The vertex cover problem is an NP-hard optimization problem for graphs. For both
weighted and unweighted graphs, a simple probabilistic approximation algorithm is pre-
sented which always halts and produces a vertex cover. The expected value of the weight
of the cover produced is at most twice that of an optimal cover.
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1 Introduction

The vertex cover problem for graphs is a well known NP-hard optimization problem [5].
For the unweighted version, optimal solutions can be approximated to within a factor
of two. Some approximation algorithms for the weighted version of the problem also
achieve a factor of two, although these algorithms are generally more complicated and
less intuitive. The first factor of two approximation for the unweighted problem appeared
implicitly in Nemhauser and Trotter [9], and was based on linear programming relaxation.
The first explicit factor of two approximation, also based on linear programming, appears
in a paper of Hochbaum [7]. Subsequently, refinements of these algorithms obtained by
exploiting the graphical structure of the problem were achieved by Clarkson [4], and
Bar-Yehuda and Even [1]. These two latter algorithms are similar, and in both, the
crucial part of the algorithm relies on operations which appear counter-intuitive. This
has prompted the appearance of two recent papers which recast the counter-intuitive
algorithm into a new framework, provide a more intuitive combinatorial proof, and extend
the factor of two approximation to a larger class of problems (Gusfield and Pitt [6], and
Bar-Yehuda and Even [2]).

In this paper we present a very simple and intuitive probabilistic expected factor
of two approximation algorithm for both the unweighted and weighted vertex cover
problem. The algorithm always halts and outputs a vertex cover in polynomial time, but
the weight of the cover produced depends on the “coin flips” which occur during the run
of the algorithm. In the unweighted case, the algorithm exemplifies the surprising notion
that randomly picking vertices to be in a cover is an effective approximation heurisitic.

2 Definitions

G = (V,E) is an undirected graph with vertex set V', and edge set E. Each vertex ve V
has a weight w(v) > 0. S C V is a vertez cover of G if and only if for all edgese € E, ¢
is incident to a vertex in S. The weight of the cover S is denoted by w(S), and defined
by w(S) = T, .5 w(o)-

The weighted vertex cover problem is to find a vertex cover with minimum weight.
A graph is unweighted if w(v) = 1 for all v € V. Hence the unweighted vertex cover
problem is to find a vertex cover of minimum cardinality.

3 TUnweighted Vertex Cover Algorithm

Although there are simple, deterministic factor of two approximation algorithms for the
unweighted vertex cover problem, we present the following probabilistic algorithm for two
reasons: First, it motivates the introduction of our algorithm for the weighted version in
the next section, and second, we find it surprising that such a simple minded algorithm
actually performs adequately.

An extremely naive attempt to obtain an approximate solution for a minimum vertex
cover of a given graph would be as follows:

o While there are uncovered edges, pick a vertex adjacent to some uncovered edge
and place it in the cover.

Surprisingly, a simple modification of this algorithm actually yields an expected factor
of two approximation. The first modification is to interpret the word “pick” as “pick




Figure 1: Star graph

randomly”. A deterministic algorithm’s performance is judged by its behavior on “worst
case” examples. A random choice can prevent classes of bizarre graphs from forcing our
algorithm to perform poorly. The other modification is that rather than picking randomly
from among all unchosen vertices, we pick (deterministically) the next uncovered edge
(according to some predetermined order), and then randomly choose one of its endpoints
to be in the cover.

Algorithm U

1. S~ 0. Order the edges of E arbitrarily.

2. Get the next edge e = (u,v) € E which is not yet covered (neither u nor v are in
S). If there is no such edge, then let Sg = S, stop and output Sg.

3. Flip a 2 - sided coin. If the result is “heads” then place u in S, if “tails” then place
vin S. ,

4. Goto 2

The vertex cover Sg produced by running algorithm U with input graph G depends
on the results of the coin flips. Let E(w(S¢)) denote the expected value (taken over all
possible runs of U) of the weight of the cover Sg produced by running U with input G.
Then we have

Theorem 1 For all undirected, unweighted graphs G, if C is any optimal cover of G,
then E(w(Sg)) < 2w(C).

We’ve already explained that the introduction of randomization to our “naive” algo-
rithm was to foil a worst-case adversary ... what is the explanation for picking edges, and
then randomly picking one of its endpoints to be in the cover, rather than simply mak-
ing a random choice of a vertex from among the vertices yet to be chosen? This is best
illustrated by the following example. Consider the “star” graph of Figure 1 consisting of
a vertex z with neighbors y;,y2,... yk.

Clearly the optimal vertex cover consists of the single vertex z. Were we to randomly
choose vertices to be in a cover, we’d pick roughly -'2§ vertices on average before we picked
the vertex z. An approximation algorithm for vertex cover has been suggested which first




Figure 2: “Least weight” heuristic ineffective

picks the vertex of maximum degree, reduces the graph by eliminating covered edges, and
then repeats this process. It has been shown that this algorithm does not approximate the
optimal vertex cover to within any constant factor [8]. Step 2 of algorithm U incorporates
the advantages of this heuristic. Since vertices with high degree will occur in the list of
edges many times, it is likely that once two or three edges incident to such a vertex is
examined, the vertex will have been placed in the cover S.

Although Theorem 1 is a special case of Theorem 2 proved in the next section, we
offer a simpler intuitive proof here:

Let G be a graph and let C be an optimal vertex cover of G. Suppose algorithm U on
input G produces cover Sg. Then it has flipped |Sg| coins while considering |Sg| edges
and placed |Sg| vertices into the cover Sg. Call a flip “good” if it caused a vertex in C to
be placed in Sg, and call the flip “bad” otherwise. Certainly the algorithm will terminate
by the time |C| good flips have been made. But each edge considered has at least one
of its vertices in C; thus each flip is a “good” flip with probability > %, so the expected
number of flips required before obtaining |C| good ones (and hence terminating) is at
most 2|C|. a

-4 Weighted Vertex Cover Algorithm

One heuristic for the weighted vertex cover problem is to first pick vertices which have the
least weight. The graph in Figure 2 clearly demonstrates why this heuristic is ineffective.

A modified heuristic would be to first pick the vertices for which the ratio weight/degree
was the least. It has been shown that an algorithm based on this heuristic does not ap-
proximate the optimal cover to within any constant factor [3]. However, using a proba-
bilistic strategy, we can capture the advantages of this heuristic while avoiding the “worst
cases” which force deterministic algorithms to perform poorly. As in algorithm U, we
will consider edges one at a time according to some arbitrary predetermined order. For
each edge considered, if the edge has not yet been covered, a biased coin will be flipped
and one of the two vertices incident to the edge will be placed in the cover being built,
depending on the result of the coin flip. Thus vertices with high degree will participate
in many coin flips, and have a greater chance of being included in the cover. The biased
flip is used to increase the likelihood that vertices of small weight are placed in the cover.
Consider the graph in Figure 3. )



Figure 3: Weighted star graph

Depending on how many perimeter vertices of weight 1 there are, the optimal cover
consists either of the center vertex, or all of the perimeter vertices. The “break-even”
point is when there are exactly nine perimeter vertices. If on considering an edge to be
covered, the center vertex is chosen with probability 1/10, and the outside vertex with
probability 9/10, then if there are nine perimeter vertices, the cover will probably include
them all. If there are greater than nine perimeter vertices, then we expect that after
roughly nine edges are examined (and nine perimeter vertices placed in the cover), the
center vertex will be chosen, thus forming a cover. In both cases, the size of the cover
produced is less than twice optimal. This observation motivates the following algorithm.

Algorithm W

1. S — 0. Order the edges of E arbitrarily.

2. Get the next edge e = (u,v) € E which is not yet covered (neither u nor v are in
S). If there is no such edge, then let Sg = S, stop and output Sg.

3. Flip a coin with w(u) + w(v) equiprobable outcomes. Depending on the flip, with

probability o=t place v in S, and with probability =1 tL— place u in S.

4. Goto 2

To clarify step 3, consider the case that an edge e = (u, v) is considered with w(u) =5
and w(v) = 10. Then u is placed in S with probability 12, and v is placed in S with

probability 5. (In the unweighted case w(u")’gf’z,(v) = w(u“)’.('_“u))(v) = 1.) We now have

Theorem 2 For all undirected, weighted graphs G, if C is any optimal vertez cover of
G, then E(w(Sg)) < 2w(C).

Again, w(Sg) is the weight of the cover produced by algorithm W on input graph G,
and the expectation is taken over all possible sequences of coin flips.

We note that Theorem 1 follows from Theorem 2, and that the order in which edges
are examined may be any arbitrary fixed order.

We now prove Theorem 2. Let C be some optimal vertex cover of G = (V, E). Our
“experiment” is the running of algorithm W with input graph G. We define for each
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Figure 4: Distributing money on incident edges

vertex v € V, the random variable X,,, whose value depends on the outcome of the
experiment:

X = {w(v), if v e Sg;
10, otherwise.

Then the random variable w(Sg) represents the weight of the vertex cover produced,

and is defined by
w(Se) = Y X,
vevV

Now in the cover Sg, some vertices may also be in the cover C. Let Cw be this
collection of vertices which are in S¢ N C. Then the random variable w(Cw) is defined
by

w(Cw)= Y X,.
veC

Thus w(Cw) is the total weight of vertices in C which are chosen to be in the cover
Sc obtained by running algorithm W. Clearly w(Cw) < w(C) for every possible run,
since at most every vertex in C is placed in Sg. Therefore, E(w(Cw)) < w(C). We
will show that E(w(Sg)) < 2E(w(Cw)) < 2w(C). The proof is based on the following
idea. Imagine that the value of E(X,) dollars is given to each node v. Then the value
E(w(Sg)) is the total amount of dollars on the graph, since E(w(Sg)) = T, E(X,). We
will show that it is possible to redistribute the money in such a way that each vertex
¢ € C has at most 2E(w(X,)) dollars, and no vertex not in C has any dollars. This
demonstrates that the total amount of dollars E(w(S¢)) satisfies

E(w(Sc)) £ Y_ 2E(w(X.)) = 2E(w(Cw)) < 2w(C).
ceC

Each vertex v takes its E(X,) dollars, and distributes them at the ends of the edges
which are incident to v. For example if E(X,) = 10, and there are three edges incident
to v, then vertex v might choose to place its money as illustrated in Figure 4.

Suppose there exists a way for the vertices to place their dollars at the ends of the

~ edges incident to them such that the sum of the dollars surrounding each vertex v is

exactly E(Xy), and each edge has the same dollar amount at each end. Then we claim
that the total dollars on the graph, E(w(Sg)), is at most 2E(w(Cw)).




To see this, note that if v ¢ C then all of the neighbors of v are in C. Thus v may
then slide its dollars along the incident edges on which they have been placed to its
neighbors, which are in C. After all vertices not in C slide their dollars in this manner,
no vertex not in C' has any money, and each vertex ¢ € C has at most 2E(X,) dollars,
since it started with E(X,) dollars, and at most received another E(X,) dollars along
its incident edges. Thus the total amount of money on the graph must be E(w(Sg)) <
Teec 2E(X.) < 2B(w(Cw)).

We now need only show that such a distribution of dollars around each vertex is
‘possible, and Theorem 2 follows. During the run of algorithm W, each edge (u,v) is
examined. If (u,v) is already “covered”, i.e. either u or v is already in the cover S being
built, then the edge is discarded. If it is not yet covered, then a biased coin is flipped
and either u or v is placed in S. We call any edge which causes such a flip a chosen
edge, and if (u,v) is a chosen edge, and as a result of the associated coin flip, vertex u
is placed in S, we’ll say that edge (u,v) causes u (to be placed in the set S).

Let the random variable X, , be defined as follows:

X, = {w(u), if (u,v) causes u,
Wy 0, otherwise.

Then clearly, for all u,
Xo= Y Xuw
vincident tou
since at most one of the terms in the sum is nonzero, and at most one edge incident to
u causes u to be placed in S. Then

EX)= Y.  E(Xuw)

vincident lou

We show that for all nodes u, v for which an edge (u,v) exists,
E(Xup) = E(Xyu)- (1)

If Equation 1 holds, then each vertex v may distribute its E(X,) dollars at the ends of
the edges incident to it by placing E(Xy) dollars on the edge leading to vertex v. In
this manner, all dollars will be placed on the edges, and each edge will have the same
amount at each end. By the reasoning above, this proves Theorem 2.

We now show that Equation 1 holds:

E(Xuy) = w(u)x Prledge (u,v) causes u]

w(v)
w(u) + w(v)
w(u)
w(u) + w(v)

= w(u) x Prledge (u,v) chosen] x

= w(v) x Prledge (u,v) chosen] x

= w(v) X Predge (u,v) causes v]
= E(Xyu)




5 Remarks and Conclusion

We’ve seen how an extremely simple heuristic may be used to achieve an expected factor
of two approximation for the weighted vertex cover problem. The heuristic is actually
very similar to heuristics which fail miserably in the deterministic case (take the vertex of
highest degree, or least ratio weight/degree), prompting the conclusion that introducing
randomization may foil “worst case adversaries” which drag down the performance of
deterministic algorithms based on the same heuristic.

The expected performance of algorithm IV is (in general) no better than twice opti-
mal; Let Gy, be a graph consisting of n disjoint copies of a star graph with m leaves.
Let OPT (G ) = the size of the smallest vertex cover of Gm (= n.) Then the expected
value of the absolute performance ratio R (as defined in [5]) is easily shown to be equal
to 2 by examining the behavior of W on the class of graphs G, ». That is, as m grows,
the ratio E(W (Gu,n))/OPT (Gm,n) approaches 2 for any fixed n. A simple analysis shows
that the algorithm runs in linear time.

In practice, one might iterate algorithm 1 a number of times, and choose as a cover
the least weight cover produced. Naive assumptions about the variance of the weight of
the cover produced suggest that only by repeating the experiment “exponentially many”
times can one expect to obtain a cover with size at most (2 — €) X optimal for any fixed e.
Alternatively, one might hope that by iteration, a factor of 2 — f(n) might be achieved,
where f is a decreasing function of n, the number of vertices of the graph. We conjecture
that this is possible, although it is unlikely that the function f would decrease slower
than that provided by the algorithm of [2], where a factor of 2 — ‘—‘;%—f)%’%’- is obtained.

Admittedly, the algorithms U and W are not guaranteed to perform well as of-
ten as the known deterministic factor of two approximation algorithms. We find these
algorithms appealing nonetheless, for the simplicity of the underlying ideas, and the
interesting proof of the expected performance of algorithm W.

Finally, we note that similar algorithms obtain a factor of d approximation for the
set cover problem, as well the “subset selection” problems of [6].
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