A MultiProcessor Simulator
Abhiram G. Ranade

YALEU/DCS/RR#452
January 1986

This work was supported in part by the National Science Foundation under grant number
DCR-8106181, and in part by the Office of Naval Research under grant number N-00014-84-K-0043.

Table of Contents

1. Introduction

1.1 Overview of the Report

2. Architecture Description

2.1 Boxes and Box-types
2.1.1 Box instantiation

2.2 Local objects: BOXES and LOCALS sections
2.2.1 Accessing Local Objects And Formal Parameters
2.2.2 The variable self

2.3 The Program Section

2.4 User-defined sections

Vectors

3.1 Creating And Manipulating Vectors
3.2 Two dimensional Vectors
3.2.1 Triangular arrays

4. The AMPS Language: Program Control Statements

4.1 The BLOCK statement

4.2 The CALL statement

4.3 The CASE statement

4.4 The DECLARE statement

4.5 The FORK statement

4.6 The IF statement

4.7 The LOOP statement
4.7.1 LOOP clauses

4.8 The RETURN statement

4.9 The SUBROUTINE statement

4.10 The WAIT statement

5. The AMPS Language: Communication Primitives

5.1 Ports
5.1.1 Mailboxes
5.1.2 Pools
5.2 The SEND and RECEIVE statements
5.3 The ND-CHOOSE statement
5.4 Modelling Resource Management
5.4.1 Dining Philosophers
5.4.2 Routing On A Hypercube

6. Modelling Time

6.1 Global And Local Clocks

6.2 Modelling computation delay

6.3 Modelling communication delay

6.4 Predefined delay modelling functions

7. Simulation control

7.1 General simulation procedure
7.2 Commands

8. Implementation Notes

8.1 Continuation Passing
8.1.1 CALL statement Transformation

[SR R

b B B - R B IS, TN 1)

Lo e e e e e e e o
00 =X ~3 =1 OV OV ok o W W 1Y

B D et et b e e
- O ©.© © © W W

23

8.1.2 Concurrent operations
8.2 The communication interface
8.3 Alternate Communication Interfaces
8.4 Use Of T Macros
I. A Shuffle-nearest-neighbour Architecture
II. A Tree Architecture '
III. A Triangular Array Of Processors

Acknowledgements

ii

N

W W W
I WO o 0N

'S
un

1. Introduction

AMPS, A MultiProcessor Simulator, is a simulation system for modelling the behavior of a
distributed computer program running on a distributed architecture. It consists of an architecture
description language, a distributed programming language, and facilities to monitor the simulation and

estimate timing.

In AMPS, a distributed architecture is modelled as a set of sequential or almost sequential processes.
The processes can communicate with one another over different kinds of channels, compete fpr resources,
and of course, perform independent computation. Architectures can be described hierarchically or
iteratively, and these descriptions can be parameterized. The programs associated with the processes are
written in the AMPS distributed programming language. This language contains primitives for
communication, resource contention, dynamic process creation etc. A kernel language is also provided.
Using this it is possible to create new primitives easily. This is especially useful for communication,
where radically different primitives have been proposed. AMPS also allows the user to assign delays for

computation or communication. These delays can be specified statically or dynamically.

AMPS is implemented by embeding its constructs in T [7], a dialect of Lisp developed at Yale. The

architecture description language has been adapted from the Yale Digital Simulator [1].

1.1 Overview of the Report

The architecture description language is discussed in detail in chapters 2 and 3. The programming
language is described in chapters 4 and 5. Chapter 6 describes how the communication/computation
delays may be simulated. Chapter 7 discusses interactive simulation control. The implementation is
briefly described in chapter 8. This chapter also describes the facilities provided for developing new

communication primitives.

The appendices contain detailed definitions of three different architectures, and non trivial programs

that run on them.

[

2. Architecture Description

This chapter describes the main construct of the AMPS architecture description language. The

vector package, which is also useful in architecture description, is described in chapter 3.

In AMPS, a distributed computer system is modelled as a set of sequential or almost sequential
processes. These processes can communicate with one another, compete for shared resources, and of
course, perform independent computatation. Each process usually represents a single physical processing
element; if it is necessary to simulate two or more processes residing on a single processor, it can be done
by modelling the physical processor as a resource for which the processes must compete. Communication
links and shared resources are modelled by objects called ports. The topology of an architecture is

defined by allowing appropriate processes to share access to appropiate ports.

AMPS allows the user to define an architecture-type rather than a particular architecture. Once an
architecture-type has been defined, it is possible to create several instances of the type. Architecture-type
description is hierarchical. The elements of this hierarchy are called boxes. At the lowest level of the
hierarchy, a box could be a single process, at the highest level, a box may encapsulate a complete
architecture. A box may also be composed of wectors of sub-boxes. This allows architectures to be
defined iteratively (e.g. systolic arrays) and recursively/hierarchically (e.g. tree connected processors).
Box-type descriptions can be parameterized. The values of the parameters for a particular instance are
specified at the time of its creation. Parameterization is useful in two ways. First, parameters can be
used to specialize an instance in different ways, i.e. specify its size, shape, internal connection pattern etc.
Secondly, parameters can be used to supply information about the environment to the instance being
created. In particular, box-type description can be parameterized on the external communication ports.
Thus, interconnection between boxes is modelled by specifying the same communication port as an actual

parameter at creation of the boxes.

2.1 Boxes and Box-types

A box is the basic program structuring construct in AMPS. A box consists of a local environment.
with or without an associated program. A box that has a program associated with it is called a process.
The environment of a box may contain other boxes or private data objects. A box may also contain
procedures for structured manipulation of its environment. Thus, a box can be used to encapsulate a

process, to group together other boxes, or to define a data structure that responds to specific operations.

A box-type is defined by parametrically describing a generic instance:

(DEF-BOX name-of-boz-type (formal-parameter. . .)
section. ..)

Any T identifier can be used as name-o f-boz-type.

Figure 2-1 contains examples of box-type definitions. The following sections will use these for

illustration.

(def-box adder (inil in2 out delay)
(locals
(vall nil)
(val2 nil))
(program
(loop (do
(fork
((receive in1 vali))
((receive in2 val2)))
(wait delay)
(send out (+ vall val2)))))
(show () ;5. user—defined section
(format t "~% Adder: ~a" self)
(format t "~% vali: ~a, val2: "a" vall val2)))

(def-box cpu (O
(locals
(2 (mailbox:new))
(b (mailbox:new))
(¢ (mailbox:new))
RS |
(voxes
(alu (adder:new 2 b ¢ 5))
R
)
Figure 2-1: Box-type Examples

A box-type definition may contain three predefined sections: LOCALS, BOXES and PROGRAM.
These, respectively, contain information about local data structures, subboxes that the generic instance

might have, and the program that is to be executed. All sections are optional.

In addition to predefined sections a box-type might have user defined sections. These sections

describe how instances of the box-type would respond to user-defined or primitive T operations.

2.11 Box instantiation
The definition of a box-type creates an instantiation function:
name-o f-bozx-type : NEW
To create a box the instantiation function of its box-type is called with actual parameters appropriate for
the box-tyﬁe definition. When called the instantiation function creates the data structures, instantiates
subboxes (recursively) using the specified parameters, and then returns the box so created. For example
the first statement in figure 2-2 would result in setting adderl to an instance of the box-type adder, and

it would have a delay of 8 units. The second statement would create a box of type cpu, and the variable

cpul would be set to the box so created. Notice that boxes of type cpu contain subboxes of type adder.
The creation of the box cpul would cause the subbox to be c¢reated as well. This box would have a delay

of 5, as can be seen from the definition of box-type cpu.

;;; Assume a, b, c have been set appropriately
;;, For definitions of adder and cpu, see figure 2-1

(set adderl (adder:new a b c 8))
(set cpult (cpu:new))

Figure 2-2: Box instantiation

2.2 Local objects: BOXES and LOCALS sections

The BOXES and LOCALS sections describe respectively the subboxes and other local objects that

an instance of a box-type may have.

The LOCALS section has the form:

(LOCALS
(object-name object-de finition) ...)

Each object-definition is a T expression which is evaluated to yield a value for the corresponding

object-name.

The BOXES section has a similar form. In this case, however, each object-de finition must return
either an instance of a box-type or a vector consisting of such instances i.e. the definition would contain
calls to appropriate box-type instantiation functions. As an example, consider the definition of box-type
cpu in figure 2-1. This contains a local box called alu of box-type adder. It is also posSible to have

recursive box-type definitions. This is useful for defining structures like trees, as in figure 2-3.

;» The parent mailbox is used to communicate with the parent. The lbox and
;; Trbox with the left and right sons respectively.

(def-box tree-node (size parent)
(locals
(1box (mailbox:new))
(rbox (mailbox:new))
(sizeby2 (div size 2)))
(boxes
(lson (if (> size 1)
(tree-node:new sizeby2 lbox)
nil))
(rson (if (> size 1) .
(tree-node:new sizeby2 rbox) I
nil)))) §

Figure 2-3: Recursive Box-type Definition For A Tree

The information in the LOCALS and BOXES sections is used to create the box-type instantiation
function. During instantiation the objects in the LOCALS section are created sequentially from top to
bottom, followed by the objects in the BOXES section. The definitions in the BOXES section may refer
to any objects in the LOCALS sections or subboxes defined earlier. Definitions in the LOCALS section
may only refer to local objects defined earlier. Both, however, may fefer to the formal parameters of the

box-type definition.

2.2.1 Accessing Local Objects And Formal Parameters

Within the box-type definition, locals, boxes, and formal parameters may be accessed simply by
using their names. The only requirement is that the appropriate datum be defined at the time it is

accessed, as described in the preceding passage.

Outside the definition, accessor functions must be used. These are created as a result of defining a

box-type. Each accessor function has the form:
name-o f-box-type : name-of-local-object-or- formal-parameter
This function, when applied to an instance of the box-type, yields the appropriate local object or actual

parameter. For example, after execution of the code in figure 2-2, the alu box local to cpul could be

referenced by:
(cpu:alu cpul)
The vall field of this adder could be referenced as:

(adder: valt (cpu:alu cpul))

2.2.2 The variable self
A box-type definition defines a class of boxes by describing a generic box that is a representative of
that class. In describing the operations that the box can handle, it is often useful to have a variable that

is bound to the box itself. Self is such a variable. For this reason, avoid having another local object

called self within a box-type definition. The result of setting the variable self within the definition is

unpredictable.

For an example refer to the show section in box-type definition of adder in figure 2-1. When the
user defined operation (cf. section 2.4) show is invoked on an instance, self would be bound to the

instance, and thus the format statement would print the full hierarchical name of the instance.

2.3 The Program Section

The program section has the form:
(PROGRAM . statements)

Each statement is either an ANEPS language statement or a T expression. The program section and

AMPS language statements are discussed in chapters 4 and 5.

2.4 User-defined sections

The general form is:

([CONCURRENT] operation (operation-formal-parameter ...)
statement ...)

If the keyword CONCURRENT is not present, Operation should be a T identifier, possibly the
name of a predefined T operation. Each statement should be a T expression. The operation may be
invoked on a boz by:

(operation box operation-actual-parameter ...)
Upon execution of this the actual parameters are bound to the corresponding formals, and the T
expressions are sequentially evaluated, and the value of the last expression is returned. As an example,
suppose the code in figure 2-2 has been executed. Then, invoking

(show (cpu:alu cpul))

would cause vall and val2 in the alu subbox of cpul to be printed, along with its full hierarchical name.

If the keyword CONCURRENT is present, then operation must be a T identifier. Each statement
must be an AMPS statement or a T expression. The operation may be invoked on a box by using the
CALL! statement:

(CALL -(operation box operation-actual-parameter ...)
(result-var-list))

Result-var-list should be a list of settable T expressions. The expressions in the Result-var-list are used

to receive values returned by the operation.

The CALL statement causes the actual parameters to be bound to the corresponding formal
parameters of the operation. The statements are then sequentially executed. Values are returned to the

caller using the RETURN statement.

1Ret‘er to chapter 4 for descriptions of CALL and RETURN statements.

3. Vectors

AMPS provides facilities to create and manipulate vectors of objects. One or two dimensional
vectors are directly supported. By creating a two dimensional vector of one dimensional vectors, the user

can build a three dimensional vector. Vectors having more dimensions can be similarly constructed.

Vectors know how to print themselves, i.e. they have a method for handling the operation ‘print’.
Vectors print as
(V> vector-element. . .)
The elements of the vector are printed as whatever they are - calls on accessor functions, simple elements,

vectors when vectors are nested, etc.

The following sections discuss primitives for creating and manipulating vectors.

3.1 Creating And Manipulating Vectors

(def-box proc()

(locals
(a 1nil)
(b nil)
(¢ nil)))

(def-box procl (side_length)

(locals
(a (% side_length side_length))
(b 1nil)
(¢ mil)))

Figure 3-1: Example Boxes
The following command descriptions use the box-type definitions in figure 3-1 to illustrate the use of

the commands.

(V:NEW Init Size)
(V:NEW Init Lower Upper)

Creates a vector. Init is a function of no arguments. Each element of the new vector is initially set.
to the result of a call on In¢t. The first form creates a vector with indices in the range 0 to Size-1.
The second form creates a vector with indices in the range Lower to Upper. The lower bound must
be less than or equal to the upper bound. For example ‘

(V:New proc:new 10)
(V:New (lambda () (proci:mew 5)) 3 12)

The second form creates a vector whose indices range from 3 to 12. Further each of the elements is
of box-type procl, and each has its side__length parameter set to 5.

(V:NEWSP Init Size)

Creates a vector. Init is a function of one argument. The ith element of the new vector is initially
set to the result of a call on (Init i). The vector has indices in the range 0 to Size-1. For example

(V:Newsp procl:new 10)
(V:Newsp (lambda (i) (proc:new)) 10)

The first form creates a vector of 10 elements. Each element is of box-type procl. The ith element
of the vector has its side__length parameter set to i. The second form just illustrates how a
function of no arguments can be created by throwing away one argument. It is equivalent to:

(v:new proc:new 10)

(V:REF Vector Index)

Accesses the Index™® element of Vector. For example

(set V1 (V:New (lambda () 0) 4))
(set (V:Ref Vi 0) 10)

(V:Ref V1 0) => 10

(V:Ref V1 3) =0

(V:LOWER Vector)
Returns the lowest legal index for Vector. For example

(set V1 (V:New proc:new 4))
(V:Lower V1) => 0

(V:UPPER Vector)
Returns the highest legal index for Vector. For example

(set V1 (V:New proc:new 13))
(V:Upper V1) => 12

(V:SIZE Vector)
Returns the number of elements.in Vector. For example

(set V1 (V:New proc:new 3 12))
(V:size V1) => 10

(V:MAP Func Vectar1 Vector2 V?:ctorn)

Maps function Func over T/Tector1 through Vectorn. Funec should be a function of N arguments. All
vectors should be of the same length. The result of V:Map is a vector of the results of applying
Func to the elements of the vectors. For example

(set V1 (v:newsp proci:new 4))
(V:Map proci:side_length Vi) => (V> 0 1 2 3)
(V:Map proci:a Vi) = (V> 01 4 9)

(V:MAKE Arg1 Argn)

Make a new vector with each Argi a separate element. The result vector is indexed from 0. For
example

(V:Make 1 2 3 4) => (V> 12 3 4)

(V:CAT Arg, ... Arg)

Splice Arg1 through Argn into a vector. Vector arguments are flattened by one nesting level.
Scalars produce a single element of the result. The result vector is indexed from 0. For example

(set V1 (V:Cat 1 2 (V:Make A °B °C)))
= (V> 12ABC)

(V:Lower V1) => O

(set V2 (V:Make 1 2))

(set V3 (V:Make ’A ’B V2))
= (V> AB (V> 1 2))

(V:Cat 1 2 V3)
= (V>12AB (V>12)

(V:FLAT Arg, ... fhgn)

A recursive V:Cat. Splices its arguments into a single vector. Nonvectors are splicéd in as single
elements, vectors have V:Flat applied to the list of their members before splicing. For example

(set V2 (V:Make 1 2))
(set V3 (V:Make °A 'B V2))
= (V> AB (V> 12))
(V:Cat 1 2 V3)
= (V> 12AB (V>12)
(V:Flat 1 2 V3)
= (V>12AB12)

(V:FROM-LIST List)
Make List into a vector. For example
(V:From-List (A B C)) => (V> A B C)
(V:TO-LIST Arg, ... Arg)
Returns a list of the elements of the argument vectors. For example

(set Vi (V:Make ’A °B 'C))
(set V2 (V:Make 1 2))
(V:To-List V1 V2) => (ABC1 2)

(V:MEMQ X Vector)

If X is an element of Vector then its index in Vector is returned. If X is not an element of Vector
then nil is returned. The T function eq? is used for comparison. For example

(set V1 (V:Make A °B °C))

(V:Memq A V1) => 0
(V:Memq "X V1) => ()

10

(V:SUBRANGE Vector Lower Upper)

Create a new vector which is that part of Vector with indices from Lower to Upper. The created
vector actually shares elements with Vector. Thus changes to either will affect the other. For
example

(set V1 (V:Make A 'B 'C 'D ’E))
(set V2 (V:SubRange V1 1 3))
=> (V> B CD)
(set (v:ref V2 0) °X)
Vi => (> AXCDE)
(V:FROM-SPECS (Ref, ... Ref)))
(V:FROM-SPECS (Refl Ref) Startindex)

Creates a vector from the Re j1 Each Re f specifies a data object and the way in which it is to be
included in the result. Possible reference formats are lists with the following forms.

e To include Thing as a single element of the result, use:

(SCALAR Thing)

o To have Vector spliced into the result:

(VEC Vector)

e To splice the subrange of Vector from Lower-Bound to Upper-Bound into the result:

(SUBRANGE Vector Lower-Bound Upper-Bound)

e To insert the Index™ element of Vector into the result:

(VEC-REF Vector Index)

Vec, Subrange, and Vec-Ref items cause data to be shared with the source vector. Scalar items are
represented by a pointer to the actual data. The bounds of a Subrange may be reversed. If
StartIndex is not specified, indices of cells in the vector will range from 0 to S-1 where S is the total

number of cells specified. If StartIndex is specified, then the indices will range from StartI/ndex to
StartIndex+S-1. For example

(set V1 (V:Make A B 'C 'D ’E))
(V:From-Specs ((Scalar 1)
(Vec V1)
(Subrange V1 0 1)
(Vec-Ref V1 3)))
= (V>1 ABCDE AB D)

Extra spaces group elements according to the V:From-Specs clause which produced them. This
printing convention is used here only for expositional purposes. The simulator does not keep track
of where the various elements came from.

Vec-Ref is shorthand for a single element subrange.

11

(V:SERIAL-BUILD init-template fill-template)

A vector is created as a result of a call to init-template. Fill-template is T code that may
selectively modify elements of the vector. Fill-template may contain the following statement which
sets the value of the ¢! element to new-val:

(V:MAKE-ELT i new-val)

This is useful for creating vectors containing different kinds of elements. Further, the elements need
not be built in any particular order. Thus if a particular processor array is easier to configure in an
order different from the way it is numbered, then this command may be used.

The following code creates a vector whose elements are set to the elements of a Fibonacci sequence.
Empty-elt is a function that returns the literal ‘uninitialised’.

(v:serial-build (v:new empty-elt size)
(loop (iner i .in O to size)
(initial ((prev 0) (cur 1) (temp 0)))
(do
(v:make-elt i cur))
(next ((temp prev)
(prev cur)
(cur (+ temp cur))))))

Appendix II contains an example of the use of this command to configure an array of processors as a
tree.

(EMPTY-ELT)

A function that returns the literal ‘uninitialised’. Useful in connection with v:serial-build to create
uninitialised structures.

3.2 Two dimensional Vectors

Two dimensional vectors consist of a one dimensional vector (‘outer’) each of whose elements is a
one dimensional vector (‘inner’). The following primitives have been built to manipulate two dimensional
vectors. They are completely analogous to those in one dimension and hence are not elaborated upon.

(V2:NEW init size-in-dimensionl size-in-dimension?2)

(V2:NEWSP init size-tn-dimensionl size-in-dimension2)
Here init is a function of two arguments.

(V2:REF wvec subscriptl subscript2)
(V2:MAP function wvec)

(V2:SERIAL-BUILD init-template fill-template)

The first subscript always refers to the outer vector, and the second to the inner vector.

Since a two dimensional vector is also a one dimensional vector, one dimensional vector primitives

may be used with two dimensional vectors. Thus if v is a two dimensional vector, then

12

(v:iref v i)

would refer to the ith inner vector of v.

3.2.1 Triangular arrays
The following function can be used to create a triangular array:

(TRIANGLE:NEW size init)

Returns a vector of szze elements, indexed O through size-1. The ith element is itself a vector of i+1
elements, each of which is created as result of a call to znst. In:t is a function of no arguments.

Note that a triangle is a special two dimensional vector, so that all two dimensional primitives can
be used to manipulate it.

13

4. The AMPS Language: Program Control
Statements

The AMPS language contains statements for program control and communication. Program control
statements form the language kernel in that the communication statements are built on top of these and
can be tailored to suit the requirements of the system being simulated. Chapter 5 discusses

communication statements.

The AMPS language contains most constructs commonly found in general purpose programming
languages. Although the language is embedded in T, and has a syntax similar to T’s, AMPS constructs
are fundamentally different in that they are not applicative. Thus they do not evaluate to values and are
only used for side-effects. AMPS statements can be composed using other AMPS statements and T

expressions. In fact, T expressions can be freely used in AMPS code. This allows use of all the T libraries.

Besides the program section in a box-type definition, AMPS statements can also be used in
subroutines. AMPS subroutines are distinct from T functions; they are defined and called using special

syntax.
AMPS code can also contain calls to T macros.

The following sections describe the AMPS language statements. The syntax is very similar to

corresponding statements from T.

4.1 The BLOCK statement

(BLOCK statement ...)

Statements are T expressions or AMPS statements. These are evaluated from left to right. A
BLOCK statement is useful for grouping together statements in places where, syntactically, a single
statement is needed.

4.2 The CALL statement

(CALL procedure-call-form return-list)

Procedure-call-form is a list of the form (subroutine-name arg ...), with subroutine-name defined in
a SUBROUTINE statement. Return-list is a list of settable T expressions.

The statement results in a call to subroutine-name. The expressions in the return-list are used to
receive values returned as a result of the call. The length of return-list must be the same as the
number of values returned by the subroutine.

14

4.3 The CASE statement

(CASE key clause ...)

CASE performs a multiway dispatch on the value of the key, a T expression. Each clause is of the
form (key-values statements ...), where key-values is a list of values against which the value of the
key expression is compared (using EQ?), and statements are AMPS statements or T expressions.
The statements following the clause which matches the key are evaluated sequentially. The last
clause may be of the form (ELSE statements ...); this designates the default action to be taken if
there is no match. If the key never matches and there is no default clause, then no action is
performed.

4.4 The DECLARE statement

(DECLARE declarations statement ...)

Virtually identical to the LET* statement of T. Each declaration is of the form (var inttial), where
var is a T identifier and ¢nitial is a T expression. Each statement is a T expression or an AMPS
statement. The statement creates a scope in which the var; are local variables with initial values

im'tz'ali. The statements are then executed sequentially in this scope.

4.5 The FORK statement

(FORK thread ...)

Each thread is a list of T expressions or AMPS statements. When control reaches the fork
statement, all threads start execution concurrently. The execution of a single thread consists of
sequential execution of the statements or expressions in it. No assumptions can be made about the
relative speed of the execution of the various threads. The fork statement terminates when all the
threads complete their execution.

4.6 The IF statement

(IF condition consequent [alternate])

The condition is a T expression, and consequent and alternate are AMPS statements or T
expressions. The condition is evaluated, and if it is not nil, then the consequent is executed, else
the alternate is executed if it is present.

15

4.7 The LOOP statement

(LOOP clause ...)

The LOOP statement and also the description below is adapted from the Yale LOOP macro written
by John Ellis, which itself is based on the LOOP from McDermott, Charniak and Riesbeck [2]. It is
a powerful construct especially suited for complicated loops that have several exit tests, loop
variables, etc.

A LOOP consists of various components: a body which may be executed several times, code to be
executed before entering the body for the first time or after leaving it for the last time, loop
termination tests, and local variables which can be stepped or or otherwise changed every iteration.
The LOOP statement provides for all these using the following clauses:

(INITIAL snitializations ...)

(BEFORE statements ...)

(WHILE condition)

(UNTIL condition)

(INCR v FROM|.IN.|.IN|IN.|IN snit [TO final] [BY delta]) ;;; also STEP
(DECR v FROM|.IN.|.IN|IN.|IN 7nit [TO finall [BY deltal) ;;;, also DOWNSTEP
(FOR v IN €)

(DO statements ...)

(NEXT updates ...)

(AFTER statements ...)

In general, there may be more than one clause of each type in a LOOP. For example, the following
loop has two exit tests, one in the middle and one at the end:

(loop
(do ...)
(while condition)
(do ...)

(until condition))

4.7.1 LOOP clauses

In the discussion below, "declares a new variable" means causes a declaration of a new variable and
that the variable is scoped over the entire loop.
(INITIAL initialization ...)

Each ¢nitialization is of the form (var-name initial [next]). where each var-name is a T identifier,
and initial and next are T expressions. '

The statement causes new variables var-name; to be declared and sequentially initialized at the
beginning of the loop to the value of the expressions z'm'tz'ali. It nea:ti is present, then var-name; is
set to nezti' at the bottom of the loop.

(BEFORE statement ...)

Each statement is an AMPS statement or a T expression. The stalements are executed sequentially
after all the variables have been intialized and before the first loop iteration. BEGIN is a synonym
for BEFORE.

16

(WHILE condition)

Condition is a T expression. The condition is evaluated, and if nil, causes the loop to be
terminated.

(UNTIL condition)
Condition is a T expression. The loop is terminated if condition evaluates to non-nil.

(INCR v {FROM|.IN.|.IN|IN.|IN} init [TO finall [BY delta])
(DECR v {FROM|.IN.|.IN|IN.|IN} inst [TO finall [BY delta])

V'is a T identifier, and inst, final and delta are T expressions.

Declares a new variable v and steps it from initial value ¢nit to the final value final, incrementing
(decrementing) by delta (defaults to 1). If [TO final] is omitted, the variable is stepped indefinitely.
Otherwise, the loop terminates when the variable reaches the final value. The ¢nit, final and delta
expressions are evaluated once, at the beginning of the loop. STEP and DOWNSTEP are synonyms
for INCR/DECR. The FROM/.IN./... keywords are provided to make writing loops that step from
m to n-1 more convenient:

(INCR ¢ .IN. O TO 10) varies 7 in 0..10
(INCR 7 .IN O TO 10) varies 7 in 0..9
(INCR 7 IN. O TO 10) varies 7 in 1..10
(INCR: IN O TO 10) varies ¢ in 1..9
(DECR ¢ .IN. 10 TO 0) varies 7 in 10..0
(DECR ¢ .IN 10 TO O0) varies 7 in 10..1
(DECR ¢ IN. 10 TO 0) varies ¢ in 9..0
(DECR ¢ IN 10 TO O0) varies ¢ in 9..1

FROM is a synonym for .IN.
(FOR v IN list-exp)

Declares a new variable v and steps it through each element of list lzst-exp, which is a T expression
evaluating to a list. The loop terminates when the list is exhausted.

(DO statement ...)

The body of the loop-- the statements are AMPS statements or T expressions. They are executed
sequentially each time through the loop.

(NEXT wupdate ...)

Each update is of the form (var val) where var is a settable T expression and val is a T expression.
The expressions var; are equentially assigned to vali (the assignment is NOT done in parallel). Note

that the assignment does not occur at the bottom of the loop (as in the INITIAL) clause, but
wherever the NEXT statement is located.

(AFTER statement ...)

Each statement is a T expression or an AMPS statement. The statements are executed sequentially
after the LOOP is found to have terminated.

17

4.8 The RETURN statement

(RETURN wvalue ...)

The RETURN statement is legal only inside a SUBROUTINE statement or a userdefined section,
provided the section definition begins with the keyword CONCURRENT. Each value is a T
expression. The T expressions are evaluated, and the resulting values are returned. The control
then returns to the calling program.

4.9 The SUBROUTINE statement

(SUBROUTINE (subroutine-name formal-parameter ...) statement ...)
Subroutine-name and each formal-parameter are legal T identifiers. Statements are AMPS

statements or T expressions. They must contain one or more RETURN statements.

The SUBROUTINE statement defines subroutine-name to be a subroutine that can be called using
a CALL statement. When a subroutine is called, the actual parameters are bound to the formals,
then the statements are executed. When the execution encounters a RETURN statement, the values
mentioned in it are returned.

4.10 The WAIT statement

(WAIT delay)

Delay is a T expression that evaluates to a positive integer. The calling process suspends for the
amount of delay specified and then continues execution.

18

5. The AMPS Language: Communication
Primitives

This chapter describes primitives for modelling communication, synchronization or resource

contention. Other primitives can be created, this will be discussed in chapter 8.

The set of primitives described here uses the notion of ports. The primitiw}es themselves are
operations on ports, and their semantics are different for the different types of ports. Two kinds of ports
are predefined: mas¢lboxes and pools. Three primitives: SEND, RECEIVE and ND-CHOOSE can be used
with these. These primitives are legal AMPS statements.

This chapter concludes with a discussion of how to model resource contention, with brief program

examples. The appendices contain numerous examples of the use of the primitives for communication.

5.1 Ports

A port is an intermediary for communication. Processes do not communicate directly, but through
ports. Thus unlike several other concurrent language proposals [4, 5] a message receiver does not need to
know which process sent a message, and vice versa. Senders and receivers only need to know the name of
the port through which communication takes place. This has the advantage that multiple server
processes can be modelled easily by letting them read their requests from a single port. Ports do not
enforce readership/writership on processes i.e. a process can send or receive messages from the same port,

and in fact, it may even Teceive a message sent by itself.

There may be different types of ports. The message queuing strategies, the amount of buffering at
the port, and other communication parameters are determined by the port type. Two type of ports are
predefined in AMPS: pools and mazilboxes. Ports can be created by invoking

(type-o f-port : NEW)

which returns the port object. Like other AMPS objects, it is possible to build vectors of ports.

5.1.1 Mailboxes

A mailbox is a port for modelling one to one communication without any buffering. When a
(sender) process sends a message to a mailbox, it must wait until there is a (receiver) process that wants
to receive a message from the mailbox. If there are more than one waiting receiver processes, a receiver is
selected at random, the message is transferred to the selected process, and both the selected receiver and
the sender continue. If there are no waiting receiver processes, then the sender process must wait
(possibly along with any other process waiting to send to the mailbox) until it is selected by a receiver

process. The SEND and RECEIVE operations are thus synchronizing and symmetric.

19

5.1.2 Pools
A pool is a port for one to one communication with infinite buffering. SEND and RECEIVE on a
pool are asymmetric. Sender processes do not wait for receivers, but the messages to be sent are stored in

the pool. Receiver processes must, however, wait for messages.

5.2 The SEND and RECEIVE statements

Mesages can be sent using:
(SEND port message)

Port and message must be T expressions which should evaluate to the port to which the
communication is directed and the message to be sent respectively.

Messages may be received by:
(RECEIVE port var)

Var must be a settable T expression which is set to the message received. Port must be a T
expression which evaluates to the port from which the message is to be received.

5.3 The ND-CHOOSE statement

The ND-CHOOSE statement has the following form:
(ND-CHOOSE chosen-mailbox chosen-message port-expression ...)

Chosen-mailbox and chosen-message must be settable T expressions, and each port-expression must
be a mailbox or a pool, or a list or a vector of mailboxes or pools.

This statement Non-deterministically CHOOSEs a port from the specified ports. A message is
RECEIVEd from the chosen port, and chosen-port and chosen-message are set accordingly. Only
those ports actually holding a message at the time are considered for the non-deterministic choice.
If none of the specified ports holds a message, then the process invoking ND-CHOOSE waits until a
message appears on any one of the specified ports. This statement is a generalisation of the
Parallel-Or construct of Linda [3], or the Select statement of Ada [6] in that it does not require all
the target ports to be textually listed.

The next section contains an example of the use of the ND-CHOOSE statement.

5.4 Modelling Resource Management

The act of communication implies a synchronization between the sender and the receiver. If the
message is considered to be a resource, then receiving the message can be regarded as acquiring the

resource, while sending the message (with buffering) can be regarded as releasing the resource.

20

5.4.1 Dining Philosophers

The first resource management problem considered in this section is the Dining Philosophers’

problem.

(def-box table (nphils)
(locals
(shelf (pool:new))
(forks (v:new pool:new nphils)))

(boxes
(phils (v:new (lambda (i) (philosopher:new
shelf
(v:ref forks i)
(v:ref forks (mod (1+ i) nphils))))
nphils)))
(program - ;:, set the table

(loop (incr 1 .in O to nphil)
: (do
(send (v:ref forks i) "fork)))
(loop (imcr i .in 1 to nphil)
(do
(send shelf °‘plate)))))

(def-box philosopher (shelf 1lside rside)
(locals
(plate nil)
(1fork nil)
(rfork nil))
(program
(loop (do
. <think>

(receive shelf plate)
(fork ((receive 1lside 1lfork))
((receive rside rfork)))

. <eat>

(fork ((send shelf plate))
((send 1side 1fork))
((send rside rfork)))))))

Figure 5-1: Dining Philosophers

The problem is to simulate a system of /N philosophers sitting at a round table set with [V forks, one
between adjacent philosophers. The philosophers alternate between thinking and eating, but to eat, a
philosophers must wait till he can pick up the two forks to either side of his. When the philosopher
finishes eating, he puts down the forks (allowing his neighbours to use them) and resumes thinking. If,
for example, every philosopher picks up the fork on his left, then this leads to deadlock, because now

every philosopher must wait till his right neighbour puts down his fork, which can only happen if he

finishes eating. The deadlock is avoided in the solution presented in figure 5-1 by introducing an
additional resource. Now the philosophers must first contend for plates, of which there are only N-1.
After picking up a plate, from a central shelf, the philosophers can contend for forks. Thus all
philosophers cannot now pick up one fork and cause a deadlock because there are only IN-1 plates. The
plates and the forks are modelled as pools and each philosopher is modelled as a process. Resource
acquisition/release is modelled by receiving/sending null messages. The program associated with the table

process is only used to initialise the pools.

5.4.2 Routing On A Hypercube

Routing a message on a binary hypercube interconnection network consists of transmitting it across
all the dimensions in which its source and destination differ. A given wire can carry only one message at
a time, and hence this gives rise to a resource constraint when multiple messages are being routed
simultaneously. Consider a routing strategy in which the path of a message is not determined
independently of other messages in the system, but is instead computed dynamically as the message moves
through the network, depending upon the wires free at that time. Figure 5-2 sketches how a network

employing such a strategy may be modelled.

Each message sent on the hypercube is represented as a process which contends for hypercube wires.
Each message process initially has a list of dimensions that it needs to cross, and it terminates when the
list is emptied. At each intermediate destination the process contends for wires corresponding to yet
uncrossed dimensions. When it gets access to a wire the corresponding dimension is removed from its list,
and the position of the message is updated. The process then waits for a certain time to simulate
transmission delay and then releases the wire. Hypercube wires are represented by two pools, one for each
direction. Availability of a wire for transmission in a particular direction is represented by the presence

of a null message in the associated pool.

[
W

(def-box message (list-of-uncrossed-dimensions sourcenode)
(locals
(current-location nil)
(1ist-of-mailboxes nil)
(chosen-mailbox nil)
(token nil)

)

(program
(set current-location sourcenode)
(loop (while list-of-uncrossed-dimensions)

<Compute list-of-mailboxes corresponding to wires
along dimensions in list-of-uncrossed-dimensions>

(nd-choose chosen-mailbox token list-of-mailboxes)

<Determine the dimension along which a free wire was
found. Update current-location and remove that
dimension from list-of-uncrossed-dimensions>

(wait message-transmission-time)
(send chosen-mailbox token)) ;, release wire

))

Figure 5-2: Hypercube Routing

6. Modelling Time

In AMPS, a user can specify the time necessary to perform every interesting operation in his

program. By varying these times, a wide range of architectures can be modelled.

The time required to perform an operation can be specified in two ways. The operation can be
enclosed in a procedure that contains the timing information in addition to the code for performing the
operation. Alternatively, T macros can be used. Once this is done and the primitive procedure/macro is

defined, it can be used freely in AMPS code.

6.1 Global And Local Clocks

AMPS has the notion of a systemwide global time and a local time for each thread of control.> The
state of the local variables of a process is always consistent with its local time, i.e. the local time correctly
indicates the time required by the process to reach that state. The local time for a thread need not be the
same as the global time. Before a thread communicates with the external world, however, it is forced to
wait until the rest of the world catches up, i.e. the global time becomes equal to its local time. This
ensures that all communication take place at the right global time, and that a process is not affected by

another process ahead of it in time.

Implicit here is the assumption that all processes interact with each other or cause globally
observable side-effects only using AMPS communication statements. If this discipline is not observed, and
processes share information in any other way (e.g. through T global variables), then it is possible for a

process to be influenced by future actions of another process.

The statement
(WAIT 0O)

can be used to make the local time of a process equal to the global time.

The facilities provided for accessing the global and local clocks are discussed in chapter 7.

2Note that a process may execute a FORK statement, and cause several concurrently executing threads of control to be created.
Hence, for modelling time it is necessary to consider threads of control rather than processes. A process that is not executing a
FORK constitutes a single thread of control.

24

6.2 Modelling computation delay

The following primitive is provided:

(OPDELAY amount-of-delay)

Amount-of-delay is a T expression which should evaluate to the delay required. This statement
may be inserted in any procedure. Every execution of the statement causes the concerned thread of
control to be delayed by the amount specified. As an example consider the following procedure which
returns the quotient of two numbers as well as simulates the computation delay.

(define (./ 2 b)
(opdelay *DIVISION-DELAY*)
(/ a b))

6.3 Modelling communication delay

Communication delay can be modelled using T macros:

(define-syntax (.receive port var)
‘(block (receive ,port ,var) (opdelay receive-delay-expression)))

Or using AMPS subroutines

(subroutine (.receive port)
(declare ((msg nil))
(receive port msg)
(opdelay receive-delay-expression)
(return msg)))

Unlike the macro implementation, this would have to be used only through a CALL statement. Notice
that for the subroutine, as well as the macro implementation, the expression receive-delay-expression is

evaluated at runtime. Thus it is possible to simulate delays equal to the message length etc.

6.4 Predefined delay modelling functions

The four arithmetic operators have already been transformed in the manner described above. The
resulting functions are:

.+, .-, .%¥ and ./

If these are used in the PROGRAM section of a box, they not only perform the indicated operation,
but also simulate a computation delay of respectively:

ADDITION-DELAY,
SUBTRACTION-DELAY,
MULTIPLICATION-DELAY and
DIVISION-DELAY

These variables can be set as desired.

7.

Simulation control

This chapter describes what a simulation session looks like and the facilities provided for controlling

a simulation.

7.1

General simulation procedure

A simulator session begins with loading in the simulator. After this the various user defined box-

types/utilities may be loaded. The simulator is then reset, and the top level box instantiated. After this

the boxes in the system may be commanded to run, and controlled, using commands described below.

More

than one architecture may be simulated in a single session. Box-type definitions may be loaded at

any time, but the simulator needs to be reset before starting on a new architecture.

The appendices contain definitions of various architectures and also show how the definitions can be

used in an actual session.

7.2

(SIM:

(SIM:

(SIM:

(SIM:

(SIM:

(SIM:

Commands

CLEAR)

This command resets the simulator. All old objects are deleted. The global clock is reset to zero.
Various simulator internal variables are reinitialised, and the simulator is ready to instantiate a new
box hierarchy. :

INIT top-level-box)

This command starts the simulation for the box hierarchy created. The whole hierarchy must be
contained in top-level-box which must be already created. The processes created execute to
termination or until all of them have to wait for an external event. Then the control returns to the
user.

TICK)

This causes the global time to increment by 1 unit, and causes all processes waiting for the new time
to resume.

KEEP-TICKING)

Causes the global clock to keep ticking till there are no more processes waiting.
TIME)

Returns the current global time.

LOCAL-TIME)

Returns the local time for the thread of control calling it. Unpredictable if called from outside an
AMPS program.

26

8. Implementation Notes

This chapter describes in brief the main ideas in the implementation of the AMPS programminng

language and also how new communication primitives can be developed.

8.1 Continuation Passing

The basic requirement for simulating multiple processes is a mechanism for process suspension and
resumption. As noted in [9], the CATCH operator performs this admirably. However, in the absence of a
fully general CATCH operator implementation in T, other means must be used. The approach adopted

in AMPS is to use continuations [8] to encapsulate program state.

It is not, however, necessary to completely convert a program into continuation passing style. The
real requirement is that continuations be available wherever it might be necessary to suspend execution.
Suspension is acheived simply by saving the continuation. A suspended process can be resumed by
retreiving the saved continuation and calling it. It is also possible to transfer information to the process

by calling the continuation with the appropriate arguments.

8.1.1 CALL statement Transformation

As an example, figure 8-1 shows how a CALL statement is converted to continuation passing style.3
After the transformation, the procedure call contains an extra parameter, the second parameter4 now
being the continuation. The SUBROUTINE statement used to define procedure abc suitably transforms
the definition so that it has the appropriate number of formal parameters. The RETURN statement in

the definition simply calls the second parameter with the result of the procedure.

;5 source program ;.. after transformation
(call (abc a b c) ‘ (abc a (lambda (argl arg2 arg3)
(d e £)) (set d argl)

(set e arg2)
. (set f arg3d)
rest .
rest
Db e

Figure 8-1: CALL statement transformation

3Note that all AMPS statements only cause side-effects, this simplifies the conversion.

4The call might be an operation on an object, in which case T requires that the object be the first parameter.

8.1.2 Concurrent operations

User defined operations on boxes that have the keyword CONCURRENT in their definition are
called concurrent operations. Concurrent operation definitions are transformed in a manner similar to
SUBROUTINEs. In either case, the continuation with which the operation/subroutine gets called is
bound to RETURN. Thus the RETURN statement actually calls this continuation. It is not necessary,
however, that the continuation always be called. If it is saved and called later, the effect is process

suspension and later resumption. This is used to implement the communication primitives.

8.2 The communication interface

Internally, ports are simply instances of predefined box-types. The communication statements are

concurrent operations on ports, with some syntactic sugar.

;.. Pools.

292

;;; Note that this does not implement the ND-CHOSE operation.

(def-box pool ()
(locals
(messgq nil)
(recvqg mnil))
(CONCURRENT ..receive ()
(wait 0)
(if messgq
(return (pop messgq))
(push recvq return)))
(CONCURRENT . .send (message)
(wait 0)
(1f recvq
((pop recvq) message)
(push messgq message))
(return))

)

;s Syntactic sugar.

00

(define-syntax (send mbx msg)

‘(call (..send ,mbx ,msg) ())) -
(define-syntax (receive mbx msg)

‘(call (..receive ,mbx) (,msg)))

Figure 8-2: Pool Implementation

Figure 8-2 shows an implementation of pools that can support the SEND and RECEIVE primitives
of chapter 5. In a similar manner, it is possible to implement port-types having different queuing
strategies (say First In First Out), or fixed amount of buffering etc. More operations on ports could also

be defined, e.g. an operation that finds the number of unsent messages.

28

8.3 Alternate Communication Interfaces

The ideas discussed above allow one to define communication interfaces conveniently.

;»; Tuple-space

a2

5., Note that this does not.implement the READ operation.

(def-box tuple-space ()
(locals
(selected-message nil)
(selected-receiver nil)
(messageq nil)
(receiverq nil))
(CONCURRENT ..in (predicate)
(wait 0)
(set selected—-message (any? predicate messageq))
(1f selected-message
(block (delq selected-message messageq)
(return selected-message))
(push recvq (list predicate return))))
(CONCURRENT ..out (message)
(wait 0)
(set selected-receiver
(any? (lambda (predicate-continuation-pair)
((car predicate-continuation-pair)
message))
receiverq))
(if selected-receiver
(block (delq selected-receiver receiverq)
((cadr selected-receiver) message))
(push messageq message))
(return)) '

)

;5 Syntactic sugar.

22

(define-syntax (in tspace predicate dest-var)

‘(call (..in ,tspace ,predicate) (,dest-var)))
(define-syntax (out tspace tuple)

‘(call (..out ,tspace ,tuple)))

Figure 8-3: Tuple-space Implementation

Figure 8-3 shows an implementation of primitives similar to those in Linda [3]. The basic
communication device here is a tuple space, which can be shared amongst all processes. A tuple space
holds tuples of data and responds to three operations: IN, OUT and READ. Figure 8-3 only shows the
implementation of IN and OUT, READ can be similary implemented. The OUT primitive allows one to
deposit a tuple into a tuple space, while the IN primitive allows one to remove a tuple satisfying the

specified predicate from a tuple space. The process executing an IN statement is made to suspend until a

tuple of the kind it demands is available. Arbitrary predicates may be specified in the IN statement, and
in this sense this is a generalisation of the primitives of Linda. Unlike Linda, more than one tuple space
can be created. The code shown in the figure uses lists for implementing queues. This is only for reasons

of expositional clarity, and obviously, other data structures like hash tables may be used.

8.4 Use Of T Macros

The code examples in the previous sections contained several instances of T macro definitions and
calls. Indeed, T macros can be freely used in AMPS code. The program that transforms AMPS

primitives into T code expands T macros whenever necessary.

T macros may be used to define more convenient syntax as in figure 8-2 or figure 8-3, or could even
be used to compose more primitives. Another example of the use of macros was in section 6.2, where a

macro was used to define a receive statement that models communication delays.

30

I. A Shuffle-nearest-neighbour Architecture

The following file defines a shuffle-nearest-neighbour architecture for finding the partial sums of a

vector.
(herald shuffle-nn-network)
;.. Processors in a shuffle nearest neighbour interconnect
55, The problem:
;;; To find the partial sums of an array of size netsize.
;:: About the algorithm:
;;; 1th processor contains ith element. Standard algorithm using
;;; log(netsize) steps. Towards the end only a few of the processors
;., remain active, 1i.e. though they participate in moving the data
;;, around, they do not perform any additions. This is controlled
;;; by shifting out the activity? program variable.
., Processor parameters:
;s myld : Processor id. The ith processor holds the ith element
i of the array.
;5. elem : The array element
;5. netdesc : A network descriptor. Holds network parameters like
M network size, defines the shuffle and unshuffle
il operations, also the operations lshif (which depends
HHN - upon the network size).
;.. nn+, nn- : The nearest neighbour mailboxes.
;. shi+, shi- The shuffle and unshuffle mailboxes.

(def-box proc (myid elem netdesc nn+ nn- shf+ shf-)
(locals

(inmsg nil)

(outmsg nil))

(program

(set outmsg elem)

(loop (incr iter from 1 to (netdesc:lognsize netdesc))

(initial (activity? myid))

(do |
(fork i
((receive nn- inmsg))
((send nn+ outmsg)))

(if (>0? activity?)
(set outmsg (.+ outmsg inmsg)))
(fork
((receive shf+ inmsg))
((send shf- outmsg))) I
(set outmsg inmsg)) B
(next (activity? (lshif netdesc activity?))))

(format ¢ "~% My Id: ~a Partial sum: ~a" myid outmsg)))

;;; Top level box for shuffle nearest neighbour interrconnect

;. Parameterised on the size of the network.

;. Locals:

;55 mn : Mailbox array for nearest neighbour communication.

;;, shi : Mailbox array for shuffle/unshuffle communication.

;5. Boxes: ' :

;i Netdesc : A box that holds network size related informatioms, e.g.
N the various functions representing the interconnections.

;. Procs . The processor array.

31

(def-box net (netsize)

(locals

(nn (v:new mailbox:new netsize))
(shf (v:new mailbox:new netsize)))
(boxes

(netdesc (netdesc:new netsize))
(procs (v:newsp
(lambda (i) (proc:mew i 1 netdesc

(v:ref nn 1) ;5 nn+
(v:ref nn (prev netdesc 1)) 5., mnn-
(v:ref shf 1) ;i shi+
(v:ref shf (ushfl netdesc 1))));;; shf-
netsize))))
i END OF FILE

The following file contains the utilities needed:
(herald shfnnutils)
;. Network descriptor for a shuffle nearest neighbour array.

5, Locals:
5, Just so that they may be computed once for all.
;;, Operatioms:

;. Shfl : (Shuffle) One bit circular right shift.

;5; Ushfl : (Unshuffle) One bit circular left shift.

;5. 1lshif : One bit simple left shift (msb drops out).

;55 prev . Previous element in the nearest neighbour scheme
i i.e. num - 1 mod netsize.

(def-box netdesc (netsize)

(locals
(lognsize (log2 netsize))
(1nsize-1 (~1+ lognsize)))

(shfl (num)

(set-bit-field (set-bit-field 0 1 1lnsize-1 (bit-field num O lnsize-1))

0

1

(bit-field num lnsize-1 1)))
(ushfl (num)

(set-bit-field (set-bit-field 0 0 lnsize-1 (bit-field num 1 lnsize-1))

Insize-1
1
(bit-field num 0 1)))
(1shif (num)
(set-bit-field 0 1 lnsize~1 (bit-field num O lnsize-1)))
(prev (num)
(mod (-1i+ num) netsize)))

;5: A function needed above:

(define (log2 num)
(loop (initial (pwr 1) (res 0))
(while (< pwr num))
(next (pwr (* pwr 2)) (res (1+ res)))
(result res)))

; END OF FILE

The following may be used to instantiate and simulate a shuffle exchange network of n processors.

(herald test shuffle-nn)

;5: The following controls the simulation.

100

;;; The simulator is first reset.

;;. A network of size 8 is then instantiated.

;;; The processes created are started up.

55; The clock is made to tick until the system settles down.

90

(sim:clear)

(set net (net:new 8))
(sim:init net)
(sim:keep-ticking)

Y END OF FILE

33

II. A Tree Architecture

The following defines a tree of processors for performing cyclic reduction.
(herald tree:main-process-declarations)

;5 Description of a single processor in a TREE OF PROCESSORS

;5. Program:

;:: Solving tridiagonal systems by doing cyclic reduction.

;5. Algorithm:

;;; See Lennart Johnsson, "Odd-even cyclic reduction on ensemble

s architectures and the solution of tridiagonal systems of
N equations*, Dept. of Comp. Sc., Yale University, RR-339,

A October 1984.

5., Parameters:

;55 my-id . serial number in an inorder numbering.

;55 kind-of-node

P : root, inner, or leaf.

;. parent . parent mailbox.

;;; 1lson, rson : left and right son mailboxes.

;.. Locals:

;.. X : Will hold my-id th element of the solution vector.
;s state : This is set to a structure during intialisation.

i The structure has components a,b,c,y corresponding to
s the 3 diagonal elements of the my-idth row and the myidth
M rhs element.

;;, QOthers : Intermediate values.

;.. Operations:

;;:; Set-state : Initialises the processor.

;.: show : Prints the value of x.

(def-box proc (my-id kind-of-node parent lson rson)

(locals

(x *uninitialised)
(state nil)

(lmsg 1nil)

(rmsg nil)

(nsg nil))

(set-state (new-state)
(set state new-state))
(show O
(format ¢ *"% X ("a) = ~a " my-id x))
(program
(loop (initial (newid my-id))
(until (even? newid))
(do
(receive lson lmsg)
(receive rson rmsg)
(if (neq? kind-of-node ’*ToOL*)
(send parent (new-msg state lmsg rmsg)))
(set state (next-state state lmsg rmsg)))
(next (newid (div newid 2))))
(if (neq? kind-of-node '*root*)
(send parent (last-msg state)))

(format t "~% End of phasel for ~a, state: "a "2 Ta Ta" my-id
(state-a state)
(state-b state)
(state-c state)
(state-y state))

34

(case kind-of-node
((*root*) (set x (./ (state-y state) (state-b state)))
(send lson (msg:new O X))
(send rson (msg:new x 0)))
((*inner*) (receive parent msg)
(set x (./ (.- (state-y state)
(+ (.* (state-a state) (msg-first msg))
(.* (state-c state) (msg-second msg))))
(state-b state)))
(send 1son (msg:new (msg-first msg) x))
(send rson (msg:new x (msg-second msg))))
((*leaf*) (receive parent msg)
(set x (./ (.- (state-y state)
(+ (.* (state-a state) (msg-first msg))
(.* (state-c state) (msg-second msg))))
(state-b state))))

(else (error "~% Illegal processor kind.")))))

;.; Top level box to configure the tree

e e e

20

;5 Parameterised on the size of the tree.

;. Locals:

s, mbs . array of mailboxes. Mailbox i will become the link

ses between processor i and its parent.

;.. Boxes:

;. procs . vector of processors. The vector is built up so that

HHH the ith element has number i in an inorder numbering of the
HHH tree. This has a straightforward recursive formulation:
HH The 1d of the root and its sons is known, hence it can
HHH be directly configured. But knowing that, the id of the
HH sons of the sons can be known and so on. Thus a single
H recursive procedure build-node is used. This receives
] two parameters, the id of the processor to be configured,
I and ’'sep” (the seperation between the parent and the sons);
M this allows the ids of the left and right sons to be

HH computed. Thus the current processor can be configured
N by passing it the appropriate id, type and its

MM mailboxes. Its sons can be recursively configured,

HHN because the seperation between the parent and the sons
P halves as one goes down the tree.

;.. Operations:

;s Show : Simply mapped onto the individual processors.

;5. Init-tree : Initialises the processors using elements from a list.
s a,b,c refer to the three diagonal elements, y refers to
HHA the element of the rhs in every processor.

(def-box tree (size)
(locals
(index-of-root (div (-1+ size) 2))
(mbs (v:new mailbox:new size)))
(boxes
(procs (v:serial-build (v:new empty-elt size)
(labels (
(build-node
(lambda (id sep)
(let* ((new-sep (div sep 2))
(1son (- id new-sep))
(rson (+ id new-sep)))

(cond ((eq? id index-of-root)
(v:make-elt id (proc:new id ’*root*
(viref mbs id)
(v:ref mbs lson)

35

(v:ref mbs rson)))
(build-node lson new-sep)
(build-node rson new-sep))
((>0? new-sep)
(v:make-elt id (proc:new id ‘*inner*
(v:ref mbs id)
(v:ref mbs lson)
(v:ref mbs rsomn)))
(build-node lson new-sep)
(build-node rson new-sep))
t
(v:make-elt id (proc:new id ’¥leaf*
(v:ref mbs id)
nil
1il))))))))
(build-node index-of-root (div (1+ size) 2))))))

(show Q)
(v:map show procs))
(init-tree (init-list)
(loop (initial (1 0))
(while (< i size))
(do
(let* ((a (pop init-list))
(b (pop init-1ist))
(c (pop init-list))
(y (pop init-list)))
(set-state (v:ref procs 1) (state:new a b ¢ y))))
(next (i (1+ 1)))0))

M END OF FILE *

This uses the following utility functions to manage the communication and computation in a

structured manner.
(herald tree:utilities)

(define-structure-type state a b c y)
(define (state:new a b ¢ y)
(let ((state (make-state)))
(set (state-a state) a)
(set (state-b state) b)
(set (state-c state) ¢)
(set (state-y state) y)
state))

(define-structure-type msg first second)
(define (msg:new f s)
(let ((msg (make-msg)))
(set (msg-first msg) f)
(set (msg-second msg) s)
msg))

(define (next-state state lmsg rmsg)
(let* ((left (msg-second 1lmsg))
(right (msg-first rmsg))
(ai (state-a ~ state))
(b1 (state-b state))
(el (state-c state))

36

(yi (state-y state))

(alpha (./ (.- 0 ai) (state-b left)))

(gamma (./ (.- 0 ci) (state-b right))))

(state:new (.* alpha (state-a left))
(.+ bi (.* alpha (state-c left)) (.* gamma (state-a right)))
(.* gamma (state-c right))
(.+ yi (.* alpha (state-y left)) (.* gamma (state-y right))))

)]

(define (new-msg state lmsg rmsg)
(msg:new (msg-first lmsg) (msg-second rmsg)))

(define (last-msg state)
(msg:new state state))

H END OF FILE

The tree may be configured and simulated using:
(herald test-tree)

(sim:clear)
(set tree (tree:new 7))

(init-tree tree (0 1 1 1
0112
0113
0114
011656
01186
0117

(sim:init tree)
(show tree)

(sim:keep-ticking)
(show tree)

MM END OF FILE

37

III. A Triangular Array Of Procéssors

The following file defines a two dimensional triangular processor array for doing LU decomposition

of a matrix.
(herald givens-array)

;5; Definition of each processor of the Givens array

;5 Algorithm:
;;; See J.M. Delosme, M. Morf, "Scattering Arrays For Matrix Computations*

HHN SPIE Vol. 298 Real-time Signal Processing IV(1981) pp 74-83.
;5; The input parameters are:

;. mode : 0 for linear, 1 for Euclidean norm

;5 rowno, colno: coordinates of the processor in the array

;;, north, east, south, west

M : mailboxes for communication in the four directions
;.. size : size of the input matrix

(def-box proc (mode rowno colno north east south west size)

(locals
(scratch nil)
(x nil)
(y nil)
(scx nil)
(scy nil)
(v nil)

(theta nil)
(sintheta nil)
(costheta nil)
(inn 0.0)
(ine 0.0)
(diag? (eq? rowno colno)))
(initialise ()
(if (eq? mode 0)
(block
“(set v (./ scy secx)))
(block
(set theta (atan (./ scy scx)))
(set sintheta (sin theta))
(set costheta (cos theta)))))
(transform ()
(1f (eq? mode 0)
(block
(set x sex)
(set y (.- scy (.* v scx))))
(block
(set x (.+ (.* scx costheta) (.* scy sintheta)))
(set y (.- (.* scy costheta) (.* scx sintheta))))))

(progran
(if diag?
(1loop
(do
(fork
((receive west ine))
((send south scratch)))
(wait 10)
(set scratch ine))))
(block

(loop (decr i from (+ rowno colnc colno) to 0)

220

38

(do
(set x scx)
(set y scy)
(fork ((receive west scy))
((receive north scx))
((send south x))
((send east y))) .
(format t *~%rrr(Ta,~a)rrr x: ~a ¥: Ta' rowno colno scx scy)
(wait 10)))
(initialise self)
(transform self)
(format t "~%kx*("a,~a)*¥* x: “a y: ~a® rowno colno x y)
(loop (do
(fork ((receive west scy))
((receive north scx))
((send south x))
((send east y)))
(transform self)
(wait 10))))))

; The top level box for the Givens array

. Contains a column of processors for feeding inputs, a lower triangular
; givens array, and a row of processors to accumulate the results.

., Parameters:

; netsize : size of the input matrix, and hence the processor arrays.

; mode : 0 for linear, 1 for Euclidean norm

; Locals

; mbv : A triangular array of mailboxes used for communication in
the vertical direction. Thus mailbox (i,j) becomes the
south mailbox of processor (i,j) of the Givens array,
and the north mailbox for the processor (i+i,j})

, mbh : A triangular array of mailboxes used for communication in

the horizontal direction. Thus mailbox (i,j) becomes the
west mailbox of processor (i,}) of the Givens array,
and the east mailbox for the processor (i+1,j)

; Note that the diagonal processors do not have east and north mailboxes.

., Boxes

. procs . The triangular array of processors.
The array is built up element by element, after each element
is initialised to empty-elt. The appropriate mailboxes
are passed to each processor as it is created.

; westcol : This is a single process which holds the input

matrix etc. and streams it in one column at a time into the
givens array. It passes data to the (*,0) column of the
Givens array. The triangular mbh array is a vector of vectors,
with the first subscript indicating the number of vectors at the
top level. Thus the Oth element of every top level vector
is obtained by mapping the function
(lambda (V) (v:ref v 0))
onto the mbh array.
southrow: This is a single process which accumulates results
as they are generated by the Givens array. It
communicates with the lowest row of processors in the
Givens array through their southward connections i.e.
the lowest row of the mbv array. The final row of the
mbv array is passed as a parameter.

These processes write/read elements sequentially to the
Givens array, but this does not affect the algorithm nor
the time becauss writing/reading mailboxes has no overhead.

39

(def-box net (netsize mode)
(locals
(mbv (triangle:new netsize mailbox:new))
(mbh (vriangle:new netsize mailbox:new)))
(boxes
(procs (v2:serial-build (triangle:new netsize empty-elt)
(loop (iner i .in 0 to netsize)

(do
(loop (iner j .inm. O to 1)
(do
(v2:make-elt i j
(proc:new
mode
1] .
(1f (eq? 1 j)
0]

(v2:ref mbv (-1+ 1) 3))
(1f (eq? 1 §)
0O
(v2:ref mbh i (1+ 3)))
(v2:ref mbv 1 j)
(v2:ref mbh 1 j)
netsize))))))))

(westcol (weol:new netsize (v:map (lambda (v) (v:iref v 0))
mbh)))
(southrow (srow:new netsize (v:ref mbv (-1+ netsize))))))

;.. Processor to feed the givens array.

20

;;, Has a data area to hold the input matrix.

;,, Has operations defined for initialising and displaying the
; ;. data area

(def-box wcol (size mbs)
(locals
(data (v2:new empty-elt (+ size size size) size)))
(set-state (1lst)
(loop (incr i1 .in O to (+ size size size))
(do
(loop (iner j .in O to size)
(do
(set (v2:ref data i j) (pop 1st)))))))
(show Q)
(v2:map (lambda (v) (format t "~% ~a® v)) data))
(program !
(loop (iner i .in O to (+ size size size))
(do
(loop (iner j. .in O to size)
(do
(send (v:ref mbs j) (v2:ref data 1 31))))))))

;s Processor to receive results from the givens array.

»2

;;; Has a data area to hold results.
;:; Has operations defined for initialising and displaying the
;.. data area

(def-box srow (size mbs)
(locals
(data (v2:new empty-elt (+ size size size) size)))
(set-state (1st)
(loop (iner i .in 0 to (+ size size size))
(do

40

(loop (imer j .in 0 to size)
(do
(set (v2:ref data 1 j) (pop 1st)))IN)))
(show Q)
(v2:map (lambda (v) (format t "% ~a" v)) data))
(program
(loop (iner i .in O to (+ size size size))
(do
(loop (iner j .in O to size)
(do
(receive (v:iref mbs j) (v2:ref data i §))))))))

HA END OF FILE

The following code creates a givens array to solve a three by three system. It initialises it with the

input matrix and the rhs vector and the proceeds to run the array.
(herald test-givens)
;5 The input matrix is skewed as it enters in the array, and hence
;,, some of the initial elements entering the array are ignored by the
;i processors. This is ensured by placing non numeric quantities (a,b,c)
;55 1in their place. If they indeed were not ignored, and were used
;5. in computation, it would cause an error message.

(sim:clear)
(set net (net:new 3 0))

(set-state (net:westcol net) '(1.0 a b
4.0 2.0 d
7.0 5.0 2.0
12.0 8.0 8.0
0.0 16.0 9.0
0.0 0.0 17.0

o
o
o
o
o
o oo

(show (net:westcol net))
(sim:init net)
(sim:keep-ticking)

(show (net:southrow net))

N : END OF FILE

41

Acknowledgements

The implementation of AMPS has been very greatly influenced by that of the Yale Digital
Simulator [1]. Whenever possible, I have freely stolen ideas and code from that implementation. I am

grateful to its authors for helping me in doing this.

I would like to thank Lennart Johnsson and Martin Schultz for using AMPS in a parallel
computation course taught by them during the Spring semester, 1985. This was instrumental in exposing
several bugs in the program and an earlier version of this document. For this, I am very grateful to

Leslie Greengard, Venkatesh Krishnaswamy, Faisal Saied and others.

I am very grateful to Nick Carriero, Jim Philbin, Doug Baldwin and Lennart Johnsson for their
careful reading of earlier drafts of this document. I feel that their detailed comments have been very

useful in improving the organization and the readability.

(8]

References

Doug Baldwin, Richard Kelsey, John Ruttenberg, Joseph Fisher,John Ellis.
Design and Use of the Yale Digital Simulator.
Research Report, Yale University, May, 1983.

Eugene Charniak, Christopher Riesbeck, Drew McDermott.
Arti ficial Intelligence Programming.
Lawrence Earlbaum Associates, Publishers, 1980.

D. Gelernter.

Generative Communication In Linda.
ACM TOPLAS 7-1:80-112, January, 1985.

P.B. Hansen.
Distributed Processes: A Concurrent Programming Concept.
CACM 21-11:934-941, November, 1978.

C.A.R. Hoare.
Communicating Sequential Processes.
CACM 21-8:666-677, August, 1978.

Henry Ledgard.
Ada, An Introduction.
Springer-Verlag, 1983.

Jonathan Rees, Norman Adams, James Meehan.
The T Manual
Yale University, 1983.

Guy Steele.
RABBIT: A Compiler for SCHEME (A Study in Compiler Optimization).
Technical Report, MIT, May, 1978.

Mitchell Wand.
Continuation-based Multiprocessing.
In Proc. 1980 Lisp Con ference, pages 19-28. 1980.

