-solving (see remark 5.1).
For a target location y, we compute the potential via the formula,

u(y) =

∫
Γ

G(x,y)σ(x)dSx ≈
N∑
i=1

G(γ(si),y)σi
√
wi (66)

In fig. 2, we compute the error in the solution at target locations for a scattering problem
whose right hand side is given by a collection of three interior charges

f(x) = −∇

(
3∑
j=1

log |x− xj|

)
· ν(x) , (67)

where the locations xj are denoted by square dots in fig. 2. Note that the density σ plotted
as a function of arclength goes to infinity at the corner vertices, indicating that the native
Dirichlet discretization presented in section 4.1 wouldn’t have sufficed. However, the po-
tential in the volume is accurate to 14 digits at target locations away from the boundary.

Another example of a “weak quantity” is the polarization tensor associated with a do-
main. This requires the solution of the exterior problems with boundary data f1 = ν1 or
f2 = ν2. Let σ1 and σ2 denote the corresponding solutions. The polarization tensor can be
expressed in terms of the solutions σ1 and σ2 as

P =

[∫
Γ
x1σ1(x)dSx

∫
Γ
x2σ1(x)dSx∫

Γ
x1σ2(x)dSx

∫
Γ
x2σ2(x)dSx

]
(68)

The polarization tensor as computed by the reference solution, and the error in computation
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Figure 2: Left panel: Solution to Neumann problem with data given by eq. (67), center
panel: error in computing the potential in the formula using the underlying smooth quadra-
ture eq. (66), and on the right the density σ as a function of arc-length

.

using the adjoint discretization are given by

P =

[
−0.823641009939200 −0.139714174784448
−0.139714174784448 −1.1421444446470226

]
, Error =

[
2.3× 10−15 7.9× 10−16

1.3× .10−14 2.7× 10−15

]
(69)

In order to demonstrate the accuracy of the corner re-solving approach in obtaining the
true density at the corner panels, we apply the procedure discussed in section 5.2 iteratively,
and compare the obtained density with the reference density after 20,40,60, and 80 iterations
of resolves in the vicinity of one of the corners. The reference density and the errors are
shown in fig. 3. Furthermore, to highlight the need for special purpose discretizations in
the vicinity of corners in the adjoint discretization, we also compare the solution computed
using a graded mesh in the vicinity of corners, where the size of the smallest panels for both
discretizations are equal.

After re-solving the density, we also compute the solution at target locations on a ten-
sor product polar grid, where the grid is exponentially spaced in the radial direction and
equispaced in the angular direction. For target locations close to panels which are not at
the corner, we use adaptive integration in order to resolve the near-singular behavior of the
kernel for accurate computation of the integrals. For target locations close to the corner
panel, since we do not have the capability to interpolate the density, we use the underlying
smooth quadrature rules for computing their contribution. The reference solution and the
errors are demonstrated in fig. 4.

6.2 Performance

In this section, we demonstrate the performance of the solver by solving a scattering problem
in the exterior of a “broken wheel” region. The boundary data is given by

f(x) = ∇
57∑
j=1

cj log |x− xj| · ν(x) , (70)
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r0

R

t
σ

εσg
= |σ − σ̃g| wεσ = |σ − σ̃ | w

r0/R = 2−10 r0/R = 2−20 r0/R = 2−40 r0/R = 2−80

Figure 3: Top row: (left) Illustrative mesh used for iteratively computing the solution in the
vicinity of a corner, (right) the density in the vicinity of one of the corner panels. Bottom
row: error in computing the density, where σ̃ denotes the density computed using special
purpose discretizations at corner panels, and σ̃g denotes the density using a graded mesh
with the smallest panel equal to the length of the smallest panel after the iterative resolve
procedure. The errors are scaled by square roots of the quadrature weights.

.
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Figure 4: Top row: Solution on the volume after 10, 20, and 40 iterations of resolve. The
target locations are a tensor product polar grid, where the nodes are exponentially spaced in
the radial direction. The closest target location is approximately 10−13 away from the corner.
Near quadrature is handled via adaptive integration except for the corner panel where the
smooth quadrature weights are used. Bottom row: analogous results where the solution is
computed using a graded mesh.

.
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Figure 5: (left): Boundary data as a function of arclength, (center): absolute value of
density as a function of arclength, and (right): log10 of the absolute value of the solution in
the volume computed using an FMM.

where there is one xj located in each of the spokes, one of the xj is in the central disc, and
the remaining 50 xj are chosen randomly in the exrterior of the bounding disc containing
the domain. The strengths cj are chosen such that they average to 0. The domain contains
108 corners, was discretized using 22240 nodes and required 105 iterations to converge to a
residue of 10−15. The matrix at each iteration was applied using an FMM whose tolerance
was also set to 10−15. The solution was computed in 15 secs, and plotted at a 500× 500 grid
of targets in 6.5 secs. All of the results have been computed on a single core on a Macintosh
machine with Intel core i5 2.3GHz processors. In fig. 5, we plot the scattered field, the right
hand side, and the computed density.

7 Conclusion and future work

In this paper we described a method for obtaining solutions to Laplace’s equation with
Neumann boundary conditions on polygonal domains given an accurate discretization of a
corresponding Dirichlet problem. The resulting solutions are accurate in a “weak sense”,
allowing evaluation of the solution at points which are located sufficiently far from the
boundary of the domain. We then presented a method for using these “weak solutions” to
obtain accurate solutions to the Neumann problem in an L∞-sense arbitrarily close to the
corner in a computationally efficient manner.

Though the present paper treats only Laplace’s equation for polygonal domains, the
method shown here extends much more broadly. In particular, the approach easily extends
to accommodate curved boundaries. Moreover, in addition to Laplace’s equation, this ap-
proach can be easily adapted to solve the Helmholtz equation and the biharmonic equation
with analogous boundary conditions. A manuscript detailing this extension is currently in
preparation.

20



8 Acknowledgements

The authors would like to thank Leslie Greengard, and Vladimir Rokhlin for many useful
discussions.

A Approximation of data on corner panels for re-solve

Here we give explicit bounds for the rate of convergence of the contribution of the rest of the
boundary to a corner panel. In particular, given a polygonal domain with boundary Γ, let
x denote a vertex of Γ and C = Γ∩Br(x), where Br(x) is the ball of radius of r centered at
x. We choose r so that Γ ∩ B2r(x) corresponds to a wedge with internal angle πα and side
lengths 2r.

Let Γ∗ be any other straight line segment contained entirely within Γ \B2r(x). Then

Theorem 9. Let Γ be the boundary of a polygon and x be a vertex. Let r > 0 be a real
number such that Γ∩B2r(x) corresponds to a wedge with internal angle πα and side lengths
2r, where BR(x) denotes a ball of radius R centered at x. Let L denote the length of Γ
and γ : [−L/2, L/2] → Γ be an arclength counterclockwise parameterization of Γ such that
γ(0) = x. Finally, for any f ∈ L2(Γ), let H : [0, r]→ R be the function defined by

H(t) =

∫
Γ\B2r(x)

K(γ(t), γ(s))f(s) ds. (71)

Then H is analytic in a neighborhood of 0 with Taylor series coefficients {an} satisfying

|an| ≤
√
L

2nrn+1
‖f‖L2(Γ\B2r(x)). (72)

Proof. Without loss of generality we can assume that Γ is shifted, oriented and parameterized
so that x = γ(0) = 0 and the leg of the wedge corresponding to positive t is oriented along
the positive x axis. Then

H(t) =

∫
Γ\B2r(x)

K(γ(t), γ(s))f(s) ds =

∫
Γ\B2r(x)

y(s)

(t− x(s))2 + y(s)2
f(s) ds. (73)

Since ‖γ(s)− γ(t)‖ > 2r it follows that

H(t) =

∫
Γ\B2r(x)

∑
tni

(
1

(x(s) + iy(s))n+1
− 1

(x(s)− iy(s))n+1

)
f(s) ds. (74)

In particular, H has a Taylor series about t = 0,

∞∑
n=0

cn

(
t

2r

)n
(75)

where

|cn| ≤
√
L

r
‖f‖L2(Γ\B2r(x)). (76)
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B Strong approximation of density away from corner

panels

In this section, we demonstrate that for a panel which is sufficiently far from the corner
and discretized using M Gauss-Legendre nodes, the density computed using the adjoint
of a Dirichlet discretization can be interpolated accurately at any point on the panel. As
before let Ω denote a polygonal domain with boundary Γ. Let L denote the length of the
boundary, and let γ : [−L/2, L/2] denote an arc-length parameterization of the boundary.
Let γ([s1, s2]) be a panel discretized using M Gauss-Legendre nodes be such that if r0

denotes the distance to the closest corner on the particular edge, the length of the panel
L0 < r0/2, i.e. the panel is separated from the nearest corner by at least two times its own
length. Further assume that no point on the boundary Γ which is not on the same edge
as as γ([s1, s2]) is contained in some ρ−Bernstein ellipse corresponding to the line segment
γ([s1, s2]) with ρ > 1. Furthermore suppose that all of the panels away from the corner and
not on the edge containing the segment γ([s1, s2]) are such that any point on γ([s1, s2]) is
not contained in their ρ− Bernstein ellipse. Both of these assumptions can always be met
by choosing sufficiently small panels away from the corners. Finally assume that all panels
at any corner rc are such that any point on γ([s1, s2]) is at least 2rc away from the corner
vertex. Under all of these assumptions, it can be shown that the accuracy in computing
the Legendre coefficients of the density corresponding to the Neumann problem, is the same
as the accuracy of a related Dirichlet problem where the boundary data is resolved with
controlled error on the given discretization.

Let A denote the operator corresponding to interior Dirichlet problem using a double
layer potential. Let g denote the right hand side for the Neumann problem, let σ denote
the corresponding solution. Let f be a Legendre polynomial of degree n scaled to the panel
γ[s1,s2] and 0 everywhere else. Then

〈σ, f〉 =
〈
(AT )−1g, f

〉
=
〈
g, A−1f

〉
= 〈g, σf〉 , (77)

where σf is the solution of the interior Dirichlet problem with boundary data f using a
double layer potential.

Using lemma 1, the above statement implies that the error in computing the n Legendre
coefficient of the density for the Neumann problem is the same as the error in computing
the solution of a Dirichlet problem with data given by a Legendre polynomial on the same
panel.

Let V denote the collection of corner points in parameter space [0, L], i.e. a ∈ V if γ(a) is
a corner vertex. Recall that σf denote the solution to the Dirichlet problem with boundary
data f , i.e., σf satisfies

−σf (s)
2

+

∫ L

0

k(s, t)σf (t)dt = f(s) s ∈ [0, L] \ V. (78)

Then σf = −2f + σ̃ where σ̃ satisfies the integral equation

− σ̃
2

+

∫ L

0

k(s, t)σ̃(t)dt = −2

∫ s2

s1

k(s, t)f(t)dt , s ∈ [0, L] \ V , (79)
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i.e, σ̃ is the solution of Dirichle with data at f̃ given by

f̃(s) = −2

∫ s2

s1

k(s, t)f(t)dt , s ∈ [0, L] \ V . (80)

Now there are two concerns that need to be addressed. First, the accuracy of computing
f̃(s) for any point s ∈ [0, L] using an M point Gauss-Legendre quadrature on [s1, s2], and
secondly, the resolution of the function f̃(s) on the given discretization of the boundary.

For any s which is contained on the same segment as γ[s1,s2], the kernel k(s, t) is identically

0. Thus the boundary data f̃(s) = 0 on the same edge as the panel γ([s1, s2]). We further
observe that f(t) is an entire function when extended to the complex plane (since it is a
Legendre polynomial) and the nearest singularity of the function k(s, t) in the complex plane
as a function of t is corresponding to γ(s). Since we have assumed that no other point on
the boundary Γ is contained in the ρ− bernstein ellipse of the panel γ[(s1, s2)], the error
in computing f̃(s) using an M point Gauss-Legendre rule is bounded by Cρ−M , where the
constant C is related to the boundedness of the function k(s, t) when t is complexified. (Note
the error is not ρ−2M since PM would grow like ρM on the ρ− Bernstein ellipse.) Thus the
function f̃(s) can be computed to any desired precision by increasing the order of quadrature
nodes used to compute the integrals.

With regards to the resolution of the of the function f̃(s) on the given discretization of
the boundary, we note that the closest singularity of the function f̃(s) when restricted to
a panel away from the corner and not on the same edge as γ([s1, s2]) is the closest point
on the panel γ([s1, s2]). However, since we have assumed that all panels away from corners
are such that no point on γ([s1, s2]) is contained in their ρ− Bernstein ellipse, the error in
resolving the function f̃(s) using an M point Gauss-Legendre or Chebyshev panel is bounded
by Cρ−M . Note that the behavior of f̃(s) in the complex plane is related to the behavior of
k(s, t) in the complex s plane and hence can be made O(1). For the panels, at the corner,
based on the proof in Appendix A, the error in resolving the function f̃(s) when truncated to
a taylor series of order N is less than C2−N , since all points on γ([s1, s2]) are well-separated
from corners by twice the panel length rc. Thus, by making the panels small enough, ρ
can be increased arbitrarily to obtain desired tolerances on the boundary data f̃(s) on the
corresponding discretization of the boundary.

Thus, the boundary data f̃(s) is piecewise analytic , which can be approximated to any
desired tolerance by appropriately reducing the panel sizes. This is the precise setup for
which the discretization of the Dirichlet problem is designed to obtain accurate solutions to
the density σ̃.
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