Yale University |
Department of Computer Science

Relative Knowledge and Belief
(EXTENDED ABSTRACT)

Michael J. Fischer Lenore D. Zuck

YALEU/DCS/TR-589
December 1987

This work was supported in part by the National Science Foundation under grant
DCR-8405478 and by the Office of Naval Research under Contract N00014-82-
K-0154.




Relative Knowledge and Belief

(EXTENDED ABSTRACT)

Michael J. Fischer Lenore D. Zuck

Abstract

Motivated by recent research in cryptographic protocols and formal theories of
knowledge, we present a logic of feasible and probabilistic knowledge. Our notion of
relative knowledge captures the idea of feasibly computable knowledge, and our notion
of relative belief captures the idea of feasibly computable knowledge with a degree of
confidence o < 1. We illustrate the power of our definitions by characterizing the state
of knowledge of the verifier after running an interactive proof of knowledge of a square
root in Z7,.

1 Introduction

Much research in distributed computing and cryptographic protocols has centered on solving
problems of multi-agent systems with various elements of uncertainty, e.g., the Byzantine
generals problem (where uncertainty stems from the possible faultiness of the processes),
mutual exclusion (where uncertainty stems from the asynchrony of the system), mental
poker, etc. Intuitively, uncertainty implies lack of knowledge, and overcoming it implies
establishing some degree of knowledge. This has led to the natural observation that a
useful way to analyze distributed and cryptographic systems is in terms of knowledge and
how communication changes the processors’ state of knowledge [CMS6].

Our goal is to formalize the concepts of knowledge needed for reasoning about zero-
knowledge interactive proofs of language membership [GMR85] and of knowledge [GHYS5,
FFS87,TW87]. Knowledge arises there in three places:

1. The knowledge the prover wishes to convey to the verifier (in the case of a proof of
knowledge as opposed to a proof of language membership).
2. The knowledge the verifier gains after having run the protocol.
3. The the knowledge the verifier does not gain after having run the protocol.
The need for such formalization is apparent. Feige, Fiat and Shamir [FFS87] say, “The
notion of ‘knowledge’ is very fuzzy, and a-priori it is not clear what proofs of knowledge

actually prove.” They discuss the difficulties of obtaining an adequate definition of knowl-
edge; indeed, their formal definition of an interactive proof system of knowledge makes

This work was supported in part by the National Science Foundation under grant DCR-8405478 and by
the Office of Naval Research under Contract N00014-82-K-0154.




no explicit reference to knowledge concepts. Tompa and Woll [TW87] propose a different
formal definition of an interactive proof system of knowledge; they also make no explicit
reference to knowledge concepts.

In this paper, we develop a formal framework for knowledge that is adequate for ex-
pressing (1) and (2). This allows us, for example, to express the soundness property for an
interactive proof system [TW87]. (Cf. Our Theorem 2.) Our framework is not yet adequate
to express the zero-knowledge property, which asserts that (3) includes all “important”
facts. Defining a formal system of knowledge and showing that no knowledge property
expressible in that system is unintentionally conveyed by the protocol is not enough; one
must also demonstrate that the formal system is sufficiently expressive, i.e. able to express
all “important” properties, perhaps by showing that any protocol that is zero knowledge in
this formal sense is also zero knowledge in the sense of [GMR85]. We leave to future work
the problem of extending our knowledge framework to handle (3).

The formal concept of knowledge in computer science has been an active area of research
for the past several years, see, e.g., [HM84,FI86]. The main contribution of these works is the
formalization of what we call implicit knowledge. Intuitively, a fact 9 is implicit knowledge
for agent ¢ if it is necessarily true based on i’s local view of the world. In other words, i
knows 1, written K9, if ¥ is true in all states of the world that look the same to i as the
present state. This definition of knowledge satisfies the knowledge aziom

Kiy D9
which says that ¢ only knows true statements.

As many people have observed, implicit knowledge is inadequate for reasoning about
the knowledge appearing in interactive proof systems. The reasons are manyfold:

a. Implicit knowledge (and, in fact, all the notions of formal knowledge that we are aware
of) deals with knowledge of predicates. However, in an interactive proof system the
prover may want to convince the verifier it knows some value in a prescribed set of
possibile values, e.g., one of the four square roots of ¥y modulo a number n that is the
product of two large primes. (We denote this set by ,/y mod n.) We therefore need a
concept of knowledge that captures knowledge of multi-valued functions.!

b. Implicit knowledge ignores the computational complexity of extracting knowledge
from the local view. For example, since ,/y mod n is uniquely determined by y and
n, then the prover always implicitly knows it. This implicit knowledge is however
not feasible since the prover might not be able to obtain any element in /7 mod n
efficiently (in probabilistic polynomial time), i.e., this knowledge is not feasible. The
point of an interactive proof of knowledge of ,/y mod n is that the prover be able to
efficiently produce some element in the set.

c. Following our previous example, since we believe that finding any element in /5 mod n
is computationally difficult, it seems that the prover can never know \/y mod n in a
feasible way. Suppose, however, that the prover has a secret tape s. The prover can

!The obvious approach of defining knowledge of f(z) as a conjunction of knowledge of each bit of f(z)
fails on two grounds: It does not extend to multi-valued functions, for knowing the i*" bit of one of the
possible values of f(z) for each i does not imply knowing all of the bits of the same value. It also does not
extend to the probabilistic case, for knowing each bit of f(z) with high confidence does not imply knowing
the actual value of f(z) with similar confidence.




compute s mod n. If, by chance, it equals y then the prover knows an element of
v/y mod n. This may indeed be the essence of the prover’s knowledge in an interactive
proof system, not that it can compute the square root of an arbitrary quadratic residue
y, but only that it sometimes happens, for whatever reason, to already know such a
square root. Our knowledge system must therefore be able to deal with such accidental
knowledge.

d. Implicit knowledge lacks the expressive power which is required when reasoning about
probabilistic protocols (of which interactive proofs are an example). In such a system,
an agent might, e.g., “know” that 9 is true in 99% of the worlds that look the same
to it as the current world. However, if 9 is false in the remaining 1% of the worlds, ¥
is not always true and hence 7 does implicitly know 1.

e. Not only are interactive proof systems explicitly probabilistic, they are implicitly
nondeterministic. For example, every cheating prover defines a different system when
interacting with a correct verifier. Each of these systems is probabilistic, yet the veri-
fier cannot tell which system it takes part in, nor is it realistic to assume a probability
distribution on the possible protocols used by the cheating prover. Its knoweldge at
the end of the protocol must account for this nondetreminism.

To deal with (a), we extend implicit knowledge to deal directly with multi-valued func-
tions of the state, and we observe that knowledge of a predicate can be treated as a special
case of knowledge of a multi-valued function.

To deal with (b) and (c), we present a logic of “relative” knowledge that allows us to
express both feasible knowledge and accidental knowledge. The idea behind our logic is
that there be an efficient algorithm M which, given the local view of an agent i as input,
either outputs one of the values of the function f at the current state or says ‘?’ (meaning
“I don’t know”). We call such an M an i-feasible knowledge generator for f and say that
¢ knows f in a state relative to M if M produces a value other than ‘?’ given the agent’s
current local view.

When applied to a predicate 1, the knowledge generator M either outputs true or ‘?’, and
it outputs true only when 1 really is true. Thus, we can view M as a verification procedure
for 1—it “proves” 9 holds by outputting true. The statement “i knows ¥ relative to M”
then means that “M verifies for 7 that % holds”. Since M depends only on i’s local view,
if it verifies 9 in state g, then it also verifies 9 in all states g’ that look the same to 7 as g.
Hence, relative knowledge of 4 implies implicit knowledge of 1.

Relative knowledge gives us a whole range of degrees of knowledge, each depending on
the properties of the particular knowledge generator M. At the one extreme, a knowledge
generator that never says ‘?’ is a feasible algorithm that an agent can use to find some value
of the function at every global state. At the other extreme, a knowledge generator that
always says ‘?’ is trivially correct but gives no useful information.

To deal with (d), we present a logic of probabilistic knowledge. Probabilistic knowledge
often plays the same role as true knowledge, but, because the knowledge axiom does not
hold, we refer to such knowledge as belief.2 We introduce implicit belief which corresponds to
knowledge in probabilistic systems. Unlike knowledge, belief is not absolute but is associated
with a degree of confidence.

20ur notion of belief is of a probabilistic nature. This is different from other notions of belief based on
the failure of the knowledge axiom for other reasons [FH85].




We then combine the definitions of implicit belief and relative knowledge to obtain
relative belief by allowing the knowledge generator some probability of error. We call such
unreliable knowledge generators belief generators. Not only does relative belief fail to satisfy
the knowledge axiom, but it is also non-monotonic; extra information can lower one’s degree
of confidence.

Finally, to deal with (e), we introduce non-determinism. We assume each agent has a
set of probabilistic protocols from which it (non-deterministically) chooses one to execute.
While each agent’s set of possible protocols is commonly known to all the other agents, the
chosen protocol is not. The tuple of protocols collectively chosen by the agents constitutes
a probabilistic system. A formula is known or believed if it is known or believed in all such
tuples.

We demonstrate the utility of these definitions by applying them to a particular zero-
knowledge interactive proof that the prover knows an element in vy mod n [GMR85,TW87].
We give a succinct and rigorous expression and proof of the soundness condition for that
protocol. This suggests that we have achieved at least partial success in combining the
classical approach to the formal theory of knowledge with the notions of knowledge that
have appeared in modern cryptographic protocols.

Related Work

Moses [Mos87] addresses problem (b) by adding to implicit knowledge the requirement that
there be an efficient algorithm for deciding whether or not K;3 holds, given only i’s local
view. This notion of feasible knowledge can be expressed within our framework as knowledge
of the characteristic function xy of the predicate 1 relative to a knowledge generator M
that never outputs ‘?”. (The characteristic function x,(g) = {true} if ¢ is true at ¢, and
xv(g) = {false} if ¢ is false at g.) This same M also decides whether the implicit knowledge
formula K;9 holds, so it satisfies Moses’s requirement.

Moses’s definition appears to be quite reasonable in the context of knowledge-based
protocols [HF85,HZ87], where decisions must be made on the basis of an agent’s knowledge.
However, it is too restrictive for our purposes, for by requiring that it capture implicit
knowledge exactly, it fails to account for (c). In the same work, Moses acknowledges that in
order to deal with issues in cryptography, his framework must be extended to talk directly
about functions instead of only predicates and to include probability (our problems (a)

and (d)).

In [Hal87], Halpern showed a way of defining “probabilistic knowledge” (which appears
to be similar to our mplicit belief) and claimed it can be easily extended to allow formalizing
the knowledge of a verifier after an interactive proof; he gave an example of what such a
formal statement might look like.

2 The Computational Model

We consider terminating distributed systems with a set A of participating agents. Formal
definition of a similar system appears in, e.g., [Hal86]; we briefly sketch it here.

The set of global states of a system R is denoted by G = Gr. The set of local states
of each agent (process) is denoted by V. For every agent i € A, we assume some function

4




vi:G — V that maps each g € G to i’s local view of g. Given two global states g and ¢, we
say that g and ¢’ are indistinguishable to i, denoted by g ~; ¢, if 7 has the same local view
in both, i.e., if ¥;(g) = vi(¢").

We assume each agent i € A runs a protocol which is a polynomial time Turing machine.
The protocols together with an initial global state define the possible legal runs of the
system, where each run is a finite sequence of global states. We therefore identify a system
with its set of runs. A system R is deterministic (probabilistic) if the underlying protocols
are deterministic (probabilistic).

We will generally be interested in probabilistic systems. We can consider a probabilistic
system to be a deterministic system in which each participant  has an additional (sufficiently
long) random tape which it can read during the course of the computation. Assuming each
cell of each random tape is chosen uniformly and independently from {0,1}, one gets an
induced probability distribution on runs in the natural way.

For technical convinience, we assume that agents do not forget, i.e., in every run r, for
every k, 1 < k < |r|, vi(rx) includes v;(rk—1), where 7, is the £ state in r.

3 Knowledge

In this section, we define implicit and relative knowledge for deterministic protocols.

3.1 Implicit Knowledge

Let R be a deterministic system with global states G = Gr. We assume a set of base facts
(predicates) on the global states that varies from application to application. For example,
if each global state g includes a number n(g) € N, then we might consider a base fact prime
such that for every g € G, '

prime(g) iff  n»(g) is a prime number.

Similarly, we assume a set of base multi-valued functions with domain G that varies from
application to application. For example, we can add a base function prime-factors: G — 2N
by defining

prime-factors(g) = {p | p is a prime factor of n(g)}.

We define a set of facts and a set of functions over G inductively from the base functions
and facts.

. Base facts are facts.

. I fis a function, then K;f is a fact for every i € P.
If 9 is a fact, then K;9 is a fact for every i € P.

If 9 and £ are facts, then so are =4y and 9 Vv £.

Base functions are functions.

S

If ¢ is a fact, then fy is a function.




fy is a multi-valued function associated with the fact 1. It simplifies our subsequent
definitions by allowing us to define knowledge of facts in terms of knowledge of functions.

The following inductively defines the semantics of facts and functions. The semantics
of a fact is defined as a satisfiability relation = between a global state and the fact. Each
function is defined as a mapping that takes a global state to a (possibly empty) set of values.

1. gkErp iff p(g), where p is a base fact.
2. gErKif iff N{f(g")|g ~ig}#0, where f is a function.
3. gErRKip iff gl=r Kify, where 9 is a fact.
da. gFr Y iff glkr 9.
4b. gErYVE ff glErporg kg,
5. The value of a base function is assumed to be known.

6. fy(g) = {true} if g =r 9, and f;, = 0 (the empty set) if
g Er —, where 9 is a fact.

Remarks

¢ Here and in the sequel, we omit mention of the system R when it is clear from context.

e If f is a function then g |= K;f means “i knows some value of f at the current global
state”.

o If 9 is a fact, then g = K;3 means “i knows that 1 is true at the current global state”.

o If for every g the value of f depends only on v;(g), then for every g, g E Kififf
flg) # 0.

o If ¢ is a fact then g = K;K;% implies that g = K;i. However, this is not true for
functions.

3.2 Relative Knowledge

Implicit knowledge ignores the computational problem of determining from the local view
of agent 7 when a formula K;7 holds. For example, assuming n and prime-factors are
as defined previously, then g = K;( prime-factors) always holds, for the prime factors of an
integer n are uniquely determined by n = n(g). On the other hand, the problem of factoring
n is believed to be computationally difficult, so there is no known efficient algorithm for
computing prime-factors(g), and hence ¢ has no feasible way of finding the prime factors
of n that she implicitly knows. Here we are interested in defining knowledge of a fact or
function where computational limitations are taken into account.

Let i be an agent in the system, let f be a function with domain G, and let M be a
probabilistic polynomial time Turing machine. M is an 1-feasible knowledge generator for
f if for every g € G, M on input v;(g) outputs an element in flg)u {7}

We are now in a position to define relative knowledge. We say that agent i knows a
function f in state g € G relative to a machine M, denoted by

g I=’R. waf,




iff M is an i-feasible knowledge generator for f and M (v;i(g)) # ‘?’. Similarly, we say that
agent 1 knows a fact ¢ in state g € G relative to a machine M, denoted by

g Er KMy,

iff g e KM fy.

Relative knowledge implies implicit knowledge, i.e., KM f implies K;f. This is because
g = KM f implies that M is an i-feasible knowledge generator for f and M(vi(g)) € f(g).
It follows that for every state ¢’ ~; g, ‘7 # M(vi(9)) = M(vi(g")) € f(g'), so M(vi(9)) €
N{f(g) | ¢ ~ig}. Thus g Kif.

3.3 Probabilistic Relative Knowledge

The notion of relative knowledge generalizes easily to allow the knowledge generator itself
to be a probabilistic algorithm. Such an algorithm M computes a random function in which
a probability is associated with each possible output of M(v). We say that M is i-feasible
for f if for every g € G, every output of M on input v;(g) with non-zero probability is in
flou{7}

To generalize the notion of relative knowledge to probabilistic knowledge generators, we
add a confidence value o to the knowledge operator and say that in state ¢ € G agent ¢
knows a function f with confidence o relative to a machine M, denoted by

g Er KM,
iff M is an i-feasible probabilistic knowledge generator for f and
Prob[M (vi(g)) # 7] 2 a.
Similarly, agent @ vknows a fact v with confidence a relative to a machine M, denoted by
g = KMy,

iff g or KM fy.
It follows from the above definitions that if M is deterministic, then g =r KM f implies
g Er KM,

Note that knowledge relative to probabilistic knowledge generators no longer satisfies
the positive introspection axiom

Kiv O KiKip

(when appropriate superscripts are added to the knowledge operators), that is, an agent
may not know what it knows. The reason is that determining whether or not ¢ knows %
with confidence a relative to M depends on the probability 8 with which M outputs values
# ‘7. Determining whether or not the inequality 8 > a holds when S is very close to @ may
be computationally difficult. Nevertheless, we do not regard this as a serious deficiency in
our approach. Our goal is to reason about resource-limited distributed computations; it is
not necessary that the logic used for that reasoning itself have an efficient decision algorithm
or even be decidable.




4 Belief

4.1 Implicit Belief

Our goal here is to define the knowledge of an agent participating in a probabilistic system.
Consider for example an instrument called an “oilracle” which, once put on the ground, can
detect with degree of accuracy .9 whether there is oil underneath. That is, in 90% of the
places oilracle gives the correct answer as to whether or not there is oil underground, and
in 10% of the places it gives the wrong answer.

Alice is a very fortunate person—1% of the places in her enormous yard have oil under
them. As Alice can not dig up the whole yard in search of oil, she uses oilracle to decide
where to dig. Suppose it says ‘yes’. Alice can reason that there is a 1/12*® chance that
there is oil in that place. This, however, is technically incorrect, for the presence or absence
of oil in a place is not a random event; either there is or there is not oil there, and usage
of oilracle can do nothing to change that fact. Rather, the probabilistic statement is really
about Alice’s chance of finding oil in her yard: Alice knows that the probability is 1 /12 that
a randomly chosen place has oil, given that oilracle says ‘yes’.

Formally, let G = Gr be the set of global states of a probabilistic system R, and let

g € G. We say that in state g, agent i implicitly believes a function f with a degree of
confidence at least o, denoted by

9 Er BYf,
if there exists a value y such that

Probly € f(¢') | ¢’ ~i g] > o

Here ¢’ is a random state chosen from the equivalence class (9]~;

; according to the induced
probability distribution.

Putting the example in our formalism, before oilracle has been run, each place in Alice’s
yard is in one of four possible global states, depending on whether or not there is oil
underneath and whether or not oilracle would say ‘yes’ if put in that place. Alice cannot
distinguish between these four states, so for each of these states g,

9F B‘i/h.lio(there is oil) A BgAsii/cleoo(there is no oil).

After interrogating oilracle, Alice can distinguish those states where it said ‘yes’ from those
where it said ‘no’, so for each state ¢’ in which it said ‘yes’,

= BlAi-lci(there is oil) A Byh-/:e(‘)(there is no oil).

4.2 Relative Belief

Relative belief is the feasible version of belief, i.e., the probabilistic version of relative
knowledge.

A “knowledge generator” that is allowed to err is called a “belief generator”. Intuitively,
an i-feasible belief generator M for a function f is an oracle which, for every global state g,
takes v;(g) as input. It may or may not give information about a value of f(g), and when it
does, the information may or may not be correct. Thus, any probabilistic polynomial time




Turing machine can be considered to be an i-feasible belief generator; presumably, the less
often it gives incorrect information the more useful it is. We say that M lies in g (for a
particular computation) if the output M(»;(g)) in that computation is not in f(g) U {?}.

Given a probabilistic system R whose set of global states is G = Gr, let ~% be an
equivalence relation on G, which we call the contezt, and let @ € [0,1]. Both ~% and « are
parameters that are used to specify the reliability of the belief generator. Let i be an agent
in the system, let f be a function with domain G, and let M be a probabilistic polynomial
time Turing machine. M is an i-feasible (a,~r)-reliable belief generator for f if for every
g € G, the probability is at least o that M does not lie on a random ¢’ which is chosen
from [g]xy according to the underlying probability distribution on global states. In other
words, M has to give good answers (i.e., a correct value of f or ‘?’) at least a of the time
within each equivalence class of . Thus, the finer the equivalence relation and the larger
the value of «, the stronger this restriction becomes.

Let g € G be a global state. We say that an agent i believes f with confidence at least
a in context X relative to a machine M, denoted by

g Er By,
iff M is an i-feasible (o, g )-reliable belief generator for f, and

Prob[M(vi(g)) € f(g)] 2 &

Unlike the case of relative knowledge, relative belief does not imply implicit belief,
ie, g FEr Bfa’z"’M)i/J # g Er BZ%. This corresponds to our intuition: Implicit belief as-
sumes no resource boundedness; relative belief is belief given bounded resources, i.e., partial
information. It is conceivable that one would believe less if one were given more information
(e.g., have implicit belief). In the cases where the ~% relation is a refinement of the ~;
relations, relative belief does imply implicit belief.

5 Interactive Proofs

One of our goals in developing the concepts of relative knowledge and relative belief has
been to explain the knowledge that is conveyed in an interactive proof [GMR85]. Consider
for example the simple zero-knowledge interactive proof shown in Figure 1, which describes
two protocols, P and V, to be run by two agents, a prover p and a verifier v. The goal of

the protocols is for p to convince v that p knows y to be a quadratic residue (perfect square)
modulo n.

Intuitively, if p cannot efficiently compute a square root of y modulo 7 and yet v accepts,
then v must have received a w, that satisfies the test in step 4 of V. However, since p doesn’t
know a square root of y, it must be the case that p cannot compute a wg and a w; that
both satisfy v’s test. (If p could compute both, then p could compute wywy ! mod n, which
is a square root of y modulo n.) Hence, p must have been able to produce at most one of
wo and wi, and just by chance, that is the one at each stage that v requested in step 2.
The probability of this happening is only 1/2, hence, the probability that v accepts and P

®We remark that the same « is used to bound both the probability of lying and the probability that a
non-‘?’ answer is produced.




Protocol P Protocol V

1. Generate a random z; 1. Wait until u is received.
Send u = 22 mod n to v. _
2. Wait until b is received. 2.  Generate a random b € {0,1}
(with equal probabilities);
Send b to p.
3. Send wy = zz° mod n to v 3. Wait until wy is received.

(z is a fixed square root of y.)
4. Fwl=uy® (modn)
then accept else reject.

Figure 1: Zero-knowledge proof of quadratic residuosity.

cannot efficiently compute a square root of y is at most 1/2. Similarly, if we let v run V
for ¢ itreations and accept only if it accepted in all ¢ iterations, then the probability that v
accepts and p cannot efficiently compute a square root of y is at most 1 /2.

We want to capture the intuition described above in our formalism. We therefore assume
that v is indeed following V, and that p is following some arbitrary protocol Q. Let (y,n) €
N X N denote some shared input of the system. Let /Y be a function that for every g € G
returns all the square roots of y(g) modulo n(g). We can show the following:

Theorem 1 Let g = ¢’ iff n(g) = n(g’), y(g) = y(¢), and g and ¢’ both result from the
same number of iterations of the protocol. Then there exists a v-feasible belief generator
My and a p-feasible knowledge generator Mg such that, for every global state g in which v
is in an accepting state after running the protocol for t iterations and for every ¢ € [0,1], of
§ = 1/(2%), then '

g I': Bg,l“s’z’M")K,(,l"e’MQ)\/@.

In words, when v accepts, it believes with confidence 1 — § that p “can compute” ,/y
with probability at least 1 —e. Note that ¢ is arbitrary, but the smaller it is, the larger v’s
uncertainty § becomes. The two become equal when £ = 1/2(#/2), 50 both can simultaneously
be made exponentially small in ¢.

We sketch here the main ideas of the proof. Details are deferred to the full paper.

We begin by looking in a little more detail at the interaction of the arbitrary protocol
@ with ¢ rounds of the fixed protocol V. During such a run, both p and v may toss coins.
Let 7, and 7, be their coin toss sequences, respectively. The run is uniquely determined by
mp and m,. Call the run accepting if v accepts in the end.

We are now in a position to define Mg: Mg receives as input the local view of p at
the end of the protocol. Recall that we assume agents do not forget, so the local view of
every proceses contains the complete local history of the run. Moreover, because v sends
all of its coin tosses to p, p’s local view alone contains enough information to completely
reconstruct the entire run, for given p’s view of a global state g, Mg can construct the coin
toss sequences T, and 7, that determine the run r = ry, and then simulate Q and V to
reconstruct r itself. ‘

Assume that r is accepting. Then v receives a good value in step 3 of its protocol at
each iteration, where “good” means that it passes the test in step 4. Foreach 7,1 << ¢,

10




Mg will carry out a simulation of  interacting with V' using p’s coin toss sequence Tp and
v’s coin toss sequence 7, ;. The latter is identical to 7, except that the i*® bit has been
flipped. The simulation is carried out for ¢ iterations of V. Denote the resulting run by rf.
Because 7, ; and 7, agree in the first ¢ — 1 positions, ! and r are identical through the first
¢ — 1 iterations. Let b and b’ be the i*! bits of 7, and Ty,.i» Tespectively, and let wy, and wy
be the corresponding values received by v in step 3 of the #*® iteration. By construction,
b # b'. We know that v accepts w in step 4. If v also accepts wy, then either wy/wy or its
inverse is a square root of y, so Mg can determine which and output it. Consequently, if for
some i, 1 <4 < t, 7} is accepting, then Mg outputs a correct V9. If 7} is not an accepting
run for any i, then Mg outputs ‘?". Also, Mg outputs ‘?’ in case r itself is not an accepting
run.

In computing 7}, it may be the case that p needs more coin tosses than are contained in

Tp. If so, then My extends 7, as necessary by flipping coins itself. Our analysis assumes

that the same ;, is used for each of the ¢ simulations; hence, whenever 7, is extended during
“one simulation, the extended version is used in subsequent iterations.

Let aq be the probability that a random run of Q with V accepts. We argue that the
probability that Mg produces a square root of y on a random run is at least ag — 1/2%
Consider a fixed, sufficiently long prover’s coin toss sequence Tp, and consider the 2° runs
obtained for each of the 2° verifier coin toss sequences of length ¢. If two or more of those
runs are accepting, then, given any of those runs, Mg will always succeed. Hence, the only
accepting runs on which Mg fails to produce a square root of y are those in which all of
the other 2¢ — 1 related runs (with the same prover’s coin tosses) are non-accepting. The
probability of this occurrence is at most 1/2¢. Note that if 7p is not sufficiently long, then
Mg extends it randomly, and the above remarks apply to the resulting extension.

Now, let v be the probability that the formula

1-¢,M,
g KMy
holds in a random accepting state g. We can show that

1
aQ2t5 )

721-

Let My be the simple belief generator that outputs true on all accepting states after ¢
rounds and outputs ‘?’ elsewhere. The probability that My lies on a random run r is at

most (1 — 7)ag, for My only lies when r is accepting and ﬂK,(,l_E’MQ)\/ﬁ holds. Therefore,
the probability that My does not lie is
l—(l-7)ag<le—=1-45
V)% = 2t '
The theorem follows.

6 Cryptographic Protocols

Cryptographic protocols extend distributed protocols by being non-deterministic as well
as probabilistic. Each agent is allowed at the beginning to non-deterministically choose a

11




protocol from some set of possible probabilistic protocols. The set of chosen protocols forms
a system which is then used to obtain a random run.

More precisely, each agent 7 has a set of possible probabilistic protocols, denoted by P;.
Initially, each agent chooses (non-deterministically) a protocol P; € P;. This choice defines

a system R over a set of global states Gr. Thus, a cryptographic protocol is a family of
(probabilistic) systems.

Because there is no probability distribution on the choices that an individual agent
makes, we cannot make probabilistic statements about the outcome of a run of a system
chosen in this way. Rather, the only statements of interest are those that are valid for all
possible systems allowed by the protocol.

Looking back at Theorem 1, we see that the particular protocol chosen by the prover
enters into the statement of the theorem at one place—namely, the knowledge generator Mg
depends on @, the protocol run by p. In order to get a statement valid about cryptographic
protocols instead of just systems, we must modify our definitions slightly.

First of all, we interpret formulas at pairs (R, g) where R is the system (i.e., the protocols
chosen by each of the individual agents) and g € G is a global state. For example, in an
interactive proof system, the formulas are interpreted over pairs of the form (R, g), where
R € P, x P, and g € Gr. Secondly, we replace the knowledge (resp. belief) generator in the
superscripts of the K (resp. B) operator with a family of knowledge (resp. belief) generators,

indexed by the protocol being run by the agent i associated with the operator. Thus, wap"

is replaced by KM, where M maps the protocol P; run by agent ¢ to a knowledge generator

Mp,. The interpretation of, say, ((Q,V),9) &= K;,"‘xp is the same as g K;M @14, where

Mg = M(Q) is the knowledge generator corresponding to the protocol Q € Pp. The B
operator is handled similarly.

In this way, we get the following restatement of Theorem 1:

Theorem 2 Let P be a family of prover protocols and V the verifier protocol of Figure
1. For each Q € P let Rq denote the system (Q,V) and define RRro such that g = ¢ iff
n(g) = n(g'), y(9) = y(¢'), and g and ¢’ both result from the same number of iterations
of the protocol. Then there ezists a family of knowledge generators M and a single belief
generator My such that for all probabilistic polynomial time prover protocols Q € P, all
(y,m) € Nx N and all ¢ € [0,1], if § = 1/(2%) and g is a global state in which V accepts
after running the verifier protocol for t iterations, then

(Rg.9) = By K{t==M) /.

Details of the proof are deferred to the full paper.

‘6:z72q 1M v )

7 Current Research and Open Problems

We presented a logic of relative knowledge and belief that enables us to reason about
computable knowledge in deterministic as well as in probabilistic systems. This logic has
numerous applications, especially in the area of cryptographic protocols. We demonstrated
one application by defining what it is that the verifier learns when it accepts after running
an interactive proof of knowledge of a square root in Z%. We are currently trying to apply

12




the ideas presented in this paper to formalize what it is that the verifier does not learn in
order to make formal sense of the notion of “knowledge” in zero-knowledge proofs.

Acknowledgements

We would like to thank Martin Abadi, Jin-Yi Cai, Merrick Furst, Neil Immerman, Silvio
Micali, Yoram Moses, and Martin Tompa for helpful and stimulating discussions.

References

[CMS86]
[FFS87]
[FHS5]

[FI86]

[GHYSS5]

[GMRS5]

[Hal86)

[Hal87]

[HF85]

[HMS84]

[HZ87]

K. M. Chandy and J. Misra, How processes learn, Distributed Computing 1:1,
1986, pp. 40-52.

U. Feige, A. Fiat, and A. Shamir, Zero knowledge proofs of identity, Proc. 19th
ACM Symp. on Theory of Computing, 1987, pp. 210-217.

R. Fagin and J. Y. Halpern, Belief, awareness, and limited reasoning, Proc. of the
9th IJCAI, 1985, pp. 491-501. Revised version to appear in Artificial Intelligence.

M. J. Fischer and N. Immerman, Foundations of knowledge for distributed sys-
tems, Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986
Conference (J. Y. Halpern, ed.), Morgan Kaufmann, 1986, pp. 171-186.

Z. Galil, S. Haber, and M. Yung, A private interactive test of a Boolean predicate
and minimum knowledge public key cryptosystems, Proc. 26th IEEE Symp. on
Foundations of Computer Science, 1985, pp. 360-371.

S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive
proof-systems, Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 291-
304.

J. Y. Halpern, Reasoning about knowledge: an overview, Theoretical Aspects of
Reasoning about Knowledge: Proceedings of the 1986 Conference (J. Y. Halpern,
ed.), pp. 1-17, Morgan Kaufmann, 1986.

J. Y. Halpern, Talk at evening rump session, 6th ACM Symp. on Principles of
Distributed Computing, August 1987.

J. Y. Halpern and R. Fagin, A formal model of knowledge, action, and commu-
nication in distributed systems: preliminary report, Proc. fth ACM Symp. on
Principles of Distributed Computing, 1985, pp. 224-236.

J. Y. Halpern and Y. Moses, Knowledge and common knowledge in a distributed
environment, Proc. 3rd ACM Symp. on Principles of Distributed Computing,
1984, pp. 50-61. A revised version appears as IBM Research Report RJ 4421,
Aug., 1987.

J. Y. Halpern and L. D. Zuck, A little knowledge goes a long way: simple
knowledge-based derviations and correctness proofs for a family of protocols,
Proc. 6th ACM Symp. on Principles of Distributed Computing, 1987, pp. 269—
280.

13




[Mos87]

[TW87]

Y. Moses, Resource-bounded knowledge and belief, unpublished manuscript,
1987. To appear as a Weizmann Institute Technical Report.

M. Tompa and H. Woll, Random self-reducibility and zero knowledge interactive

proofs of possession of information, Proc. 28th IEEE Symp. on Foundations of
Computer Science, 1987, pp. 472-482.

14






