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Abstract: Several neuronal models, each as a quantum function evaluator, are defined.
Synaptic inputs are qubits. Output is a quantum state, in some cases also a qubit. A
quanturm Hebb rule is defined, and a quantum version of Hebbian learning is formulated.
A quantum Hopfield net is specified, and applications for it are made to a wide problem
class. TIn all cases the quantum variant majorizes the computational complexity of the
classical counterpart. Finally a so-called seriously entangled quantum neuron is
described. Such a quantum neuron can instantiate an arbitrary number of neural nets,
problem types and problem instances, simultaneously.

1. Introduction

Quantum computing (Deutsch, 1985, Steeb, 1998, Bouwmeester, Ekert, Zeilinger
(Eds.), 2000) brings improvement in computational complexity to a variety of problems
(Deutsch, Jozsa, 1992, Shor, 1997, Grover, 1998, Jozsa, 2000). Gains vary, in at least
one case (the factorization of integers algorithm of Shor) achieving an exponential
speedup with respect to problem size compared to any classical' computation. Of course
there are other key attributes of quantum computing. These include theoretical concepts
that impact the theory of computation and philosophical implications that inform our
understanding of reality (Deutsch, 1997). Neural nets provide a computational paradigm
with wide applicability in cognitive information processing, both real (brain circuitry
modeling) and artificial (Hertz, Krogh, Palmer, 1991, Haykin, 1999).

Our object here is to combine these two areas of study. Neural nets provide quantum
computing a wide set of applications and resultant cognitive constructs. Quantum
computing provides neural nets with computational complexity improvement. The

! Throughout, classical means not quantum as in the distinction between classical and quantum physics.




expectation is that the combination will stimulate the production of deeper ideas for
understanding cognition as well.

We begin with a brief review of quantum computing framed in a context suitable for
defining neurons that process information as quantum function evaluators. We call such
neurons, quantum neurons. To read the information produced by a quantum neuron may
require a quantum measurement (a measurement of the spin that encodes the qubit (the
quantum bit)). So three types of quantum neurons are specified. These neurons, types
(), (ii), (7ii), respectively, are the quantum analogs of certain classical model neurons,
namely, of linear neurons, of McCulloch-Pitts neurons, and of stochastic neurons,
respectively. Type (i) requires no measurement, the others do.

The applications that we give in Sections 3 and 4 use neurons of type (i) and (i)
variously and in combination. The neuron of type (i), employing no measurement, as it
does, seems to be especially advantageous. Indeed measurement has a computational
cost (time), and it de-coheres (collapses) an entangled state, which in principle results in a
loss of information.

Our first application is to Hebbian synaptic dynamics and involves formulation of a
quantum Hebb rule. Hebbian dynamics are a widely accepted model for how living
neurons adjust their function. These dynamics are an autonomous (i.€., unsupervised)
method for recording information (so-called learning) in the collection of synaptic
weights in a manner depending only on the neuronal activity and correlation between a
neuron’s inputs and its output. We shall see that the effort for updating a neuron’s N
synaptic weights in one step of Hebbian dynamics is reduced from O(N) operations for a
classical neuron to O(1) operations for the quantum neuron.

Our second application treats Hopfield nets (recursive neural nets) that correspond to
an energy (Lyapunov) function whose value decreases as the net’s input-output dynamics
progresses. Many interesting problems (thé Traveling Salesman Problem, for example)
can be cast into the form of minimizing a suitable such energy function. We shall apply a
net of N quantum neurons to expedite delivery of a minimum point by the descent
dynamics. We entangle all of the 2" vertices of the N-cube on which the dynamics is set
and conduct the descent simultaneously on all members of this exponentially entangled
quantum state. The complexity benefits provided by this class of applications are
varied, capable of exponential improvement for special problem classes.

Finally the process of entanglement motivates defining neurons each of which has
multiple sets of weights. One such neuron is able to perform the computation of an entire




net. Continuing, injection of multiple sets of entangled inputs enables one neuron to
operate on more that one problem at a time. Then we consider so-called seriously
entangled neurons that have both types of multiplicities simultaneously. We augment the
entangled members of the multiple sets of weights and inputs with labels (quantum
decryption keys) that are concatenations of qubits to track the information flow.

2. Quantum Neurons

In this section we define several types of quantum neurons as quantum function
evaluators. The synaptic inputs are qubits. The output is a quantum state that is only
sometimes a simple qubit.

2.1 Input qubits

A neuron has N input synapses. The input at each synapse is an on-off signal. Since
we employ quantum notions, such inputs are taken to be spin valued. Thus the input at
the i-th synapse is the ket

2.1) la,), ¢, €{0,1}, i=0,...,N.

Here 1 .
22 0-() ()

These binary valued kets are known as qubits®>. To account for the neuron’s threshold, we
clamp the ket |a,). In particular, |a,)=]0).

The Hadamard transformation and the quantum Not
We shall make use of two unitary operators on qubits. The Hadamard transformation

H—l b d th t Nt—O1 Note that
_4—2'1 _, | and the quantum o—1 ol ote tha

1 1
2.3 H|0)=—(]0)+]1 d H|1)=—=(|0)-11)),
) 0)=—7510)+I0) andHIt)=—7(0)-1)
and that

2 Some interchange the assignment of IO) and [1) in (2.2), a source of confusion in the subject.



2.4) Not [0)=|1) and Not|1)=|0).

Synaptic weights, binary fixed point arithmetic
A synapse has a weight w,, Vi, associated with it. In particular,

2.5) W, =0

is thé neuronal bias or threshold. Weights take on values from among the binary integers
0,1,---,2"% —1. A weight is encoded as the following quantum state.

2V
2.6) w,= Ycilx), ¢ €{0,1}.
x=0

Since 2" =10---0 (in binary), the kets on the right in (2.6) are specified as follows.
N

2.7) |0>=M’ [1)=]0---01), -, |z”—1)=w.

N N N

So in the jargon of computer arithmetic, what we have is binary fixed point arithmetic in
the quantum computation being discussed. Note that there is an overload in the notation,

1
since|0) stands for both ( 0) (asin (2-2)) and |0---0) (as in (2.7)). Likewise |1) stands

0
for both ( J and |0---01). For the sake of clarity, we shall, when necessary, replace |0)

and |1) in (2.7) by |0) and ﬁ)), respectively.

Quantum states are by definition normalized, so we shall always take that to be the
case here. While this may be achieved in (2.6) by choosing the ¢! so that only one term
in the sum there survives (since each fixed point number of relevance is uniquely so
represented), there are other possibilities. This scope of possible representations is
indicative of the augmented power of quantum computation compared to classical.

2.2 Neuronal response

A neuron processes its input qubits. This processing will be represented as a parallel
quantum function evaluation. The latter in turn is implemented by the operator U, that




instantiates a function f as a unitary transformation. U, has two operands (called initial

values) each placed in a separate one of two registers. These registers are called the input
and output registers, respectively. The result of the transformation (consisting of two
parts called final values) is displayed in the same two registers. This is illustrated in (2.8).

initial value of final value of

input register . .
input register

Us

2.8) initial value of \1 final value of

output register output register

To specify the neuronal processing, place Zla,) in the input register and place

|0)=]0---0) in the output register. The output of U, is the entangled quantum state
2.9) Zla,)lf(ai ))

This is illustrated in (2.11).

ZI“:) \
210) U, =3 Ylalfa)
10) /
The function f
Define f as
2.11) fla)=f@)=w, Vi




Thus f depends on a; only through the value of the index i. With fdefined as in (2.11),
the output (2.10) of U, is the following entangled quantum state.

2.12) = Zlai)lw,).

Using (2.1), (2.2), we write this as

2.13) u=0l0)+ ),

where?
2.14) a= Y|w)=238,w) and B= Y|w)=D3,|w)-
ita;=0 i irq;=1 i

Note that 8, , +9, , =1, and that since quantum states are normalized, o+ B =1.

2.3 Neuronal output

We shall consider three kinds of neuronal output called: (i) non-measured
output (ii) threshold output, and (iii) collapsed output, respectively. A corresponding
quantum neuron is denoted as a neuron of type (i), (i), or (iii), respectively.

() Non-measured output

The classical neuronal correspondent to this is the case of a linear neuron with identity
for the neuronal gain function. In this classical case the total weighted input is the output.
Then the output the neuron of type (i) is taken to be the state of the neural output function
U, itself, that is, the quantum state specified in (2.12).

(#i) Threshold output

Threshold output is a quantum version of the classical McCulloch-Pitts neuron, where
the neuron fires only if the total weighted input exceeds a threshold. To determine
whether that is the case requires a quantum measurement of the output register in (2.10),
as we shall see. A type (i) neuron fires the output |v), where

3 The order in a string of concatenated kets is not critical and is usually maintained to keep track of which
ket is which. For convenience we have written u in (2.14) as a linear combination of spins '0) and |l) , but

at the cost of permuting the input and output kets in (2.13). Confusion should not occur. We shall, also for
convenience, use this type of representation of the entangled output of the entangled output of U 5 (as in

(2.14)) a number of times in what follows.




[0 wzlBl
2.15) |v) {m, ol <Al

So firing a qubit |0) or |1) corresponds to the McCulloch-Pitts case of firing or not firing.

To determine the output specified by (2.15), make a quantum measurement for the
spin on the contents of the resultant input register of U/, that is, a measurement for |0)
versus |1). The measurement yields |0) or |1) with probability o or §* =1-0o?,
respectively. After the measurement of the input register, the output register will have
the contents ¢ or 3, as the case may be. If the content of the latter is «, say (i.e., if the
measurement of the input register yielded |0), compute |otf*. If lof* > %, set |v) =|0). If

lof < }6, set [v) =|1). If the measurement made on the input register yielded 1),

proceed analogously to define the output [v).

(iii) Collapsed output

Collapsed output corresponds to the classical stochastic neﬁron, where the neuron fires
with a probability depending upon the total wei ghted input. For a type (iii) neuron this
probability is specified by a quantum measurement of the output register (as in (i7)).

We take as the neuronal output, the direct result of a quantum measurement of the
entangled state u in (2.13) (in particular, measurement of the input register), measured for
|0) versus |1). Then the neuron will be taken to fire the content of the input register, post
measurement. Namely, the neuron fires the collapsed quantum state

2.16) v)= {M with probability o,

1) with probability .

As in the case of type (if) neurons, the quantities & or [ can be obtained from the
contents of the output register, post measurement.

Comment on the nature of the applications to follow

The applications that we give in Sections 3 and 4 use neurons of type (i) and (ii)
variously and in combination. The neuron of type (iii), perhaps the most natural in the
quantum context, is not yet used in our applications, and is included here for
completeness. The neuron of type (i), employing no measurement, as it does, seems to be
especially advantageous for applications. There is an intrinsic reason for this. Namely a




quantum measurement has a computational cost (time), and it de-coheres (collapses) an
entangled state. It is the means of extracting information from a quantum state, but it
does so at the cost of a loss of other information represented in that state. Thus it is
particularly advantageous for a quantum computation process to defer a measurement as
long as possible, preferably to when it is used to extract the information sought. This
point of view characterizes the applications to follow. They each involve iterative
algorithms. The entangling is exploited as a way to multiplex the computation
(parallelize it), and incidence of measurements (the extraction of information) is
minimized, and where possible, deferred to the end, as we shall see.

3. Hebbian Dynamics

Hebbian dynamics compose a fundamental procedure for changing a classical
neuron’s synaptic weights, w,, i =1,---,N (Haykin, 1999). It is a widely accepted model
for how living neurons adjust their information processing. These dynamics are an
autonomous (i.e., unsupervised) method for recording information (so-called learning) in
the collection of those weights in a manner depending only on the neuronal activity and
correlation between a neuron’s inputs and its output. In this section we shall see that the
effort for updating a neuron’s weights in one step of Hebbian dynamics is reduced from
O(N) operations for a classical neuron to O(1) operations for the quantum neuron defined
in Section 2. In fact we shall make a double use of quantum neurons. The first of these
(a neuron of type (i)) implements determination of the correlation between the input and
output required for the Hebb rule. The second, the neuron whose weights we seek to
update (a neuron of type (ii)) implements the neuronal input-output dynamics.

To proceed we define a function f, to compute the correlation needed.
3.1) fi(a)=a, Vi,

where |a,) is the input to synapse i (c.f. (2.1)-(2.2)). While f; is simply the identity
function, its quantum unitary correspondent, U, is hardly trivial. Indeed we shall
exploit U, in a special way that entangles the input states appropriately. First let ©

denote addition mod 2 and note the following expression of correlation between the pair
of qubits |a) and |v), where the latter is the neuronal output.
positively

0
3.2) (not v)®a =1 _,if v and a are correlated . .
1 negatively




Here not is the Boolean not. Although there are other possibilities, (3.2) represents the
way we shall model, in the context of quantum computation, the correlation of inputs and
outputs at the core of Hebb’s rule for synaptic weight change. Recall that |v) is used to
denote the output qubit of a neuron of type (i)

Now we define the unitary transformation U corresponding to the function f;. To

do this, place Y'|a;) in the U, input register, and place Not|v) (here we have the

quanfum Not, cf. (2.4)) in the output register. The result is illustrated in (3.3)

2'“:‘)

N
iy

U, > Zla,-)l(not »®a)

3.3)

The output in (3.3) may be written as follows (c.f. (2.14) and (2.15)). (See footnote 2.)

34) Z|a,.>|(not V)@ a,.) = 25% la,.>l0) + 26@“5 Ia,.)ll).

Let us index the variables a, v, and w with n, the clock cycle number that paces the
neuronal dynamics. Now

3.5) a§n+1) = v§n+l)’ Vj,

where lv j> represents the output of neuron j (for the moment, we are thinking of a

network of N neurons, each of which being subjected to Hebbian dynamics for synaptic
weight update). So the neuron of (3.3) is a quantum neuron of type (i). Now to complete

a step in the dynamics, we must update v and w;, Vi. That is, we must determine v"**"

and w™", Vi. Recall that the w, denote the synaptic weights in question.




First we update v as in Section 2.1. To do this we use the function fin (2.11) (renamed

f, here) relevant to the neuron being updated. This will be a neuron of type (ii). Let
3.6) fila)=|w,).

-
af")) in the input register of U, and |0) in the output register. Then

Next place Z

2 ai(n)> \
3.7) Uf :; 2 ai(n)> w‘_(n)>
Write the output of U, as
3.8) ¥ |a™)w) = ajo) + A1),
where (see footnote 2)
3.9) a=Y5,,|w") and B=)6,, w™).

Now measure the input register in (3.7) for |0) versus |1). The outf)ut register will
contain & or f8, accordingly. Then from (2.15) ff, the output we seek is

3.10) oo _ [IO0 le 2},
. - 2
), lof <.

So the neuron corresponding to (3.7) is a neuron of type (ii).

10




A quantum Hebb rule
Next to update |w,.‘")>, Vi, we implement Hebb’s law. That is, each weight w™is
updated, augmented (or not), according to the value of (not v)® a, (c.f. (3.2)). Then add

the entangled contents of the resultant registers of (3.3) and (3.7). We obtain

3.11) >lawe) =y

i

a,.(")>[| wf"’) +|(not V)@ af'”)] ,

which we call a quantum Hebb rule®. So, the state w™is increased by unity (or

left invariant) if v and a™ are positively (or negatively) correlated (c.f. (3.2)). (Of

course the updated state |w§”“’> is normalized as in the discussion relevant to (2.6).)

Note that the Hebbian dynamics need not converge. A neural net may learn while the
weights are still in flux. In fact, the learning process is usually monitored by the learning
quality (e.g., the quality of the response of the net to an input cue) without regard for the
progress of the weights. There are exceptions; for instance, weights are usually not
allowed to grow without bound.

4. Hopfield Nets

Hopfield nets are recursive neural nets. The state of the net (the collection of neural
outputs) evolves in a manner specified by the net’s encoding (the synaptic weights). An
interesting class of such nets corresponds to an energy (Lyapunov) function whose value
decreases as the net’s input-output dynamics progresses. The associated trajectories
converge to one or another fixed-point of the dynamics (to a minimum point of the
energy function).

Many interesting problems can be cast into the form of minimizing a suitable such
energy function. So defining the corresponding net and running the associated descent
dynamics (the input-output dynamics) provides a method for finding solutions to these
problems. The NP complete Travelling Salesman Problem is a conspicuous example, but
there are very many others.

* As with classical neural nets, there are other possible choices of the Hebb rule for quantum neurons.
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In this section we shall apply a net of quantum neurons to expedite delivery of a fixed-
point by the descent dynamics. Without loss of generality, we confine our attention to
problems whose possible solution states are binary vectors, i.e., vertices of the unit N-
cube. We entangle all of the 2" vertices of the N-cube and conduct the descent on this
exponentially entangled quantum state. The complexity benefits provided by this class of
applications are varied, capable of exponential improvement for special problem classes.

Note that the quantum neurons we shall use here are of type (i), that is, the output is
non-measured.

Descent dynamics on the quantum states
The binary vector A =(a,,*--,a,)", a, € {0,1}, Vi, a vertex of the unit N-cube
corresponds to a vector ket |A) of spins, where

4.1) 14y =(ja ) |ay)) -

The set {wq} of the net’s synaptic weights specifies a matrix W. The input-output

relation of the net is
42) V)= W4),

where each component of V is specified by a quantum computation as in (2.12). The
successor of A in the input-output dynamics is the updated input (type (i) neurons). Then
using n to index the clock cycle, a step of the descent dynamics on the quantum net is
given by

43) |A®) = |W)A™), n=0,1,---.

The initial ket corresponds to an arbitrarily prescribed vertex A‘”of the N-cube. While
the net implements a quantum function evaluation corresponding to multiplication by W,
the output, a (normalized) quantum state is in fact (could be viewed as being) produced
by multiplication by CW, where C is the diagonal matrix

N _1
4.4) C= ((2 w2) 26,,.).

k=1
Now consider the following state |B‘°’) consisting of an entanglement of all of the
vertices of the N-cube (c.f. (2.7)).

12




1 2N-l
4.5) |B®) = 7 2l

Although this state consists of a superposition of an exponential number (2") of states, it
can be generated by a linear number, in fact, N of applications of the Hadamard
transformation H (c.f. (2.3)). Namely,

4.6) |B®)=(H®--® H)0---0).

N N

We use the direct product symbol ® here to denote that the operators H are applied once
and the results added. Each application is made separately to a different one of the N
spins in the ket |0---0). We replace (4.3) by

4.7) |B™) = |W)|B®), n=0,1,--- .

A model case (quantum state purification)

A computationally efficacious case has a unique fixed-point A* and certain other
properties that we now describe. Partition the vertices of the N-cube into level sets
where A" has level zero, the lowest level. The nearest neighbors of A* on the N-cube
(Hamming distance unity) have level one. The next nearest neighbors have level two...
In this hypothesized case a vertex following the descent dynamics must descend at least
one level per step (except, of course, for A*). Thus the length of any path on the N-cube
following the descent dynamics is at most N. In the case of a classical computation, at
most N steps are required to proceed from any initial guess (vertex) to A*. The same is
true of the quantum case. In fact all 2" vertices are simultaneously (entangled) starting
points of descent paths, and as the quantum algorithm (4.7) proceeds, all of these
entangled paths converge to A*. Thus after at most N descent steps, the evolving
quantum state is the pure state |A*>. So a quantum measurement (one measurement each

to disclose each of the N qubits comprising |A')) after N steps delivers A". The O(Nz)

classical operations per step are reduced to O(N) operations plus N quantum function
evaluations.

Summarizing, we have

4.8)

B(fl)) =

A“),nZN,

13




so that for all »> N, a measurement of each the N components of !B‘"’) for |0) versus

|1) determines A" and solves the problem in question.

We shall exploit this qualitative feature of quantum state purification observed in this
quantum version of the descent dynamics in other applications (in the future).

Non-unique fixed point and neighbor level sets
In general there are multiple fixed-points, A, s =1,---,S, of the descent dynamics.

Each fixed point has a basin of attraction, a subset [3( ) of the vertices of the N-cube. A
trajectory of the descent dynamics terminates at A if and only if it starts in ﬁ(As ) Let

us retain the hypothesis concerning the level sets. Then we see that no path in the descent
dynamics exceeds N — S in length. Let "[3(A: )” denote the number of vertices in B(A: ),

and let

()
Sl

4.9) I s=1,--,8.

Then for n> N - §, a measurement of the input register will yield A with probability
p;- So the relative size of the basins of attraction grades this stochastic process of

finding fixed-points by the quantum neuronal net.

Let 6, = "ﬁ denote the fraction of vertices of the N-cube that are in B(A)).
Then (4.9) becomes
4.10)

ZGZ’VS

In the spe01a1 case that all of the basins of attraction are the same size, that is, if
”ﬁ /S then p, =1/§, Vs.

The general case

The general case has multiple fixed-points and lacks the efficacious level set property.
So the descent dynamics are hardly as simple as in the previous two cases. Indeed some
paths arriving at a fixed-point are exponentially long. The most we can say at this point
is that a measurement will yield A (or a vertex close to it) with a probability

14




approaching p, as the clock cycle number n increases. These observations motivate study

of procedures for shortening paths and for adjusting basin sizes. The desired fixed
point(s) should have basin(s) of attraction that are as large as possible.

Other optimization problems

It should be clear that the process of entangling all of the vertices of the N-cube and
conducting a quantum state purifying descent iteration to solve a minimization problem is
applicable more generally that to the Hopfield net formulation described here.

5. Seriously Entangled Neurons

The ability to exploit entanglement computationally motivates defining neurons, each
of which has multiple sets of weights. This would enable one such neuron to do the
computation of an entire net, for example. Another approach would be to inject multiple
sets of entangled inputs. This would enable one neuron to operate on more that one
problem instance at a time. Then we could consider neurons with both types of
multiplicities simultaneously’. We call these seriously entangled neurons. Of course, the
versatility gained employing such neurons comes with an increased cost to disentangle
the state of the computation, by means of measurement at an appropriate stage (ideally at
the end of the algorithm). To facilitate this process, we augment the members of the
multiple sets of weights and inputs with labels (quantum decryption keys) that are
concatenations of qubits to keep track.

Superposed weights
Suppose there are J weights at each synapse. For convenience, we shall restrict J to
take on values that are powers of 2. Let

5.1) J=2K"K=12,--

We shall store the weights as an entangled superposition. In particular, at synapse i, we

have
J

5.2) W' =Y |wiRi,i=1:-,N.

i
j=1

Here R’ is the quantum decryption key

3 Although we don’t consider it here, we could multiplex sets of multiplexed weights, allowing one neuron
to work on any number of different problem types simultaneously.

15
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>3) R =|r')|rf), we{o1}x=1,1
with _
5.4) R =1.

More generally, we could replace R) by RY, where

3 RY =|r0)-|ri) i e 0,1k =1,

Recall that i denetes the synapse and j denotes the weight set label.

Superposed inputs
Now suppose we apply L inputs to each synapse, where

5.6) L=2"'"" M=12,-

The input to a synapse is encoded as an entangled superposition.

5.7) Al = EL]a:)S;.
Here S, is the key

5.8) Sy =|si)+|st), s e{01}A=1
with
5.9) S=1.

More generally, we could replace S; by ¢, where
5.10) St =|si)-|st), s; €{0.1}, A=1,-,L

Total neuronal input with both superposed weights and inputs
The total doubly superposed input is

1l
Mz

5.11) u=y WA

S S bl

i j=11I=1

T
o

—
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=SS S e -J)
= T SE PO t)+ B S fet )|t
*Za |0)+2 B1LID),

where (see footnote 2)

ay = Y |wRIs! _25 o[ WIRISE,
la =0

5.12)
= Shwist =6, Juist
la =1
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