Abstract

Classic binary search is extended to multidimensional search problems. This
extension yields efficient algorithms for a number of tasks such as a secondary
searching problem of Knuth, region location in planar graphs, and speech

recognition.

Keywords
binary search, secondary search, efficient algorithms, planar graphs, finite

element methods

Multidimensional Searching Problems

v/
David Dobkin and Richard J. Lipton

Research Report {34

October 1974

An earlier version of some of the results presented here was given in a paper
titled "On Some Generalizations of Binary Search'" and presented at the Sixth
Annual ACM Symposium on the Theory of Computing, Seattle, Washington, April

1974. Portions of the work of the first author were supported by NSF Grant
GJ-43157.

1. Introduction

One of the most basic operations performed on a computer is search-
ing. A search is used to decide whether or not a given word is in a given
collection of words. Since many searches are usually performed on a given
collection, it 1s generally worthwhile to organize the collection into a

more desirable form so that searching is efficient. The organization of

the collection--called preprocessing--can be assumed to be done at no cost

relative to the cost of the numerous searches.

One of the basic searching methods is the binary searching method

(Knuth [1]}). For the purposes of this paper we can view binary search as
follows:

Data: A collection of m points on a line.

Query: Given a point, does it.equal any of the m points?
Binary search, since it organizes the points into a balanced binary tree,
can answer this query in |logm] + 1 'steps'" where a step is a single com-
parison.* Note the preprocessing needed to form the balanced binary tree
is a sort which requires O(mlogm) steps. For the algorithms under con-
sideration here, we will define a step in an algorithm as a comparison of
two scalars or the determination of whether a point in 2-dimensional Euclidean
space lies‘on, above, or below a given line. For notational simplicity we
will define 'g(m)"'as the number of steps necessary to perform a search
through a set of m objects. Thus, g(m) = [logm] + 1 .

This paper generalizes binary search to higher dimensions. Through-

*Throughout this paper all logarithms are taken to base 2.

out it is assumed that data can be organized in any manner desired at no
cost. Thus, our cost criterion for evaluating the relative efficiencies
of searching algqrithmé will be the number of steps required to make a
single query into the reorganized data.

The search problems considered are specified by a collection of data

and a class of queries. These problems include:

1. Data: A set of m 1lines in the plane.
Query: Given a point, does it lie on any line?

2, Data: A set of n reglons in the plane.

uery: Given a point, in which region does it lie?

3. Data: A set of m points in the plane.

[
o
~

Given a new point, to which of the original points is
it closest?

©

4, Data: A set of m 1lines in n-dimensional space.

E |

uery: Given a point does it lie on any line?

5. Data: A set of m k-dimensionaliobjects in n~dimensional space.

uery: Given a point does it lie on any of the objects?

6. Data: A set of m hyperplanes (n-1 dimensional objects) in
n~-dimensional space.

uery: Given a point does it lie on any hyperplane?

These examples form the basig for some important problems in diverse
areas of computer science. Examples 1, 2, and 3 are fundamental to certain
operations in computer graphics {2] and secondary searching. 1In particular
example 3 1is a reformulation of an lmportant problem discussed by Knuth [1]

concerning information retrieval. Examples 4, 5, and 6 are generalizations

of the widely studied knapsack problem.

The main results of this paper are that fast algofithms exist for
problems (1)-(6). 1In particular: problems (1)-(3) have O0(logm) algorithms;
problems (4)-(6) have O0(f(n)logm) algorithms where £(n) is some function
of the dimension of the space (f£(n) 1is determined more exactly later).

The existence of these fast algorithms is somewhat surprising. For instance,
lines in the plane - (problem 1) are not ordered in any obvious way; hence,
it is not at all clear how one can use binary search to obtain fast searches.

II. .Basic Algorithm in E2

All of our fast algorithms are extensions of a fast algorithm for

computing the predicate:

31§i§m [(x,y) 1is on Li]

where Ll’ cony Lm are lines and (x,y) 1is a point in 2-dimensional Euclidean
space (Ez) . This predicate merely consists of querying whether a point in
the plane lies on any of a given set of lines, Therefore, we begin with a

proof that this predicate'canbe computed in O0(logm) steps.

Theorem 1. For any set of lines Ll’ +eey L in the plane, there is an
—) : m

algorithm that computes 3 1<i<m ([(x,y) 1is on L1] in 3g(m) steps.

Proof. Let the intersections of the lines be given by the points z., ..., z
—_— 1 n

(n S.Ei%fll) and let the projections of these points onto the x-axis be
given by Pys eees P o These points define a set of intervals Il’ seey In+1
on the x-axis such that I = (-, pl) ’ Ii = (pi-l’ pi) , 1=2, ..., n,

In+1 = (pn, ®@) and within the slice of the plane defined by each of these

intervals, no two of the original lines intersect. Thus, we can define the

relation <4 (Q£igntl) as follows:

. ' 1 '
Lj <i Lk if and only if Vx e E"[1if Py <x S_pi+1, then Lj(x) S_Lk(x)] .

(Note, L(x)- is equal to the value of y such that (x,y) ¢ L and we set

Pg="®,y P =® .) By a simple continuity argument it follows that each

< is a linear ordering on the lines Lis eees L. We can

thus define a set of permutations m(i,1), ..., m(i,m) such that

' < <, ve. <
L,y St e, 2y <t 1 Yn(t,m)

for 1 =1, ..., ntl . 4p algorithm consisting of a binary search

m=-1
into a set of at most EL3—21-+ 2 objects (the points {pi1) and a binary

search into a set of m objects (the lines eesy L for

(e, 1y m(1,m)

the proper choice of 1) requires at most g(m) + g(g%lzll % 2)

-

steps and since g is a monotonically increasing

function with g(mz) < 2g(m) , this quantity is at most 3g(m) . Degeneracles
which may be introduced into the above algorithm by lines perpendicular to
the x-axis may be removed by a rotation of the axes to a situation where no

line is perpendicular to the new x-axis. E]

Before studying applications of this algorithm to the problems men-
tioned above, it is worthwhile to examine its structure in'more detail,
What we have done 1s to find a method of applying an ordering to a set of
lines in the plane. For a set of lines in the plane, no natural ordering
exists and thus it is reasonable to assume that any search algorithm which

is "global" (i.e. considers the entire plane at once) must use a number of

of steps which grows linearly with the number of lines. The algorithm pre-
sented in Theorem 1 defines a set of regions of the plane in which the lines
are ordered. 1In this sense, the algorithm is "local" and the two steps con-

- slst of finding the region in which to search and then to do a local search
on an ordered set. The orderings are found during ﬁreprocessing of the data.
The projections of intersection points (i.e. {pi7) define the local regions
into which the plane can be subdivided and the permutations (i.e. ﬂ(i,-)})
define the orderings within each of the subdivisions of the plane. Moreover,
it is clear that the algorithm not only determines whether the point lies

on any line but also between which lines the point lies, 1if it does not lie
on any line. Using this information, we can determine in which region of the

plane determined by the given lines the point lies. Thus, we have,

Corollary. Given a set of regions formed by m 1lines in the plane, we can

determine in 3g(m) steps in which region a given point lies.

This algorithm forms the basis for what follows. We proceed by study-
ing extensions of this algorithm to higher dimensions and applications of
our basic algorithm and its extensions to some interesting problems of com=-
puter science.

IIXI. Extensions to En

We have seen that searching in a set of m O-dimensional objects in
1-dimensional space can be done in g(m) steps and that searching in a set
of m 1l-dimensional objects in 2-dimensional space can be done in 3g(m)
steps given that the original objects can be preprocessed before any searches

are undertaken. In the present section, we extend the search question to

seek methods of searching in a set of m k-dimensional objects in n-dimen-
sional spaces. In order to provide a clearer exposition, a series of lemmas

will be presented, each of which can be viewed as a generalization of Theorem 1.

Lemma 1. For any set of lines Ll’ seey Lm in n-dimensional Euclidean space
(n >2), there is an algorithm which computes 3 1<1i<m([x 1is on Li]

for x a point in E' in (nt+l)g(m) steps.

Proof. The proof is by induction on n and follows from Theorem 1 for n = 2 ,
Now, suppose that n > 2 . It is possible to find a hyperplane H such
that none of the lines is perpendicular to H . Projecting the lines onto

H ylelds a set of lines Ll’ ey Lm on H and projecting x onto H

yields a point x' on H . Furthermore if x 1lies on Li then x' lies

on Li « By the induction hypothesis, we can determine on which lines of

the set {Li, ceey L;] » x' 1lles on, in ng(m) steps. If x' doesn't

lie on any Li ; then x doesn't lie on any L And 1f x' 1lies on

i ’

{Li 5 seey L) } 5 the lines L are linearly ordered at x'

1]
’ LN ¥} , L
1 1 _ 4 1

with respect to the projected co-ordinate and with a logarithmic search we

can determine 1{f x 1lies on any of [Li', vaey Li Y. since ik <m, this
’ 1 3

search requires at most g(m) steps and m 1lines in E" can be searched

in (n+l)g(m) steps. D

n

Lemma 2. For any set of hyperplanes Hl, ceny Hm in E (n >2), there

is an algorithm which determines, for any point «x 5 whether x 1{is on any
hyperplane or which hyperplanes it is between in at most (3-2n-2 + (n=2))g(m)

steps.

Proof. Let h(m,n) be the time required to do the search. 'From

Theorem 1, we know that h(m,2) < sg(m) and we will show here that

h(m,n) < h(m2, n-1) + g(m). Let K be a hyperplane which is not identical
to any of the original hyperplanes. Then, we proceed by forming the set

of n-2 dimensional objects Jl, ceey J formed as intersections of

k
palrs of the hyperplanes we considered. Thus, for example J1 = Hl n H2’
cosy Jk = Hn-l n Hn and k S_Ei%fll-< m2 . From these hyperplanes, we

form their projections Jj, ..., J' on to K . If the point x projects
1’ J

k

onto x' , we can by the induction hypothesis determine in less than
h(mz, n-1) steps in which region of n-1 dimensional space x' 1lies. With

respect to each of these regions, the hyperplanes H ceey Hn are ordered

1,

and can be searched in g(m) steps. Thus, if x' doesn't lie on any Jé s

the lemma holds. And, if x' 1lies on a hyperplane Ji s

less than g(m) will determine in which region of E" the point x 1lies.

a search requiring

2)
This proves that h(m,n) < h(m", n-1) + g(m). Solving this recursion

yields h(m,n) < h(mZk, n~k) + kg(m) or

n-2

20+ @e2gm = 302"

h(m,n) < h(m + @-2)g@ . 0O

Combining the results and proof techniques of Lemmas 1 and 2 yields the follow-

ing general theorem on searching k-dimensional objects in ET .

Theorem 2. For any set of k-dimensional objects 91, erey B in E" » there
—_— m
is an algorithm that computes E] 1<i<mx is on ei] “in (3'2k-14-(n-2))g(m)

steps for any point x in o .

Proof. Let £f(m,k,n) be the number of steps required by the search. Then,

if k<n-1, we can by an argument similar to that used in the proof of

Lemma 1 projects the objects onto a hyperplane in E® and proceeding as

there, it is clear that f(m,k,n) < f(m, k, n-1) + g(m) if k <n-1 . Con-
'tinuing this induction yields f£f(m,k,n) < f(m, k, k+l) + (n-k-1l)g(m) . Com-.

bining this result with the result of Lemma 2 that f(m, k, k+l) <

3251 4+ (k-1))g(m) yields the result f£(mk,n) < (3-25"1 4+ (n-2))g(m)

as in the statement of the theorem where we make use of the identity

h(m,n) = £(m, n-1, n).

4, Applications in E2

Before presenting any applications the basic algorithm must be:
(1) examined with respect to preprocessing, (ii) examined with respect to
storage requirements, (1il) also extended to.a slightly more general case.

Instead of m 1lines assume that we are given m lines or line seg-
ments. The problem is then to search the regions formed by these generalized
lines. It is easy to see that the basic algorithm can be adapted here and
it operates in time 3g(m) . Let N be the number of intersection points
formed by the m 1lines. The preprocessing is:

l. Find the N 1intersection points formed by the m lines.

2. Store these intersection points after they are projected onto the

x-axis.

3. For each two adjacent intersection points t. and t find the

1

permutation of the m lines in the region t

2
1 <x S.tz .
Step (1) takes O(mz) since finding the intersection of two lines consists
merely of finding fhe solution of a simple linear system of equations. Step
(2) is'a sort of N objects; hence, it takes O(NlogN) time. Finally,
Step (3) takes at most O(mlogm) for each of the N regions: to determine

the order of the m lines takes at most a sort of m objects. In summary,

preprocessing takes

0(mNlogm) + O(NlogN) . o .

The storage requirements are easily seen to be: O(N) from Step (1) and
O(mN) from Step (3). .Thus the total storage needed is seen to be O(¥Nm) .

We will now study two applications of the basic algorithm.

4,1. Planar Graph Search

Suppose that we are given a planar graph G with m edges. How
fast can we determine which region of G a new point is in? For example,

this location problem is central to the finite element method [3].

Theorem 3. In O0(logm) time and 0(m2) storage, it is possible to determine

in which region of a planar graph with m edges a given point lies.

Proof. By an application of Euler's relation {4] the m lines of G can
only intersect in O(m) points. Therefore, the basic algorithm--as modified
--gshows that planar graphs can be searched in O0(logm) time. The preprocessing

required is O(mzlogm) s the storage required 1is 0(m2) . [:]

4,2, Post Office Problem

Theipost office problem is a search problem for which Knuth [1] states
there is no known efficient solution. Suppose that we are given m cities
or "post offices." How fast can we determine which post office is nearest
to a new point? This is the post office problem. We will now show how to
reduce it to the planar search problem of 4,1: Between each post offices
x and y construct the line segment zxy . Then construct the perpendicular
bisector of lxy , call it bxy (see Figure 1), The line bxy divided
the plane into two regions. The points in the half plane containing x are

nearer to x than y ; the points in the other half plane are all nearer

to y than x .

10

FIGURE 1. bxy is the perpendicular bisector of lxy . Therefore,
points below bxy are closer to x than y and points above -bx

are closer to y than x .,

i1

In order to solve the post office problem it is sufficient to determine,
for a given point, which region of the regions formed by the (2) lines
bxy it lies in. By the basic algorithm this can be done in 3g((?)) = 0(logm)
time with O(ma) storage.

These applications of our basic algorithm are clearly optimal with
respect to time to within a constant., (This follows since it takes at least
g(m) time to search m objects.) They, however, also demonstrate that
our algorithms tend to use a large amount of storage. An interesting open
question is therefore: can one search a plaqar graph's m regions in time
O(logm) with storage O(m) ? Or even O(mlogm)?

5. Applicatione in E.n

Most of the applications of the above algorithms in E" are straight-
forward extensions of the applications giQen in the previ;us section, How-
ever, because of the exponential term in the operation count of Theorem 2,
these extensions are only of interest if k , the dimension of the objects
to be searched is small relative to m , the number of objects to be searched.
Typically, we would require that m 1is larger than 2k and hopefully as large
as 22k . However, in cases where k and m do satisfy these criteria,
speédups do occur by applying the algorithms of Section 3. We study two
abplications of these algorithms here.

Consider first the problem of finding closest points in spaces of
small dimension. An example of such a problem occurs in the area of speeqh
recognition. Sounds can be classified according to a set of less than 8

characteristics [5] and thus we may consider a data base for a speech recog-

~nition system to consist of a set of points in E8 . When such a system is

12

used to understand a speaker, the method used.is to find for each sound
uttered the closest sound in the data base. In order to develop a real
‘time speech recognition system, it is reasonable to allow large quantities
of preprocessing and storage to be arranged_in advance as a tradeoff so that
each sound uttered by the speaker can be identified as rapidly as possible,
Thus, for a set of m sounds to be in the data base, the speed up of
O(m/g(m)) afforded by an extension of the closest-point algorithm of the
previous section to E8 is very useful. Further studies of this extension
are necessary to yleld improvements in the storage requirements.

As a second application, we mention some extensions of the well-known

knapsack problem (see e.g., [6], [7)). We may state this problem in the pre-

sent ccn'—nvf— o s

SRS D A

Knapsack Problem (KS_ .) . Given the hyperplanes H,, ..., H in E®
n,l 1 L
n n j-1
defined b ces = =
efined by Hi(vl’ , vn) | jz;éijvj_l where jElcij.? i for

i=1, ..., 2™-1 , the point (xl/b, coey xn/b) lies on one of the H,

if and only if there are 0-1 wvalued numbers Ciq2 cv0s Syp such that

n

pX c-ijxj = b which is true if and only if the knapsack problem with input
i=1

(xl, cees X b) has a solutionm.
Furthermore, we may consider the extended knapsack problem of seeking

multiple solutions by

Knapsack Problem (KSn p) . The point (x1/b, vy xn/b) lies on p of
2

the hyperplane Hl’ veey H n and therefore on one of the n-p dimensional
2°-1
A

objects © =H, N H, nN...NH

il’...’ ip i 1.<_i <i

n
Sy <<t <2

2
1 B2 L

013

if and only if the knapsack problem with input (xl, ...,ixn, b) has p
(or more) different solutions.

We then can establish the results

Theorem 4. The application of the algorithm of Theorem 2 yields an algorithm

n-p-1

using at most (3.2 + (n-2))g(2np) steps to solve KSn .

»P

Proof. On intersection, a set of (i?) objects of dimension at most n-p-1

are formed, Straightforward application of Theorem 2 then yields the desired

result. D -

Further discussion of this result and its implications to an open

problem in automata theory will appear in a future paper.

(1]

(2]

[3]

(4]

(5]
(6]

(7

14

REFERENCES

D. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Addison-Wesley, 1973.

W. Newman and R. Sproull. Principles of Interactive Computer Graphics,
McGraw-~Hill, 1973,

J.A, George. A Computer Implementation of the Finite Element
Method. Ph.D. thesis, Stanford University, 1971,

C. Liu. Introduction to Combinatorial Mathematics, Addison-Wesley,

S. Levinson., Private Communication.

E. Horowitz and S. Sahni. Computing partitions with applications to
the knapsack problem. Cornell University Computer Science Technical
Report 72-134, July 1972,

R. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, 2d. by R. Miller and J. Thatcher, Flenum Press,
1972,

