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FINDING A MAJORITY ANMONG N VOTES
SOLUTION TO PROBLEM 81-5 (JOURNAL OF ALGORITHMS, JUNE 1981)
MICHAEL J. FISCHER AND STEVEN L., SALZBERG (YALE UNIVERSITY)

1. The Problem

The problem is as follows: given "a list of n numbers, representing the
‘votes’ of m processors on the result of some computation, we wish to decide
if there is & majority vote and what that vote is. By majority vote we mean
that more than half of the processors agree on the resnlt of the computation.
¥ith how many comparisons among our r» numbers can we solve this problem?” Ve

present an algorithm followed by a proof of its optimality.

2. An Algorithm (Steven L. Salzberg)

The following algorithm gives the answer in at most ([3n/27 - 2)
comparisons. Restate the problem &s n balls, each of which is some color, and
we want to find ome ball representative of the majority color, if such e

majority exists.

Observation

-~

Suppose we arrange the balls so that mo two adjacent balls are the same
color. Then at most half (rounded up) of the balls on the list are the same

color.
Algorithm

Phase 1: Take the balls one at a time and place them»eithez 6n a list or in a
"bucket.” If the curreat ball is NOT the same color as the last ball
on the list, then add the curremt ball to the list, and then, if the
bucket is not empty, remove one ball from the bucket and place it
2lso on the list. If it IS the same, place it in the bucket.

Phase 2: Use T for all comparisons in this phase, where T is the last ball on



the list at the end of Phase 1. Repeatedly compare the current last
ball on the list against T. If the comparison is EQUAL, throw the

last two balls on the list away, unless only ome ball remains on the

list, in which case put it in the bucket instead. If the comparison

is UNEQUAL, throw it and ome ball from the bucket away. Continue in

this way until the list is empty. During this process, if a ball is

ever needed from the bucket and none is available, then halt and

announce that no majority exists. When done, if the bucket is

non—empty, snnounce T as representative of 2 majority. Otherwise,

announce that no majority exists.

(Noie: For efficiency, the algorithm can immediately halt in Phase 2

if n is even and the bucket ever becomes empty, since noﬂmajority

would then be possible. However, this does not improve

worst-case behavior.)

Theorem 1: The algorithm above solves the majority balls problem
and never uses more that [3n/27 - 2 comparisoms.

Proof:

Correctness

At any stage during Phase 1, all the balls in the bucket (if any)
are the same color as the last ball on the list. This property is
guaranteed because whenever we add something to the list, we take
something out of the bucket (without any comparison) and add it to the
list as well. At the end of this phase, by the initiasl "observation”,
if there is & majority color, it must be the same color as T.

Phase 2 checks whether indeed a majority exists. Whenever a pair
of balls is discarded, ome is the same color as T and the other is
different. Hence, T is a majority element iff a majority of the balls
remaining at the end share its color. There are two cases. If Phase
2 terminates prematurely because a ball is needed from the bucket and
the bucket is empty, then at most half the balls remaining on the list
have color T; hence there is no majority. If the phase runs to
completion, then all the remaining balls (if any) are in the bucket
and bave the same color as T. Hence, T represents a masjority iff the
bucket is non-empty.

Cqmplexitx

In Phase 1, the algorithm does (n - 1) comparisons. In Phase 2,

it makes one comparison for each pair of balls discarded after the
first, In addition, it may make one comparison at the end which



results in 8 ball being placed in the bucket instead of 2 pair being
discarded. A strasightforward case analysis shows the maximum number
of compares for Phase 2 is [n/27 - 1. Altogether then, the algorithm
uses at most [3n/27 - 2 comparisons.

3. Optimality (Michael J. Fischer)

¥e construct an adversary which forces at least 2*[n/2] - 2 unegual
comparisons and at least Ln/2J equal compsrisons for a total of [32/27 - 2.

The adversary maintains a partition of elements into two sets, the grens
and the outfield. The arena contains a number of connected components of two
types: %bars” and "flocks”. A bar is & peir of elements with one-uneqnal
comparison between them. A flock is a non—empty set of elements connected by
equal comparisons. Thus, a flock of k elements has at least k-1 equal
comparisons among its members. Initially, each element is in a singleton
flock.

At any stage in the algorithm, let B (resp. F) denote the number of bars
(flocks) in the arena. Let t be the number of elements in the outfield, and
let £ be the total number of elements in all the flocks. Finally, let m =
Ln/21 + 1 be the "majority number”.

The sdversary answers a question x:y of the algorithm as follows:

1. If x or y is in the outfield, the answer is “uneqnal"..
2, If x (resp. y) is an element of a bar, the answer is "unequal”, and
x (resp. y) is moved to the outfield. The rémaining element of the

bar becomes a new singleton flock.

3. If x and y are both members of the same flock, the answer is
"equal”.

4. If x and y are in separate flocks, then there are two cases
depending on d = B + f.

Case 1) d > m: Then it will follow that both x and y are in
singleton flocks, so the answer is "unequal”, and {x,y] becomes a
new bar.

Case 2) d = m: Then the answer is "equal”, and the flocks



containing x and y are merged together.

Note: Case 1 decreases d by 1 and Case 2 leaves it unchanged.

Claim 1: d 2 m. Moreover, if d > m, then 2ll flocks are
singletons.

Claim 2: At any time, the following two colorings are both
consistent with all of the answers given by the adversary:

1. All elements are given distinct colors except that elements
within the same flock are colored the same.

2. A single target color is assigned to all of the elements inm all
of the flocks and the same color is assigned to one element of
each bar. The remaining elements each receive a distinct
color. '

Claim 3: No correct algorithm can stop until the arens conteins
only a single component, which will be a flock of size m.

Proof: Assume the arena contains two or more components. Then n
2 2, so also m > 2. By the definition of d, each flock is strictly
smaller them d. Every flock is also strictly smaller than m, for
either d = m, or every flock is a singleton by Claim 1. Thus, the
first coloring of Claim 2 fails to have a majority element. On the
other hand, since d ) m, the target color of the second coloring of
Claim 2 is & majority. Since both colorings are possible, mo correct
algorithm can stop at this time. Hence, at terminmation there can be
only ome component, which must be a flock of size d = m (by definition
of d and Claim 1),

Claim 4: The number of unequal comparisons made by the slgorithm
at any stage is at least 2%t + B, and the number of equal comparisons
is at least f - F,

Proof: Easy induction.

Theorem 2: Consider any algorithm which solves the majority
balls problem. Then there is an input on which it makes at least
2*(n - m) = 2%[n/27 - 2 unequal comparisons and at least m — 1 = Ln/2J
equal comparisons. Thus, the total number of comparisons is at least
[3n/27 - 2.

Proof: By Claim 3, the aremz contains a single component at
termination which is a flock of exactly m elements. Hence, t = n - m,
B=0, f=m and F =1, The theorem follows immediately from Claim
4.
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