-Abstract_ This report presents subroutines that implement the envelope

algorithm for the solution of sparse linear systems.

Subroutines for Envelope Solution of

Sparse Linear Systems

Stanley C. Eisenstat and Andrew H. Sherman

Research Report #35

October 1974

This research was supported in part by the Office of Naval Research,
N0014-67-A-0097-0016.

 Subroutines for Envelope Solution of

Sparse Linear Systems

1. Introduction

Consider the system of linear equations
Ax = b 1.1

where A is a sparse N by N matrix. If A is nonsymmetric, assume that it
may be factored into the product LU where L is lower triangular and U is
unit upper triangular. If A is symmetric, assume that it may be factored

t *

into the product LDUL whnere L is unit lower triangular and D is diagonail.

The solution may then be obtained by successively solving either

1]
o'

(1.2)

[}
%
i
rd

Ly b ,‘ X

or

Ly

~

(1.3)

]
ot
o
N
1]
«
-
=
b
il
N

This paper describes a set of programs which implement the envelope al-

gorithm for such direct solutions for (1.1).

%

To be efficient, an algorithm must attempt to reduce the storage and work
required by taking advantage of the known zero structure of A. To do this
it may be advantageous to solve the permuted system

pAP" (Px) = Pb

instead of (1.1), and for any permutation matrix P, we assume that the
permuted system may be solved in exactly the same manner as (1.1). For
convenience we may refer to the matrix A or the system (1.1) when we ac-
tually mean the permuted matrix or system. This involves no loss of generality
since the systems are assumed to have similar numerical properties.

There are three main factorization algorithms: band, envelope, and
general sparse. The first two of these take advantage of the zero structure
of A by storing only those elements of A which lie within particular regions
of the matrix. The regioné are defined so that all the nonzero elements in
A and its facforization lie within these regions and so that the data |
structures for the matrix storage are quite simple. In contrast, the general
sparse algorithm stores and operates on only those elements of A and its
factorization which are actually nonzero, so that it is generally.far more
efficient in terms of arithmetic operations than a’band or gnvelope algo-
rithm. However, this efficiency is gained only at the cost of additiomal
complexity in the data structures and programs required for implementatiqn.
This paper deals with the envelbpe factorization algorithm because it com-
bines practical efficiency with simplicity. Compared with the band algorithm,
it often requires much less storage and work, yet it is no more difficult to
implement. And compared with the general sparse algorithm, it requires less
complex data structures and programs, while still achieving a largé degree
of practical efficiency.

Ig what follows we discuss the theoretiéal background of the envelope
algorithm and describe the algorithm and its associated data structures.
Appendix A contains listings of the actual FORTBAN.subroutines, and Appendix
B contains the listing of a driver program which illustrates the use of the

subroutines.

2. Envelope Methods

Let A be a given N by N matrix, and let fi(A) (fz(A)) denote the

column (row) index of the first nonzero element of the i-th row (column)

of A;

fi(A) = min {*j:ai # 0} (2.1)

“we

3

f;‘(A) = min {j:a:j

1 # 0} . (2.2)

We then define the "bandwidth" Bi(A) (B;(A)) of the i-th row (column) of A:

!

B) =1~ £.(8) ; . (2.3)
t, .\ - t, .\ .
BYA) = 1 - £58) (2.4)
and the "frontwidth" mi(A) (wi(A)) of the i-th row (column) of A:
mi(A) = .]{k:k>i and Jo<i such that an # O}l*; (2.5)
m;(A)E 'I{k:k>iv and 32._<_i such that a # >0}l . (2.6) i

If A is nonsymmetric, then the envelope of A is the region of A defined by

the following set of ordered pairs denoting positions in A:
Env(a) = {(1,1):£,(4) <j <1 and f;(A) <i<il. @
Its size may be expressed in terms of the bandwidths or the frontwidths:

N ’ N
[Enva) | = N+] (B(A) + B{(A) = N+) (v, (&) + ul(a). (2.8)
i=1 i=1 .

If A is symmetric, then only the lower triangle of the envelope need be

stored, and the symmetric envelope of A is defined by

* .
For a set S, we denote the number of elements in S by IS l

‘Senv(A) = (1,905, <3¢ 1) - (2.9)
‘The size of the symmetric envelope may also be éﬁpressed in terms of the
bandwidths or frontwidths:

N
I, 8. | (2.10)

N
[senv(a)] =N+] B, (&) =N+
i=1 * i=1

Where there is no chance of confusion; we will use the term envelope
(symmetric envelope) to refer to the actual nonzerés in Env(a) (Senv(A))
as well as to the positions in Env(A) (Senv(A)). e

When A is factored into a product LU or BV some of the zero
entries in A fill in (i.e., become nonzero entries in L or U). It is well

known, however, (see [7]) that for nonsymmetric matrices A

Env(L + U) ¢ Env(a) , (2.11)
while for symmetric matrices A,

Senv(L) < Senv(A) . ' (2.12)

Hence the number of locations required to store all the nonzero entries
in the factorization of A is no larger than the size of the envelope or
symmetric envelope of A. For envelope methods, which do not exploit zeros
inside the envelope, the storage required is exactly equal to IEnv(A)[
or | senv(a)].

Algorithms 2.1 and 2.2, respectively, give algorithms for the
LU and LDLt factorizationé. The lower bounds on the summations reflect

the fact that exactly the envelopes of the matrices involved are stored.

‘Algorithm 2.1:

For i< 1 to N do

[For j <« fi to i-1 do

Algorithm 2.2 ([10]):

etk Y%j ?
’j)

ug vl
i-1 .
) £ lqx Y 13
k=max(f,,f.)
IR S §
For 1<« 1 toN do
[For j <« fi to i-1 do
j=-1
\]
a ij < ai ik !ij

For j <« fi to i-1 do

i-1
d,, « a

5 a
k=max(fi,fj')

_ ' .
11 %43 'sz gk fae 13

i

i

A (symmetfic) matrix A is said to have a monotone (symmetric) envelope if
153 = £,08) < £,(8) and £5(8) < f;(A). (2.13)

The following theorems, similar to results of George [6], characterize the
work required for the factorization of A with Algorithms 2.1 and 2.2.

(For proofs, see [14].)

Theorem 2.1: If the LU factorization of the nonsymmetric matrix A -

requires ©O(A) multiplications, then

X . N . | :
o) = Ju w4 +1] <]8I @A) +1], (2.14)

i=1 i=1

with equality exactly when A has a monotone envelope.

t : .
Theorem 2.2: If the LDL factorization of the symmetric matrix A
requires O(A) multiplications, then
N

. N
0(a) =] w (M) (8) +31/2 <] B (A)[B (M) +31/2, (2.15)
=1 i=1

with equality exactly when A has a monotone symmetric envelope.

To reduce the amount of storage or work required by Algorithms 2.1
and 2.2, it is necessary to select a permutation matrix P (corresponding
to an ordering of the vafiables and equations of (1.1)) so that
]Env(PAPt)l or G(PAPt) is small. We restrict this discussion to systems
(1.1) in which the zero structure of A is symmetric (i.e., aij #0

implies aji # 0), since little research has been done for more general

| matrices, iEven with this restriction, ekhaustive search ié the only means
known for éptimally ordering the variables and equation; of (1.1). But
there are several algorithms which seem to give good results in practice
(see [2], [31, [51, [8], [11], [12], [13]). Of these, we will describé only
the Reverse Cuthill-McKee (RCM) algorithm which appears to offer a good
practical tradeoff between the cost of obtaining the ordering and the
resulting values of'|Env(PAPt)[‘ and o(PAR").

It is convenient to introduce the directed graph G(A) associated with
the matrix A. That graph G(A) = (X(A), E(A)) is defined as the set of

vertices X(A) =’{xl,x2,...,xN} and the set of directed edges
E(A) ='{(xi,xj):aij # 0, i # j} joining pairs of vertices in X(A).

The vertices in X(A) correspond to and are labelled as the rows of A.

The adjacency of a vertex x, in X(A) 1is defined by
Adj(x) = {x,:(x,x) €E(W) . - (2.16)

"Since A has symmetric zero structdre, (xi,xj) € E(A) if and only if
(xj,xi) € E(A), so that we may define the degree of a vertex Xy in X(A)
as

Deg(xi)-=]Adj(xi)] . ' (2.17)

For any permutation matrix P, the graphs G(A) and G(PAPt) are identical
up to a relabelling of the vertices. |

The version of the RCM algorithm given here assumes that G(A) is
connected (see [9, p. 13]). Algorithm 2.3 obtains the RCM ordering by

reversing the Cuthill-McKee (CM) ordering [4], which corresponds to the

bfeadth—first generation of a spanning tree for G(A) ~(see [9, pp. 11,32])
in a level-by-level fashion. The root of the spanning tree is labelled |
first. As each vertex is labelled, its unmarked neighbors are marked and
added to a list of ﬁarked vertices in order of increasing degree. This list
is gept in a first-in-first-out data structure or queue, and the vertices are

labelled and added to the tree in the order in which they appear in the queue.

Algorithm 2.3:

Choose a vertex of minimum degree, ﬁark it,
and place it in the queue. k < N.
LOOP: Remove the oldest vertex ;ﬂ from the queue, and
label it as vertex K. -
k«k-1. o
- Mark the ﬁnmarked neighbors of s, and add them
to'the queue in order of increasing degree. If

the queue is not empty, then go to LOOP.

Otherwise, stop.

In general, the RCM ordering is not optimal, but experimgnts performed by
George [5] and Liu and Sherman [13] indicate that it is quite effective in
practice, particularly on problems arising in the numerical solution of

partial differential equations.

|
[

3. Program Descriptions

The programs described in this section are based on thekalgoiithms of
Section 2 and on the data structures used to represent the graph and envelope
forms of matrices.

The graph G(C) of an N by N matrix C is stored in adjacency list
;orm -~ for each of the N vertices we keeb a list of the vertices to which it
is adjacent. Two data arrays are required: IA to contain the vertex adjacency
lists stored sequentially, and IV to contain a pointer for each vertex to its
adjacency list in IA. By convention, the adjacency lists are stored so that
iV(I) >IV(I) if I > J; IV(N+15 points to the first unused entry in IA;
and each vertex is included in its own adjacency list. The matrix C is said
to be stored in adjacency list form if its nonzero elements are stored in

another array A so that A(K) contains ¢ if TA(K) is the entry for

1J

vertex J in the adjacency list of vertex I. This scheme allows for storage
gof both symmetric and nonsymmetric matrices and graphs (see Figure 3.1).

Tﬁe storage of the envelope form of the matfii C requires arrays both
to describe the structure of the envelope and to contain the actual nonzero
elements of C. It is most illusﬁrative here to give the representation of
a nonsymmetric matrix. If C has symmetric zero structure, then only the
pointers for the lower triangle need be kept, and if C is symmetric, then only
its symmetric envelope (i.e. the lower triangle of its envelope) and the
associated pointers are stored. The elements of the envelopé of the strict

lower (upper) triangle of C are stored in PL (PU) row by row (column by

column), and the diagonal cf C is stored in D. An array IRL (IRU) is defined

10

so that IRL(I) (IRU(I)) points to the ncnexistent 10 (cOI) element of

the Ith row (column) of the strict lower (upper) triangle of C in PL (PU).
In effect IRL(I) (IRU(I)) is the base address for the Ith row (column) of
C in PL (PU). Then 1y and i1 (I > J), if they are stored, are easily

located:

ey = PLURL(D) + J) o (3.1)

Cyp = PU(IRU(I) + J). . ’ (3.2)
Figures 3.2, 3.3, and 3.4, respectively, show examples of this storage
écheme for the three types of matrices discussed above.

All of the subroutines described here are written in ANSI Standard FORTRAN

[1], and standard type defaults have béen used for all variables. No double
precision subroutines have Eeen included, but it is easy to madify the given
routines by declaring REAL variables to be DOUBLE PRECISION where appropriate.
The descriptions are given from a user's point of view, so detailed comﬁents
have been left to the program listings which appear in Appendix A, Appendix
B contains a driver program which illustrates the use of the subroutines

described here.

Subroutine =~ RCM°
Purpose -=

The subroutine RCM computes the Reverse Cuthlll—McKee (RCM) ordering
of a graph using Algorithm 2.3. :

Calling Sequence -~- CALL RCM(N, IV, IA, IORD, IPOS)
Parameters =-

N is an integer equal to the number of vertices in the graph
to be ordered.

1V is an integer array of length N+1. For 1 < I <N, IV(I)
points to the adjacency list of the I~-th vertex in IA.
IV(N+1) points to the first unused entry of IA.

IA is an integer array containing the adjacency lists for the
vertices of the graph to be ordered.

IORD is an integer array of length N which on output contains the
RCM ordering.

iF05 1s an integer array of length N which on output contains the
inverse of the RCM ordering (i.e. IPOS(IORD(I)) = I).

Discussion of Method -~

The RCM ordering is computed using Algorithm 2.3. In the subroutine
the queue is kept in IORD, since no more than N elements are ever
placed in it. IPOS(I) is used as a flag for vertex I. Initially,
IPOS(I) = 0; when vertex I is marked, IPOS{I) 1is set to the
negative of the degree of vertex I; when vertex I is ordered as the
K-th vertex in the RCM ordering, IPOS(I) is set to K. When more
than one vertex is added to the queue at once, a simple insertion
sort is used to add them in order of increasing degree in the graph.

11

12

Subroutine -- GENENV
Purpose -~
Given the adjacency list form of an input matrix C and two arrays
describing the vertex ordering, the subroutine GENENV constructs the
ordered envelope form of P C P~, where the permutation matrix P
corresponds to the input vertex ordering.
Calling Sequence -~
CALL GENENV(N,MAXPL,PL,D,MAXPU,PU,IRL,IRU,IV,IA,A,IORD,IPOS,IFLAG)
Parameters --
N is an integer equal to the number of rows in C.

MAXPL. is an integer equal to the maximum storage available for PL.

.PL is a real array which on output contains the elements of the

strict lower triangle of the envelope of P C Pt.

D is a real array which on output contains the elements of the
diagonal of P C Pt.

MAXPU 1is an integer equal to the maximum storage available for PU.

PU is a real array which on output contains the elements of the

strict upper triangle of the envelope of P C Pt.

IRL is an integer array of length N which on output contains
pointers to the nonexistent 10 elements in PL.

IRU is an integer array of length N which on output contains
pointers to the nonexistent COI elements in PU.

IV‘ is an integer array of length N+l1. For 1< I <N,

IV(I) points to the adjacency list of the I-th vertex in IA.
IV(N+1) points to the first unused entry of IA.

IA is an integer array which contains the adJacency lists of the
vertices of G(C) (the graph of C).

A is a real array which on input contains the nonzero elements
corresponding to the graph form of the input matrix C.

13

IORD is an integer array of length N which contains the ordering
of the vertices of G(C) corresponding to the permutation
‘matrix P.

IPOS is an integer array of length N which contains the inverse of
IORD (i.e. IPOS(IORD(I)) = I).

IFLAG 1is an integer variable which is used to return error indi-

cations. .
IFLAG = 0 if no errors are encountered;
IFLAG = -1 if insufficient storage is available for PL;
IFLAG = +1 if insufficient storage is available for PU.

Discussion of Method -~

The entries of IRL and IRU are computed first. If insufficient
storage is available for PL (PU), IFLAG is set to ~1 (+1), and
processing is terminated. (IFLAG reflects the first error which
occurs.) Otherwise, all the elements in the envelope of P C Pt

are stored in PL and PU in one pass through the data in A. If C has
symmetric zero structure, set IRU = IRL and MAXPU = MAXPL when
calling subroutine GENENV. If C is symmetric, set PU = PL, IRU =
IRL, and MAXPU = MAXPL when calling subroutine GENENV.

.
1

Subroutihe ~- PLU
Purpose ~-

The subroutine PLU computes the L U factorization of an input matrix
C stored in envelope form. L is lower triangular, and U is unit upper
triangular. If C is symmetric, use subroutine PLDLT instead of
subroutine PLU.

Calling Sequence —- CALL PLU(N,PL,D,PU,IRL,IRU)
Parameters --
N is an integer equal to the number of rows in C.

PL is a real array which on input contains the elements of the
strict lower triangle of the envelope of C, and on output
contains the elements of the strict lower triangle of the enve-
lope of L, '

‘D is a real array which on input contains the elements of the
diagonal of C, and on output contains the reciprocals of the
elements of the diagonal of L (D(I) = 1/211).

PU is a real array which on input contains the elements of the
strict upper triangle of the envelope of C, and on output con-
tains the elements of the strict upper triangle of the envelope

of U. v

IR, 1is an integer array of length N which contains pointers to the
nonexistent 10 elements in PL.

IRU is an integer array of length N which contains pointers to the
" nonexistent o1 elements in PU.

Discussion of Method --

The factorization is performed using Aigorithm 2.1. L and U overwrite
PL, D, and PU. If C has symmetric zero structure, set IRU = IRL
when calling subroutine PLU.

15

Subroutine —— PLDLT
Purpose -~

The subroutine PLDLT computes the L D Lt factorization of a symmetric
input matrix C stored in envelope form. L is unit lower triangular,
and D is diagonal.

!

Calling Sequence ~- CALL PLDLT(N, PL, D, IRL)
Parameters --
N is an integer equal to the number of rows in C.

PL is a real array which on input contains the elements of the
strict lower triangle of the envelope of C, and on output
contains the elements of the strict lower triangle of the
envelope of L.

D is a real array which on input contains the elements of the
diagonal of C, and on output contains the reciprocals of the
elements of the diagonal of D (D(I) = l/dII).

IRL is an integer array of length N which contains pointers to the

nonexistent cIO elements in PL.

Discussion of‘Method -

. The factorization is performed using Algorithm 2.2, L and D
overwrite PL and D, respectively.

16

Subroutine -~ PLUB

Purpose --
The subroutine PLUB solves the system P C P* Px = Pb, by perfor-
ming the backsolving operations necessary to solve L U Px = Pb,
where P CPY = L U, L is lower triangular, U is unit upper tri-
angular, and both matrices are stored in envelope form.

Calling Sequence -- CALL PLUB(N, PL, D, PU, IRL, IRU, X, B, IORD)

Parameters -—— |

N ~is an integer equal to the number of rows in L and U.

PL is a real array which contains the elements of the strict lower
triangle of the envelope of L.

D is a real array which contains the reciprocals of the elements
of the diagonal of L (D(I) = 1/%11).
PU is a real array which contains the elements of the strict

upper triangle of the envelope of U.

IRL is an integer array of length N which contains pointers to
the nonexistent RI elements in PL.

0
IRU is an integer array of length N which contains pointers to
the nonexistent Uyg elements in PU.
X is a real array of length N which on output contains the

solution vector.
B is a real array of length N which contains the right hand side.

IORD is an integer array of length N which contains the ordering
of the rows and columns of C corresponding to the permutation
matrix P,

Discussion of Method --

This routine successively solves Ly =Pb and U x = y- The solu-
tion vector X is reordered corresponding to P. If the zero structure
of U is the transpose of that of L, set IRU = IRL when calling
subroutine PLUB.

Subroutine -- PLDLTB
Purpose --
The subroutine PLDLTB obtains the solution to the system
P CPt Pg = Pp by performing the backsolving operations necessary
to solve L D Lt Px = Pb, where P C Pt = L DLE, L is unit
lower triangular, D is diagonal, and L is stored in envelope form.
Calling Sequence -- CALL PLDLTB(N, PL, D, IRL, X, B, IORD)
Parameters —--

N is an integer equal to the number of rows in L and D.

PL is a real array which contains the elements of the strict lower
triangle of the envelope of L.

D is a real array which contains the reciprocals of the elements
of the diagonal of D (D(I) = l/dII).

IRL is an integer array of length N which contains pointers to

the nonexistent 210 elements in PL.

X is a real array of length N which on output contains the solu-
tion vector.

B is a real array of length N which contains the right hand side.
IORD 1is an integer array of length N which contains the ordering
of the rows and columns of C corresponding to the permutation
matrix P.

Discussion of Method —-

This routine successively solves Ly =Pb, Dz =y, and
Lt x = z, The solution vector X is reordered corresponding to P.

17

[1]

[2]

[3]

[4]

[5]

[6]

[7]

- [8]

[91]

References

American National Standards Institute, American National Standard
FORTRAN, ANS X3.9 - 1966, New York, 1966.

J.H. Bolstad, G.K. Leaf, A.J. Lindeman, and H.G. Kaper, An Empirical
Investigation of Reordering and Data Management for Finite Element

Systems of Equations, Argonne National Laboratory, Technical Report
#ANL - 8056, Argonne, Illinois, 1973.

E, Cuthill, Several Strategies for Reducing the Bandwidth of Matrices,
Sparse Matrices and their Applications, D.J.Rose and R. A. Willoughby,
eds., Plenum Press, New York, 1972, pp. 157-166.

E. Cuthill and J. McKee, Reducing the Bandwidth of Sparse Symmetric
Matrices, Proc. 24th Nat. Conf. of the ACM, ACM Publication P-69,
1122 Ave. of the Americas, New York, 1969, pp. 157-172.

J.A. George, Computér Implementation of the Finite Element Method,
Stanford Computer Science Dept., Technical Report STAN-CS-71-208,
Stanford, California, 1971.

J.A. George, A Survey of Sparse Matrix Methods in the Direct Solution
of Finite Element Equations, Proc. Summer Simulation Conf., Montreal,
Canada, July 17-19, 1973, pp. 15-20.

J.A. George and W.H. Liu, A Note on Fill for Sparse Matrices, submitted
to SIAM J. Numer. Anal.

N.E. Gibbs, W.G. Poole, and P.K. Stockﬁeyer, An Algorithm for Reducing
the Bandwidth and Profile of a Sparse Matrix, Department of Mathematics,

College of William and Mary, Technical Report #5, Williamsburg, Virginia,
1974, submitted to SIAM J. Numer. Anal.

F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1969.

[10]

[11]

[12]

[13]

[14]

A. Jennings, A Compact Storage Scheme for the Solution of Symmetric
Simultaneous Equations, Comput. J. 9(1966), pp. 281-285.

I.P. King, An Automatic Re-Ordering Scheme for Simultaneous Equations
Derived from Network Analyses, Inter. J. Numer. Meth. Engrg. 2(1970),
PP. 523-533.

R. Levy, Restructuring the Structural Stiffness Matrix to Improve
Computational Efficiency, JPL Tech. Rev. 1(1971), pp. 61-70.

W.H. Liu and A.H. Sherman, Comparative Analysis of the Cuthill-McKee
and the Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices,

Department of Computer Science, Yale University, Technical Report
#28, New Haven, Connecticut, 1974, submitted to SIAM J. Numer. Anal.

A.H. Sherman, Ph.D. dissertation, Department of Computer Science,
Yale University, New Haven, Connecticut, to appear.

™ 4.0 -0.8

-0.9 400 —008
| 0.0 -0.9 4.0 ‘
' -1.0 0.0 0.0 4.0 -0.8

C = "1.0 0-0 _0-9 4.0 —0.8
"'1.0 0.0 _0n9 400

‘-100 0.0 000 4-0 -Oo8
(::::) -1.0 0.0 -0.9 4.0 -0.8
-1.0 0.0 -0.9 4.0

G(C):

I | 1Iv(D) IA(I) A(T) 1 IA(I) A(T)
1 1 1 4.0 15 3 -1.0
2 3 2 -0.8 | 16 5 -0.9
3 6 1 -0.9 17 6 4.0
4 8 2 4.0 18 4 -1.0
5 11 3 -0.8 19 7 4.0
6 15 2 -0.9 20 8 -0.8
7 18 3 4.0 21 5 -1.0
8 21 1 -1.0 22 7 -0.9
9 25 4 4.0 23 8 4.0
10 28 5 -0.8 24 9 -0.8
11 2 | -1.0 25 6 -1.0
12 4 -0.9 26 8 -0.9
13 5 4.0 27 9 4.0
14 6 -0.8

Figure 3.1: Adjacency List Form of a Nonsymmetric Matrix

B 4.0

-008

-0.9 4.0 -0.8 (Z:::)
0.0 -0.9 4.0
-1.0 0.0 0.0 4.0 -0.8
c = -1.0 0.0 -0.9 4.0 -0.8
-1.0 0.0 -0.9 4.0
: -1.0 0.0 0.0 4.0 -0.8
(::::) -1.0 0.0 -0.9 4.0 -0.8
B -1.0 0.0 -0.9 4.0
I IRL(I) PL(I) D(I) IRU(I) PU(I)
1 0 -0.9 4.0 0 -0.8
2 0 -0.9 4.0 0 -0.8
3 0 -1.0 | 4.0 0 -0.8
4 2 0.0 4.0 0 -0.8
5 4 0.0 4.0 -1 -0.8
6 6 -1.0 4.0 -1 -0.8
7 8 0.0 | 4.0 -1
8 10 0.9 4.0 -2
9 12 -1.0 4.0 -2
10 0.0
11 -0.9
12 -1.0
13 0.0
14 0.0 '
15 -1.0 .
16 0.0
17 -0.9
18 -1.0
19 0.0
20 -0.9

Figure 3.2: Envelope Storage of a Nonsymmetric Matrix

1 4.0 -0.8 0.0 -0.7 |]

-0.9 4.0 -0.8 0.0 -0.7
0.0 -0.9 4.0 0.0 0.0 -0.7

-1.0 0.0 0.0 4.0 -0.8 0.0 -0.7

c = -1.0 0.0 -0.9 4.0 -0.8 0.0 -0.7

-1.0 0.0 -0.9 4.0 0.0 0.0 -0.7

-1.0 0.0 0.0 4.0 -0.8 0.0
-1.0 0.0 -0.9 4.0 -0.8
'~ -1.0 0.0 -0.9 4.0
-

I IRL(I) PL(I) D(I) PU(I)
1 0 -0.9 4.0 -0.8
2 - 0 -0.9 4.0 -0.8
3 0 -1.0 4.0 -0.7
4 2 0.0 4.0 0.0
5 4 0.0 4.0 0.0
6 6 -1.0 4.0 -0.7
7 8 0.0 4.0 0.0
8 10 -0.9 | 4.0 -0.8
9 12 -1.0 4.0 -0.7
10 ' 0.0 ' 0.0
11 -0.9 -0.8
12 -1.0 -0.7
13 0.0 0.0
14 0.0 | 0.0
15 -1.0 : -0.7
16 0.0 0.0
17 -0.9 -0.8
18 -1.0 -0.7
19 0.0 0.0
20 -0.9 -0.8

Figure 3.3: Envelope Storage of a Matrix with Symmetric Zero Structure

4.0 -1.0 0.0 -1.

|

0
-1.0 4.0 -1.0 0.0 -1.0 | -(:::)
0.0 -1.0 4.0 0.0 0.0 -1.0
-1.0 0.0 0.0 4.0 -1.0 0.0 -1.0
c = -1.0 0.0 -1.0 4.0 -1.0 0.0 -1.0
-1.0 0.0 -1.0 4.0 0.0 0.0 -1.0
' -1.0 0.0 0.0 4.0 -1.0 0.0
(:::) -1.0 0.0 -1.0 4.0 -1.0
R | -1.0 0.0 -1.0 4.0_
I IRL(I) PL(I) D(I)
1 0 -1.0 4.0
2 0 -1.0 4.0
3 0 -1.0 4.0
4 2 0.0 4.0
5 4 0.0 4.0
6 6 -1.0 4.0
7 8 0.0 | 4.0
8 10 -1.0 4.0
9 12 -1.0 4.0
10 0.0 |
11 -1.0
12 -1.0
13 0.0
14 0.0
15 -1.0
16 0.0
17 -1.0
18 -1.0
19 0.0
20 -1.0

Figure 3.4:

Envelope Storage of a Symmetric Matrix

Appendix A -

This appendix contains the listings of the subroutines described

in Section 3. Machine readable versions are currently available from:

Andrew H. Sherman

Yale University

Department of Computer Science
10 Hillhouse Avenue

New Haven, Connecticut 06520

OO0 OO0 OO0O000 ann

OO0

(9] o N el o

OO0 OO000

SUBROUTINE RCM(N,IV,IA,I0RD,IPOS)
DIMENSION IAC1),IV(1),I0RD(1),IPOS(Y)

THIS ROUTINE OBTAINS A REVERSE CUTHILL~MCKEE ORDERING OF THE
VERTICES OF THE CONNECTED SYMMETRIC GRAPH IA, 1IA IS A GRAPH

IN ADJACENCY LIST FORM, WITH IV(I) POINTING TO THE START OF THE
.ADJACENCY LIST OF THE I=TH VERTEX, ON RETURN, ICRD(I) IS THE I=TH
VERTEX IN THE RCM ORDERING, AND IPOS(CIORD(I)) = I, N IS THE NUMBER
OF VERTICES, AND IV(N+1) POINTS TG THE FIRST UNUSED ENTRY OF IA,

INITIALIZATION

DO 1@ I=f,N
IPOS(I) = @
1o CONTINUE

PICK A MINIMUM DEGREE STARTING VERTEX FOR CM

IMD = @
MD = N + 1
DO 28 I=1,N
IF CCIVCI+L) = Iv(1)) ,GE, MD) GO TO 2¢
MD = IV(I+y) = Iv(I1)
IMD =]
22 CONTINUE

STARTING VERTEX IS IMD WITH DEGREE MD,

PERFORM CM ORDERING AND REVERSE TO GET RCM ORDERING,
IPOS(I) L,EQ, =D MEANS VERTEX I HAS BEEN ADDED TO GUEUE
WITH DEGREE D, IPOS(I) = +D MEANS VERTEX I HAS BEEN
ORDERED AS VERTEX D IN RCM,

ICRD(KF) IS FIRST VERTEX IN QUEUE,

IORD(KL) IS LAST VERTEX IN GUEUE,

N = K IS THE CRDERING NUMBER OF NEXT VERTEX IN RCM,

IPCS(IMD) = N

KL = @ i

DO 88 K=1,KMAX
IMIN = IV(IMD)
IMAX = IV(IMD+1) = 1
KN = KL + |

ADD UNSCANNED NEIGHBORS OF IMD TO IORD QUEUE IN ORDER
OF INCREASING DEGREE (WITH AN INSERTION SORT)

PQ 70 I=IMIN,IMAX
IAT = IACIY)

IPOS(IAI) (NE, @ MEANS VERTEX IAI HAS BEEN SCANNED

1F (IPOS(IAI) . NE, 2) GO TO 72
IAID = IV(IAI) = IV(IAI+1)

SET IPOS(IAI) = = DEGREE(IAI) TO MARK IT SCANNED
IPOSCIAI) = IAID

[aNake! o0 OO0

[RaR o]

oNeNe]

INSERT IAI IN QUEUE IN PROPER PLACE

(KL oLT. KN MEANS IAI IS THE FIRST TO BE ADDED)

IF (KL ,LT. KN) GO TO 52
M= Kt :
DO 3¢ J=KNsKL
IORDJ = IORD(J)
IF (IAID .GT, IPOS(CIQRDJ)) GO TO 4@
32 CONTINUE

PLACE IAI AT END OF QUEUE
GO T0 50
MOVE VERTICES IN QUEUE TO MAKE ROOM FOR IAI

4 ~ IORD(M+1) = IORD(M)

M=M=
IF (M ,GE, J) GO TO 42
IORD(J) = IAI

GO TO 62
5@ IORD(KL+1) = IAl
62 KL = KL + 1

72 CONTINUE

PICK NEXT VERTEX FROM FRONT OF GUEUE

IMD = IORD(K)
IPOS(IMD) = N = K
8 CONTINUE

COMPUTE VALUES FOR IQRD

CC 9¢ I=1,N
IPOSI = IPOS(1)
IORDCIPOSI) = 1
98¢ - CONTINUE
RETURN
END

OO OO0 0ON0O000

OO0

aoOOn O,

OO0

OO OO0

SUBROUTINE GENENY
C (N/MAXPL,PL,D)MAXPU,PU,sIRL,IRU,IV, IA;A:IORD:IPOSaIFLAG)
DIMENSION TAC1),IV(1),AC(1),I0RD(1),IPOS(1)

DIMENSION PLCL),D(1),PUCL), IRLC1),IRU(Y)

THIS SUBROUTINE TAKES AS INPUT A MATRIX C IN ADJACENCY LIST FORM

AND AN ORDERING IORD OF THE ROWS AND COLUMNS OF C CORRESPONDING TQ A
FERMUTATION MATRIX P, IT PRODUCES AS OQUTPUT THE ENVELOPE FORM OF THE
MATRIX PC = P C PT, ENVELOPE FORM IS AS FOLLOWS}:

PL LIST OF ELEMENTS IN THE STRICT LOWER TRIANGLE OF THE
ENVELOPE OF PC IN ROW MAJOR ORDER

PU LIST OF ELEMENTS IN THE STRICT UPPER TRIANGLE OF THE
ENVELOPE OF PC IN COLUMN MAJOR ORDER

D Db(I) = C(1,1)

IRL (IRU) VECTQR OF POINTERS TO THE NONEXISTENT PCI@ (PCGI)
ELEMENTS OF THE ROWS (COLUMNS) OF PL (PU)

ON INPUT, IA IS THE ADJACENCY LIST OF THE GRAPH OF A, IV(I)
POINTS TO THE START QF THE ADJACENCY LIST OF THE I=TH VERTEX,
AND A(CI) IS THE REAL ENTRY CORRESPONDING TO IA(I),

MAXPL (MAXPU) IS THE MAXIMUM STORAGE AVAILABLE FOR PL (PU),
IFLAG IS USED TO RETURN ERROR INDICATIONS:

IFLAG = =1 MEANS NOT ENOUGH STCRAGE FOR PL

IFLAG = @ MEANS NO ERRORS ENCOUNTERED :

IFLAG = +1 MEANS NOT ENOUGH STORAGE FOR PU
DO 1@ I=i,N

IRL(I) = 1

IRUCI) = 1

1@ CONTINUE

COMPUTE LOWEST OFF=DIAGONAL INDEX IN
EACH ROW OF PL (COLUMN QF PU)

DO 44 I={,N
IORDI = IQRD(I)
KMIN = IV(IORDI)
KMAX = IV(IORDI%+t{) =~ 1
DO 4@ KsKMIN,KMAX
IAK = TA(K)
IPIAK = IPOS(IAK)

IGNORE DIAGONAL ELEMENTS
IF (IPIAK = 1) 2@,4P,32
(I,IPIAK) WILL BE IN I=TH ROW OF PL

20 IRLCI) = MINBCIRLCI),IPIAK)

GO TO 4@
(I,IPIAK) WILL BE IN IPIAK=TH COLUMN OF PU

3g IRUCIPTIAK) = MINB(IRUCIPIAK),I)
4¢ CONTINUE

COMPUTE FINAL VALUES FOR IRL, IRU

AT THIS POINT IRL AND IRU CCONTAIN THE LOWEST OFF=DIAGONAL
INDEX, THE LOOP COMPUTES THE LOCATION OF THE NONEXISTENT
g=TH ELEMENT OF THE ROW OR COLUMN, A TEMPURARY (IRUI) IS
USED IN THE LOCP IN CASE IRU IS THE SAME VECTOR AS IRL IN

C THE CALLING PROGRAM,

IRL(Y) @
IRUCY) 2
DO 59 I:Z,N
IRUTI = IRU(I) :
IRLC(I) = I = { + IRL(I=1) = IRL(I)
IRUCI)Y = 1 = 1 + JRUCI=1) = IRUI
1) CONTINUE

c INITIALIZE FL AND PU TO ZERO

IMAX = IRLC(N) + N » |
IF (IMAX ,GT, MAXPL) GO TO i0ai
PO 62 I=1,IMAX
PL(I) = ©
60 CONTINUE
IMAX = IRU(N) 4+ N = 1
IF (IMAX ,GT, MAXPU) GO TO 2801
DO 7@ I=1,IMAX
PUCI) = @
70 CONTINUE

OO0

DO 112 I=1,N
I0RDI = ICRD(I)
KMIN = IV(IORDI)
KMAX = TIV(IORDI+1) =~ 1
IRLI = IRL(CI)
DO 112 K=KMIN,KMAX
IAK = IA(K)
IPIAK = IPOS(IAK)
IF (IPIAK = 1) 84,986,100

STORE ELEMENT (I,IPIAK) IN LOWER TRIANGLE

o000

8@ IJ = IRLI + IPIAK
PL{IJ) = A(K)
GO TO 11@

STORE DIAGONAL ELEMENT IN D

OO0

9¢ DCI) = ACK)
GO TO 119

STORE ELEMENT (I,IPIAK) IN UPPER TRIANGLE

s lale

¢ I1J = IRU(CIPIAK) + I
' PUCIJ) = A(K)
112 CONTINUE

IFLAG = @
RETURN

- ERROR RETURHNS

- OO0

p@¢1 IFLAG = =1
RETURN

22¢1 IFLAG = 1

RETURN

END

GO THROUGH ADJACENCY STRUCTURE AND STORE MATRIX ELEMENTS

OO0

OO0 0

OO0

OO N

e e s e ot s RS o gt e o 3 S e o o e, et e e e e i e e 5 et e L 2 i o i e e i

SUBROUTINE PLUCN,PL,DsPU,IRL,IRL)
DIMENSION PLC1),DC1),PUCL), IRL(L),IRUCY)

THIS SUBROUTINE PERFORMS A PROFILE L U DECOMPOSITION ON THE

MATRIX €C WITH SYMMETRIC ZERC STRUCTURE WHICH IS STORED

IN PLs D, AND PU IN PROFILE FORM (SEE SUBROUTINE GENENV),

THE ROWS (COLUMNS) OF THE LOWER (UPPER) TRIANGLE OF A FROM THE FIRST
NONZERO UP 70, BUT NOT INCLUDING THE DIAGOMNAL, ARE STORED
SEQUENTIALLY IN PL (PU), THE DIAGONAL ENTRIES OF A ARE STORED IN D,
IRLCI) C(IRUCI)) POINTS TO THE NONEXISTENT CI2 (C@J) ELEMENT OF THE
I=TH ROA (COLUMN), ON RETURN, THE STRICT LOWER (UPPER) TRIANGLE

OF L (U) IS STCRED IN PL (PU), AND THE INVERSES OF THE DIAGONAL
ELEMENTS OF L ARE STORED IN D, (U IS UNIT UPPER TRIANGULAR,)

D(1) = 1/D(1)

DO 128 I=2,N
IRLI IRL(TI)
IRUI IRU(CI)

IFLI (IFUI) IS THE LCQWEST OFF=DIAGONAL INDEX IN THE

I=TH ROW (COLUMN), SIMILAR COMPUTATIONS ARE USED FOR OTHER
ROWS AND COLUMNS BELQW, THE FIRST OFF=DIAGONAL ELEMENT IN THE
I=TH ROA (COLUMN) NEVER REQUIRES AN INNER PRODUCT,

IFLT = I = 1 + IRL(I=1) .~ IRLI
JMINL = IFLI + 1

IFUI = I = 1 + IRU(I=1) = IRUI
JMINU = IFUI + {

JHAX = 1 = 1|

COMPUTE LC(I,J) FOR J IN I=TH ROW

IF (JHMINL ,GE, I) GO TO 38
DO 22 J=JMINL,JIMAX

IRUJ = IRUCJ)
IFUJ = J = | + IRU(GJ=1) = IRUJ
KMIN = MAXQCIFLI,IFUJ)

IF (KMIN ,GE, J) GO TO 22
IJ = IRLI + J

PLIJ = =PL(IJ) TO FORCE GOOD CODE IN LOQP

FLIJ
KMAX

«PL(1J)
J =1 ’

nn

COMPUTE INNER PRODUCT FOR L(I.J)

DO 1@ K=KMIN,KMAX
IK = IRLI + K
KJ = IRUJ + K
PLIJ = PLIJ + PLCIK)xPU(KJ)
1@ CONTINUE
PL(IJ) = =FLIJ

2 CONTINUE

COMPUTE U(J,I) FOR J IN I-TH COLUMN

3@ IF (JHINU ,GT,. 1) GO TO 70

COMPUTE FIRST OFF=DIAGONAL ELEMENT OF COLUMN

OO0

OO0

OO0

JI = IRUI + JMINY = 1
PUCJI) = PUCJI) * DCJIMINU=1)
IF (JMINU ,EQ, I) GO TO 70
DO .60 J=JMINU,JIMAX
IRLJ = IRLC(J)
IFLd = J = 1 4+ IRL(J=1) = IRLJ
KMIN = MAXQ(CIFUI,IFLJ)
JI .= IRUI + J

CPUJI = «PU(JI) TO FCRCE GOOD CODE IN LOOQP

PUJI = =PUCJI)
IF (KMIN ,GE, J) GO TO 50
KMAX = J = | :

COMPUTE INNER PRODUCY FOR UCJ,I)

DO 40 K=KMIN,KMAX
KI = IRUI + K
JK = IRLJ + K
PUJI = PUJI + PL(JK)*PU(KI)

42 CONTINUE
50 PUCJI) = =PUJI * D(J)
60 CONTINUE

COMPUTE L(I,I)

7¢ JHIN = MAXGCIFLI,IFUI)
DI = =D(I)
IF (JMIN ,GT, JMAX) GO TO 99
DO 88 J=JMIN,JMAX

IJ = IRLI + J

JI = IRUI + J

DI = DI + PL(IJ)*xPUCJI)
8a CONTINUE

STORE 1/LCI,I) IN D(I)

9¢ D(I) = =1/D1
199 CONTINUE
RETURN
END

OOOOOO0ONO0O0

OO0

OO0

OD0n

SUBROQUTINE PLDLT(N,PL,D,IRL)
DIMENSION PL(1),D(1),IRL(Y)

THIS SUBROUTINE PERFORMS A PROFILE L D LT DECOMPOSITION ON THE
MATRIX C STORED IN PL AND D. THE ROWS OF PL FROM THE FIRST NONZERO
UP TO, BUT NOT INCLUDING THE DIAGONAL, ARE STORED SEGUENTIALLY

IN PL, THE DIAGCNAL OF C IS STORED IN D, IRL(I) POINTS TO

THE NONEXISTENT CI® ELEMENT OF THE I~TH ROW, ON RETURN, THE STRICT
LOWER TRIANGLE OF L IS STORED IN PL: AND THE INVERSE OF D IS

STORED IN D,

D(1) = 1/D(1)
DO 6@ I=2,N
IRLI = IRLCI)

»IFLI IS THE LOWEST OFF=DIAGONAL INDEX IN THE
I=-TH ROW, SIMILAR COMPUTATIONS ARE USED
FCR OTHER ROWS BELOw, THE FIRST OFF=DIAGONAL ELEMENT
REQUIRES NO INNER PRODUCTS,

IFLI = 1 = 1 + IRL(I=1) = IRLI
JMIN = IFLI +
JMAX = T = |

CONPUTE Af(I,J) = L(1,J)*D(J,J) FOR J IN I=TH ROM

IF (JMIN ,GE, I) GO TO 37
DO 2@ J=JMIN,JMAX
IRLJ = IRLC(J)
IFLJ = J = 1 4+ IRL(J=1) = IRLJ
KMIN = MAX@CIFLI,IFLJ) ;
IF (KMIN ,GE, J) GO TO 22
IJ = IRLI + J

PLIJ = =PL(IJ) TO FORCE GOQD CODE GENERATION IN LOGP

PLIJ = =PL(IJ)
KMAX =2 J =

o

C COMPUTE INNER PRODUCT FQR A*(I,J)

C

DO 183 KSKMIN,KMAX
IK = IRLI + K
JK = IRLJ + K .
PLIJ = PLIJ ¢+ PL(IK)*PL(JK)
10 CONTINUE
PL(IJ) = =PLIJ
2@ CONTINUE

COMPUTE L(I,Jd) = A°(1,J)/D(JsJ) AND DC(I,I)

1 DI = =D(I)
IF (IFLYI .GE, I) GG TO 59
Co 40 J= IFLI JMAX
1J = IRLI + J
CPLIJ = PLCIJ)
PLIIJ) = PLIJ x D(J)
0T =PI ¢+ PLIJ % PL(IJ)
4@ CONTINUE
1% C(I) = =1/D1
6@ CONTINUE
RETURN
END

OO0

s RaNoRe)

Oono

OO0

SUBRCUTINE PLUB(N,PL,D,PU,IRL,IRU,X,B,I0RD)
CIMENSION PLC1D,D(1),PUCL), IRL(1),IRUCY)
DIMENSICN X(1),B(1),I0RDC1)

THIS SUBROUTINE PERFORMS THE BACKSOLVES FOR THE SOLUTION OF
L UP X =P B, L AND U ARE STORED IN PL, Ds AND PU AS
DESCRIBED IN SUBROUTINE PLU, -

SOLVE L X = P B

IORDJ = IORD(1)

X(1) = BC(ICRDJ) » p(1)

DO 32 J=g,N
IORDJ = ICRDC(J) B
XJ = =8(ICRDJ) :
IRLJ = IRL(J)

KMIN IS THE LOWEST OFF=DIAGONAL INDEX IN J=TH ROW OF PL,
SIMILAR CCMPUTATIONS ARE USED FOR OTHER ROWS AND COLUMNS BELOW

KMIN = J = 1 + IRL(J=1) = IRLJ
IF (KMIN ,GE, J) GG TO 2@
KMAX = J = |
DO 18 K=KMIN,KMAX
JK = IRLJ + K
XJ = XJ + PLOJKIAX(K)
10 CONTINUE |
-y X(J) = = XJ * D(J)
3@ CONTINUE

SOLVE U X = X

IMAX = N = |
DG 58 I=1,IMAX

KNIN = J = 1 + IRU(J=1) =~ IRUJ
IF (KMIN ,GE, J) GO TO 5@
KMAX = J = 1
XJ = =x(J)
DO 4@ KSKMIN,KMAX
JK = IRUJ + K
XCK) = X(K) + XJ * PU(JK)
49 CONTINUE
5¢ CONTINUE

RECRDER X TO SOLVE P X = X

PO 72 I=1,N
K =1

I0RD(I) ,LT, @ MEANS THAT X(1) IS PROPER ELEMENT ALREADY,
OTHERWISE, INTERCHANGE X(K) AND X(ICRD(I)), THE EFFECT
OF THIS IS TO ROTATE EVERY CYCLE OF THE PERMUTATION ONE
POSITION SO THAT IT IS PROPERLY ORIENTED,

IF (IORG(Y) LT, 2) GO TgQ 7@
Y] ICRPI = IORD(I)
T = X(ICRDI)

X(IORDI) = X(K)
X(K) = 7T
ICRD(I) = =ICRp(I)
I = IORDI
~ IF (I 4NE, K) GO TO 680
7@ CONTIMUE

AT THIS POINT, ALL ENTRIES OF IORD HAVE BEEN NEGATED —

DO 82 I=i,N
I0RD(I) = =I0RD(I)
8e CONTINUE
RETURN
END

OO0

o000

s Nele)

o0

a0 n

SUBROUTINE PLDLTB(N,PL,DsIRL,X,B,10RD) |
DIMENSION PLC1),DC1),IRLC1)/X(1),BC1),I0RD()

THIS SUBROUTINE PERFQRMS THE BACKSOLVES FCR THE SOLUTION OF
LOLTP X =P By L AND THE INVERSE OF D ARE STORED IN PL
AS DESCRIBED IN SUBRQUTINE PLDLT,

SOLYE L X =P B

I0RDJ = IOKD(1)
X(1) = BCIORDJ)
DO 30 J=2,N
I0RDJ = IORDCJ)
XJ = =B(ICRDJ)
IRLJ = IRL(J)

KMIN IS THE LOWEST OFF=-DIAGONAL INDEX IN J=TH ROW OF PL,
SIMILAR COMPUTATIONS ARE USED FOR OTHER ROWS BELOW

KMIN = J » {1 + IRL(J=1) = IRLJ
IF (KMIN GE, J) GQ TO 29
KMAX = J =
DO 1@ KsKMIN,KMAX
JK = IRLJ + K _
XJ = XJ + PLCOJK)I*X(K)
19 CONTINUE
20 X(J) = =X
38 CONTINUE

SOLVE D X s X
DO 49 I=1,N
X(I) = X(I) * D(I)
42 CONTINUE
SOLVE LT X = X
IMAX = N = 1§

DO 60 I=1,IMAX
JE N+ 1 =1

IRLJ = IRL(J)

KMIN = J = 1 + IRL(J=1) = IRLJ
IF (KMIN ,GE, J) GO TO 6

KHAX = J = |}

XJ = =x(J)

DO 50 K=KMIN,KMAX
JK = IRLJ + K
X(K) = X(K) + XJ * PLJK)

5e CONTINUE

60 CONTINUE
REORDER X TO SOLVE P X = X

DO 82 I=1,N
K =1.

IORD(I) LT, 2 MEANS THAT X(I) IS PROPER ELEMENT ALREADY,
OQTHERWISE, INTERCHANGE X(K) AND XC(IORD(I))., THE EFFECT
OF THIS IS -TO ROTATE EVERY CYCLE OF THE PERMUTATION ONE

c

POSITION SO THAT IT IS PROPERLY ORIENTED,

IF (IORD(I) .LT, @) GO TQ 80
7@ IORDI = IORD(ID

T = XCIGRDI)

~ X(IORDI) = X(K)

CoX(K) = T

© IORD(TI) = =IORDI

~I.= JIORDI

_ IF (1 ,NE, K) GO TQ 78
8@ CONTINUE
DO 92 I=1,N
IORD(I) = =ICRD(I)

9@ CONTINUE

RETURN
END

Appendix B

This appendix contains a driver program which demonstrates the
proper calling sequences for the subroutines presented:in Appendix
A. The program solves the system (1.1l) where A is a block tridiagonal
matrix arising in the solution of the Poisson equation over the unit

square. In the actual example given (corresponding to Figure 3.4),

-1 0 -1 4 -1 0 -1 O (B.1)

L

and the right hand side b is computed so that the exact solution x is
x = [1234567809]°. (B.2)

Thevfirst section of the driver program generates the matrix of
coefficients and calls RCM to obtain the Reverse Cuthill-McKee ordering

of the system. The system is then solved three times to illustrate the

different procedures for systems which are symmetric, nonsymmetric with
symmetric zero structure, and fully nonsymmetric.

For a symmetric system, the strict lower triangle and the strict
ﬁpper triangle of the envelope of A are identical (i.e. PU = PL and
IRU = IRL). Hence only one of them needs to be computed and stored, and
GENENV is called with MAXPU = MAXPL, PU = PL, and IRU = IRL. The
factorization of A and the backsolution are performed using PLDLT
and.PLDLTB, respectively.

For a nonsymmetric‘system with symmetric zero structure, the strict
lower triangle and the strict upper triangle of the envelope of A have
identical structure (i.e. IRU = IRL). Hence GENENV is called with
MAXPU = MAXPL and IRU = IRL. Since the zero structure of U is thé
transpose of the zero structure of L, the factorization of A and the
backsolution are performed by calling PLU and PLUB, respectively, with
IRU = IRL,

Finally, for a fully nonsymmétric system, the strict lower triangle
and the strict upper triangle of the envelope of A are entirely different,
so GENENV is called with no replication of variables. The factorization
of A and the backsolution are performed using PLU and PLUB, respectively.
Note that RCM is not designed for use with systems having nonsymmetric
zero structure and that the results of usiﬁg it on such systems are

unpredictable.

P Iz s

OO0

OoOO0 laRalol

e Xz Xs

‘DIMENSION ICRD(9),IP0S(9) |
DIMENSION PL(2@),PUC23),IRL(9),IRU(9),D(9)
DIMENSION IACS@),1v(18),A(58),X(9)¢B(9)
DATA M/3/,MAXPL/20/,MAXPU/20@/
INDEX(I,J) = M * I ¢+ J = M
N = M x M
WRITE (6,1) N |
{ FORMAT(23H NUMBER OF EQUATIONS: ,I3)
FORM COEFFICiENT MATRIX IN ADJACENCY LIST FORMAT

IAPTR = 1}

" DO 20 I=i,M

DO 2@ J=i,M
IVP = INDEX(I,J)
IVCIVP) = IAPTR

KMIN = MAX2(1,1I-1)
KMAX = MINA(M,I+1)
LMIN = MAXGC(1,J=1)
LMAX = MING(M,J+1)

DO 12 K=KMIN,KMAX
DO 1@ L=LMIN,LMAX
IF (((K=I) % (L=J)) ,NE, 8) GO TO 10
IVG = INDEX(K,L)
IACIAPTR) = IVG
ACIAPTR) = =1
IF (IVP ,EQ@, IVG) ACIAPTR) = 4
IAPTR = IAPTR + 1
19 CONTINUE
20 CONTINUE
IV(N+1) = IAPTR

COMPUTE RCM GRDERING FROM ADJACENCY STRUCTURE
CALL RCM(N,IV,IA,I10RD,IFOS)

PUT SYMMETRIC COEFFICIENT MATRIX IN ENVELOPE FORMy
COMPUTE RIGHT HAND SIDE B, AND SOLVE.

CALL GENENY
c (NIMAXPLtPLerMAXPLlleIRLQIRLIIV:IA:“:IQRQJIPDS:IFLAG)
IF (IFLAG) 1@21,3¢,2221 A
30 CALL GENB(N,IV,IA,A,B)
CALL PLDLTC(N,PL,DsIRL)
CALL PLDLTB(N(PL,D,IRL,X.,B,I0RD)

COMPUTE NORM OF ERRCR IN SOLUTION

7 =@
DO 42 I=1,N
Z =72 4+ (X(I)=I)x%2
4a CONTTMNUE
Z = SGRT(Z)
WRITE (6,2)
WRITE (6,3) Z
KRITE (6,4) (I,X(I)eIS1,N)

