Negative Results for Equivalence Queries

Dana Angluin*, Yale University

YALEU/DCS/RR-648
September 1988

*Supported by the National Science Foundation, IRI-8718975

Negative Results for Equivalence Queries

Dana Angluin *
Yale University

September 1988

Abstract

In [1] we posed the question of whether deterministic finite state machines can be
learned in polynomial time using only equivalence queries. In this paper we exhibit
and correct a loophole in the definition of polynomial-time learnability used in [1]. We
then give a negative answer to this question. We also show that equivalence queries do
not suffice for polynomial-time learnability of nondeterministic finite state machines,
bottom-up tree automata, or context-free grammars.

1 A Loophole

We consider deterministic finite-state acceptors (dfas) over the fixed alphabet T = {0,1}.
The size of such an acceptor is the number of states in it.

In the dfa learning problem we assume that there is some unknown regular set L., and
the goal of a learning algorithm is to halt and output a dfa M such that L(M) = L.. The
algorithm may gather information about L, by making equivalence queries.

The input to an equivalence query is a description in some standard form of a dfa M
over ¥, and the reply is “yes” if L(M) = L., and “no” otherwise. If the reply is “no”,
a counterezample is also supplied, that is, a string in the symmetric difference of L, and
L(M). The choice of counterexample is assumed to be arbitrary.

The following definition is implicit in [1].

Definition 1 An algorithm A is a polynomial-time learning algorithm for dfas using only
equivalence queries if and only if there ezists a polynomial p(n, m) such that for any dfa M,,
when A is run with an oracle to answer equivalence queries for L(M,), it halts and outputs
a dfa M such that L(M) = L(M.). Moreover, the time used by A is bounded by p(n,m),
where n is the size of M., and m is the length of the longest counterezample returned by
any equivalence query in the run.

With respect to this definition, there is a simple polynomial-time learning algorithm for
dfas that uses only equivalence queries. The algorithm is as follows: enumerate descriptions
of dfas in some standard lexicographic order and test each one with an equivalence query
until a correct one is found, say M. If the length of the string describing M is I, then the

*Supported by NSF grant IRI-8718975

time used by the algorithm to this point is polynomial in 2'. Construct a machine M’ that
has the same behavior as M except on one string of length 2/, and make an equivalence
query with M’. The counterexample to this query must have length 2!. Now output M and
halt. The length of the longest counterexample in this run is at least 2', and the total time
used is bounded by a polynomial in 2'.

This algorithm can be made a little more subtle, so that it doesn’t get the “right” answer
until after a “long counterexample”, but in any case it is clear that there is a problem with
Definition 1. Hence, we propose the following correction.

Definition 2 An algorithm A is a polynomial-time learning algorithm for dfas using only
equivalence queries if and only if there ezists a polynomial p(n,m) such that for any dfa
M., when A is run with an oracle to answer equivalence queries for L(M,), it halts and
outputs a dfa M such that L(M) = L(M.,). Moreover, AT ANY POINT DURING THE
RUN, the time used by A TO THAT POINT is bounded by p(n,m), where n is the size of
M., and m is the length of the longest counterezample returned by any equivalence query
SEEN TO THAT POINT in the run.

It is clear that the algorithm described above fails under this definition of polynomial-
time learnability. Moreover, with respect to Definition 2 we have the following.

Theorem 3 There is no polynomial-time algorithm to learn dfas using only equivalence
queries.

This contrasts with the results in [1], which show that there is a polynomial-time algo-
rithm (in the sense of Definition 2) to learn dfas using equivalence and membership queries.
It also contrasts with the results of Ibarra and Jiang [4], which show that if equivalence
queries are restricted to return the lexicographically least counterexample, then there is a
polynomial time algorithm to learn dfas using only equivalence queries. The next section is
devoted to a proof of Theorem 3.

2 Equivalence Queries and 'DFAs

We prove Theorem 3 by exhibiting a family of languages that cannot be identified by any
polynomially-bounded query strategy, computable or not. That is, if a strategy is limited
to a polynomially bounded number of polynomially bounded equivalence queries, it cannot
gather information about this family of languages quickly enough to do correct identification
of every member of the family. In this sense, the result is analogous to the simple proof that
the singleton languages cannot be identified using polynomially many equivalence queries in
[2]. In that proof, the absence of a hypothesis for the empty set in the restricted hypothesis
space was crucial for the exponential bound. In this case, our proof shows that the full
hypothesis space of dfas has an analogous kind of limitation. In particular, Theorem 3
shows that the “majority vote” strategy described in [2] cannot be efficiently implemented
in the domain of dfas: the required majority vote machine is sometimes just too large.
Recall that £ = {0,1}. Let " denote all the strings over £ of length n. If w is a string,
let w[¢] denote the i** symbol of w. If z and y are two strings of length n, let E(z,y) denote

the complement of the Hamming distance between z and y, that is, the number of positions
t such that z[i] = y[4].
Let ¢ and n be positive integers, with ¢ < n. Define

L(i,n) = {w € 2" : w[{] = w[i + n]}.
Thus, L(%,n) is the set of all strings of length 2n such that the i** symbol is the same as

the (i 4 n)th.
Let m be a positive integer, m < n. Define

K(m,n) = {zy:z,y € " and E(z,y) > m}.

Thus, K(m,n) is the set of all strings w € £2" such that w € L(i, n) for at least m different
values of i. Clearly,
K(n,n)={zz:2 € T"}.
Note that each L(#,n) can be accepted by a dfa with 3n + 2 states, but the smallest dfa to
accept K(n,n) has size exponential in n.
For each positive integer n we define the class H, to consist of all languages L such that
for some positive integers 1 < i; < nfor j=1,...,n,

L = L(41,n) - L(ig,n) - - - L(in, n).

There are n™ distinct languages in the class H,. Each one can be accepted by a dfa of
3n? 4+ 2 states. The intersection of all of them is the language K(n,n)™, the set of all strings
of the form

W W WaW3 + * * Wp Wy,

such that each w; € T".
We prove that the classes H, are hard to learn using equivalence queries. We first
establish some lemmas.

Lemma 4 There ezists a constant co, 0 < co < 1, such that for all sufficiently large positive

integers n,
[n/4]
> (n) < 207,
=0 ¢

The proof is by straightforward application of Stirling’s approximation for n!. An im-
mediate consequence is the following.

Lemma 5 For the constant co of Lemma 4 and all sufficiently large n, if £ € ™ then there
are fewer than 29" strings y € I" such that E(z,y) > 3n/4.

Proof. Let co and n be as indicated, and let z be any element of £". Then a stringy € "
is such that E(z,y) > 3n/4 if and only if y may be obtained from z by complementing at
most n/4 of the bits of z. Hence, any such y can be obtained by selecting a subset of : < n/4
bits of and complementing them. Thus, there are at most

()
. 1=0 t
such strings y, and this is less than 2™ by Lemma 4. Q.E.D.

3

Lemma 6 Let p(n) be any increasing polynomial in n. For all sufficiently large n, if M is
any dfa of size at most p(n) and q is any state of M, then there erist two strings z and y of
length n such that E(z,y) < 3n/4 and 6(q,z) = 6(q,y), where & is the transition function
of M.

Proof. Consider 6(g,z) for all z € . There are at most p(n) states in M, so there is
at least one state, say ¢’, such that §(g,z) = ¢’ for at least 27/ p(n) values of z € &",

Choose any z € X" such that é(¢,z) = ¢’. By Lemma 5, there are fewer than 27
strings ' € L™ such that E(z,z') > 3n/4.

Since for all sufficiently large n,

2" [p(n) > 2%™,

there must be at least one string y € £" such that §(¢,y) = ¢’ and E(z,y) < 3n/4. Q.E.D.

Let
I, = K(n,n)

and

F, = (2% - K([3n/4],n)).

Lemma 7 Let p(n) be any increasing polynomial in n. Then for all sufficiently large n, if
M is any dfa of size at most p(n) that accepts all the strings in (In)", then M accepts some
string in (F,)".

Proof. Let n be sufficiently large that the conclusion of Lemma 6 holds for p(n) and
n. Assume that M is any dfa of size at most p(n) and (I,)* C L(M)- Let é denote the
transition function of M and let go denote the initial state of M. We construct a string in
(Fn)" accepted by M by induction.

By Lemma 6 there are two strings z; and y; in =" such that é(qgo, 1) = 6(go,%1) and
E(z1,11) < 3n/4. Let q; = 6(go,z12;). Note that

5(40,1'131) = '5(%,?/1271) =q

and z,z; € I, while y,z; € F,.
Assume that for some k, 1 < k < n, and for all i, 1 < i < k, there exist states g; and
strings z; and y; in ¥™ such that
6(gi-1,2z:) = 6(gi—1, yiw:) = ¢

and E(z;,¥) < 3n/4. Then, by Lemma 6, there exist strings Tx4; and yr4; in T such
that '

6(gk, Tk+1) = 6(qx, Yk41)
and E(Zr41,¥k+1) < 3n/4. Let
Gk+1 = 6(qks Th412Tk41) = 6(Ykt1Tk41)

and the induction hypothesis is satisfied for k + 1.

Thus for ¢ = 1,...,n, there exist states ¢; and strings z; and y; in " such that
6(gi-1,ziz;) = 6(gi-1,vi%i) = @i
and E(z;,y;) < 3n/4. Thus,
T1T1Z2T2 ¢ Ty € ([,)"

and
Y1T1Y2T2 “YnZy € (Fn)n
Moreover,
6(g0, 21212222+ *TnZn) = 6(g0, Y1T1Y2%2 " * * YnZn) = G-

Since M accepts every string in (I,,)" by hypothesis, the state g» must be accepting, so M
accepts the string

NT1Y2T2 - YnZn € (Fr)".
This conclude the proof of Lemma 7. Q.E.D.

Proof of Theorem 3.

Assume that A is a polynomial time algorithm to learn dfas using equivalence queries
only, and let p(n, m) be a polynomial bounding the running time of A according to Defini-
tion 2. Without loss of generality, we may assume that the polynomial p(n,m) is increasing
in both of its arguments. Let g(n) = p(3n? + 2,2n?) for all positive integers n.

Let n be sufficiently large that if M is any dfa of size at most g(n) that accepts all
the strings in (I,)", then M accepts some string in (F,)", by Lemma 7. Also let n be
sufficiently large that

(4/3)" > q(n) + (4/3)" /0",
which implies that
n" — q(n)(3/4)"n"™ > 1.

A must correctly identify every element of H, and the time used at any point must be
bounded by p(3n? + 2,m), where m is the length of the longest counterexample seen in the
run to that point. Consider the following adversary strategy, which returns counterexamples
of length 2n? consistent with some element of H,. Run algorithm A until it makes an
equivalence query with some dfa M. Since the running time of A must be bounded by
p(3n? + 2,2n?) = ¢(n), the size of M is bounded by g(n).

If (I.)" is not a subset of L(M), then the adversary returns any element of (In)"=L(M)
as a counterexample. Otherwise, since M accepts all the strings in (I,)", it must accept
some string in (F,)", so any element of (F,)* N L(M) is returned as a counterexample.

Consider the class of hypotheses H,. A counterexample from (In)"— L(M) is consistent
with all the hypotheses in H,, and does not eliminate any of them as possible values of the
unknown language.

A counterexample u € (F,)" N L(M) eliminates every L € H, that contains v. Suppose

U=Y121Y2%2° " YnZTy

5

where for each i, y; and z; are in £", and E(z;,y;) < 3n/4. If
L = L(41,n)- L(iz,n)- - - L(in,n)
then L is eliminated by u if and only if for each i=1,...,n,
z;jli;] = w;lij).

Since for each j, there are fewer than 3n/4 values of i; for which z;[i;] = y;[i,], the total
number of elements of H, that are eliminated by the counterexample u is bounded above
by (3n/4)".

Every hypothesis in H, that has not been eliminated by some counterexample remains
a possible value for the unknown language. As long as A has made t < ¢(n) equivalence
queries, there must remain at least

n" —t-(3n/4)" > n™ — ¢(n)(3/4)"n" > 1

hypotheses in H,, that are consistent with all the replies to queries so far, by our choice of
n. Since at least two elements of H, are still consistent with all the counterexamples, if
A halts and outputs an answer after making g(n) or fewer queries, it is incorrect on some
L € H,. On the other hand, since the counterexamples to all the queries up through the
g(n)t* are of length 2n2, if A makes more than g(n) queries, it will exceed its time bound
of g(n) = p(3n? + 2,2n?) on some element of H,. Thus we have a contradiction, since A
cannot correctly terminate within its time bound for every element of H,. Hence no such
A can exist, which proves Theorem 3. Q.E.D.

3 Equivalence Queries and NFAS

Our goal in this section is to prove the same theorem for nfas. The proof technique is a
little more complex, and serves as an introduction to the decidedly complicated machinery
for the cfg case.

Theorem 8 There is no polynomial-time algorithm to learn nondeterministic finite state
acceptors using only equivalence queries.

We consider nondeterministic finite state acceptors (nfas) over the alphabet & = {0,1}.
Such an acceptor has a finite set of states, a distinguished start state, a set of accepting
states, and a transition function that maps each element of Q x ¥ to a subset of Q. The
size of such an acceptor is the number of states it contains. The definitions of equivalence
queries and polynomial time learning algorithms are the same, substituting nfas for dfas.
The definitions of H,, I,,, and F, are the same.

The analog of Lemma 7 that we use is the following.

Lemma 9 Let p(n) be any increasing polynomial in n. Then for all sufficiently large n, if

M is any nfa of size at most p(n) that accepts all the strings in (I,)", then M accepts some
string v1v; - - - v, such that each v; € £?* and for at least n/2 values of i, v; € F,.

6

Proof. Let p(n) be any increasing polynomial in n, and let n be sufficiently large that
the conclusion of Lemma 4 holds, and

2712(1—‘10)/2 > p(n)2n,

where ¢ is the constant in Lemma 4. There exists such an n because ¢co < 1, so the
lefthand side is of the form 2"‘2, while the righthand side is of the form 2Knlogntc fop
positive constants ¢, K, and c.

Let M be any nfa of size at most p(n) that accepts all the strings in (I,)". Let Q be
the set of states of M, go the initial state of M, F the set of accepting states, and é the
transition function. Extend § so that for a state ¢ € Q and a string u € ¥*, 6(q,u) is the
set of states reachable from ¢ on input string u.

Let z;,...,2, be any n-tuple of strings from T". The string z,212222---T,Ty, is in
(In)", and therefore accepted by M. Define the function

h(i) = [i/2]

for all i = 1,...,2n. There exists a sequence of states q1,-..,q2n from Q such that g5, € F
and :

gi € 6(gi-1,Zh(3))
for i =1,...,2n. That is, go,q1,...,q2n is the sequence of states at distance n apart along
some accepting computation of M on the string 2,2, - - -z, z,,.
For each n-tuple z,,...,z, of strings from X", choose one such sequence of states
Q15---5q2n, and define
F(zla“wzn) = (fh,Q2,- . °,Q2n)-

The domain of F has cardinality 2" and the range of F has cardinality at most p(n)?", so
there must be at least one point in the range that is the image of at least 2% /p(n)?" points
in the domain. Let (g, ¢2,...,g2,) be any such point in the range, and let S denote the set
of n-tuples z,,...,z, that map to this point. Then

S| > 2 [p(n)?.

Let S[i] denote the projection of S in the i** component, that is, the set of z; € " such
that there exist strings z;,...,z;_; and Zit+l1y-..,Tpn in X" such that the n-tuple z;,,...,2,
is in . We define S to be sparse for i if and only if |S[i]| < 2%", where cg is the constant
in Lemma 4. Let D be the set of indices 7 such that S is not sparse for 1.

We claim that |D| >-n/2. Otherwise, the cardinality of S must be bounded above by

(2n)n/2 . (2con)n/2 = 2n2(1+co)/2.
But this implies that
2 (He0)/2 > o7 [p(n)2,

that is
’ 2n2(l—co)/2 < p(n)2n,

which contradicts our choice of n.

Now choose any string « = 212, -+ -z,z, in S. For each i = 1,...,n, define the string
v; as follows. If i € D, then let v; = z;z;. If i € D, S[i] is not sparse, so |S[Z]| > 2%™. Thus,
by Lemma 5 there must be a string y; € S[¢] such that E(z;,y;) < 3n/4, that is, z;y; € F,.
Choose any such y;, and let v; = z;y;.

To see that the final string v;v; - - - v,, has the desired properties, note that each string
v; € X2". Also, since |D| > n/2, for at least n/2 indices, v; € F,. To see that ViVg -0y, S
accepted by M, note that foreachi=1,...,n,

@2i-1 € 6(qai-2,2;),

and
Q2 € 6(Q2l'-—l’zi)’
andift € D,
@2 € 6(q2i-1,¥i)-

Thus, there is an accepting computation of M on the string vy - - - v, that passes through
the states go,q1,...,¢2,. This concludes the proof of Lemma 13. Q.E.D.

Proof of Theorem 11.

Assume that A is a polynomial time algorithm to learn nfas using equivalence queries
only, and let p(n,m) be a polynomial bounding the running time of A according to Defini-
‘tion 2. Without loss of generality, we may assume that the polynomial p(n,m) is increasing
in both of its arguments. Let g(n) = p(3n? + 2,2n?) for all positive integers n.

Let n be sufficiently large that if M is any nfa of size at most g(n) that accepts all the
strings in (In)", then M accepts some string v; - - - v, such that each v; € £ and for at
least n/2 values of ¢, v; € F,,, by Lemma 9. Also let n be sufficiently large that

(4/3)"% > g(n) + (4/3)"2 ",

which implies that :
n" — g(n) - (3/4)"?n™ > 1.

A must correctly identify every element of H, and the time used at any point must be
bounded by p(3n? + 2,m), where m is the length of the longest counterexample seen in the
run to that point. Consider the following adversary strategy, which returns counterexamples
of length 2n? consistent with some element of H,. Run algorithm A until it makes an
equivalence query with some nfa M. Since the running time of A must be bounded by
p(3n? + 2,2n?) = ¢(n), the size of M is bounded by g(n).

If (I,)" is not a subset of L(M), then the adversary returns any element of (In)"-L(M)
as a counterexample. Otherwise, since M accepts all the strings in (In)", it must accept
some string v; - - - v, such that each v; € £2" and for at least n/2 values of i, v; € F,, by
Lemma 9 and our choice of n. In this case, the adversary returns any such string vy ---v,
as the counterexample.

Consider the class of hypotheses H,. A counterexample from (In)*— L(M) is consistent
with all the hypotheses in H,,, and does not eliminate any of them as possible values of the
unknown language.

The second type of counterexample, vy ---v, € L(M), eliminates every L € H, that
contains vy - - -v,. How many L € H, contain v; ---v,? Let v; = z;y; for z;,5; € T*. If

L = L(41,n)- L(i2,n) - -+ L(in,n)

then L is eliminated by wu if and only if for each j = 1,...,n,
z;[1;] = y;li5)-

There are at least n/2 values of j for which v; € F,, which means that E(z;,y;) < 3n/4,
so there are fewer than 3n/4 values of 4; for which z;[i;] = y;[i;]. Thus, the total number
of elements of H, that are eliminated by the counterexample v, - - - v, is bounded above by

(3n/4)"*n"/? = (3/4)M 2",

Every hypothesis in H, that has not been eliminated by some counterexample remains
a possible value for the unknown language. As long as A has made t < g(n) equivalence
queries, there must remain at least

a" —t-(3n/4)" 2" > n" — g(n) - (3/4)"?n" > 1

hypotheses in H,, that are consistent with all the replies to queries so far, by our choice of n.
Thus, if A halts and outputs an answer after making g(n) or fewer queries, it is incorrect on
some L € H,. On the other hand, since the counterexamples to all the queries up through
the g(n)** are of length 2n2, if A makes more than g(n) queries, it will exceed its time
bound of ¢(n) = p(3n? + 2,2n?) on some element of H,. Thus we have a contradiction,
since A cannot correctly terminate within its time bound for every element of H,. Hence
no such A can exist, which proves Theorem 8. Q.E.D.

By simply tacking a linear tree structure onto the strings used in the proofs above, we
have the following.

Corollary 10 Deterministic and nondeterministic bottom-up tree automata cannot be learned
in polynomial time using only equivalence queries.

4 Equivalence Queries and CFGs

In this section we extend the technique used in the proofs of Theorems 3 and 8 to show the
following.

Theorem 11 The class of contert-free grammars cannot be learned in polynomial time
using only equivalence queries.

Some extra technical machinery is required, to prove an analog of Lemmas 7 and 9. We
consider context-free grammars (cfgs) over the terminal alphabet ¥ = {0,1}. We assume
that all grammars are in Chomsky normal form (CN F), that is, every production is of the
form A — BC where A, B, and C are nonterminal symbols, or A — a, where A is a

9

nonterminal symbol and a is a terminal symbol, or § — ¢, where S is the start symbol and
€ is the empty string. Since there is a polynomial time algorithm to translate an arbitrary
cfg into one in Chomsky normal form, this assumption is not an essential restriction. The
size of a CNF cfg G is the number of nonterminal symbols it contains.

Let n be any positive integer. Let

Li(n) = {zz"y:z,y € "}

and let
L2(n) = {yzrz tTL,Y € En}’

where 2" denotes the reverse of the string z. L;(n) and L(n) can each be generated by a
CNF cfg of size at most 4n + 1. However, the intersection language,

I, = Li(n) N Ly(n) = {zz"z : € "},
requires a cfg of size exponential in n. Define
Fo=%%_1,.

Any string in F, is in at most one of Ly(n) and Ly(n).
The following lemma concerning I,, and F,, will be of use in the substitution arguments
later in this section.

Lemma 12 Suppose zyz € I,,, where y is of length at most 2n. If y' is any string such
that y' # y and |y'| = |y|, then zy'2 € F,.

Proof. There is some w; € £" such that zyz = wyww;. Since |y| < 2n, |z] + |z| > n.
If |z| > n, then let z; be the prefix of z of length n and let 22 be the empty string. If
|z| < n, then let z; = z and let 2, be the suffix of z of length n — |z|. In either case, z; is
the prefix of w; of length |z;|, and 2, is the suffix of w of length |23, and |z4| + |23] = n,
50 W) = Z123.

Now suppose that zy'z ¢ F,,. Since |y| = |y/|, zy'z is of length 3n, so it must be that
zy'z € I,,. Hence, for some w; € ", zy'z = wawiwy. As above, w; = 7129, and therefore
wy = wz. Thus, zyz = zy'z and y = ', contradicting the hypotheses. Hence zy'z € F,, as
claimed. Q.E.D.

We now define the crucial hypothesis classes. For each n we define H, to be the class
of all languages L of the form

L=1L(n)- Li,(n)-- -Li,(n),

where each i; is either 1 or 2. There are 2" languages in the class H,. Each language in
H:, contains only strings of length 3n? and can be generated by a CNF cfg of size 6n.
The analog of Lemmas 7 and 9 that we use in this case is the following.

10

Lemma 13 Let p(n) be any increasing polynomial in n. There ezists a constant ¢; such
that 0 < ¢; < 1 such that for all sufficiently large n, if G is a Chomsky normal form
contezt-free grammar of size at most p(n) such that (I,)* C L(G), then there erists a string

U=21T2°-°Ty,
such that each z; € £3" and for at least c;n values ofi,z; € F,.

The proof of this lemma is given in the next two subsections. Here we show that it
suffices to prove Theorem 11.

Assume that A is an algorithm to learn cfgs in polynomial time using only equivalence
queries. We may assume without loss of generality that A makes queries only with context-
free grammars in Chomsky normal form. Let p(n,m) be a polynomial that bounds the
running time of A. We may assume without loss of generality that p(n,m) is increasing in
both arguments.

For any Chomsky normal form context-free grammar G, A with equivalence queries for
L(G) halts and outputs a grammar G’ such that L(G’) = L(G). Moreover, if the size of G
is n, then at any point in a legal run, the time used by A is bounded by p(n,m), where m
is the maximum length of any counterexample seen to that point.

We describe an adversary that forces A either to be incorrect or to exceed its time
bound. Let g(n) = p(6m,3n?). This is clearly an increasing polynomial of n. Let n be
sufficiently large that the conclusion of Lemma 13 holds of q(n). Also, let n be sufficiently
large that

a(n) < 24" — 1/27an,

which implies that
2" — g(n)2""a" > 1.

The adversary runs the algorithm A until A makes an equivalence query. The adversary
then returns a counterexample and continues running A. Assume that A has just made an
equivalence query with the grammar G. Also assume that to this point all the counterex-
amples returned by the adversary have been of length 3n2, and moreover, there is some
element L of H, that is consistent with all the counterexamples returned so far. In order
successfully to identify L, the time used by A must be bounded by p(67n,3n%) = ¢(n), and
so the size of G must be also be bounded by ¢(n).

If (In)" is not a subset of L(G), then the adversary returns as a counterexample any
element of (I,)" that is not contained in L(G). Otherwise, (I,)" C L(G), so by Lemma 13
there exists a string u € L(G) such that

u= $1$2"‘$n

where each z; € £3" and for at least ¢;n values of t, ; € Fy,. The adversary returns any
such string as the counterexample to the equivalence query.

After t < g(n) equivalence queries, any language in H, that is consistent with all the
counterexamples is a possible value for the unknown language. A counterexample from
(I.)" does not eliminate any language in H,. Consider the second type of counterexample,
a string of the form

U=12123-° T,

11

such that each z; € £ and for at least ¢;n values of i, z; € F,,. A language L € H,, is of
the form
L=Ly(n)---Li,(n)

where each i; is 1 or 2. This language is eliminated by the counterexample u if and only if
for each j such that z; € F,,, z; € L;;(n).

Thus, there are at most 2"~°1" languages in H, that are eliminated by the counterex-
ample u. Hence, after ¢t < g(n) equivalence queries, there remain at least

211. — tzn-cln 2 2n — q(n)zn—qn > 1

elements of H, that are consistent with all the counterexamples so far. Hence A must either
make more than g(n) = p(6n,3n?) equivalence queries, or must not correctly identify some
element of Hy,, a contradiction. Thus no such A exists, which proves Theorem 11. Q.E.D.

“We now turn to the proof of Lemma 13.

4.1 Pieces of binary trees

We need some technical tools for surgery on parse trees in the next subsection. We consider
rooted ordered binary trees. Let T be such a tree. The subtree of T rooted at the node v
is denoted T'(v).

Let v be a node of T and V" a subset of nodes that are in T'(v). Define P(v,V’) to be
the rooted ordered binary tree obtained from T by taking T'(v) and removing all the proper
descendants of any node in V’. Such a rooted ordered binary tree will be called a piece of
T. Each leaf of P(v,V’) is either an element of V' or a leaf in T. A leaf of P(v,V’) that is
not a leaf of T is called a special leaf of P(v,V'). P(v,V")is a type-i piece of T if and only
the number of special leaves of P(v, V') is exactly i.

A type-0 piece of T is simply T'(v) for some node v of T. A type-1 piece of T is T'(v)
for some node v minus all the proper descendants of one of the nonleaf nodes of T(v). We
are primarily interested in type-0 and type-1 pieces of binary trees.

Two pieces Ty and T of T are called nonoverlapping provided either they contain no
nodes in common, or, if they contain any nodes in common, it is just one node z, and
z is the root of one of the trees and a leaf of the other. A set of pieces of T is called
nonoverlapping provided every pair of distinct pieces in the set is nonoverlapping.

Lemma 14 If T is a rooted ordered binary tree with n leaves and 1 < k £ n, then there
ezists a node v of T such that T(v) has at least k and fewer than 2k leaves.

Proof. Consider the root z of T. If n < 2k, then v = z suffices. Otherwise, n > 2k.
Then at least one of the two immediate descendants of z, say z;, is such that T(z;) has at
least k leaves. Iterate with the tree T'(z;). Since the number of leaves in the subtree being
considered must be strictly decreasing, this process must terminate with a node v such that
the number of leaves in T'(v) is at least k and less than 2k. Q.E.D.

Lemma 15 Let T be a rooted ordered binary tree with n > 2 leaves. Let 2 <k < n. Then
there is a nonoverlapping set S of type-0 and type-1 pieces of T such that each piece has at
least k and fewer than 2k leaves, and |S| > (n - k)/4(k - 1).

12

Proof. We describe how to construct such an S. Initially let S be empty, and let T’/ = T..

T' is a rooted ordered tree with at least k leaves, so by Lemma 14, there is a node v of
T’ such that T'(v) has at least k and fewer than 2k leaves. If 7'(v) has at most one leaf
that is not a leaf of T, then it is a type-0 or type-1 piece of T and is added to S. In any
case, T' is then set to T’ with all the proper descendants of v removed, and if T” still has
at least k leaves, this process is iterated.

It is clear that throughout this process, T” is a rooted ordered binary tree obtained from
T by removing all the proper descendants of some set of nodes in T'. Hence the trees added
to S are distinct pairwise nonoverlapping type-0 and type-1 pieces of T with at least k and
fewer than 2k leaves.

It remains to establish the bound claimed for the cardinality of S. Consider the number
s of leaves of T” that are not leaves of T. Initially s = 0. When T'(v) is a type-i piece, s
is set to s + 1 — 4, so it is increased by 1 when a type-0 piece is found, remains the same
when a type-1 piece is found, and is decreased by 1 or more when any other type of piece
is found. After the first iteration, s is always at least 1. Hence the number of iterations
in which type-0 or type-1 pieces are found must exceed the number of iterations in which
other types of pieces are found.

How many iterations must there be? Each iteration removes at least k — 1 > 0 and at
most 2k — 2 leaves from T”, and the process continues until fewer than k leaves are left in
T'. Initially T’ has n leaves. Thus, if j is the total number of iterations, we must have

n—j(2k-2) <k,
which implies that
Ji>(n—-k)/(2k -2).

Since at least half of these must be iterations in which a type-0 or type-1 piece is found and
added to S, we have
S| > (n - k)/4(k - 1),

which proves Lemma 15. Q.E.D.

4.2 Parse tree surgery

The goal of this subsection is to prove Lemma 13 and thus to conclude the proof of Theo-
rem 11. If 4 and j are integers, then [7, j] denotes the set of integers k such that i < k < 3.

Let n > 2 be a positive integer, and let G be any Chomsky normal form context-free
grammar such that (I,)" C L(G). Let N(G) denote the size of G, that is, the number of
nonterminals of G. For any n-tuple wy, ..., w, of strings from ", the string

W W] W WaWiW3 - + - Wy Wy Wy,

is an element of L(G). Let T'(wy,...,wy) be any parse tree for this string with respect to
the grammar G. This tree is a rooted ordered binary tree whose internal nodes are labelled
by nonterminal symbols of G and whose leaves are labelled by terminal symbols of G.

Indezed parse trees.

13

For any parse tree T with respect to G, let num(T) be the tree obtained from T by
replacing each leaf label a by the ordered pair (a, 1), where i is the number of this leaf in
left-to-right order, starting with 1. The number i is called the leaf indez of the leaf labelled
by (a,i). num(T) is called an indezed parse tree. If T is a rooted ordered binary tree,
define un(T’) to be the tree obtained from T by replacing any leaf label (a,i) by the label
a. Clearly, un(num(T)) = T for any parse tree T.

Let T,(G) denote the set of all indexed parse trees num(T(wy,...,w,)) as wy,...,wn
ranges over all n-tuples of strings from E". There are 2" elements of Tw(G), each of which
has 3n? leaves.

Let T be any tree in T,(G). By Lemma 15 with k = n, there exists a set, which we
denote by P(T'), of nonoverlapping type-0 and type-1 pieces of T such that each piece has
at least n and fewer than 2n leaves and

|P(T)| > (3n% — n)/4(n — 1) > 3n/4.
Environments.

A type-0 environment is a triple e = (A, ,j) such that A is a nonterminal of G, and i
and j are positive integers such that 1 < ¢ < j < 3n2. The terminal indices of e is the set
of integers [3, 5]. ’

A type-1 environment is a sextuple e = (4,1, j, B, k,l) such that A and B are nontermi-
nals of G, and ¢, j, k, and ! are nonnegative integers such that one of the three possibilities
below holds:

1.1<i<j<k<1<3n%
2.i=j=0and 1<k <I<3n2
3.1<i<j<3n%andk=1=0.

The terminal indices of e in case (1) is the set of integers [i, j] U [k, I}, in case (2) is the set
of integers [k, 1], and in case (3) is the set of integers [4, j].

Let E denote the set of all type-0 and type-1 environments that have at least n — 1 and
at most 2n—1 terminal indices. Then |E| < 81n8N(G)? because each environment in E can
be specified by a choice of four numbers in the range 1 through 3n? and two nonterminals
from G.

For each piece T" in P(T) we define the environment of T, denoted e(T"), as follows.
If T' is a type-0 piece, then e(T") is (4,1, j), where A is the nonterminal labelling the root
of T', i and j are leaf indices of the leftmost and rightmost leaves of T”, respectively. If
T" is a type-1 piece, then there is exactly one special leaf of T" , and it is labelled with a
nonterminal of G. In this case, e(T") is (4, i, j, B, k,1), where A is the nonterminal labelling
the root of T”, B is the label of the special leaf of 7", i and J are the leaf indices of the
leftmost and rightmost leaves that are to the left of the special leaf of T” , and k and [are
leaf indices of the leftmost and rightmost leaves that are to the right of the special leaf of
T'. If there are no leaves to the left of the special leaf of T’ then i and J are 0; likewise, if
there are no leaves to the right of the special leaf of 7", k and [are 0. Note that in either
case, e(T") € E, and the set of terminal indices of e(T") is the same as the set of leaf indices
of T.

14

For each T € T,(G) define the set
E(T)={e(T'"): T' € P(T)}

of all environments of pieces in P(T'). Since the pieces in P(T') are nonoverlapping and each
contains at least n — 1 nonspecial leaves, they all have distinct environments, so for each
T € T.(G),

|E(T)| = |P(T)| > 3n/4.

Transplanting pieces.

Pieces with the same environment may be interchanged to produce new legal parse trees,
as indicated by the following.

Lemma 16 Suppose Ty and T, are elements of T,(G) such that T{ € P(T1), T} € P(T3),
and e(Ty) = e(T7). Then if T is the tree obtained by substituting piece T} for piece T{ in
Ty, un(T3) is a legal parse tree with respect to G.

Proof. In fact, all that is necessary to produce a new legal parse tree is that the
nonterminal symbols appearing in the environments of T} and T; be the same. The equality
of the sets of terminal indices in the environments guarantees the stronger condition that
the yield of T3 is obtained from the yield of T} by substituting the section(s) of the yield
of T, that correspond to the interval(s) of terminal indices specified in the environment.
Q.E.D.

Segments.

We regard the set of numbers from 1 to 3n? as divided up into n segments of 3n consec-
utive numbers each. Thus, the st* segment consists of the numbers 3n(s — 1) + 1 through
3ns. fy € 3 and sisa segment number, then we define the s** segment of y to be the
substring of length 3n beginning with position 3n(s — 1) in y.

For each environment e € E we define the segments impacted by e to be the set of all
segments that contain an element from the set of terminal indices of e. Note that at most
four segments are impacted by any e € E, since e has at most 2n — 1 terminal indices in at
most two intervals [¢, j] and [k,!]. If T” is an element of P(T) for some T € T,,(G), then the
segments impacted by T is the set of segments impacted by e(T").

For each environment e € E, we define the major segment of e to be the leftmost segment
that contains at least (n — 1)/4 members of the set of terminal indices of e. Since e must
have at least n — 1 terminal indices, and impacts at most four segments, there must be at
least one segment that contains at least (n — 1)/4 of the terminal indices of e. The major
segment of a piece T' of T' € T,,(G) is the major segment of its environment e(T”).

Proof of Lemma 13.

Now we are ready to prove Lemma 13. Let p(n) be any increasing polynomial in n. Let
n be sufficiently large that n > 13 and

23n(n-—1)/32C > q(n)r,

15

where C' = 3168, g(n) = 812%p(n)?, and r = [3n/4]. This is possible because the lefthand
side is of the form 2°** and the righthand side is of the form 2K1987+¢ for positive constants
€, K, and ¢. Let G be any Chomsky normal form context-free grammar of size at most p(n)
such that (I,)" C L(G).

Since there are 2" elements T € T,.(G), and at most ¢(n) elements of E, there must be
at least one environment e; € E that is a member of at least

2" /q(n)

different sets E(T). Besides e;, each of these sets contains at least r — 1 other environments,
because |E(T)| > r for all T € T,(G). Thus, there must be at least one environment e2 # €
that appears in at least

2" /q(n)?

of the sets E(T') that e; appears in. Continuing in this way, we can find a set
E'={e,...,e}
of r distinct environments such that at for at least

2" [q(n)"

elements T € T,(G), E' C E(T).

Now we need to select a large subset E” of E’ with the property that for each e € E”,
the major segment of e is not impacted by any other element in E”. In particular, we have
the following.

Lemma 17 Let C = 3168. There ezists a subset E" of E' such that for every e € E”, the
major segment of e is not impacted by any other element of E” and |[E"| > r/C.

Proof. Note that E' is a subset of at least one E(T), and hence must be nonoverlapping.
Consider any segment s. It contains 3n indices, and can be the major segment of at most
12 environments from E’, since '

13(n —1)/4 > 3n.

Let M denote the set of segments that are major segments of some environment in E'.
Then

IM| > |E'|/12 = r/12.

Let Eg¢ denote the set of e € E’ such that the major segment of e is impacted by at
most 96 of the elements of E’. We argue that |Egg| > r/24. Since each segment in M is the
major segment of at least one environment in E’, and each environment in E’ has exactly
one major segment, it suffices to show that at least /24 segments in M are each impacted
by at most 96 elements of E’.

E’ contains r elements, each of which can impact at most 4 segments, so the total
number of instances of a segment being impacted by an environment in E’ is at most 4r.
Suppose fewer than r/24 of the segments in M are each impacted by at most 96 of the
environments in E’. Since |M| > r/12, this means that more than /24 of the segments in
M are each impacted by more than 96 of the environments in E’ , 50 the total number of

16

instances of segments being impacted by an environment in E' is greater than 96(r/ 24) = 4r,
a contradiction.

Thus, at least r/24 of the segments in M are each impacted by at most 96 of the
environments in E’, which implies that |Egg| > r/24, as claimed. -

Now we construct E” as follows. Let F = Egs. Choose any element e € F, and let the
major segment of e be s. Add e to E”. Now remove from F any environment that impacts
segment s and any environment whose major segment is impacted by e. There are at most
96 environments in Egg that impact segment s. There are at most 3 segments other than s
that are impacted by e. Each of these segments is the major segment of at most 12 elements
of Egs. Thus, there are at most 36 elements of Egg that have as there major segment one
of the segments other than s impacted by e. Hence at most 132 elements are removed from
F'. Iterate this process until no elements remain in F.

Since F initially contains at least r/24 elements, and at most 132 elements are removed
at each iteration, in the end

|E"| > r/(24 - 132) = /3168,

and the major segment of each environment in E” is not impacted by any of the other en-
vironments in E”. (Environments in E” may share impacted non-major segments.) Q.E.D.

We need a further subset of E”, to guarantee the existence of distinct strings for sub-
stitution. Recall that r = [3n/4]. Thus, E” contains at least 3n/4C elements. Let T(E")
be the set of all T € T,,(G) such that E” C E(T). Note that since E” C E/,

IT(E")| > 27 [q(n)".

For each environment e € E”, consider the interval [4, 5] of terminal indices of e that are
contained in the major segment of e. We know that the length of this interval is at least
(n — 1)/4, by the definition of major segment. For each T € T(E"), consider the string of
terminal symbols a; - - -a; that appear in the leaves with indices i through j, and define

m(e, T) =ag---aj.

An environment e € E” is called major-constant if and only if m(e,T) takes on only one
value as T' ranges over all elements of T(E”). Let E" be the set of environments of E” that
are not major-constant.

Lemma 18 |E"| > 3n/8C.

Proof. Suppose to the contrary that there are at least 3n/8C major-constant environ-
ments in E”. Each such environment has at least (n — 1)/4 terminal indices in its major
segment and these are all nonoverlapping. Thus, for at least 3n(n — 1)/32C leaf indices, all
the trees T € T(E") have the same terminals in the leaf labels, so there are at most

2n2 /23n(n—l)/32C

17

trees T in T(E"). But we have shown above that there are at least

2" q(n)"

trees in T'(E"), so
23n(n—1)/32C < q(n)r,

which is a contradiction, by our choice of n. Hence, for at least 3n/8C elements e € E" e
is not major-constant, that is, |[E’’| > 3n/8C. Q.E.D.

We are ready to perform substitutions. We start with any Tp € T(E"). Choose any
environment e; € E™. There is a tree T’ € T(E") such that m(e;, To) # m(e1, T"). Let 1,
be the unique piece from P(Tp) with environment e; and let ; be the unique piece from
P(T') with environment e;. Replace ¢; in Ty by 1], and call the result T3.

Note that un(T}) is a legal parse tree in G. Let yo denote the yield of the parse tree
un(To) and let y; denote the yield of un(Ty). Let s be the major segment of e;. The sth
segment of y; is obtained from the s** segment of yo by substituting the string m(e, T")
for the string m(e,Tp). Since the s** segment of yo is in I, m(e,To) # m(e,T’) and
Im(e, To)| = |m(e,Th)| < 2n — 1, by Lemma 12 the s** segment of y1 is in F,,. We now
choose another environment e, from E" and iterate with 7.

Since no element of E” has a major segment impacted by any other element of E" this
process can be iterated for each element of E” yielding a final tree T,, such that un(Ty,) is
a legal parse tree for G whose yield is a string

1T Ty

where each z; € £3", and for at least m values of i, z; € F,. Since m = |E"| > 3n/8C,
Lemma 13 is finally proved, with ¢; = 3/8C = 3/25344. Q.E.D.

5 Comments

The proofs of Theorems 3, 8, and 11 depend only on the fact that the number and size of
the hypotheses conjectured by algorithm A are bounded by p(n,m). Thus, even an oracle
for a PSPACE-complete set would not help A. ‘

Since the “hard classes” H, are finite and fixed-length, our proofs also show that dfas,-
nfas, and cfgs for finite and fixed-length languages cannot be learned in polynomial time
using only equivalence queries. See also the reduction of the general case to the finite and
fixed-length case for dfas in [4].

These arguments do NOT show that these classes are not polynomial-time learnable
in Valiant’s model of pac-identification [7] or in the equivalent model of prediction [5].
Polynomial-time identification using only equivalence queries implies polynomial-time pac-
identification, but not conversely. In particular, with an oracle for NP each of these classes
becomes pac-learnable, by the Occam’s razor technique [3], so proving one of these classes
cannot be pac-identified in polynomial time involves proving or assuming P # NP, whereas
our results do neither.

18

What do these results mean in practice? Interpreted in the domain of “passive” predic-
tion, that is, with no access to experiments, these results suggest that in some interesting
domains it is imprudent to use a single hypothesis as the basis for predictions, that a mixed
strategy based on a version-space approach is possibly preferable. (Formally, with an oracle
for a #P-complete problem we can implement an efficient majority-vote prediction strategy
for dfas, but even a PSPACE oracle doesn’t help in the case of equivalence queries.)

6 Acknowledgéments

This research was funded by the National Science Foundation, under grant number IRI-
8718975. The papers [4,6] and conversations with their authors contributed greatly to the
work herein.

References

[1] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87-106, 1987. Preliminary version appeared as YALEU/DCS/RR-464.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1987. Prelim-
inary version appeared as YALEU/DCS/RR-479.

(3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. Information
Processing Letters, 24:377-380, 1987.

[4] O. Ibarra and T. Jiang. Learning regular languages from counterezamples. Technical
Report, University of Minnesota Computer Science Dept., TR 88-33, 1988.

[5] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

[6] S. Porat and J. Feldman. Learning automata from ordered ezamples. Technical Report,
University of Rochester, Computer Science Dept., TR 241, 1988.

[7] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

19

