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Abstract

This paper describes a general compiler optimization technique that reduces communication over-
head for FORTRAN-90 implementations on massively parallel machines. The main sources of com-
munication, or data motion, for the parallel implementation of a FORTRAN-90 program are from
array assignments (using the index triplet notation and vector indexing), array operators (e.g. CSHIFT,
TRANSPOSE, etc.), and array parameter passing to and from subroutines. Coupled with the variety of
ways arrays can be distributed, a FORTRAN-90 implementor faces a rich space in which data motion
can be organized.

A model of data motion and an algebraic representation of data motion and data layout are pre-
sented. Yale Extension, a set of layout declarations for directing the compiler in distributing the data,
is described. An array reference or an array operation extracted from the source FORTRAN-90 pro-
gram, given a particular data layout specified in Yale Extension, is represented as a communication
ezpression. A commaunication algebra and a set of communication idioms are described. Experimental
results (on the Intel iPSC/2) demonstrating the effectiveness of the approach are provided.

1 Introduction

Cutting down communication overhead and optimizing code performance at the processor level are two main
factors in achieving high performance on massively parallel machines. While development of optimizing
compilers for superscalar architectures is becoming commonplace in the industry, work on optimization for
data motion is mostly done in the context of specialized, handcrafted code written in assembly code, if not
microcode, for specific target machines.

In this paper, we describe a general compiler optimization technique that reduces communication over-
head for FORTRAN-90 implementations on massively parallel machines. In order to formulate the problem,
a conceptual framework formalizing data motion is necessary. Based on this model, we came up with a set
of layout directives and operators, called Yale Extension. Together with the array operators of FORTRAN-
90, Yale Extension provides a layout specification language which serves several purposes: (1) It provides
layout specification for array parameters of (scientific) library functions; (2) it is used by an automatic
parallelizing compiler to annotate the data layout generated for the target code; and (3) it is used by the
programmer to.direct the compiler in distributing data.

The optimization engine that really makes this approach work is an algebraic one. Data motion and
layout described in FORTRAN-90 + Yale Extension can be extracted as communication ezpressions which
in turn can be simplified and pattern-matched algebraically to achieve minimum data motion. Initial
results of this approach are very encouraging: for a benchmark computing the least-square approximation
consisting of four data parallel subroutines, the total time, including computation (no optimization for the
computation part), is shortened by half.

This work relates to other research in several different areas. Thinking Machine’s CM/2 Convolution
Compiler [4] optimizes data motion between processors as well as within a processor (register allocation)
for a very specialized class of FORTRAN-90 expressions (stencil patterns) and for a specific target. Yale
Extension grew out of the domain morphism construct in Crystal [7] and, in one way or another, is similar
to layout extensions proposed in FORTRAN-D [9] and Vienna FORTRAN [6]. But there are important
differences: (1) Alignment operators in Yale Extension are mostly from the repertoire of FORTRAN-90
array operators as opposed to general expressions used in Crystal or FORTRAN-D. (2) Layout directives
are statically declared and lexically scoped to allow compile-time and link-time optimization. (3) Physical
map operators give different ways to embed a logical machine into a target machine. (4) Finally, none
of these other language extensions have support for optimization. In due time, the optimization module
described in this paper will be integrated with the FORTRAN-90-Y compiler [8].

The organization of the rest of the paper is as follows: In Section 2 the model of data motion is
introduced. In Section 3 the Yale extension for specifying data layout is presented. In Section 4 our
method of optimization is described. Finally, in Section 5, the algebraic simplification and experimental




results for an example program (the least-square approximation) is presented.

2 Model of Data Motion

Data motion comes from the data dependences of the source program coupled with the layout of such data
in the machine’s distributed memory.

We use a 7-block (a strongly connected component of the data-dependence graph [20]) as the unit for
considering data layout and data motion.

2.1 Alignment, Partition, and Physical Map

Figure 1 illustrates three stages of mappings from arrays to the physical distributed memory with respect
to a given w-block. The first stage, called alignment, is for fixing relative location of arrays (D1, D2, .. ., Di)
defined and used in the w-block. These arrays are mapped into a common domain E. The second stage,
called partition, is to map the common domain E into the local memory M of a set of processors L of a
logical machine. The third stage, called physical map, is responsible for embedding the logical machine
(represented as L x M) into the target machine with a set of processors P and their memory M.
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Figure 1: Mapping of Data to Distributed Memory

Example. Two arrays A and B related by the FORTRAN-90 array operator CSHIFT are shown in
Figure 1. The alignment of the two arrays is responsible for the eventual reduction of the interprocessor
communication (one element out of four references).

We assume the following relationship between the size and dimensionality of the arrays, the common
domain, the logical machine, and the target machine:
(1) The dimensionality of the common domain is the highest of all arrays, i.e. let e be the dimensionality
of the common domain E and d; the dimensionality of arrays Dy, D,, ..., Di, then e = max;{d;}.
(2) Sets P and L have the same number of processors.
(3) L is configured as an I-dimensional grid and P as a p-dimensional grid (e.g. a hypercube of p dimen-
sions). '




(4) The logical machine must not have higher dimensionality than the target machine, i.e., I < p; the moti-
vation is that we force the mapping of higher-dimensional data structures to a possibly lower-dimensional
machine into the partition stage, i.e.,

(5) e > 1, the dimensionality of the common domain is greater than or equal to that of the logical machine.
Note that the logical machine can be made to have a lower dimensionality than that of the target machine
as well as the common domain.

2.2 Data Motion, Layout, and Layout Conversion

The three stages of mapping above are now formalized.

Domain Morphisms. Let the shape of an array, a common domain, a logical machine, or a target
machine be captured as an indez domain. We consider in this paper index domains which are Cartesian
products of interval domains, denoted as [I..u] where I < u is a set of contiguous integers {I,/ +1,...,u}.

We model alignments, partitions, and physical maps as index domain morphisms. The type of domain
morphisms [7] considered in this paper are reshape morphisms. A reshape morphism is a bijective function®
9 : D — E from one index domain to another. Since g is bijective, let g~ denote the inverse of g.

Let o denote the alignment morphism from an array D to the common domain E, 8 denote the partition
morphism from the common domain E to the logical machine? L x M , and v denote the physical map
from the logical machine L x M to the target machine P x M.

Communication Expressions. In the following, we are going to use expressions consisting of com-
positions of domain morphisms which are called communication expressions. Constructors other than
composition for more complex domain morphisms (e.g. multidimensional) and communication expressions
will be presented in Section 4.1.

Layout. With these definitions, the layout of an array D can be formally defined as a communication
expression g = v o f o a, as shown in the commuting diagram of Figure 2(a).
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Figure 2: Commuting Diagrams for Layout, Data Motion, and Layout Conversion

Intra-Block Data Motion. Intrablock data motion refers to array references within a given w-block.
Let an array reference from array D; (used) to array D, (defined) be denoted by o and let their layouts
to the machine be g; and g3, respectively. Then the data motion induced by the reference « is given by
the communication expression § = g 0 ¢ 0 g7 ! as shown in Figure 2(b).

1For domain morphism g which is injective but not bijective, a reshape morphism g’ : D — image(D, g) can be derived
from g where image(D, g) is the image of D under g which is a subset of E.

2 An abuse of notation here. Since 3 is mostlikely to be injective but not bijective, the correct morphism of interest should
be B’ : E — image(E,B) C L x M. )




Layout Conversion The second type of data motion, interblock data motion, also called layout conver-
ston, refers to array copying due to change of array layout from one w-block to the next. Let the layout of
array D in w-block B; and B; be g; and g, respectively. Then the layout conversion of D from B; to Bs
is given by the communication expression 8 = g, o g7}, as shown in Figure 2(c).

3 Yale Extension for Specifying Data Layout

Yale Extension consists of a set of layout directives and operators for specifying layout of arrays for
compiling to distributed memory machines. The semantics of a program are not affected by the presence
of layout directives, which are for the sake of performance only. If layout strategies are to be automatically
decided by a compiler, these layout directives and operators can be used internally to specify which layout
strategy has been chosen. There are two major differences between Yale Extension and other layout
specifications such as the extension in FORTRAN-D[9] and Vienna FORTRAN([6]. First, Yale Extension
is statically declared, lexically scoped directives which achieve dynamic layout via user-defined layout
operators while both FORTRAN-D and Vienna FORTRAN treat layout directives as executable statements
(dynamically scoped). Consequently, Yale Extension can be optimized at compile-time for data motion
and layout conversion, and for link-time optimizations for separately compiled modules. Second, alignment
operators in Yale Extension are mostly from the repertoire of FORTRAN-90 array operators as opposed
to general expressions used in FORTRAN-D. Consequently, Yale Extension makes explicit the algebraic
properties of array operators and layout operators, which forms the theoretical foundation of compiler
optimization.

3.1 Alignment Directives

Yale Extension uses a subset of FORTRAN-90 array operators (plus some additional operators) as align-
ment directives for specifying the relative placement of array elements. This is one of the major differences
between Yale Extension and the FORTRAN-D Extension where general expressions are used in alignment.

ALIGN-WITH-BY Statement. The directive for specifying how arrays are aligned is of the form
ALIGE A1 VWITH A2 BY G where Al is the source array and A2 the target array and G is an alignment
operator. In the example below, the alignment directive states that element i — 1 of array B should be
placed in the same processor as element 7 of array A. As a result of the alignment directive, the execution of
the assignment would require only in-processor memory access with no communication necessary. In this
simple case it is clear how an alignment directive can be inserted by a compiler automatically. In general,
when multiple arrays and multiple assignments are involved, the problem of finding the optimal alignment
is NP-complete but heuristics are sufficiently effective [18].

REAL, DIMENSION(n) :: A, B
ALIGN B WITH A BY EOSHIFT(B,shift=1)

A = EOSHIFT(B,shift=1) + A
Let’s say that the source array in an ALIGN-WITH-BY statement precedes the target array. The closure

of multiple ALIGN-WITH-BY statements determines the final alignment of all arrays involved. The last array
defined by the “precede” relation is referred to as the common domain in the model (Figure 1).

Alignment Operators. In the following, alignment operators will be given in three groups (classified
by the shapes of the arrays to be aligned) in both FORTRAN-90 syntax and algebraic notation® (for the

3In the algebraic notation, the array parameter is not explicitly carried for the sake of brevity. Since only operators applied
to the same array can appear in a given communication expression, this will not cause confusion.




purpose of deriving optimized data motion algebraically). Recall that alignment operators must be domain
morphisms; their domains, codomains and definitions are given in Tables 10 to 12 of Appendix A. The
legal shapes? of the arrays with respect to an alignment operator are checked by the compiler.

ALIGN-I operators are defined over one-dimensional arrays. For higher-dimensional arrays, an operator
is repeatedly applied for different dimensions (specified by its second argument). In the algebraic notation,
the product constructor is used to construct higher-dimensional operators from one-dimensional operators.
Operators prefixed by * are those in Yale Extension but not in FORTRAN-90. Figure 3 illustrates examples
of ALIGN-I operators.

ALIGN-I FORTRAN-90 Operators Algebraic Notations
EOSHIFT(A, dim,shift, [,boundary]) EOSHIFT(shift, [,boundary])
CSHIFT(A, dim, shift) CSHIFT(shift)
*REFLECT(A, dim) REFLECT
*STRIDE(A, dim, density, offset) STRIDE(density, offset)
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Figure 3: Examples of ALIGN-I Operators

ALIGN-II operators are multidimensional operators which take an array and a matrix [a;;] of the same
dimensions as the arguments. FORTRAN-90’s TRANSPOSE is specifically for two-dimensional arrays. A
generalized TRANSPOSE takes a permutation matrix as its second argument. Operator SKEW takes an n-
dimensional array as an argument, and returns a skewed array (which may be larger in size) where the
second argument is an n-by-n coefficient matrix representing the n-variable (n-axes) linear function. See
Table 11 of Appendix A for its definition. Operator CSKEW is similar except with the skewed array wrapped
around in the shape of the argument array. Figure 4 illustrates some examples.

ALIGN-II FORTRAN-90 Operators Algebraic Notations
TRANSPOSE(A) TRANS (1) (1,
TRANSPOSE(A, perm) TRAES([pi;])
*SKEN(A, rnatri:f) SKEW([a;])
*CSKEW(A, matrix) CSKEW([a5])

=
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Figure 4: Examples of ALIGN-II Operators

ALIGN-III operators are for reshaping arrays and selecting regular sections of an array. It is charac-
teristic for the operators in this group to have different shapes for its argument and the result arrays.

4In the above example, the shape of array B determines the domain of operator EOSHIFT, and array A must be of the same
dimensionality as the codomain of EOSHIFT.



Operator RESHAPE of FORTRAN-90 turns a one-dimensional array into a multidimensional array. A
generalized RESHAPE in the Yale Extension does reshaping between two arrays of arbitrary dimension-
ality. Taking a regular section of an array is achieved in FORTRAN-90 by the index triplet notation
lower:upper:stride. Yale Extension has a new operator EMBED for embedding a lower-dimensional array
into the selected dimensions of a higher-dimensional array. Figure 5 gives some examples, and Table 12 of
Appendix A gives the definitions.

ALIGN-III FORTRAN-90 Operators Algebraic Notations
RESHAPE(A, shape, [,pad] [,order]) RESHAPE(shape, order [,pad])
RESHAPE(A, sl, s2 [,pad] [,01] [,02]) RESHAPE(shapel, orderl, shape2, order2)
A(lower:upper:stride) SECTION(lower, upper, stride)
*EMBED(source,target,dimensions) EMBED([:;], Domain(target))

C O C 3 [ 0O .3

becveew coad
select
embed row embed column select 1st row even elements axis spliting reshape
(a) array embedding (b) array sections (c) array reshaping

Figure 5: Examples of ALIGN-III Operators

COMMON-DOMAIN Statement. As described in the model, all arrays are mapped to a common
array at the alignment stage. Most of the time, the common domain is implicitly defined by the closure of
all alignment directives. But it can be explicitly defined by COMMON-DOMAIN H(ni,n2,...) whereni, n2,
... specify the dimension of array H. The form COMMON-DOMAIN H(DEFAULT) allows one to name a specific
array H as the common domain whose dimensionality is implicitly defined by the alignment directive in
which H is the target array. Note that the COMMON-DOMAIN statements are different from the DECOMPOSITION
statement of FORTRAN-D which must be declared for subsequent ALIGN statements.

User-defined Alignment Operators. Though directives in Yale Extension are statically declared and
lexically scoped (to be precisely defined later), the operators themselves can be user-defined, dynamically
interacting with the program execution. A user-defined alignment operator is declared as a FORTRAN-90
subroutine taking the array to be aligned as its argument. It can then be called by the ALIGN-WITH-BY
statement.

FORTRAN-90 Array Operators Excluded from Yale Extension. Before ending this section, we
want to point out that the two very useful FORTRAN-90 operators SPREAD and SUM (and other reduction
operations), for replication and reduction, are excluded from the repertoire of alignment operators because
they are not domain morphisms. These two operators will play a part in the algebraic manipulation
presented later when we show how data motion can be optimized. Their algebraic notations are given here,
and their definitions are given in Table 12 of Appendix A.

Non-ALIGN FORTRAN-90 Operators Algebraic Notations
array  operations SPREAD(A, dim, ncopies) SPREAD([ai], D)
only SUM(A, dim ) SuM([a;])




3.2 Partition Directives

Partition Operators The partition operators in Yale Extension are no more than the standard strategies
of decomposing arrays into blocks and (blocks of) columns or rows. This approach is well-known and used
in various parallelizing compilers. Since there is no difference between the partition operators of Yale
Extension and FORTRAN-D, we’ll follow the FORTRAN-D syntax except that the block size or number
of cyclic layers are optional parameters. When these parameters are given as compile-time constants, then
the compiled code is specialized to a particular machine size. Otherwise, the machine size is kept as a
runtime parameter. In the following, we simply list these operators along with their algebraic notations
without any explanation. The definitions of the algebraic notations are given in Table 14 of Appendix A.

Partition FORTRAN-D Specification Algebraic Notations
BLOCK [(b)] BLOCK(b), where b = n/p
cycLic [(p)] CYCLIC(p)
BLOCK.CYCLIC(b [,p]) BCYCLIC(b,p)

* SEQ

PARTITION-BY Statement The statement PARTITION A BY G says that array A will be decomposed
into parts by partition operator G. An example of its use is given.

REAL, DIMENSION(n, m) :: A, B
ALIGN B WITH A BY EOSHIFT(B,dim=1,shift=1)
PARTITION A by (BLOCK,BLOCK)

The PARTITION statement says that array A should be decomposed into blocks and one block assigned
to each logical processor. Since arrays A and B are aligned, both arrays will be partitioned as blocks. In
general, partition operators need to be declared on only one array out of the group of arrays related by
alignment. Inconsistent PARTITION statements® declared within the same scope (to be defined momentarily)
for the related arrays will be signaled by the compiler and only the lexically first partition directive will be
used and the rest will be ignored. What if a user is interested in partitioning in the same 7-block two arrays
differently, say one array by blocks and the other by blocks of rows? This effect can be achieved by alignment
using composition of RESHAPE, which makes explicit the relative locations of the array elements instead of
allowing this relation to be defined implicitly by two separate PARTITION statements unintentionally. It
is important to note that Yale Extension relies on the three-stage data motion model and ensures strict
adherence to it.

Similar to alignment, a partition operator G can be a user-defined FORTRAN-90 subroutine.

3.3 Physical Map Directives

The final stage is to map each logical processor (i.e. a partition of the common domain) to a processor of
the target machine. Three different axis-encoding schemes [14], namely, binary encoding (BINARY), Gray
(binary reflected) encoding (GRAY), and random assignment (RANDOM) are used for mapping multidimen-
sional grids to hypercube networks. In the future, we expect new encoding schemes for networks such as
the fat-tree network of CM-5 [1]. The directive is of the form PMAP A BY G where A is an array and G one
of the axis-encoding schemes. Again, we restrict that those arrays that are related by alignment have the
same axis-encoding. Inconsistent axis-encoding will be signaled and ignored.

5Let D; be the index domain of a given array, B the partition operator for Dy, a : Dy — D the alignment operator, and
B2 the partition operator for D,. We say that 8; and (3, are consistent if they are of the same kind under o. For instance,
if o is a EOSHIFT operator, then the ith dimension of D; and ith dimension of D> must be partitioned using the operators of
the same kind (e.g., both are BLOCK, CYCLIC.or BCYCLIC). :




3.4 Scope of Layout Directives

The layout directives in Yale Extension is statically declared within a phase, defined by BEGIN_PHASE and
END_PHASE. Technically, a phase must be a w-block or composition of 7-blocks. The compiler will signal a
warning message if a phase is illegally defined, and the layout directives declared within it will be ignored.
Phases can be nested and the scope of a layout directive is lexically determined to be analogous to the
scope of variable binding in block-structured programming languages. For example, in the inner phase P2,
the block-of-rows partition for B is inherited from P1, so no data movement for B will be needed. But array
A needs to be remapped within P2, and, in theory, remapped again when leaving P2. But in practice, the
algebraic simplification will eliminate unnecessary remapping.

REAL, DIMENSION(n,n) :: A, B
P1 BEGIN_PHASE
ALIGN A WITH B BY EOSHIFT(A,dim=1,shift=1)
PARTITION A, B by (BLOCK,*)

P2 BEGIN_PHASE
PARTITION A by (BLOCK,BLOCK)

END_PHASE
END_PHASE

The following code segment defines an iteration in an ADI method (example from [6]), which contains
two subphases P1 and P2; each encloses a loop. In the parent phase, arrays U and F are partitioned as
blocks of columns. In the subphase P1, array V has the same blocks-of-columns partition. In subphase P2,
array V is redeclared to have blocks-of-rows partition while arrays U and F inherit their layout from the
parent phase P.

cc ADI iteration
REAL, DIMENSION(nx,ny) :: U, F, V
P BEGIN_PHASE
PARTITION U, F by (*,BLOCK)
P1  BEGIN_PHASE
PARTITION V by (*,BLOCK)
CALL RESID(V,U,F,nx,ny)
DO j=1,ny
CALL TRIDIAG(V(:,j),nx)
END DO
END_PHASE
P2  BEGIN_PHASE
PARTITION V by (BLOCK,*)
DO i=1,nx
CALL TRIDIAG(V(i,:),ny)
END DO
Uu=v
END_PHASE
END_PHASE

A phase can also be declared within a loop as shown in the example below.

DO i=1, n
BEGIN_PHASE
PARTITION A, B by G

END_PHASE
END DO
If the partition operator G uses one of the intrinsic operators of Yale Extension, then the effect of the

directive would be the same as if the phase is declared outside the loop because the layout does not change
from one iteration to the next. This fact can be derived by simplifying the communication expression
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Figure 6: Overview of the Optimization Method

§ = GoG™! = id (refer to Figure 2(c)). However, operator G can be a user-defined subroutine whose
dynamic behavior depends on the loop, achieving the effect of dynamic remapping between iterations.

4 Method of Optimization

In this section, we outline the optimization method and describe communication algebra and communica-
tion idioms. Overview of the optimization method is shown in Figure 6.

The optimization method is based on a communication algebra. First, array references and layout
directives in the source program are extracted and expressed as communication expressions for each array
in a given scope. The communication expressions are then simplified and matched with a set of communi-
cation idioms for which specialized, fast communication routines are implemented. Calls to these special
communication routines or to general send/receive commands — if no match exists — are generated. As a
result of this optimization, any redundant layout conversion (using the intrinsic operators of Yale Exten-
sion) between program phases and subroutines will be eliminated. Data motion and local copying within
a program phase and subroutine will be reduced to a minimum, and any opportunity for specialized fast
communication will be uncovered by idiom matching.

In the following, we first describe very briefly the communication algebra (refer to Appendix B for a
complete set of rules) and communication idioms. We then use the LSA example to illustrate the method.
4.1 Communication Algebra

The communication algebra is an algebraic system consisting of

o A set of array operators (FORTRAN-90) and layout operators (Yale Extension).
¢ An n-ary product operation “x” (for multidimensional array reference and layout operators).
e A binary composition operation “o”.

¢ A binary array-reference combination operation “ +” (for multiple instances of array references on
the same array).

¢ A unary boundary operation “bd” (for extracting data for interprocessor communication).

o A binary boundary combination operation “+”.

All primitive operators and operators constructed by various constructors (x,0,+4,bd,+) (refer to
Appendix B for the definitions) satisfy the basic properties shown in Figure 7, except that SPREAD and SUM
do not have inverses (Prop 1). Let g and g; be array operators or layout operators.

These basic properties allow the simplification of gog~? at any place of a communication expression and
partial simplification of the components in a compound operator constructed using product or combination.




Prop 1 Inverse
9:D—E, g"1:E—~D
gog~l=idp
Prop 2 Associativity of Composition
910(92093)=(g1092)043
Prop 3 Associativity of Combination
91+(924+93) = (91+92)+93

. bd(g1) + (bd(g2) + bd(g3)) = (bd(g1) + bd(g2)) + bd(g3)
Prop 4 Commutativity of Combination

51+92 = 9240
bd(g1) + bd(g2) = bd(g2) + bd(g1)

(91 x 92)0 (93 x 94) = (91 0 93) X (92 0 94)

Prop 5 Product-Composition Exchange

Prop 6 Product-Combination Exchange
(91 % 92)4(93 % 94) = (91+93) X (92+94)
Prop 7 Composition-Combination Exchange
(91 © 92)+(93 0 94) = (91+93) 0 (92+94),
for g2 = g4 and g1, g3 combinable

bd(g1 © g2) + bd(g3 © g4) = {bd(g1+93), bd(92+94)}
Prop 8 Distribution of bd over Product

91:Dy — Ey,92: D2 — Ez
bd(g1 x g2) = (bd(g1) X D2) + (D1 x bd(g2))

Figure 7: Basic Properties of Communication Algebra

Many additional rules are useful in the derivation procedure, such as those on the combination operator
that allow coarse-grained operations on arrays, composition rules for alignment operators within each group
and interactions of operators in different groups, and expansion rules for exposing communication idioms.
A complete set of rules is given in Appendix B.

4.2 Communication Idioms

Since the advent of massively parallel machines, many researchers (e.g. [10]) have developed specialized
communication routines to facilitate direct programming of distributed-memory machines. In building
compilers, we might as well take advantage of these handcrafted, highly optimized routines which become
part of the runtime system for the language. In [17], this approach is used to generate intraprocedure
communication. Here we extend that work further to include those communication routines for converting
layouts between program phases or subroutine calls.

All of the data motion in layout conversion can be formulated as so-called personalized communica-
tion and dimension permutation [11]. Optimal algorithms have been devised for one-to-all and all-to-all
personalized communications [2, 3, 11, 16, 15, 19], and dimension permutations [11, 12, 13, 15] using
nearest-neighbor communication on hypercubes.

We have collected a set of frequently occurring data motions based on the results of this work. We
abstract the content of a communicaticn routine as a communication idiom in terms of the FORTRAN-90
array operators and Yale Extension’s layout operators, simplified into a normal form.

Due to the space limitation, we cannot go into these idioms except to list them here (see Table 1). The
optimization procedure simply goes through this list of idioms and pattern matches on the normal form
representation.

5 Example and Experimental Results
In this section, we illustrate the optimization method and demonstrate its effectiveness with experimental

results using an example program computing the least-square approximation, or LSA. Gray code encoding,
the default encoding scheme for hypercube networks, will be used for the entire program.
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Idioms Types of Calling Convention for
Conversion Communication Routines

Moyt change encoding code-conversion(i, A, P, L)

~yoaoq~1 coarse-grain alignment coarse-align(op, [aij], A, P,L,G)

N%(y1 06 0 By 1 oy 1) change partition change-partition(4, A¢, P, P,
L1,L,,B,,B;,G1,Gz)

~i © B; 0 EOSHIFT(c,b) 0 B 0! shift shift(i,c, A, A, P, L)

i © B; o CSHIFT(c) o B;” 1, ¥ 1 cyclic shift cshift(i,c, 4, A, P, L)

i © B; o REFLECT o0 ;" 1o ¥ 1 reversal permutation reflect(:, A, P,L)

1%(y o B) o EOSH([¢;]) o TI¢(B~1 0 ¥~ Multi-D shift mshift([c;], A, Ae, P, L)

1%(y 0 B) o CSH([c;]) o IT%(B~1 0 4~1) Multi-D cyclic shift mcshift([ci], 4, A:, P, L)

T14(+ o B) o REF o [14(8~1 0 4~1) Multi-D reflection mreflect(A, P, L)

M4(y 0 Bo (a(—c)+a(c)) o B~ o4~1)

n-port communication

n-port(c, A, A¢, P, L)

TRANS([a;;]) transposition transpose([a;;], A, A¢, P, L)
I1%(y o B) o SKEW([a;;]) o [1%(v 0 B)~1 skewing skew(cyclic?, [ai;], A, P, L)
N4(~1 o B1) o RESHAPE([m], [], [li), [ai5]) 0 ﬁ{l o~;1 | axis spliting split([li), [ai;], A, A¢, Py, P2, L)

" 0 By 0 RESHAPE([mi], [ai], [0, ) o 14(55 0 v;™")

axis combining

merge([mi, [ai;], 4, A¢, P, P, L)

Hd('n o 1) o SECTI0K([a;]) o Hd(ﬁ; 1o Y5 l)

regular section re-mapping

section([a;], A, Py, P2, Ly, L2,
B, Bz, Gh, G2)

- o 8 o EMBED([a;]) o EMBED([b;]) ™! 0 B~ 0 41

transposition of
1D array

1d-transpose([a.‘], [bi]v AP, P, L)

Table 1: Communication Idioms where o denotes alignment operators or array references, 8 denotes
partition operators and v denotes physical map operators; II4(a o b) denotes (a; 0 b;) x ... x (ag o by).
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cc Least-Square Approximation SUBROUTINE mvm(A,b,c,m,n)

M1 REAL, DIMENSION(p,q) :: A Vi REAL, DIMENSION(m,n) :: A, B_TEMP, C_TEMP
2 REAL, DIMENSION(q,p) :: B, D 2 REAL, DIMENSION(n) ::
3 REAL, DIMENSION(q,q) :: C 3 REAL, DIMENSION(m) :: c
4 REAL, DIMENSION(p) :: b
5 REAL, DIMENSION(q) :: x cc layout directives
cc layout directives 4 ALIGN C_TEMP with A
5 ALIGE b with A by EMBED(b,A,dim=2)
6 ALIGE B with D 6 ALIGN c with A by EMBED(c,A,dim=1)
7 ALIGE b with D by EMBED(b,D,dim=1) 7 PARTITION A by (BLOCK, BLOCK)
8 ALIGN x with D by EMBED(x,D,dim=1)
9 PARTITION A, C, D by (BLOCK,BLOCK) cc executable statements
... statements for input values of A and b 8 C_TEMP = A * SPREAD(b, dim=1, ncopies=m)

9 c = SUM(C_TEMP, dim=2)
10 call transpose(A,B,p,q)

11 call mm(B,A,C) END SUBROUTINE MVM
12 call inverse(C)
13 call m(C,B,D) SUBROUTINE inverse(C,n)
14 call mvm(D,b,x)
STO0P I1 REAL, DIMENSION(n,n) :: C
EXD 2 INTEGER, DIMEESION(1) :: MAX_LOC
3 REAL, DIMENSIOE(n) :: TEMP_ROW
SUBROUTIEE mm(A, B, C, p, q, 1) 4 INTEGER :: k
X1 REAL, DIMENSION(p,q) :: A, A_TEMP cc layout directives
2 REAL, DIMENSION(q,r) :: B, B_TEMP
3 REAL, DIMEESION(p,r) :: C 5 ALIGN TEMP_ROW with C by EMBED(TEMP_ROW,C,dim=2)
4 INTEGER, DIMENSION(2,2) :: MA, MB 6 PARTITION C by (*,CYCLIC)
5 DATA MA / 1, 1, 0, 1/ cc executable statements
6 DATAMNB /1,0, 1, 1/
7 DOk =1, n-1
cc layout directives 8 MAX_LOC = MAXLOC( ABS( C(k:n,k)))
9 TEMP_ROW(k:n) = C(k,k:n)
7 ALIGE A with A_TEMP by CSKEW(A, MA) 10 C(k,k:n) = c(k-1+MAX_LOC(1) ,k:n)
8 ALIGN B with B_TEMP by CSKEW(B, MB) 11 C(k-1+MAX_LOC(1), k:n) = TEMP_ROW(k:n)
9 PARTITION A_TEMP, B_TEMP, C by (BLOCK, BLOCK)
12 C(k,k+1:n) = C(k,k+1:n) / C(k,k)
cc executable statements 13 C(k,k) = 1
. 14 C(1:n, k+1:n) = C(1:n, k+i:n) -
10 A_TEMP = CSKEW(A, MA) 15 & SPREAD(C(k ,k+1:n), dim=1, ncopies=n)
11 B_TEMP = CSKEW(B, MB) 16 & SPREAD(C(1:n,k), dim=2, ncopies=n-k)
EED DO
12 D0OK=1, q END SUBROUTINE INVERSE
13 C = C + A_TEMP = B_TEMP
14 A_TEMP = CSHIFT(A_TEMP, dim=2, shift=1)
15 B_TEMP = CSHIFT(B_TEMP, dim=1, shift=1)

EED DO

ENED SUBROUTIRE MM
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Given a linear system Az = b which is inconsistent (the number of equations is more than the number of
variables), the problem is to choose Z so as to minimize the error. The computation of # can be decomposed
into four parallel subroutines as shown in the FORTRAN-90 Program shown above.

The matrix multiplication subroutine mm uses Cannon’s algorithm [5] which requires that the two
operand matrices be cyclically skewed by using the array operator CSKEW (line 10 and 11 of mm). Due
to performance concerns, the array parameters require different layouts in each subroutine as shown in
Figure 8. For example, array B must be changed from the standard representation by CSKEW when it is
copied into B_TEMP in the first call to mm, then again changed by CSKEW but in a different direction when
copied into B_TEMP in the 2nd call to mm. Array C would change from a two-dimensional block partition
in the first call to mm to a cyclic column partition in inverse and then change back to a two-dimensional
block partition in the second call to mm and be copied by a CSKEN.

L B_TEMP A_TEMP
: right cskew down cskew
B A C 2D block 2D block 2D block
mm >
C cyclic column
inverse —_—
C.TEMP B_TEMP
right cskew down cskew
C B D 2D block 2D block
mm -
embed column
D b x 2D block L. 1D block
T
mvm > embed row
1d block
parameters data layout and data motion

Figure 8: Data Layout Strategies for the Least Square Approximation

Our problem now is how to minimize the communication overhead within each subroutine as well as
reduce the overhead of layout conversion. The first step is to extract communication expressions from
the source program and then apply the algebraic simplification procedure. The initial communication
expressions for intrablock data motion are shown in Table 2. For simplicity, throughout this section we will
ignore physical map operators in the communication expressions, since the Gray code encoding scheme is

used for the entire program and there will be no code conversion in the program.

The communication expression for A_TEMP is extracted from the two nested loops strip-mined from
line 12 in subroutine mm with the outer loop iterating from 1 to p2 and the inner loop iterating from 1
to by where p, is the number of processors at the second dimension and by the block size at the second
dimension. The extraction of the communication expression for B_TEMP is similar. The extraction of other

communication expressions is straightforward.

13




Subroutine | Line | Array Communication Expression

nn 10 A (BLOCK(b; ) x BLOCK(b2)) o CSKEW ( : (1) ) o CSKEW ( : (1’ )— o (BLOCK(b;) x BLOCK(b2))™?

-1
11 | B | (BLock(b;) x BLOCK(b3)) o CSKEW ( ; 1 ) o CSKEW ( ; : ) o (BLOCK(b2) X BLOCK(b3))~"

14 | A_TEMP | (BLOCK(;) X BLOCK(b2)) o ((id x CSHIFT(1))®2)P2 o (BLOCK(b;) x BLOCK(b2))~2
15 | B_TEMP | (BLOCK(b2) x BLOCK(b3)) o ((CSHIFT(1) X id)®2)P2 o (BLOCK(b2) X BLOCK(b3))~!

mvm 8 b (BLOCK(b1) X BLOCK(b2)) o SPREAD([1,0],[1..m]) o (BLOCK(b2))~?

9 C_TEMP | (BLOCK(b;)) o SUN([0,1]) o (BLOCK(b;) x BLOCK(b2))™?
inverse 15 c (BLOCK(b1) x BLOCK(b2)) o SPREAD([1,0],[1..n]) o (BLOCK(b2))*
16 c (BLOCK(b1) x BLOCK(b2)) o SPREAD([O, 1], [k..n]) o (BLOCK(b;)) ™!

Table 2: Communication Expressions for Intra-Block Data Motion in LSA

Array Communication Expression

6p | (BLOCK(b;) x BLOCK(b2)) o CSKEW ( (1) : ) o CSKEW ( i (1) )_ o (BLOCK(b; ) x BLOCK(b2))~1

6c, | (SEQx CYCLIC(p)) o (BLOCK(b;) x BLOCK(b2))~?

6c, | (BLOCK(b1) x BLOCK(b2)) o CSKEW ( : (1’ ) o (SEQ X CYCLIC(p))~!

6p (BLOCK(b1 ) x BLOCK(b2)) o (BLOCK(b1) x BLOCK(b2))~!

Table 3: Communication Expressions for Inter-Block Data Motion in LSA

The communication expressions for interblock data motion are shown in Table 3.

Appendix C contains the derivation steps for generating calls to communication primitives. The sim-
plifications for array A and B to identity functions are straightforward (simply by Prop 1). The first set of
derivations (Figure 9) is for optimizing the data motion for array A_TEMP within the matrix multiplication
subroutine mm. The derivations for array B_TEMP are similar. The performance effects of these optimizations
are shown in Table 4. Optimization of data motion for array C_TEMP within the matrix-vector multiplica-
tion subroutine mvm is shown in Figure 10. The performance effects of these are shown in Table 5. Next
is the simplification of layout conversion for array B between the first and the second calls to subroutine
mm (Derivation 6 of Appendix C). The performance effects of these are shown in Table 6. The layout con-
version for array C between the calls to subroutine inverse and mm and its performance effects are shown
in Derivation 7 of Appendix C and Table 7 respectively. The last derivation (Derivation 8 of Appendix
C) is for optimizing the layout conversion for array C between the calls to subroutine mm and inverse. Its

performance effects are shown in Table 8.

The experiment was conducted using handcompiled code on the Intel iPSC/2 hypercube located at
Yale, which has 64 Intel 80386 processors, runs Unix V /386 3.2 as its host operating system, NX 3.2 for
the nodes, and provides the Intel 3.2 C compiler. The time units shown in the tables are milliseconds.

Finally, Table 9 shows the overall effect of the data motion optimization on the total computation
and communication time between the unoptimized version and the fully optimized version. The average
improvement of the overall performance is about 127% for a small problem size and 95% for a large problem
size. The degradation of improvement for the large problem size may be caused by the increasing overhead
for boundary checking in the computation part.
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Problem Size | Fine-Grained Fine-Grained Coarse-Grained Total
Unoptimized | Boundary Extraction | Boundary Extraction Improvement
Derivation 1 Derivation 2,3,4
32 x 32 64 48 (33%) 16 (200%) 300%
64 x 64 240 132 (82%) 75 (76%) 220%
128 x 128 1354 525 (158%) 365 (44%) 272%
256 x 256 9914 3452 (187%) 2752 (25%) 260%

Table 4: Matrix Multiplication with Different Schemes of Shifting

Problem Size | Fine-Grained | Coarse-Grained | Improvement
Unoptimized Derivation 5
32 x 32 3 1 200%
64 X 64 14 3 366%
128 x 128 28 7 300%
256 X 256 58 16 263%

Table 5: Matrix-vector Multiplication with Different Schemes of Reduction

Problem Size | No Simplification | With Simplification Improvement
Derivation 6
32 x 32 2 1 100%
64 X 64 4 2 100%
128 x 128 10 5 100%
256 x 256 24 13 84%

Table 6: Layout Conversion for Array B Between the First Call and the Second Call to Subroutine mm

Problem Size | General Comm. | Naive send/recv | Conversion Idiom | Total Improvement
Unoptimized Derivation 7 Derivation 7
32 x 32 55 54 (2%) 32 (69%) 72%
64 x 64 73 68 (7%) 38 (79%) 92%
128 x 128 78 72 ( 8%) 39 (80%) 97%
256 x 256 102 92 ( 11%) 51 (80%) 100%

Table 7: Layout Conversion for Array C Between the Call to Subroutine mm and the Call to Subroutine

inverse

Problem Size | General Comm. | Naive send/recv | Conversion Idiom | Total Improvement
Unoptimized Derivation 7 Derivation 7
32 x 32 56 55 (2%) 33 (67%) 70%
64 X 64 75 70 (7%) 39 (79%) 92%
128 x 128 81 74 (9%) 42 (76%) 93%
256 x 256 108 97 (11%) 56 (73%) 93%

Table 8: Layout Conversion for Array C from Subroutine inverse to Subroutine mm
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Problem Size | No Optimization | With Optimization | Improvement
32x 32 440 193 127%
64 x 64 1541 707 118%
128 x 128 5410 2516 115%
256 x 256 29610 15173 95%

Table 9: Total Elapsed Time for LSA

6 Conclusion

In this paper, we have presented a general compiler optimization technique that reduces communication
overhead for FORTRAN-90 implementations on massively parallel machines. We have also demonstrated
the effectiveness of the optimization method on an example program. We expect such effectiveness will
become even more significant for larger application programs which usually contain many program modules
and may involve abundant use of array operations. We are now integrating the optimization module
described in this paper with the FORTRAN-90-Y compiler at Yale [8].
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Appendix A: Algebraic Notation and Definition of Layout Op-
erators

Let D + c denote the interval domain interval(1b(D) + c,ub(D) + ¢) and aD + ¢ denote the interval
domain interval(a * 1b(D) + ¢,a * ub(D) + ¢). Let U - V denote the inner product of two vectors. The
definitions of the algebraic notations for array operators and layout operators are given in Tables 10 to 15.

Operator Domain { Codomain | Definition

EOSHIFT(c,b) D D4c | ()~ (i+0)

CSHIFT(c) D D () = 1b(D) + (¢ — 1b(D) + ¢) mod (ub(D) — 1b(D) + 1)
REFLECT D D (i) = 15(D) + ub(D) — ¢

STRIDE(a,c) D aD+c (i)~ (axi+c)

Table 10: Array Operators in Class ALIGN-I with Their Algebraic Notations and Definitions

Operator Domain Codomain Definition

TRANS([ai5]) | D1 XX Dn | Dg, X---x Dg, | (i1,...,in) = (la15] - I,.. ., [an;] - I)

SKEW([a;;]) DyX++XDyp | Ey X+ X Ep (i1,.. - in) = ([e15]- I,...,[ans] - I)

CSKEW([ai;]) | D1 X +-X Dn | Dy x-++xDn | (i1,-..,in) = (([a1j] - I) mod my,...,([an;] - I) mod mp)
where my are the sizes of Dy

Table 11: Array Operators in Class ALIGN-II with Their Algebraic Notations and Definitions

Operator Domain Codomain Definition

(15 -+ 3p) »> (Fays---1ddg)s

(d1,...,dq) is the permutation of (1,...,q)
defined by matrix [a;;],

(h1,...,hp) is the permutation of (1,...,p)
RESHAPE([m.], [ai;], [1:), [bi]) | D1 X...xDp | D1 X...xDg | defined by matrix [b;;],

Jk = (j mod rx_1) div 7,

rk=md,‘+lx...deq
j=(81ihl+...+spihr)

Sk =lp ) X X g,

I€i<uand (i—l)modd=0 — i
else - 1
EMBED([ai;],B1 X ... X Em) | D1 X...XDp | By X...X Em | (i1,...,in) = ([a1j] - I,- .., [am;] - I)

SECTION(I,u, d) D E O {

Table 12: Array Operators in Class ALIGN-III with Their Algebraic Notations and Definitions
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Operator

Domain

Codomain

Definition

SPREAD([a;], D)

Dy x ...Dk_1
XDk41 ... X Dy

Dy X ...X Dy

XDk X Dig1... X Dp

(ily'"rik—lvik-}-lr"oyiﬂ) Land
(i1,... ,i.k_l,lb(Dk) : nb(Dk),ik+1,. .. ,t.")
where a;, =1

suM([a:])

Dy X...X Dy

D1 Xeoo X Dk-—-l

(1'1,...,1'") Lnd (ilv“’ik—l,ik-}-l)“-;in)
where a; =1

Table 13: Non-Align Array Operators with Their Algebraic Notations and Definitions

Operator Domain | Codomain | Definition

BLOCK(b) D LxM | (i)~ (i div b,i mod b)

CYCLIC(p) D LxM (¢) = ((: mod p, div p)

BCYCLIC(b, p) D LxM (i) — (i div b) mod p, (i div (p*b)) xb+ i mod b)
SEQ D [0l x D (3) — (0,%)

Table 14: Partition Operators with Their Algebraic Notations and Definitions

Operator Domain Codomain | Definition
i=0 — 0
BINARY | [0...27 -1] H(n) @< i=1 =1
else — BINARY(: div 2)||( mod 2)
GRAY [0...27 -1] H(n) (£) = bn|lbn @ bp—1llbn—1 @ bp—2]|...]|b1 & bo
where (bn, ...,b0) = BINARY(z)
RANDOM | [0...2"-1] | H(n) (3) — BINARY(randp(i))
where randp is a random permutation function

Table 15: Physical Map Operators and Their Definitions
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Appendix B: Algebraic Rules

Data Motion Constructors

The five constructors (x, 0, +,bd, +) are used internally for constructing the algebraic notations for complex
array operators, layout operators and communication expressions.

Product “x” A product operator can be used to define array operators or layout operators for multidi-
mensional arrays. The product of f : D; — Ey and g : D, — Ej is defined as f x g = A(4, J) : D1 x Dy —
E; x E3 . (f(7),9(j)). The product of operators will be called a Multi-D operator. Some examples are
given in Table 16.

Composition “o” A composition operator can be used to define complex operators in the form of
compositions of simpler operators. The composition of two functions g : D; — D3 and f : Dy — D, is
defined as g o f = A(?) : Dy — D3.g(f(i)). Some examples are given in Table 17.

Combination “4” A combination operator is used to extract multiple® array references or operations
in a given scope for later optimization. The combination of two operators f : D — E; and g : D — Es is
defined as f+g = A(?) : D . (f~1(i); 91 (i)) where (a; b) denotes a list of two elements a and b. Furthermore,
the product of combination (a;b) x (c; d) is defined to be (axc;bxd). Some examples are given in Table 18.

Boundary “bd” An array operator a, when composed with a partition operator 38, denoted as Boao8~! is
called a coarse-grained array operator. A boundary operatorbd extracts the data elements for interprocessor
communication. Definition of bd is given in BD 1 to 2. The interaction of bd with the other constructors is
shown in BD 3 to 5.

Compound Operator Functionality
(BLOCK(b1) X BLOCK(b2)) p, x Dy—s(Ly xM;)x(La X M>) 2-D block partition
(EUSHIFT(q ,8) X EDSHIFT(CQ , b))Dl xDga—(Dy +¢1)x(Da+c2) 2-D shifting

(G X B) L, x Lo H(ny)x H(na) compound encoding

Table 16: Examples of Multi-D Operators

Compound Operator Resulting Alignment
EOSHIFT(c,b) p—.p41 © REFLECTp_.p (@)~ (n—-i+1)
01 .. . .
(EOSHIFT(c;,b) X EOSHIFT(c2,5)) D, x Dy —(Da+e1)x(Dy+cy) © TRANS ( 1 ) Gy~ (F+e,ite)
Dy xDa—+D3x D,y
1 . .
(EOSHIFT(CI ’ b) X EOSHIFT(CQ, b))D; XDQ—'(D1+C1)X(D3+03) o E!BED( [ 0 ’ Dl X Dz)Dl-.D, xDg (1) Lond (’ +a, C2)

Table 17: Examples of Compound Alignment Operators

In the following the algebraic rules are given. To avoid possible confusion, in some of the rules we will
use the notation g(parameters)iomain—codomain for a domain morphism.

$Only combinable array operations will bc extracted into the same communication expression. Two array operators are
said to be combinable if (1) they are of the same kind (e.g., both are shifts), (2) they operate on the same array and there is
no dependence betweem them, and (3) the defined arrays of them have consistent layout.
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Compound Operator Functionality

CSHIFT(c; ) +EOSHIFT(cz, t) two instances of 1-D shifting
(CSHIFT(c;) X CSHIFT(cz))+(CSHIFT(c3) X CSHIFT(cs)) | two instances of 2-D shifting
(CSHIFT(c;) o REFLECT)+(CSHIFT(c;) o REFLECT) two reflection—followed-by—shifting

Table 18: Examples of Combinations of Multiple Array Operators

BD 1 Boundary for ALIGN-I Operators
Let M be the local index domain

(1) Let & be an ALIGN-I operator, bd(SEQo & o SEQ™!) = {}

(2) Let & be an ALIGN-I operator, bd(CYCLIC(p) o & 0 CYCLIC(p)~?) = M

(3)  bd(BLOCK(b) o & o BLOCK(b)™1)
& = REFLECT - M
(& = CSHIFT(c) or EDSHIFT(c)) and (c > 0) — interval(ub(M) — c,ub(M))
(& = CSHIFT(c) or EOSHIFT(c)) and (c < 0) — interval(1b(M),1b(M) + c)
(4)  bA(BCYCLIC(b,p) o & o BCYCLIC(b,p)—1) '
& = REFLECT - M
(& = CSHIFT(c) or EOSHIFT(c)) and (¢ > 0) — {i € M,((i + c) mod b) < c}
(& = CSHIFT(c) or EOSHIFT(c)) and (¢ < 0) — {i € M,(({ — c) mod b) > (b—c)}

BD 2 Boundary for Replication Operators and Reduction Operators

(1)  ®d4((B1 X ... X Bn) o SPREAD([a;], Di) 0 (B1 X ... X Bk=1 X Br41 X -- X Bn)™1)
= M,x...ka_l XMk.l.lX...XMn

(2)  B4((By X ... X Br—1 X Br41 X ... X Bn) 0 SUM([a;]) 0 (B1 X ... X Br)™ )
= M]X...XMk_l XM)H,IX...XM”

BD 3 Boundary for Product-Compound Operators
bd(f x g) = {(3,5)li € bd(f) or j € bd(g)}

BD 4 Boundary for Compbsition-Compound Operators
bd (f og) = {bd(f),bd(g)}, where{a,b}denotes a set containing a and b.

BD 5 Boundary for Combination-Compound Operators
bd (f+g) = bd(f) + bd(g), where + is defined as
aCSandbCS —»an
a+b=1{ (a={a1,...,an},ai CS) and (b= {b1,...,bn},b: C S)
b d {a1 Ubl,.. «y@n Ubn}

where S denotes the integer set.

Table 19: Definition of Boundary Operator
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Combining Rules

A combining rule simplifies a communication expression of the form f+g¢ into A where data motion in
h satisfies the data motions for both f and g. The theoretical foundation for the combining rules are
unions of domain boundaries (subsets of Integer). The union of boundaries bd(f) and bd(g) are denoted
by bd(f) + bd(g).

"|Rule 1 Combining Multiple Shifts
Let B = BLOCK(b) or BCYCLIC(b,p), &1 and & be EOSHIFT or CSHIFT,and sign(c;) = sign(c;)

(1) bd(Boai(c1) oB~1) + bd(Boaz(c2)oB1)
= bd(B o &3(sign(c;) * max(abs(c1 ), abs(cz))) 0 B1)
(2) (Boai(c1) 0B™) + (Bo () 0 877)

= (Boas(sign(c1) * max(abs(c; ), abs(cz))) 0 B~1)
where &3 = CSHIFT if & = CSHIFT or &, = CSHIFT, otherwise &3 = EOSHIFT

Rule 2 Combining Multiple REFLECT
(1) bd( o REFLECT 0 1) + bd(3 0 REFLECT 0 ~1) = bd(8 o REFLECT 0 ~1)
(2) (8 o REFLECT 0 8~)+(8 0 REFLECT 0 8~1) = (8 o REFLECT 0 81)

Rule 3 Combining Multiple STRIDE
Let B = BLOCK(b) or BCYCLIC(b,p),sign(c1) = sign(cz),and abs(c; — ¢2) < abs(%)

(1) bd(f o STRIDE(a,c1) 0 8~1) + bd(B o STRIDE(a,cz) 0 8~1)
= bd(8 o STRIDE(a,c;) 0 8~1)
(2) (B o STRIDE(a,c1) 0 B~) + (B o STRIDE(a,c2) 0 8~1)

(8 o STRIDE(a,c;) 0 B~1)

Unification Rule for n-port Communications

Applying a sequence of the combining rule for shifting operators simplifies a communication expression to
the following form:

d
[ 0 a(=ci) o B7Y) + (B 0 lei) 0 7))
i=1
where Hf=1 denotes the product of d terms. For the machines that support only one-port communications,
the data motion implied in the form will be carried out one dimension at a time. For the parallel machines
such as the Connection Machines that support n-port communications, each processor can exchange data

with its neighbors concurrently. A particular implementation for concurrent exchange is to unify the
shifting offsets at each dimension [4]. This is shown in the following unification rule.

Rule 4 Boundary Unification
Let & = CSHIFT or EOSHIFT

(1) ((®d(B o &(~c1,) 0 871) + bd(B 0 &(c1,) 0 B71)) x D3)

+ (D1 x (ba(B 0 &(~cz,) 0 A1) + bd(B 0 &(cz,) 0 B~1)))

€ Ui (D1 x ... x Dicy x (bd(B 0 &(~m) 0 8~1) + bd(B 0 &(m) 0 1)) X Dig1 X ... x D2)
2) ((Boa(=c1,) 0 8~1)+(B o &(e1,) 0 B71)) X ((B o &(=c2,) 0 B71)H(B 0 a&lc2,) 0 B71))
12, (B0 a(—m) 0 B~13(B 0 &(m) 0 f~1))

where m = max(c, , €15, 62, ,¢2,)

]

Aggregation Rule for Array Operators in Loops

The aggregation rule packs a large iumber of small messages into a smaller number of large messages.
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Rule 5 Aggregation
Let & = CSHIFT or EOSHIFT, 8 = BLOCK(b) or BCYCLIC(b,p), and b be divisible by ¢

Bo(8(c)))) 0871 =B o (a(h))?) 0 8~ = (Bo&(b) o B)°

Rule for Exposing Coarse-Grained Communication

The result of applying Rule 5 is an expression in the form (80 a(b)o ~1)¢, which implies c shifts each with
shifting offset b, the block size of BLOCK partition or the grain size of BCYCLIC partition. The following rule
makes explicit such coarse-grained shifting. The resulting expression (&(1) x id)LxmM—rLxpm implies each
processor shift the whole block of data to its neighbor.

Rule 6 Coarse-Grained Communication
Let L be the logical processor domain and M the local index domain

Let & = CSHIFT or EOSHIFT, and 8 = BLOCK(b) or BCYCLIC(b, p)
BE—LxM ©&(b)D~E 0B ps—p = (@(1) X id)LxrsLxM

Composition of ALIGN-I Operators

Operators in this class are all linear functions with single variables. This property allows the inverse of
an operator and the composition of two operators to be derived from linear algebra on the parameters
(y=z+c=>z=y—c, and ((z+a)+b) = (z+ (a+b))). For STRIDE alignment, we consider the image of
the interval domain after alignment. The ezchange rule says g o f can be transformed to f’ o g/, where f’
and f are instances of the same operator except with different domains and codomains, and similarly for
g and ¢’. The exchange rule also implies simplification of nonadjacent operators.

Rule 7 Inverse of ALIGN-I Operators
EOSHIFX(c)7} . = EOSHIFT(—c)p, —.D,
CSHIFT(c)pL. p = CSHIFT(—c)p—p
REFLECT,! |, = REFLECTp_p

STRIDE(a,c)} 1Dy = STRIDE(L, - | <)), . 1(D-0)

Rule 8 Reduction of Adjacent ALIGN-I Operators
EOSHIFT(cl)Dz_.Ds ] EOSHIFT(C;)DV..D: = EOSHIFT(c; + C2)D1-'Da
CSHIFT(¢)p—p © CSHIFT(c2) p—p = CSHIFT(c; + c2)p—D
REFLECTp._.p o REFLECTp_.p = idp
STRIDB(GI »C1 )c3D+c3—-a1 azD+ajca+cy © STRIDE(a2, C2)D—»a3D+c;
= STRIDE(U-I az,ai1c2 +¢1 )D—»alagD-l-alcg-l-c;
STRIDE(a, b)D+c-—aD+ac+b o EUSHIFT(C)D_.D_}_C = STRIDE(G., ac+ b)p...ap+a¢+b
EUSHIFT(C)°D+;,_.¢D+,,+C o STRIDE(a, b)D—oaD+b = STRIDE(a,b + ¢)p—aD+btc

Rule 9 Exchange of ALIGN-I Operators
For all &y(p, —.p,) and &(p,—Dp;) in ALIGN-I
@2(Dy—D3) © d1(Dy—D3) = &;(El -D3) ° aS(Dl-‘EI)
where &; is an ALIGN-I operator that is of the same kind as o3,
&, is an ALIGN-I operator that is of the same kind as a2

Rule 10 Reduction of Non-Adjaceht ALIGN-I Operators
For all &},a; and &;in ALIGN-I

— = =
X)(D3—Dy) © %2D2—D3) © X1(D;—Dy)

=1 =N
= °
¥2(By~Dy) ° *1(Dy~E1)
where &1,87,5] are of the same kind and &2, &), are of the same kind
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Composition of ALIGN-II Operators

Operators in this class are all linear functions with multiple variables. If the coefficient matrices [a;;] for
the operators are nonsingular, the inverse of the operator can be derived by matrix inverse (Y = AX =
X = A'Y). Furthermore, due to the linearity of TRANS and SKEW and the special algebraic property
of the mod operation in CSKEW, composition of intercomponent alignment operators can be reduced to a
single one with the new matrix derived from the multiplication of the matrices in the components (i.e.
A(BX) = (AB)X).

Rule 11 Inverse of ALIGN-II Operators
For all & in ALIGN-II

&([ai;])pL 5 = &([ei;]1"")p~E
Rule 12 Reduction of Adjacent ALIGN-II Operators
For all & in ALIGN-II
&([ai;]) p,—Ds © &([4i;]) Dy -,
= &([aij] x [b;]) D, ~Ds
Rule 13 Left-Trans Reduction
For all & in ALIGN-II
&([ei]) Dy~ D © TRANS([b5]) p, — D,
= &([ai;] X [%;])p,~Ds
Rule 14 Right-Trans Reduction
For all & in ALIGN-II
TRANS([¢]) Dy —D; © &([4¢;]) D, ~ D,
= &([ai;] % [bi;]) Dy~ Dy

Composition of ALIGN-II Operators and Multi-D Operators

The exchange of TRANS and Multi-D operators states that applying a Multi-D operator and then a trans-
posititon is equivalent to applying the transposition and then the permutation of the Multi-D operator
on the permuted domain. Similarly, the linear property of ALIGN-I and ALIGN-II operators allows the
exchange of SKEW and Multi-D EOSHIFT (A(X + C) = AX + AC , and AX + C = A(X + A~1C)), the
exchange of SKEW and Multi-D REFLECT (A(N — X) = AN — AX, and N — AX = A(A~1N — X)), and the
exchange of CSKEW and Multi-D CSHIFT (A((X + C) mod N) mod N = ((AX mod N)+ C) mod N).

Rule 15 Exchange of ALIGN-II and Multi-D Operators
1) Let #([di]) D,y - xDp— By x-- xEn = (ray X ++* X K4, )D, x-.-xDp—Ey x-- x B, Where x; are 1-D operators
I'RAIS([O'I.;,'])E1 XX En—Eq, X+ xEq, © l€.([d.‘])1)l X++XDp=Ey X+ X En
= &([aij] X [di])Dg, x---x Dy, = Eqy, x- x Eq, © TRANS([a;;])p, X--XDn—Dg, X--xDag,
(2) Let SH([ci]) Dy x...x Do —(Dy +¢1)X... x(Dnten)
= (EOSHIFT(c1) X ... X EOSHIFT(cn)) D, x...x Dp—(D +¢1)X... X(Dn+cn)
SKEW([24;])(Dy+e1) x... x(Dnten) =By x...xEn © SH([E]) Dy x... x Do =(Dy ey ) X X( Dt )
= SH([a.‘j] X [ci])E; X...XE} =By X...XEp © sm([aij])Dl X...XDnp—E} X...x E}
(3) Let m([’"t’])D; X...XDp=Dj X...XDyp
= (REFLECTX...X REFLECT)p, x...xDp—D; X... XDy
SKE¥([ai5]) D, ... x Dp = Ey x... x En © BEF([ni]) Dy x... x DDy x... x D
= REF([ai;] X [7:]) B, x... xEp — By x...x Eq © SKEW([245]) D, x... x D B, x... X E,
(4) Let CSH([ci])D, x... xDp— Dy x... x Dy
= (CSHIFT(c1) X ...X CSHIFT(cn))D, x... %xDp—Dj x...xDy, Where |Di| = |Dy]|=...= |Dy]

CSKEW([a:5]) Dy x... x Dp =Dy x... xDg © CSH([&i]) Dy x...x Dp =Dy x...x D
= csa([au] X [Ci])Dl X...XD,;-‘D; X...XDgp °csx“([aij])D1x...xD,-oD1 X...XDp
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Rule 16 Reduction of Non-Adjacent ALIGN-II Operators
(1) n“s([“ij])E,, XX Epy —Eqy X+ XEq, © "([dt‘])D,,1 X:++XDpg =+Ep; XX Ep,,
o TRANS([b;]) p, x--- XDp—Dyp; X+-+XDp,
= s([aiz] x [di])D,,1 X+ XDgy —+Eq, X+ X Eq, © TRANS([a5] X [bi;]) D, X:+XDp=+Dgqy X+ XDgqy
(2) SKEW([a35])( B, 4e1) x... x(Bnten)— B, x..BY © SH(C])E, x- x Ba (B +e1)%...X(Enten)
° SKBU([I).'.,'])Dl X++XDp=sEy X+ XEn
= SH([ai;] X [6]) P x...xFa =B x...xE, © SKEW([2i;] X [bi5])Dy x- x Dp e Fy -+ x Fn
(3) SKEW([2i;]) By x...xEp — B} x... B, © REF([Mi])E, x-- xEn By x... xEn
o SKEH([I),'.,‘])Dlx...xz),,'....E1 X X Eq
= REF([aij] X [ni]) gt x...x Bl — B x...xEL, © SKEW([2i] X [bi;]) p, x .. x Do =B} x-- x B,
(4) csm([aij])Dl X...XDgp=+Dy X...Dp © cs“([‘-‘i])D; X+ XDp=Dj X...XDp
o csm([bl'j])D1 X+« XDp=+Dj X+ XDg
= CSH([ai;] X [ei]) Dy x...xDp =Dy x...xDa © CSEEW([aij] X [bi;]) Dy x-- x Dp =Dy x-+ x Dy

Composition of ALIGN-II Operators and ALIGN-III Operators

Rules 17 reduces the composition of ALIGN-II and ALIGN-III operators to an ALIGN-III operator, and
Rule 18 implies the reduction of nonadjacent ALIGN-II operators.

Rule 17 Reduction of ALIGN-II and ALIGN-III

(1) TRANS([0i5]) B, x...x Ex = Eq, x...x Eq, © EMBED([bij], B X ... X Ek)D, x...x Dp—Ey X... X Ey
= EMBED([ai;] X [bi;}, B4, X ... X Eg,)p, X...XDn=+Eq) X...xEq,
(2 SKEW([a4;]) B, x....x By = E{ x... x E|, © EMBED([bij], By X ... X Ek) D, x...xDp=s By X... X g
= EMBED([a;;] x [bi;], E] x ... x E;)Dl X...XDpn—~E} X...XE},
(3) TRANS([2i;]) B, ... x By, =Ea, X...xEq, © RESHAPE([m;], [bis], [li], [ci51) Dy x.... x Do = By x... x B
= RESHAPE([m;], [bi], [ai;] x [l [2i5] X [¢i5]) Dy x...xDa— D4, x...x Dy,
4) RESHAPE([m;], [bi;], [li], [ei5]) D4, x...x D4, =By x...x By, © TRANS([2i5]) D, x...x Dp =Dy, X...xDa,,

= RESHAPE([a;;] X [m], [ai;] X [bi;], (1], [ci5]) Dy x... x D — By %... x By,

Rule 18 Exchange of ALIGN-II and ALIGN-III
Let SEC([;], [ui], [si]) = SECTION(l3,u1,51) X ... X SECTION(In, un, 5n)
TRANS([0:5]) B, x... x En—Eq, x...xEq, ©SEC([l},[ui},[5:]) Dy x...xDp—~Ey x...xEw
= SEC([aij] X [l [@i;] X [uil: [@i;] X [5i;]) Dy, x...x D4, = Eq, x... xEa,, © TRABS([a35]) Dy x...xDp=Dg, x...xDa,,

Expansion Rules for Exposing Communication Idioms

The expansion rules are used to expose communication idioms.

Rule 19 Composition-Product Exchange
For all &3, &2,a3,&s in ALIGN-I
where &; and &3 are of the same kind or &2 and &4are of the same kind
(a1 0&2) X (&3 0 &4)
= (&1 X &3) o (&2 X &)

Rule 20 Partition Expansion for Multi-D ALIGN-I
For all &1,...,&q in ALIGN-I and of the same kind
4%(vo B)o ((-- X ...) 0)* (81 X ... X &g) oI4(B~1 0 4™1)
= (4(voB)o((..X...)0)* o II¥B~204™2)) o (N%(v0B) 0 (a1 X ... X &g) o I4(B~2 04~1))
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Rule 21 Partition Expansion for 1-D ALIGN-I
Let &; and &2 be in ALIGN-I

YoBo (& 0a4)0B~1 oy~?

= (voBo& 0B oy )o(yoBod 08 10q™1)

Appendix C: Sample Derivation of Layout Conversion and Data
Motion for the Least-Square Approximation

Derivation 1 Boundary Extraction for Fine-Grain Array A_TEMP
wq is the boundary expression for the fine-grain shifting, and My x M, the local index domain

Wa bd(id x (BLOCK(b) o CSHIFT(1) o BLOCK(b2)~1))

(by Prop 8 Distribute bd over Product)
= M x bd(BLOCK(b2) o CSHIFT(1) o BLOCK(b;)™1)
(by BD 1 Boundary for ALIGN-I)
M x interval(ub(Mz) — 1,ub(M2))

Derivation 2 Intra-Block Data Motion for Coarse-Grain Array A_TEMP
0o is the communication expression extracted from line 14 of subroutine mm
0a (BLOCK(b1) x BLOCK(b2)) o ((id X CSHIFT(1))®2)P2 o (BLOCK(b;) x BLOCK(b2))~?
(by Rule ?? Partition Expansion)
(BLOCK(b1) x BLOCK(b2)) o (id x CSHIFT(1))*? o (BLOCK(b;) X BLOCK(b2))~? P2
(by Prop 5 Product-Composition Exchange)
((BLOCK(b1) o 7d 0 BLOCK(b1) =) x (BLOCK(b2) o (CSHIFT(1))®2 o BLOCK(b2)~1))P>
(by Prop 1 Inverse)

(id x (BLOCK(b2) o (CSHIFT(1))*2 o BLOCK(b2)™1)P2)
(by Rule 5 Aggregate Communication)

(id x (BLOCK(b2) o (CSHIFT(b2)) o BLOCK(b2)~1)P2)
(by Rule 6 Coarse-Grain Communication)

(id x (CSHIFT(1) x id)P?)

Derivation 3 Boundary Extraction for Data Motion of Coarse-Grain Array A_TEMP
wa is the boundary expression for the coarse-grain shifting, and M; x M> the local index domain

wa = bd(id x (BLOCK(bz) o CSHIFT(b2) o BLOCK(b2)™1))
= {}+ (M x M) (by Prop 8 Distribute bd over Product)
= M; x M, (by definition of +)

Derivation 4 Boundary Extraction for Computation of Coarse-Grain array A_TEMP
Pa is the boundary expression for computation
pa = bd(id x (BLOCK(b2) o (CSHIFT(1))b2 o BLOCK(b2)~?))

(by Prop 8 Distribute bd over Product)
M; x bd(BLOCK(b2) o (CSHIFT(1))2 o BLOCK(b;)~1)

(by BD 4 Boundary for Composition)
= M x {bd(BLOCK(b2) o CSHIFT(b3) o BLOCK(52)~1), ..., bd(BLOCK(b2) o CSHIFT(1) o BLOCK(b2)~1)}
(by definition of cross product in mathematics)
{M; x bd(BLOCK(5,) o CSHIFT(b2) 0 BLOCK(5;)~?),..., M; x bd(oBLOCK(b2) o CSHIFT(1) o BLOCK(b2)~1)}

Figure 9: Derivations for Matrix Multiplication with Different Schemes of Shifting

The first set of derivation shown in Figure 9 is for optimizing the data motion for array A_TEMP inside
subroutine mm. Derivation 1 extracts the boundary (the rightmost column) for fine-grained cyclic shift,
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without aggregating communications. Derivation 2 aggregates the fine-grained shifts into coarse-grained
one. The expression (CSEIFT(1) x id) in §, matches with the idiom for coarse-grained cyclic shift, and thus
a call to the communication routine coarse-align will be generated and inserted outside the inner loop
and the message received will be stored in a two-dimensional temporary array. Derivation 3 decides the
amount of communications, and Derivation 4 extracts the boundaries for the computation in each iteration
of the inner loop ( p; for the first iteration, ..., pp, for the last iteration).

The communication derivation and boundary derivation for array B_TEMP, in line 11 of subroutine mm,
is similar.

Derivation 5 Boundary Extraction for Arrays b and C_TEMP in Subroutine mvm
The boundary expressions are extracted from line 9 and 10 of subroutine mvm
LetM> be the local index domain of array b, M; x Mazbe the local index domain of array C_TEMP

Array b: (by BD 2: Boundary for SPREAD)
bd((BLOCK(b; ) X BLOCK(b2)) o SPREAD([1,0], [1..m]) o (BLOCK(b; ) X BLOCK(52))~1) = M2
Array C_TEMP: (by BD 2: Boundary for SUM)

bd((BLOCK(b; ) x BLOCK(b2)) o SUM([0, 1]) o (BLOCK(b; ) x BLOCK(b;))~1) = My

Figure 10: Derivations for Matrix-Vector Multiplication

Figure 10 shows the boundary extraction for array b and array C_TEMP inside subroutine mvm. The
boundary derivation for the coarse-grained spread enables each processor to store only a one-dimensional
temporary array instead of a two-dimensional temporary array. The boundary derivation for the reduction
enables each processor to perform sequential reduction locally and then parallel reduction among processors,
with each processor communicating by a vector of partial results. Boundary derivation for array C in
subroutine inverse is similar.

The last set of derivations shown in Figure 11 is for layout conversion of arrays B, C and D. The normal
form of §p (Derivation 6) matches with the idiom for cyclic skewing. ¢, matches with the idiom for
change of partition. The normal form of ¢, (Derivation 7) matches with the idiom for change of partition
and the idiom for cyclic skewing. fp is reduced to an identity function (Derivation 8), which implies no
data motion is required.
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Derivation 6 Conversion Derivation for Array B
10
11

-1
) ) o (BLOCK(b1) x BLOCK(b2))~?
(by Rule 11 Inverse of ALIGN-II)

) : ) o (BLOCK(b; ) x BLOCK(b2))~?

(BLOCK(b; ) X BLOCK(2)) o CSKEN ( ; : ) o CSKEW (

1

(BLOCK(b, ) X BLOCK(b2)) o CSKEN ( ; i ) o CSKEW (
(by Rule 12 Reduction of ALIGN-IT)

0 i) o (BLOCK(b;) x BLOCK(b2))~?

(BLOCK(b1) X BLOCK(b2)) o CSKEW (

Derivation 7 Conversion Derivation for Array C

¢, is the communication expression for layout conversion of C between first mm and inverse
6c, is the communication expression for layout conversion of C between inverse and second mm
(SEQ x CYCLIC(p)) o (BLOCK(b;) x BLOCK(b))™?

<«

Q

&
]

)
N
I

(BLOCK(b;) X BLOCK(b2)) o oCSKEW ( : (1) ) o (SEQ X CYCLIC(p))=!
(by Rule ?? Partition Expansion)
((BLOCK(b; ) x BLOCK(b2)) o CSKEN ( i ‘1’ ) o (BLOCK(b;) x BLOCK(2))~1)

o ((BLOCK(b;) x BLOCK(b3)) o (SEQ X CYCLIC(p2))~?)

Derivation 8 Conversion Derivation for Array D

6p = (BLOCK(b1) x BLOCK(bz)) o (BLOCK(b;) x BLOCK(b2))™?

(BLOCK(b1 ) 0 BLOCK(b1)~1) x (BLOCK(b2) o BLOCK(b2)™1) (by Prop 5 Product-Composition Exchange)
d( H(ny)x H(nz))x(Ly xL3) (by Prop 1 Inverse)

n

Figure 11: Derivations for Layout Conversion
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