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1. Introduction

In this paper, we present casy proofs for the impossibility of solving several consensus problems in
particular communication graphs. We prove results for Byzantine agreement, weak agreement, the Byzantine
firing squad problem, approximate agreement and clock synchronization. The bounds are all the same:
tolerating m faults requires at least 3m + 1 nodes, and requires at least 2m + 1 conncctivity in the
communication graph. (The conncctivity of a graph is the minimum number of nodes whose removal
disconnects the graph. Also, we assume throughout that graphs have at least three nodes.) For a given value

of m, we call graphs with fewer than 3m+1 nodes or less than 2m + 1 connectivity inadequate graphs.

Each of our proofs is an argument by contradiction. We assume that a given problem can be solved in a
system with an inadequate communication graph, and construct a set of system behaviors, which cannot all
satisfy the correctness conditions for the given problem, although they are required to do so. Versions of
many of the results were already known, with proofs of this same general form. Our proofs differ from the
carlier proofs in the technique we use to construct the set of behaviors. Our technique is simpler, and applies

to more general models of distributed computation.

For Byzantine agrecment, both bounds were alrcady known [PSL,D]. The 3m + 1 node lower bound in
[PSL] was proved only for a particular synchronous model of computation. Although carefully done, the
proof is somewhat complicated and not as intuitive as one might like. In contrast, our proof is simple and
transparent, and applics to general models of computation. A proof of the 2m + 1 connectivity lower bound

was presented informally in [D]; we prove that bound more forally and for more general models.

For weak Byzantine agrecment, the reduircmcnt of 3m + 1 nodes was known [L], but was proved using a
complicated construction. The new proof is easy and extends to more general models (although not as
general as thosc for Byzantine agréement and approximate agrecement). The 2m + 1 conncctivity
requirement was previously unknown. The result for the Byzantine firing squad problem follows from a
reduction to weak agreement in [CDDS]. We provide a direct proof. For approximate agreement, the 3m +
1 bound was noted, but not proved, in [DLPSW], while the 2m + 1 connectivity requircment was previously

unknown.

For clock synchronization, the 3m + 1 node bound was proved in [DHS], with a compiicatcd proof, The
authors of [DHS] also claimed that they knew how to prove the corresponding 2m + 1 connectivity lower
bound, but we presume that such a proof would also be complicated. We prove both the 3m + 1 node and
the 2m + 1 conncctivity bounds, for a much more general notion of c,:lock synchronization than in [DHS].
These synchronization bounds assume that there is no direct way nodes can mcasure the passage of time,

other than by reading their inaccurate hardware clocks.




Since we obtain the same lower bounds for cach problem, one might think that the pr()b‘lcms'érc cquivalent
in some sensc. This is not the case. We sec that the bounds for the different problems require different
assumptions about thé underlying model. For cxample, the lower bounds for Byzantine and approximate
agreement work with virtually any reasonable computational model, while the lower bound for weak
agreement requires a special assumption, placing a bound on the rate of propagation of information through
the system. The bound for clock synchronization requires a different assumption about how devices can
measure time. Many of the results are sensitive to small differences in underlying assumptions (about such

factors as communication delay or the behaviors of faulty nodes). This paper helps to clarify these issues.

2. A Model of Distributed Systems. .
In order to make the impossibility results clear, concise and general, we introduce a simple model of

distributed systems.

A communication graph is a dirccted graph G with node sct nodes(G) and edge set edges(G), such that the
dirccted edges occur in pairs; edge (u,v) € edges(G) if and only if (v,u) € edges(G). (We consider a pair of
directed edges rather than a single undirected edge in order to model the communication in each direction
scparately). We call the edge (u,v) an outedge of u, and an inedge of v. Given U a subset of nodes(G), the
subgraph GU induced by U is the graph containing all the nodes in U and all the edges between nodes in U.
The inedge border of GU is the set of edges from nodes outside U into U that is, edges(G) N ((nodes(G)\U)
X U).

A system § is a communication graph G with an assigninent of a device and an input to cach node of G.
Devices are undefined primitive objects. The specific inputs we consider are encodings of Booleans, real
numbers or real-valued functions of time (c.g. local clocks). The particular type of input depends on the
agrecment problem addressed. If a node is assigned device A in system §, we say that the node runs A. A

subsystem QU of § is any subgraph GU of G with the associated devices and inputs.

Every system § has a system behavior, 8, which is a tuple containing a behavior of every node and edge in
G. (We also describe & as a behavior of the communication graph G. Note that a systemn has cxactly one
behavior, while a graph may have several, depending on the devices and inputs assigned to the nodes.) The
restriction of a system behavior 8 to the behaviors of the nodes and edges of a subgraph GU of G is the

scenario &, of G; in 8.

For now, we take node and cdge behaviors as primitives. In more concrete and familiar models, a node or
cdge behavior might be a finite or infinite scquence of states, or a mapping from the positive reals to some

state set, denoting state as a function of time. (Wc usc the latter interpretation for later results). Less familiar




models might interpret behaviors as mappings from reals to states, or from transfinite ordinals to states. To
obtain our first results, the precise interpretation of node and edge behaviors is unimportant. We need only
restrict our model so that the following two axioms hold. (We assume these two axioms throughout the paper.

Some of the later results require additional assumptions.)

Locality Axiom  Let G and §° be systems with behaviors 8 and &', respectively, and isomorphic subsyStcms
QU and A, (with vertex sets U and U’). If the corresponding behaviors of the inedge
borders of U and U’ in & and &’ are identical, then scenarios SU and SU arc identical.

At heart, the Locality axiom says that communication only takes place over the edges of the communication
graph. In particular, it expresses the following property: The only parameters affecting the behavior of any
local portion of a system are the devices and inputs at cach local node, together with any information
incoming over edges from the remaindcr of the system. If these parameters are the same in two behaviors, the
local behaviors (scenarios) are the same.IC]early, some such locality property must hold, or agrcement is

trivially achicvable by having devices read other device’s inputs directly.

Fault Axiom Let A be any device. Let E 1 B4 be d edge behaviors, such that each E, is the behavior of
the i'th outedge, in some systcm bc}m ior 81, of a node running A. Let u be any node with
d outedges (u,vl),...,(u,v & There is a device F such that in any system in which u runs F,
the behavior of each outedge (u,vi) is Ei‘

In this casc, we write F (Fl, " d) for F. This axiom expresses a powerful masquerading capability of failed
devices. Any behavior exhibited by a device over different edges in different system behaviors can be
exhibited by a failed device in a single system behavior. When this axiom is significantly weakened (say, by

adding an unforgeable signature assumption), the following impossibility results do not hold [LSP,PSL].

In order to establish the relevance of our impossibility results to more concrete models of distributed
systems, it is sufficient to interpret our dcfinitions in the particular model and then to prove the Locality and

Fault axioms.

Our proofs utilize the graph-thcoretic notion of a covering. For any graph G, let neighbors = {(u,V) Juis a
node of G and V is the set of all nodes v such that there is an edge from v to u in G}. A graph S covers G if
there is a mapping ¢ from the nodes of S t.o the nodes of G that preserves "neighbors.” That is, if node u of S
has d neighbors v,,....v,, and p(u) = w for a node w of G, then w has d neighbors X)X g and rp(v.l) =X for 1
< i £ d. Under such a mapping, S looks locally like G.

lFor weak agreement and the firing squad problem, we need to extend this locality property to include time, as well.




Graph coverings play an important role in our understanding of the interaction of network topology and
distributed computation. A discussion appears in [A], and indeed, some of our proofs are surprisingly similar

to Angluin’s. Similar techniques also appear in [IR], [B] and clsewhere.

3. Byzantine Agreement
We say that Byzantine agreement is possible in a graph G (with n nodes) if there exist n devices Al""’An

(which we call agreement devices), with the following properties.

Each agreement device A " takes a Boolean input and chooses 1 or 0 as a result. (To model choosing a
result, assume there is a function CHOOSE from behaviors of nodes running agreement devices to the set
{0,1}.) A node u of G is correct in a behavior 8 of G if node u runs A, in 8. Any system behavior 8 of G in
which at least n - m nodes are correct is a correct system behavior. Correct system behaviors must satisfy the

following conditions.
Agreement: Every correct node chooscs the same value.
Validity: If all the correct nodes have the same input, that input must be the value chosen.

Theorem 1: Byzantine agreement is not possible in inadequate graphs.

3.1. Number of Nodes _

We begin with the lower bound of 3m + 1 for the number of nodes required for Byzantine agreement.
First consider the case where |G| = n = 3 and m = 1. Assumc that the probiem can be solved for the
communication graph G consisting of three nodes fully connected by communication edges. Let the three
nodes of G be a, b and ¢, and assume that they run agreement devices A, B and C, respectively. We represent

each pair of directed edgcs by a single undirected edge, and label the nodes with the devices they run.

U--V-=-W-=-X--y--2
This graph looks locally like G under the mapping ¢ defined by @(u) = @(x) = a, (v) = @(y) = b and
(W) = ¢() = c.




Now specify the system by assigning devices and inputs for the nodes in'S as follows.

A--B--C--A--B--C
000 1 1 1

By this we mean that node u runs device A with input 0, node v runs B with input 0, and so on. Let &
denote the resulting behavior of the system; £ includes a behavior for each of the six nodes and twelve

dircected edges in S.

Now consider scenarios .‘fvw. b‘wx and ffxy in ¥, where cach consists of the behaviors of the two indicated
nodes in S, along with the activity over the two connecting cdges. We argue that cach of these scenarios is
identical to a scenario in a correct behavior of G.

The first scenario va is shown below.

g 8,
fmmmmmmmmmm e \ [-==== \
A--B--C--A--B-~C F--B--C
000 1 1 1 0 0

[----1 ‘ [-==-1
vw :fVW

This scenario is the behavior in ¥ of nodes v and w, together with that of the communication edges between
v and w. Now consider the behavior 81 of G in which nodc b runs B on input 0, node ¢ runs C on input 0,
and node a runs a device that mimics node u in talking to b, and mimics node x in talking to c. Formally, if
If‘(u.v)
just Fin the figure). This device exists, by the Fault axiom, and in the resulting behavior, edges from node a

and E(x'w) arc the indicated edge behaviors in ¥, node a runs device F A(E(u‘v),F,‘w)) (we havci written

to node b and to node ¢ have behaviors E(u v and E(x Wy respectively. By the [ocality axiom, the scenario
containing b and ¢'s behaviors in &, is identical to §, . Validity requirements insurc that node b and node ¢
must choose 0in 8 1+ Since their behavior is identical in ¥, v and w choose 0 in J.

Next, consider scenario f o

g : 8
[==mmmmmmmmnae \ J--o\
A--B--C--A--B--C A--F-~C
000 1 1 1 1 0

[-=--1 -1 1=
wX wX

This scenario includes the behavior of nodes w and x in £. It is also the bchavior of nodes a and ¢ in a
behavior 82 of G which results when they run their devices A and C on inputs 1 and 0, respectively, and node
bis fz{ulty, exhibiting the same behavior to node x that v exhibits to w in £, and the same behavior to node a
that y exhibits to x in . The behavior of node ¢ in 82 is identical to that of node w in ¥, so node ¢ chooscs 0 in

&,, from the argument above. By agreement, node a decides 0 in &,. Thus node x decides 0 in .




Now consider the third scenario, Txy.

b 8
[mmmmmmmmmm e \ /-2
A--B--C--A--B--C A--B--F
0 0 0 1 1 1 1 1

|-==-1 |===-|
Xy ,‘fxy

This scenario is the behavior of nodes x and y in f. It is also the behavior of nodes a and b in a correct
behavior 83 of G which results when they both run their devices on input 1, and node c is faulty, exhibiting
the same behavior to node a that w exhibits to x in £, and the same behavior to node b that z exhibits to y in Jf.
Validity requirements insure that nodes a and b must choose 1. Thus nodes x and y choose 1. But we have

already cstablished that node x must choose 0, a contradiction.

Now consider the general case of |G| = n < 3m. Partition the nodes of G into three sets, a, b and ¢, so that
a, b and ¢ have at least 1 and at most m ﬁodcs. This means that any two scts together contain at least n-m
nodes. The nodes in each set are running agreement devices, and we denote by A the st of devices running
at the nodes in a, and similarly for B and C. Now construct the covering graph S in the obvious way. Bricfly,
take two copics of G. and label the sets a, b and ¢ in cach copy by u, v and w, respectively, in one copy, and x,
y and z in the other. Now replace the cdges between nodes in u and w and between nodes in x and z by

.corresponding cdges between u and z and between x and w. Assign devices to nodes of S according to their
corresponding node in G. We represent the covering graph S and assigned devices exactly as above, so that
the edges depicted between two sets of nodes in S, say sets u and v, are now a shorthand representation for all
the edges in S between nodcs in set u and nodes in set v. The inputs depicted for the sets of devices A, B and
C are assigned to all the devices in the respective sets. The arguments procecd exactly as in the preceding

pictures. We consider only one in detail.

g 8,
i \ /-===- \
A--B--C--A--B-~C F--B--C
00 0 1 1 1 0 0

This scenario is now the behavior of the sets of nodes in v and w in the behavior §. It is the same as the
behavior of the sets b and ¢ in a behavior 81 of G in which all nodes in both sets run their devices with input 0

and the nodes in set a exhibit the same behavior to members of b that the corresponding nodes in sct u exhibit

to the members of v in ¥, and the same behavior to nodes in ¢ that the corresponding nodes in y exhibit to the

members of x in J. Since scts b and ¢ together contain at least n-m correct nodcs, &, is a correct behavior of

G. Thus, all the nodcs in b and ¢ must decide 0, by the validity condition, and ¢ contains at lcast on¢ node, by




coustruction,

3.2. Connectivity
Now we carry out the 2m + 1 connectivity lower bound proof. Let ¢(G) = connectivity of G. We assume

we can achicve Byzantine agreement in a graph G with ¢(G) < 2m, and derive a contradiction.

For now, we consider the case m=1 and the communication graph G of four nodes a, b, ¢ and d, running

devices A, B, C and D, as indicated below.

O \
| /7==-=\]
A--B--C--D

The connectivity of G is two; the two nodes b and d disconnect G into two pieces, the nodes a and c.

We consider the following system, with the cight-node graph S and devices and inputs as indicated.

The resulting behavior of the system is ., We consider three scenarios in ¥: b’l, ¥, and 3’3.

The first scenario, f;, is shown below.

. 19

g 8,
fmmmmmm e \ Jmmmmmmnn \
| /==e- \ /-==-\| | /-===\|
A--B--C--D--A--B--C--D A--B--C--F
00000 1 1.1 1 0 0 0

This is also a scenario in a correct behavior 81 of G. In 81, nodes a, b and c are correct. Node d is faulty,
exhibiting the same behavior to node a as one node running D in the covering graph, and the same behavior
to b and c as the other node running D exhibits in the covering graph. Then nodes a, b and ¢ must choose 0 in
& |» and so must the nodes running A, Band C in 5’1. '

Now consider the sccond scenario, 5’2. ’

g 8,
[=mmmmmmmmmmm e \ Y \
| /=== \ /-===\] | /----\]
A--B--C--D--A--B--C--D A--F--C--D
0000 1 1 11 1 0 0

This scenario in f is also a scenario in a correct behavior 82 of G in which nodes ¢, d and a are correct. This




time, node b is faulty, exhibiting the same behavior to nodes ¢ and d as one node running B in the covering,
and the same behavior to node a as the other node running B. So nodes a, ¢ and d must agree in 82, and so do
the corresponding nodcs in .‘fz. Since the node running C chooses 0 from the argument above, the nodcs
running I and A in ¥, choose 0, too.

Finally, consider the last scenario 3’3.

g 8,
fmmmmmmmmmmm e v [mmmmmmm \
| /----- \ /-===\] | /7==-=\]
A--B--C--D--A--B--C--D A--B--C--F
0000 11 1 1 11 1

This scenario is again thé same as a scenario in a behavior 83 of G in which nodes a, b and ¢ are correct, but
have input 1. Node d is faulty, exhibiting the same bchavior to node a that one node running D in the
covering graph exhibits, and the same behavior to nodes b and c as the other D in the covering exhibits. Then
nodes a, b and c choose 1 in 83, and so must the nodcs running A, B and C in 3'3. contradicting the argument

above that the node running A chooses 0.

The general case for arbitrary ¢(G) < 2m is an easy generalization of the case form = 1. The same pictures
are used. Just choose b and d to be sets consisting of at most m nodes each, such that removing the nodesin b
and d from G disconnccts two nodes u and v of G. Let G’ be the graph obtained by removing b and d from
G, let the set a contain those nodes connected to u, and the set ¢ contain the remaining nodes of G’ (c contains
at least one node, v). Construct S as before, by taking two copies of G and rearranging cdges between the *a’
scts and their neighbors. The nodes and edges in our figures are now a shorthand for the actual nodes and
edges of G and S.

This completes the proof of Theorem 1. O

The succeeding impossibility results for other consensus problems follow the same general form as the two
arguments above. We assume a problem can be solved by specific devices in an inadequate graph, G, install
the devices in a graph S that covers G, and provide appropriate inputs. Using the Locality and Fault axioms,
we argue the existence of a sequence of correct behaviors of G that have node and edge behaviors identical to
some of those in the bchavior of S. (This sequence was (81, 82, & 3), in the argumecnats above.) By the
agreement condition, correct nodes in cach of the behaviors of G have to agree. Because cach successive pair
of system behaviors has a correct node behavior in common, all of the correct nodcs in all the behaviors in the
scquence have to agree. But by the validity condition, correct nodes in the first behavior in the sequence must

choose ditferent values than those in the last behavior, a contradiction.




As we indicated in the introduction, a less general version of Theorem 1 was previously known, and the

structure of our proof'is very similar to that of carlicr proofs [PSL], [D]. Our proof differs in the construction -

of the system behaviors 8, 8, and 8 5+ Farlier results construct these behaviors inductively, in less general
modecls of distributed systems. The detailed assumptions of the models are necessary to carry out the tedious

and involved constructions.

Rather than construct the behaviors explicitly, we build them from picces (node and edge behaviors)
extracted from actual runs of the devices in a covering graph. The Locality and Fault axioms imply that

scenarios in the covering graph are also found in correct behaviors of the original inadequate graph.

The model used to obtain these results is an extremely general one, but it does assume that systems behave
deterministically. (For every set of inputs, a system has a single behavior). By considering a system and
inputs as determining a set of behaviors, nondeterminism may be introduced in a straightforward manner.

One changes the Locality axiom to express the following; if there exist behaviors of two systems in which the

inedge borders of two isomorphic subsystems are identical, there exist such behaviors in which the behaviors -

~ of the subsystems are also identical. Using this axiom, the same proofs suffice to show that nondeterministic

algorithms cannot guarantee Byzantine agrecment.

4, Weak Agreement

Now we give our impossibility results for the weak agrecment problem. As in the Byzantine agreement
case, nodes have Boolean 'm puts, and must choose a Boolean output. The agrcement condition is the same as
for Byzantine agreement--all correct nodes must choose the same output. The validity condition is weaker,

however.
Agreement: Every correct node chooses the same value.
Validity: If all nodes are correct and have the same input, that input must be the value chosen.

The weaker validity condition has an intercsting impact on the agreement problem. If any correct node

obscrves disagrecment or faulty behavior, then all are fice to choose a default value, so long as they still agree.

Lamport notes that there are devices for reaching a form of approximate weak conscnsus, which work when

|G| < 3m. Running these for an infinite time produces exact consensus (at the limit) [L]. In such infinite

behaviors, if any correct node obscrves disagreement or faulty behavior, it has plenty of time to notify the

others before they choose a value. Thus, strengthening the choice -condition, to prohibit such infinite

solutions, is nccessary to obtain the lower bound.
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We must also bound communication delays away from zero, or a similar type of infinite behavior is
possible. In fact, if we assume there is no lower bound on transmission delay, and that devices can control the
delay and have synchronized clocks, we have found an algorithm for reaching weak consensus. This
algorithm requires at most two broadcasts per node, all with non-zero transmission delay, and works with any
number of faults. Again, this is because any correct node which observes disagreement or faulty behavior has
plenty of time to notify the others before they choose a value.2 In more realistic models it is impossible to
reach weak consensus in inadequate graphs. To show this, the minimal semantics introduced in the previous
sections must be extended to exciude thesc infinitary solutions. We do this as follows. Previously, behaviors
of nodes and edges were clements of some arbitrary set. Henceforth, we consider them to be mappings from
[0,00), (our definition of time), to arbitrary state sets. Thus, if E is a behavior of node u, then u is in state E(t)

attime t.
We add the following condition to the weak agreement problem.
Choice: A correct node must choose 0 or 1 after a finite amount of time.

This means there is a function CHOOSE from behaviors of nodes running weak agreement devices to {0,1},
with the following property: Every such behavior E has a finite prefix Et (E restricted to the interval [0,t])
such that all behaviors E’ extending E: have CHOOSE(E) = CHOOSE(E").

This choice condition prohibits Lamport's infinite solution. To prohibit the second solution, we bound the
rate at which information can traverse the network. To do so, we add the following stronger locality axiom to

our model.

Bounded-Delay Locality Axiom N
There exists a positive constant § such that the following is true. Let G and §’ be systems
with behaviors € and &, respectively, and isomorphic subsystems U and AU, (with vertex
sets U and U). 1f the corresponding behaviors of the inedge borders of U and U’ in 8 and
&€’ arc identical through time t, then scenarios SU and GU, arc identical through time t+ 8.

Thus, news of events k edges away fronr some subgraph G’ takes time at Icast k8 to arrive at G’. In a model
with explicit messages, this axiom could be proven from an assumption that the transmission dclay is at lcast
8, and the edge behaviors in our model would correspond to state descriptions of the transmitting end of each

communications link.

2Nodcs start at time 0, and decide at time 1. They broadcast their value at time 0, specilying it to arrive at time 1/2. If a node first
detects disagreement or failure (at time 1-t), it broadcasts a "failure detected. choose default value” message, specifying it to arrive at time
1-t/2. The obvious decision is made by cveryone at time L. '
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Theorem 2: Weak agreement is not possible in inadequate graphs for models safisfying the
Bounded-Delay Locality axiom.

Again, we first sketch the 3m + 1 node bound. In this casc, the prcviousl); published proof [L] was very
difficult. As before, we restrict our attention to the case |G| = n = 3, m = 1. (The case for general m follows

immediately, just as above.)

Assumc there are weak agreement devices A, B and C, for the triangle graph G containing nodes a, b and c.
Consider the two behaviors of G in which all nodes are correct, and all have input 0 or all have input 1. Lett
be an upper bound on the time it takes all nodes to choose 0 or 1 in both behaviors. Choose k > t'/8 to be a

multiple of 3.

The covering graph S consists of 4k nodes, arranged in a ring and assigned devices and inputs as follows:

111 1111 111

Consider the resulting behavior &, and each pair of successive two-node scenarios, such as the two below.

«o.==C--A--B--C--A--...
11 1 1 1
===
===

As before, each scenario is identical to a scenario in a behavior in G of the appropriate two weak consensus
devices. Since each pair of successive scenarios overlaps in one node behavior (here, that of the node hmning
B), all the nodes in both scenarios must choose the same value in G and in S. By induction, every node in S
must choose the same value. Without loss of generality, assume they choose 1.

Consider the k scenarios indicated below.

A--B--C...B--C--A--B...A--B--C--A--B--C...B~-C--A--B...A--B--C
0o 00 0000 000111 1 111

Let 8 be the behavior of G in which a, b and ¢ are correct and each has input 0, and denote the resulting

behaviors of a, b and ¢ by E. Eb and E,, respectively.

Lemma 3: The behavior in scenario £, of a node running device A (or B or C) is identical to Ea
(or Hb or ) through time i8.
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Proof 'The proof is an casy induction using the Bounded-Delay Locality axiom. O

By Lemma 3, the nodes running devices C and A in scenario .‘fk have behaviors identical to Ec and l-‘.a
through time k§. Since nodes ¢ and a in G have chosen output 0 by this time, so have the corresponding

nodes in 3’k, a contradiction.
The general case of |G| < 3m and the connectivity bound follow as for Byzantine agrecment. O

There are strong similaritics betwceen this argument and a proof by Angluin, concerning leader clections in
rings and arbitrarily long lincs of processors [A]. Both results depend crucially on the existence of a lower
bound on the rate of information flow. Under this assumption, devices in different communication networks

can be shown to see the same local behavior for some fixed time,

5. Byzantine Firing Squad

The Byzantine firing squad problem addresses a form of synchronization in the presence of Byzantine
failures. The problem is to synchronize a response to an input stimulus. The response is to enter a designated
FIRE state. The problem was studied originally in [BL]. In [CDDS], a reduction of weak agreement to the
Byzantine firing squad problem demonstrates that the latter is impossible to solve in inadequate graphs. We
provide a direct proof that a simple variant of the original problem is impuossible to solve in inadequate
graphs. (In the original version, the stimulus can acrive at any time. We require it to arrive at time 0, or not at

all. Our validity condition is slightly different.) The proof'is very similar to that for weak agreement.

One or more devices may receive a stimulus at time 0. We model the stimulus as an input of 1, and absence

of the stimulus as an input of 0. Correct executions must satisfy the following conditions.

Agreement: [f a correct node enters the FIRE state at time t, cvery correct node enters the FIRE state at

time t.

Validity: 1f all nodes are correct and the stimulus occurs at any node, they enter the FIRE state after some

finite delay. If the stimulus docs not occur and all nodes are correct, no node ever enters the FIRE state.

As in the casc of weak agreement, solutions to the Byzantine firing squad problem exist in models in which
there is no minimum communication delay. Thus the following result requires the Bounded-Delay [.ocality

axiom, in addition to the Fault axiom.

Theoremn 4: The Byzantine firing squad problem cannot be éolvcd in inadequate graphs for
models satisfying the Bounded-Delay Locality axiom.
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We sketch the 3m + 1 node bound. As before, we cxamine the case IGl=n=3m=1

Assume there are Byzantine firing squad devices A, B and C for the triangle graph G containing nodes a, b
and c. Consider the two behaviors of G in which all nodes are correct, and all have input 0 or all have input 1.
Let t be the time at which the correct devices enter the FIRE state in the case that the stimulus occurred (the
input 1 case). Since the correct nodes never enter the FIRE state in the absence of the stimulus, they certainly
do not enter the FIRE state at time t. Choose k > /8 to be a multiple of 3. (Recall that § is the minimum

transmission delay defined in the Bounded-Delay Locality axiom).

The covering graph S consists of 4k nodes, arranged in a ring-and assigned devices and inputs as follows:

A--B--C...B--C--A--B...A--B--C--A--B--C...B--C--A--B...A--B--C
6 oo 009090 0©o0©011 1 1111

Similarly to the proof for weak agrecment, the middle two devices receiving the stimulus enter the FIRE
state at time t, as their behavior through time t is the same as that of the correct nodes in G which have
received the stimulus and fire at time t. Because of the communication dclay, there is not enough time for
"news" from the distant nodes to rcach these devices. By repeated use of the agreement property, all the
devices in S must fire at time t. But through time t, the middle two devices not receiving the stimulus behave
exactly as correct nodes in G which do not receive the stimulﬁs (the input 0 case). Thus they do not fire at

time t, a contradiction. O

6. Approximate Agreement

Next, we turn to two versions of the approximate agreement problem [DLPSW.MS]. We call them simple
approximate agreement and (e,8,y)-agreement. In these problems, nodes have real values as inputs and
choose real numbers as a result. The goal is to have the results close to each other and to the inputs. In order

to obtain the strongest possible impossibility result, we formulate very weak versions of the problems.

For the following two thcorems we use only the Locality and Fault axioms. We do not need the Bounded-

Delay Locality axiom used for the weak agreement and firing squad results.

6.1. Simple Approximate Agreement

First, we turn to the simple approximate agreement problem [DLPSW]. The version we cxamine is based
on that in [DLPSW]. Each correct node has a real value from the interval [0,1] as input, runs its device and
chooses a rcal value. Correct behaviors (those in which at least n - mi nodes are correct) must satisfy the

following conditions.
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Agreement: The maximum difference between values chosen by correct nodes must be strictly smaller than

the maximum difference between the inputs, or be cqual to the latter difference if it is zero.
Validity: Each correct node chooses a value within the range of the inputs of the nodes.
Theorem 5: Simple approximate agreement is not possible in inadequate graphs.

The proof is almost cxactly that for Byzantine agreement. Here, we consider devices which take as inputs
numbers from the interval [0,1], and choose a value from [0,1] to output. (Outputs are modeled by a function
CHOOSE from bchaviors of nodes running the devices to the interval [0,1]}) As before, assume simple
approximate agreement can be reached in the triangle graph G. Consider the following three scenarios from

the indicated behavior in the covering graph S.

6 0 o 1 1 1

Again, each scenario is also a scenario in a correct behavior of G. In the first scenario, the only value C can
choose is 0. In the third, the only value A can choose is 1. This means the values chosen by A and C in the
the second scenario are 0 and 1, so that the outputs are no closer than the inputs, viclating the agreement

condition.

The general case of |G] < 3m and the connectivity bounds follow as for Byzantine agreement.

6.2.(,,)-Agreement
This version of approximate agreement is based on that in [MS]. Let ¢, § and y be positive real numbers.
The correct nodes receive real numbers as inputs, with in and LA the smallest and largest such inputs,

r__ ] has length at most §).

respectively. These inputs are all at most § apart (i.e. the interval of inputs [rmin. max

They must choose a real number as output, such that correct behaviors (those in which at least n - m nodes are

correct) satisfy the following conditions.
Agreement: The values chosen by correct nodes are all at most ¢ apart.
Validity: Each correct node chooses a value in the interval [t min" Y Tmax T v}

Note that if ¢ 2> 8, (&,8,v)-agreement can be achieved trivially by choosing the input value as output.
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Theorem 6: If € <8, (¢.8,y)-agreement is not possible in inadequate graphs.
' i

Proof: lLete, 8 and y be positive real numbers with € < 8. We prove only the 3m+ 1 bound on the number
of nodes. Assume that devices A, B and C cxist which solve the (e.8,y)-approximate agrecment problem in

the complete graph G on three nodes, for particular values of e, § and y, where € < 8.

Choose k sufficiently large that 8 > 2y/(k-1) + e, and k+2 is divisible by three. The covering graph S

contains k+2 nodes arranged in a ring, with devices and inputs assigned to create the following system.

AL e L L \
A---=--- B-- ... --B--=---- C
node 0 1 oo k k+1
input 0 8 kd (k+1)8

Let £, for 0 < i < k, denote the two-node scenario in f containing the behaviors of nodes i and i+1. By
the Fault Axiom, each scenario ffi is a scenario of a correct behavior of G, in which the largest input value to a

correct node is (i+1)é.

Lemma 7: For 0 < i < k, the value choscn by the device at node i+ 1 is at most § + y + ie.
Proof: The proof'is a simple induction. The device at node 1 chooses at most-§ + v, by validity applied to
scenario 3’0. Assumne inductively that the device at node i chooses at most § + v + (i-1)e, for 0<i<k+1. By

agrecment applied to scenario £, the device at node i+ 1 chooses at most § + y +- ie. O
p i

In particular, LLemma 7 implies the device at node k chooses at most § + y + (k-1)e. But validity applied
t scenario §, implies the device at node k chooses at least k§ - y. Sokd -y £ 8 + y + (k-1)e. This implies
8 < 2y/(k-1) + ¢, a contradiction.

The general case of |G| < 3m and the connectivity bounds follow as in previous proofs. O

7. Clock Synchronization

Each node has a hardware clock and maintains a logical clock. The hardware clocks are real-valued,
invertible and increasing functions of time. In general, different hardware clocks run at different rates, and
« the nodes wish to synchronize their logical clacks more closely than their hardware clocks. We also want the
logical clocks to be reasonably close to real time--setting them to be constantly zero should probably be

forbidden. Thus, we require the logical clocks to stay within some envelope of the hardware clocks.

This problem was studied in [DHS] for the case of lincar clock and cnvclope functions, where it was shown -
that it is impossible to synchronize to within a constant in inadequate graphs. Some questions concerning

morc general synchronization problems were raised. It was pointed out, for example, that diverging linear
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clocks can casily be synchronized to within a constant if nodes can run their logical clocks as the logarithm of
their hardware clocks. For a large class of clock and cnvelope functions (increasing and invertible clocks,
non-decreasing envelopes), we are able to characterize the best synchronization possible in inadequate graphs.

This synchronization requires no communication whatsoever.

We model node i's hardware clock, D,, as an input to the device at node i that has value D(t) at time t. The
value of the hardware clock at time t is assumed to be part of the state of the node at time t. The time on node
i's logical clock at real time t is given by a function of the entire state of node i. Thus, if Ei is a behavior of

node i (such that node i is in state Ei(t) at time t), then we cxpress i’s logical clock value at time t as Ci(Ei(t)).

We assume that any aspect of the system which is dependent upon time (such as transmission delay,
minimum step time, maximum ratc of message transmission) is a function of the states of the hardware clocks.
Having made this assumption, it is clear that speeding up or slowing down the hardware clocks uniformly in
different behaviors cannot be observable to the nodes, so the only impact on the behaviors should be that they

speed up or slow down in the same way as the hardware clocks.

To formalize this assumption, we need to talk about scaling clocks and behaviors. Let h be any invertible
function of time. If E is a behavior (of a‘edge or node), then Eh, the behavior E scaled by h, is such that
Eh(t)=E(h(t)), for all times t. Similarly, Dh is the hardware clock D scaled by h: Di(t)=D(h(t)). If8is a
system bchavior or scenario, 8h is the system behavior or scenario obtained by scaling every node and edge
behavior in 8 by h. Similarly, if fis a system, then $h is the system obtained by scaling every clock in £ by h.
Intuitively, a scaled clock or behavior is in the state at time t that the corresponding unscaled clock or

behavior is in at time h(t).
Scaling Axiom [£ & is the behavior of system ¥, then 8h is the behavior of system $h, [0

If this axiom is significantly weakened, as by bounding the transmission declay, clock synchronization may

be possible in inadequate graphs.

In the following we use the Locality, Fault and Scaling axioms. We do not need the Bounded-Delay

Locality axiom used for the weak agreement and firing squad results.

The synchronization problem can be stated as follows. Let correct hardware clocks run either at f{t) or g(t),
where fand g are increasing, invertible functions, with f{t) < g(t), for all-t. Let the envelope functions 1 and u

be non-decreasing ﬁmcgions such that I(t) < u(t), for a}l t.

Consider what happens if cveryone runs their logical clocks at the lower envelope, C(E(t))=I(ID(t)). Then
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the logical clocks are synchronized to within 1(g(t))-I(f{(t)). The gbzil then, is to imprb\)c‘ this trivial
synchronization. We show that logical clocks cannot be synchronized to within I(g(t))-{(Rt))-a, for any

positive a.

‘That is, nontrivial synchronization is achicved by synchronization devices in G if there cxist positive

constant a and time t’ such that every correct system behavior 8 satisfies the following conditions.

Agrcement: For any two.correct nodes i and j in 8,
ICi(Bi(t)) - Cj(Ej(t))l < l(g(v)) - (f(1)) - a, forall times t > ¢

Validity: For any correct node i in 8, with hardware clock Di and resulting behavior Ei’ () < Ci(Ei(t»
< u(g(t).

Theorem 8: Nontrivial synchronization is not possible in inadequate graphs for models satisfying
the Scaling axiom.

We show that for every integer k>2, there is a behavior 8 of G ip which node i is correct, has hardwarc clock
Di = f (that is, Di(t) = f{t)), and in which Ci(Ei(t’))' > I(RY)) + ka. For k big enough, this violates the upper
envelope condition,. Ci(Ei( ) < u(g(t)).

Define h = £™g. (Thatis, h(t) = £i(g(t)).) Thenh = g'lf. Note that h(t) > t for all t, since &) < g(o).
We begin with the three node, onc fault case. The argumeit is very similar to the proof of Theorem 6.

Assume the existence of devices A, B and C, time t’ and positive constant a such that logical clocks of

correct nodes obey the agreement and validity conditions:
ICi(Ei(t)) - C];(Ej(t))l < Ig(t)) - (L) - a, for all times t > ¢
(1Y) < CE(D) < ulg(t)), for all timest.

Choose an integer k > 2, such that k+2 is a multiple of three, and such that I(f{t)) + ka > u(g(t)). The
covering graph S contains k+2 nodes arranged in a ring, with devices and clock inputs assigned to create the

following system.
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fmmmmmmm e \
A------ B-- ... --B------ C
node 0 1 ... Kk k+1
clock g gh™! gh™®  gn7(k+1)
behavior E, E, .o B » Ervy

Let £ be the behavior of this system. An initially troubling concern is that the hardware clocks in f are
much slower in most of the devices in the ¥ than they would be in a correct behavior in G. But consider .‘fi,

the two-nodc scenario containing the behaviors of nodesiand i+ 1, where 0 <i < k.

mm-A------ B---
node i i+1
hardware clocks gh™? gh~(i*1)
resulting behavior E, E.y

Y E e B---
node . i i+l
hardware clocks g f
resulting behavior Esh' E N

i

In this scenario, the hardware clocks have values within the constraints for correct behaviors of G. Thus we

have the following.

Lemma 9: Scenario £1', for 0 < i < k, is a scenario containing the behaviors of two correct
nodes in a correct behavior of G,

Lemma 10: Forall i 0 < i < k, and all t > hi(©), IC,,, (B, ) - CEON < Ig(v) -
(LD - e

Proof: Fixt > hi(t’). Then h'i(t) 2> t. By Lemma9,iand i+1 are correct in .“fihi, so by the agreement

" assumption [C, , ,(E;  ,h'(h™(©) - CEN (M) < Weh™(®)) - (RR(®) - . The result is immediate. O

i+1

Lettime t* = h¥(t’). Note that t" > hi(t'), fori <k.

Lemma 11: For alli, 1 i < k+1, C(E(") > g (t") + (-Dax

Proof: The proof is by induction on i. By Lemma 9, scenario ¥, is ascenario in G of correct nodes a and b,
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with hardware clocks g and f, respectively. From the validity condition, for all t, Cl(l‘,l(t)) 2 I(f{Y)). Setting t
= t", and substituting gh'l for f, we have the basis step: C‘(El(t")) > l(gh'](t")).

Now make the inductive assumption Ci(Ei(t")) > I(gh'i(t")) + (i-l)a, for1 <i < k.
Since t* > hi(t)), from Lemma 10, we know [C, | (E, , ,(t") - C(E")] < Ugh™) - UM (") - a.
This implies C; , ,(E,, (") > C(E(t") - gh™(t") + I (t") + .

Substituting for Ci(Ei(t")) using the inductive assumption gives us Ci + l(Ei + l(t")) > l(gh'i(t")) - l(gh'i(t"))
+ ") + ia = (M) + ia. Noting that f = g™, we have the result, C,, (F,, (") >
1(gh @+ V™) + ie. O '

Proof of Theorem §:
Lemma 11 implies C, (B, ,(t") > g™ *D(t")) + ka. Since t* = h¥(¢), we have C,, |(F, , (t") =
Cpp 1By 05O = C, (B, , ) > Igh ®H D)) + ke = IAL)) + ke

But the upper envelope constraint for the scaled scenario S’khk (in which k+1 is correct and has hardware
clock f{t)) implics that Ck+1(Ek +1hk(t’)) < u(g(t)). Thus, fE)) + ka < u(g(t)). This violates the assumed
bound on k, {(f{t')) + ka > u(g(t)).

Once again, the gencral case of |G| < 3m is a simple extension of this argument. The connectivity bound

also follows easily, as with the earlier results. O

7.1. Linear Envelope Synchronization and other Corollaries

Linear envelope synchronization, as defined in [DHS], examines the synchronization problem when the
clecks and envelope functions are linear functions (g(t)=rt, f{t)=t, (t)=at+b and u(t)=ct+d). It requires
correct logical clocks to remain within a constant of cach other, so that the agrecment condition is lCi(Ei(t)) -
Cj(Ej(t))I < a, for all times t, instead of our weaker condition [C,(E(t)) - Cj(Ej(t))I < art-at- a, for all times t
> . Our validity condition is slightly weaker, as well. Thus, the proof of [DHS] shows that logical clocks
cannot be synchronized to within a constant; we shovs'/ that that the synchronization of logical clocks cannot be
improved by a constant over the synchronization (art - at) that can be achieved trivially. . Thus the following
corollary follows immcdiately from Theorem 8. (Each of the four corollaries below holds for models

satisfying the Scaling axiom.)

Corollary 12: Lincar'envclopc synchronization is not possible in inadequate graphs.
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We also get the following results immediately from Theorem 8, by choosing specific values for the clock
and lower cnvelope functions. Note that the particular choice of the upper envelope function doces not affect
the minimal synchronization possible in inadequate graphs, although the cxistence of some upper cnvelope

function is nccessary to obtain our impossibility proofs.

Corollary 13: If f{t)=¢, g(t)=rt, and l{t)=at+b, no devices can synchronize a constant closer
than art-at in inadcquate graphs.

Corollary 14: If f{t)=t, g(t)=t+c and (t)=at+b, no devices can synchronize a constant closer -
than ac in inadcquatc graphs.

Corollary 15: If {t)=t, g(t)= rt-zmd 1(t)=log2(>t), no devices can synchronize a constant closer
than logz(r) in inadequate graphs.

In general, the best possible synchronization in inadequate graphs can be achicved without any

communication at all. The best nodes can do is run their logical clocks as slowly as they are permitted, C(E(t))

= I(D(Y)).

8. Conclusion

Most of the resutts we have presented were previously known. Our proofs are simpler than carlier proofs,
and hold in more general moelels, but this is not their main contribution. While simplicity and generality are
important goals, in this instance they arc the welcome byproduct of our attempt to identify the fundamental

issues and assumptions behind a collection of similar results.

One important contribution is to elucidate the relationship between the unrestricted, or Byzantine failure
assumption, and inadequate graphs. As is clear from our proofs, this fault assumption permits faulty nodes to
mimic executions of disparate network topologies. If the network is inadequate, a covering graph can be
constructed so that correct devices cannot distinguish the exccution in the original graph from one in the

covering graph.

A second contribution is rclated to the gencrality of our results. Nowhere do we restrict state sets or
transitions to be finite, or even to reflect the outcome of cffective computations. The inability to solve
consensus problems in inadcquate graphs has nothing to do with computation per se, but rather with
distribution. It is the distinction between local and .global state, and the uncertainty introduced by the

presence of Byzantine faults, which result in this limitation.

Finally, we have identified a small, natural set of assumptions upon which the impossibility results depend.
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For example, in the case of weak agreement and the firing squad problem, the correctness conditions arc
sensitive to the actions of faulty nodes. Instantancous notification of the detection of fault events would allow
one to solve these problems.  An assumption that there are minimum dclays in discovering and relaying

information about faults is sufficient to make these problems unsolvable.

9. References Ll

[A] D. Angluin, "Local and Global Properties in Networks of Processors,” Proc. of the 12th
STOC, April 30-May 2, 1980, Los Angeles, CA., pp. 82-93. '

[B] J. Burns, "A Formal Model for Message Passing Systems,” TR-91, Indiana University,
September 1980.

[BL] J. Burns, N. Lynch "The Byzantine Firing Squad Problem,” submitted for publication.

[CDDS] B. Coan, D. Dolev, C. Dwork and L. Stockmeyer "The Distributed Firing Squad

: Problem,” Proc. of the 17th STOC, May 6-8, 1985, Providence R.L.

D] D. Dolev, "The Byzantine Generals Strike Again,” Journal of Algorithms, 3, 1982, pp.
14-30.

[DHS] D. Dolev, J. Halpern, H. Strong, "On the Possibility and In{possibility of Achieving Clock
Synchronization," Proc. of the 16th STOC, April 30-May 2, 1984, Washington, D.C., pp.
504-510.

[DLPSW] D. Dolev, N. A. Lynch, S. Pinter, E. Stark and W. Weihl, "Reaching Approximate

Agrecement in the Presence of Faults," Prec. of the 3rd Annual IEEE Symp. on Distributed
Sofware and Databases, 1983.

[IR] A. Itai, M. Rodeh, "The Lord of the Ring or Probabilistic Methods for Breaking Symmetry

in Distributive Networks," RJ-3110, IBM Rescarch Report, April 1981.
L] L. Lamport, "The Weak Byzantine Generals Problem", JACM, 30, 1983, pp. 668-676. |
[L.SP] L. Lamport, R. Shostak, M. Peasc, "The Byzantine Generals Problem," ACM Trans. on

Programming Lang. and Systems 4, 3 (July 1982), 382-401.

[MS] S. Mahaney, F. Schneider ,"Incxact Agreement: Accuracy, Precision, and Graceful
) Degradation,” Proc. of the 4th Annual ACM Symposium on Principles of Distributed
Computing, August 5-7, 1985, Minacki, Ontario.

[PSL] M. Pease, R. Shostak, L. Lamport, "Reaching Agreement in the Prcsencé of Faults,”
JACM 27:2 1980, 228-234.




DISTRIBUTION LIST

Office of Naval Research Contract N00014-82-K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific
Officer (1 copy)

Information Systems Program (437)
(2 copies)

Code 200 (1 copy)
Code 455 (1 copy)
Code 458 (1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

(1 copy)

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

(1 copy)

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380

(1 copy)

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

(1 copy)

Mr. E.R. Gleissner

Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, MD 20084

(1 copy)

Captain Grace M. Hopper
Naval Data Automation Command
Washington Navy Yard

Building 166

Washington, D.C. 20374

(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS

1400 Wilson Boulevard

Arlington, VA 22209

(3 copies)





