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ABSTRACT
Sparse Representation of Smooth Linear Operators

Bradley Keith Alpert
Yale University
1990

A wide variety of problems in differential and integral equations require ap-
plication and inversion of linear operators. For large-scale physical problems, the
size of the problem n is such that the work expended by general algorithms-O(n?)
for application of a transformation and O(n3) for application of its inverse-is of-
ten prohibitive. Several methods have been devised in recent years to reduce
these complexities by exploiting the structure of particular problems.

This thesis puts earlier methods into a unified framework by developing new
wavelet-like bases for £2[0, 1], and other spaces, which lead to efficient algorithms
for operator application and inversion. It is based on the observation that in
many cases of interest, while the matrices involved are dense, their elements vary
smoothly as a function of their indices, except along a collection of bands of fixed
width. Algorithms are presented for transforming such locally smooth matrices
into matrices which are sparse (to a finite but arbitrarily high accuracy). The
resulting sparse representations support fast algorithms for matrix application
-and inversion, requiring variously O(n), O(nlogn), and O(nlog® n) operations.

Programs have been developed applying these techniques to the solution of
second-kind integral equations with non-oscillatory kernels. Numerical results
are presented to demonstrate the effectiveness of the approach.
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Chapter 1

Introduction

1.1 Background

Integral equations are a well-known mathematical tool for formulating physical
problems. Historically they have achieved great popularity among mathemati-
cians and physicists in formalizing boundary-value problems of gravitation, elec-
trostatics, fluid dynamics, and scattering. Another application, of considerable
current interest, is semiconductor modelling. While a number of physical prob-
lems give rise to integral equation formulations directly, a wide variety of partial
differential equations may also be expressed as integral equations.

Integral equation formulations have several advantages (good conditioning,
dimensionality reduction, and the ability to treat arbitrary regions) but have
had one overriding disadvantage: the high cost of working with the associated
dense matrices. For a problem requiring an n-point discretization, the inverse
of a dense n x n-matrix must be applied to a vector. Even to apply the matrix
itself to a vector requires order O(n?) operations; application of its inverse by
a direct (non-iterative) method requires order O(n3) operations. If an iterative
method is employed, the number of iterations depends on the condition number
of the problem and each iteration requires application of the n x n matrix. For
large-scale problems, the resulting costs are often prohibitive.

In recent years a number of algorithms ([2], [8], [9], [15]) have been developed
for the fast application of linear operators naturally expressible as dense matrices,
the best known of which are the particle simulation algorithms developed by
L. Greengard and V. Rokhlin [8]. Each algorithm of this class exploits the special
structure of a particular problem by combining

1. interpolation of the function which defines the matrix elements, with
2. a divide-and-conquer strategy.

For example, the particle simulation algorithms are based on the observation that
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2 CHAPTER 1. INTRODUCTION

the electrostatic or gravitational field due to a set of particles varies smoothly in
regions separated from the location of the particles (see Fig. 1.1). Such a field
can therefore be represented to high precision by an expansion containing only a
few terms. This observation is augmented by the construction of a divide-and-
conquer scheme in which virtually all particle interactions are computed in this
fashion. The result is an algorithm which computes the field due to n particles
at n locations in order O(n) operations.

As a second example, the evaluation of Legendre expansions can be accom-
plished by application of a particular dense upper-triangular matrix to an ar-
bitrary vector. Away from the main diagonal, the elements of the matrix vary
smoothly as a function of their indices. Alpert and Rokhlin [2] constructed an
algorithm by dividing the matrix into submatrices, each of which is separated
from the diagonal, as shown in Fig. 1.2. This division ensures that each subma-
trix has smoothly varying elements which can be approximated by a low-order
polynomial. The error of the approximation decays exponentially in the degree
of the polynomial, so in practice any desired degree of accuracy may be obtained.
The algorithm for application of the n x n matrix to a vector then requires O(n)
operations, as do the algorithms of (8], [9], [15].

Two deficiencies of these algorithms are apparent. First, though they share a

Figure 1.1: The field due to particles inside circle A can be represented by a
Laurent expansion about the center of A. The expansion converges rapidly outside
B, which has radius twice that of A, so only several terms of the expansion are
needed to evaluate (to high precision) the effect of particles inside A on particles
inside C.
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Figure 1.2: Dense matriz connecting coefficients of Legendre and Chebyshev ex-
pansions is divided so that each submatriz can be approzimated to high accuracy
by a low-order polynomial. This combination of divide-and-conquer and efficient
approzimation results in an algorithm to apply the n X n matriz to an arbitrary
vector in order O(n) operations.

common thread, each algorithm is custom-designed for its own problem and is not
generally applicable to others. Second, in the case when the matrix is invertible, it
is not clear from these algorithms how to efficiently invert the matrix or apply its

inverse to a vector. These deficiencies have recently been addressed by Beylkin,
Coifman, and Rokhlin in [3].

1.2 Wavelet Bases

1.2.1 Function Space Bases

In this thesis we construct a class of orthonormal bases of £%[0,1] (and other
spaces), with the property that “smooth” linear operators in these bases corre-
spond to matrices which are sparse, to high precision. This class of operators
includes those mentioned above, as well as operators resulting from a wide va-
riety of second-kind integral equations. The matrices are sparse; furthermore,
their inverses are sparse, to high precision. As a result, the Schulz method [17],
which is an iterative, quadratically convergent technique for matrix inversion,
becomes highly effective and produces an order O(nlog® n) algorithm for solving
a second-kind integral equation.
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Figure 1.3: Multi-wavelet bases of £%[0,1] consist of functions non-zero on in-
tervals of various scales. The basis of order k contains k functions supported on
each interval of one scale, which does not overlap other intervals of that scale.
The total number of functions on a single scale is shown.

A matrix is sparse to high precision if it is a sparse matrix perturbed by a
small matrix, ¢.e., if most of the elements are negligible. In actual computations
the smallest elements are discarded, according to a threshold determined by a
user-specified accuracy.

What are the properties of a basis of wavelets that lead to sparse representa-
tions? The bases we construct are orthonormal and consist of functions that are
(generally)

1. orthogonal to low-order polynomials, and
2. non-zero on finite intervals of various lengths.

A basis function b: [0,1} — R is orthogonal to low-order polynomials if its first
k moments vanish,

1 .
/b(x)w-’dw:O, j=0,1,.. . k-1,
0

for some positive integer k. In our construction, all but & basis functions have this
property. The property of support on intervals of various lengths is illustrated in
Fig. 1.3. These two properties ensure that a function that is smooth, except for
a finite number of singularities, will have a negligible projection on most basis
functions.
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1.2.2 Vector Space Bases

Numerical solution of an integral equation, as mentioned above, can be accom-
plished by projecting onto an n-dimensional subspace of £? and solving the re-
sulting system of n equations in n unknowns. Consider the second-kind integral
equation

where K is an integral operator given by the formula

(k1)@ = [ K(z,0) £(2) d,

and suppose that {b;,...,b,} is a orthonormal basis for the subspace. Then it is
easy to see that the projection is obtained by computing the integrals
1 1
/ / K(z,t) bi(2) bj(t) de dt,  i,5=1,...,n. (1.1)
o Jo -

We demonstrate this method of solution, using the new bases, in the next chapter.
For many kernels, however, difficulties may arise in obtaining the integrals (1.1).

An alternative general method for solution of integral equations, developed
by Nystrom, approximates the integral operator by a quadrature, resulting in a
matrix A = {w; K(zi,z;)}ij=1,..n for discretization points {zi,...,z,} C [0,1]
and quadrature weights {wy,...,w,}. The matrix A is dense, so by direct meth-
ods its application to a vector requires order O(n?) operations and its inversion
requires O(n?®) operations.

These time complexities can be cut considerably. Complementary to the
function space bases sketched above, we also develop a vector space analogue, for
the n-dimensional space of functions defined on {z1,...,z,}. The vector space
bases have properties entirely analogous to the function space bases: namely,
all but k basis vectors are orthogonal to the moment vectors {z,7,...,z,%} for
J = 0,...,k—1, and the basis vectors are non-zero on various “local” subsets
of {1,...,2z,}. In solving the integral equation by the Nystrém method, the
matrix A is similarity-transformed by the vector basis to a sparse matrix in
order O(nlogn) operations. In addition, its inverse is sparse, and is obtained in
order O(nlog® n) operations via Schulz method (as with the £2 case). Thus the
function space and vector space bases are close analogues, and both lead to fast
algorithms for solving a wide class of integral equations.

1.3 Thesis Organization

In Chapter 2 we construct the function space bases and demonstrate their com-
pleteness and convergence properties. We prove that a variety of integral opera-
tors and their inverses, when expanded in these bases, are represented as sparse
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matrices. We present analytical expressions for the bases and several numerical
examples of their application to the solution of second-kind integral equations.

In Chapter 3 we construct quadratures for operator kernels with certain types
of diagonal singularities. The quadratures have the property that they make
only endpoint adjustments to the trapezoidal rule, and therefore preserve the
smoothness properties of the kernel, yet they achieve high-order convergence.

In Chapter 4 we construct the vector space bases, an algorithm for their
computation, and an algorithm to transform a matrix representing an integral
operator with a diagonally-singular kernel to sparse form in order O(nlogn)
operations. We employ the quadratures of Chapter 3 to obtain the solution of
several sample integral equations. We also demonstrate the effectiveness of the
new bases with timing results.

Finally, in Chapter 5 we mention some other fast algorithms for the numerical
solution of integral equations, we discuss extensions to the methods described in
the preceding chapters, and we present further applications for the new bases.



Chapter 2

Function Space Bases

Families of functions A, 4,

—b
hop(z) = la|_1/2 h(zT) , a,beER, a#0,

derived from a single function h by dilation and translation, which form a basis
for L?(R), are known as wavelets (Grossman and Morlet [10]). In recent years,
these families have received study by many authors, resulting in constructions
with a variety of properties. Meyer [13] constructed orthonormal wavelets for
which A € C*®(R). Daubechies [5] constructed compactly supported wavelets
with o € C¥(R) for arbitrary k, and [5] gives an overview and synthesis of the
field.

In this chapter we construct a somewhat different type of basis for £2(R) that
can be readily revised to a basis for £2[0,1]. Each basis, which we call a multi-
wavelet basis, is comprised of dilates and translates of a finite set of functions

hi,...,ht. In particular, our bases consist of orthonormal functions
;. (z) = 2™/2 h;(2™z — n), j=1,...,k;mn€ Z, (2.1)
where hy,...,h; are piecewise polynomial, are supported on the interval [0, 1],

and have vanishing moments,
1 .
/hj(x):v’dx=0, i=01,... k-1 (2.2)
0

The properties of compact support and vanishing moments lead to bases in which
a variety of integral operators are represented by sparse matrices. In particular,
an integral operator whose kernel is non-oscillatory and analytic except along a
finite set of curves, when expanded in one of these bases, is sparse.

In the following sections, we construct multi-wavelet bases in one and several
dimensions, prove their completeness, convergence, and sparsity properties, and
present several examples to illustrate their numerical usefulness.
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2.1 Multi-Wavelet Bases

2.1.1 The One-Dimensional Construction

We first restrict our attention to the finite interval [0,1] C R and we construct a
basis for £2[0,1]. We employ the multi-resolution analysis framework developed
by Mallat [12] and Meyer [14], and discussed at length by Daubechies [5]. We
suppose that k is a positive integer and for m = 0,1,2,... we define a space S¥
of piecewise polynomial functions,

Sk ={f: the restriction of f to the interval (27™n,2"™(n+1))is  (2.3)
a polynomial of degree less than k, forn =0,...,2™ — 1,
and f vanishes elsewhere}.

It is apparent that the space S¥ has dimension 2™k and
SSCS{CC"'CS,I;C"‘-

Form = 0,1,2,... we define the 2™k-dimensional space R¥, to be the orthogonal
complement of S¥ in S _,,

St ®RE =Sk,  RELSE
so we have the decomposition
Sk=SeoREORI®---®RE_). (24)

Suppose that functions h;,...,kt : R — R form an orthogonal basis for RX.
By the orthogonality of RE to S¥, the first £ moments of hy,. ..,k vanish,

1 .
/ hiz)zide =0,  i=0,1,... k-1
0

The 2k-dimensional space R¥ is spanned by the 2k orthogonal functions k(2z),
ooy hi(2z), h1(2z — 1),...,he(2z — 1), of which k are supported on the inter-
val [0,3] and k on [3,1]. In general, the space R%, is spanned by 2™k functions
obtained from h,,...,h; by translation and dilation. There is some freedom in
choosing the functions hy,...,h; within the constraint that they be orthogo-
nal; by requiring normality and additional vanishing moments, we specify them
uniquely, up to sign.

In preparation for the definition of hy,...,h;, we construct the k functions
fi,--y fi + R — R, supported on the interval [—1, 1], with the following prop-
erties:

1. The restriction of f; to the interval (0,1) is a polynomial of degree k& — 1.



2.1. MULTI-WAVELET BASES 9

2. The function f; is extended to the interval (—1,0) as an even or odd function
according to the parity of ¢ + k — 1.

3. The functions fi,..., fi satisfy the following orthogonality and normality
conditions:

1
[ 5@ fi@) do = (fufi) =85y i=1,00k.
4. The function f; has vanishing moments,

1 ) ,
/lfj(w)rc'dx=0, i=0,1,...,j +k—2

Properties 1 and 2 imply that there are k? polynomial coefficients that deter-
mine the functions fi,..., fi, while properties 3 and 4 provide k? (non-trivial)
constraints. It turns out that the equations uncouple to give k¥ nonsingular lin-
ear systems that may be solved to obtain the coefficients, yielding the functions
uniquely (up to sign). Rather than prove that these systems are nonsingular,
however, we now determine fj,..., fi constructively.

We start with 2k functions which span the space of functions that are poly-
nomials of degree less than k on the interval (0,1) and on (—1,0), then or-
thogonalize k of them, first to the functions 1,z,...,z*!, then to the functions
gk, k1 2?1 and finally among themselves. We define f1, f1,..., f} by the
formula _

xJ_l, z E (0’ 1)7
le(x) = _xj—la z € (-—1,0),
0, otherwise,

and note that the 2k functions 1,z,...,2%71 f1 f} ... fl! are linearly indepen-
dent, hence span the space of functions that are polynomials of degree less than
k on (0,1) and on (—1,0).

1. By the Gram-Schmidt process we orthogonalize fjl with respect to 1,z, ...,
zF=1, to obtain ff, for ; = 1,..., k. This orthogonality is preserved by the
remaining orthogonalizations, which only produce linear combinations of

the ff
2. The next sequence of steps yields k — 1 functions orthogonal to z*, of
which k — 2 functions are orthogonal to z*t!, and so forth, down to 1
2k-2

function which is orthogonal to z?*~2. First, if at least one of ff is not
orthogonal to z*, we reorder the functions so that it appears first, ( f2, z¥) #
0. We then define f} = f? — a; - f¢ where a; is chosen so (f?,z*) = 0
for j = 2,...,k, achieving the desired orthogonality to z*. Similarly, we
orthogonalize to zF+!, ... 2?2, each in turn, to obtain Fa 2, 14, ,f“

such that (ff+1,xi) =0for:<j+k—2.
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3. Finally, we do Gram-Schmidt orthogonalization on ,f‘”,f,f__l,... , f, in
that order, and normalize to obtain fx, fx-1,..., f1-

It is readily seen that the f; satisfy properties 1-4 of the previous paragraph.
Defining hq,...,hr: R — R by the formula

hi(z) = 212 fi(2z2 — 1), i=1,...k,
we obtain the equality
R¢ = linear span {h;: i=1,...,k},
and, generally,

R% =linear span {h?,, : A%, (z)=2™2h;(2"z — n),

Jj=1,...,k;n=0,...,2™m -1} (2.5)

We will show next that dilates and translates of the piecewise polynomial func-
tions Ay,..., ks form an orthonormal basis for £2(R). Furthermore, a subset
of these dilates and translates, combined with a basis for S¥, forms a basis for

£2[0,1].

2.1.2 Completeness of One-Dimensional Construction

We define the space S* to be the union of the S, given by the formula

Sk=J Sk, (2.6)

m=0

and observe that S*¥ = £%[0,1]. In particular, S¥ contains the Haar basis for
L£?[0,1], consisting of functions piecewise constant on each of the subintervals
(27™n,27™(n + 1)). Here the closure S* is defined with respect to the £?-norm,

I£IF = (£, /Y2,

where the inner product (f, g) is defined by the formula

(fr9) = /: f(z) g(z) dz.

We let uy, ..., u; denote an orthonormal basis for S¥; in view of Eqgs. (2.4), (2.5),
and (2.6), the orthonormal set

{Ujl ]:21,...,]53}
Uf{hl,: j=1,...,kkm=0,1,2,...; n=0,...,2" -1}
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spans £%[0,1]; we refer to it as the multi-wavelet basis of order k for L?[0, 1]
Now we construct a basis for £2(R) by defining, for m € Z, the space S by
the formula

Sk = {f: the restriction of f to the interval (2=™n,2 ™ (n + 1)) is
a polynomial of degree less than k, for n € Z}

and observing that the space S¥ 4_1\5',’31 is spanned by the orthonormal set
(R Rln(z)=2"2h;2™z —n), j=1,...,k n€ Z}.
Thus £2(R), which is contained in Um , has orthonormal basis

{Rim: 3=1,..., ks mne€ Z}.

2.1.3 Construction in Multiple Dimensions

The construction of our bases for £2[0,1] and £L%(R) can be extended to certain
other function spaces, including £?[a, b]¢ and L£*(R?), for any positive integer d.
We now outline this extension by giving the basis for £2[0, 1]?, which is illustrative
of the construction for any finite- dlmensmnal space. We define the space S5? by
the formula

Skt = gk x Sk m=0,1,2,...,

where S% is defined by Eq. (2.3). We further define R%? to be the orthogonal
complement of $%? in S&2

k.2 k2 _ ok.2 k2 | ok,
Ser @ RE? =S, Ry?1S%2,
Then R%? is the space spanned by the orthonormal basis

{wi(2)h;(y), hi(2)ui(y), hi(x)hi(y) : i3 =1,...,k}.

Among these 3k? basis elements each element v(z,y) has no projection on low-
order polynomials,

// ,ynydxdy—O t,7=0,1,...,k—1.

The space R%? is spanned by dilations and translations of the v(z, %) and the basis
of £2[0, 1)? consists of these functions and the low-order polynomials {u;(z)u;(y) :

ij=1,...,k}.
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2.2 Convergence of the Multi-Wavelet Bases

For a function f € £2[0,1], a positive integer k, and m = 0,1,2..., we define the
orthogonal projection Q* f of f onto S by the formula

(Qrf) (@) = 3o{f,ufm) - m(2),
jn
where {u}, } is an orthonormal basis for Sk . The projections Q¥ f converge (in

the mean) to f as m — oo. If the function f is several times differentiable, we
can bound the error, as established by the following lemma.

Lemma 2.1 Suppose that the function f : [0,1] — R is k times continuously
differentiable, f € C*[0,1]. Then Q* f approrimates f with mean error bounded
as follows:

IQ5f — 7 <27 g sup [£9(e) (27)

Proof. We divide the interval [0, 1] into subintervals on which Q¥ f is a poly-
nomial; the restriction of Q% f to one such subinterval I, ,, is the polynomial of
degree less than £ that approximates f with minimum mean error. We then use
the maximum error estimate for the polynomial which interpolates f at Cheby-

shev nodes of order k on I, .
We define I, , = [27™n,2"™(n + 1)] for n = 0,1,...,2™ — 1, and obtain

1055 = £IF = [ (@40 - f@)]' dz
= ¥/ [@h@-r@)] do
< 2 [Chne - ) d
. Zn:/ - (2;;:, Sup lf“"(:v)I) dz

2l—mk . 2
< (G s 1)

z€[0,1]

and by taking square roots we have bound (2.7). Here C’f;’l’n f denotes the poly-
nomial of degree k which agrees with f at the Chebyshev nodes of order k on
I, and we have used the well-known maximum error bound for Chebyshev
interpolation (see, e.g., [4]). O

The error of the approximation QF f of f therefore decays like 2=™* and,
since S* has a basis of 2™k elements, we have convergence of order k. For the
generalization to d dimensions, it is easily seen that the rate of convergence is of

order k/d.
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2.3 Second-Kind Integral Equations

A linear Fredholm integral equation of the second kind may be written in the
form

b
f@) = [ K(e,0) f(t) dt = g(a), (28)

where the function K is the kernel, g is the right-hand-side, and f is the unknown.
For notational simplicity, in this chapter we restrict our attention to the interval
[a,b] = [0,1]. We use the symbol X to denote the integral operator of Eq. (2.8),
given by the formula

(K1)(@) = [ K(z0) f(t)dt,

for all f € £2[0,1] and = € [0,1]. Suppose that {b;,b,,...} is an orthonormal
basis for £2[0,1]; the expansion of K in this basis is given by the formula

i=1 j=1

where the coefficient K;; is given by the expression

1 1
K,~,~=/ / K(z,t) bi(z) b(t) dedt,  4,5=1,2,... (2.10)
0 0

Similarly, the functions f and g have expansions
f(@) =) fi bi(z), g(z) = g bi(x),
1= =1
where the coefficients f; and g; are given by the formulae

fi= /01 f(z) bi(z) dz, gi = /Olg(x) bi(z) dz, 1 =1,2,....

The integral equation (2.8) then becomes the system of equations

fi=2 K fi = g, i=1,2,....

i=1

The expansion for ' may be truncated at a finite number of terms, yielding the
integral operator R defined by the formula

n n

(RN@) = [ S5 K b)) f0) dt, € £0,1], = € 0,1],

=0 j=0
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which approximates K. Integral equation (2.8) is thereby approximated by the
system

f,‘—ZI{,‘jfj=g;, i=1,...,n, (2.11)
i=1

a system of n equations in n unknowns. Eqgs. (2.11) may be solved numerically
to yield an approximate solution to Eq. (2.8), given by the expression

fal@) = 3 fi bi(a).

i=1

How large is the error eg = f — fr of the approximate solution? We follow
the derivation by Delves and Mohamed in [6]. Rewriting Eqgs. (2.8) and (2.11) in
terms of operators K and R, we have

I-K)f =g
(I—R)fR g,

and combining the latter equations yields
(I —=K)er = (K — R) fr.
Provided that (I — K)~! exists, we obtain the error bound
leall < (T =X)7H - [l(< — R)frl- (2.12)

The error depends, therefore, on the conditioning of the original integral equation,
as is apparent from the term ||[(/ — K)7!||, and on the fidelity of the finite-
dimensional operator R to the integral operator K.

2.4 Sparse Representation of Integral Opera-
tors and Their Inverses

2.4.1 Representation in Multi-Wavelet Bases

We consider integral operators X with kernels that are analytic, except at z =
t, where they are singular. In particular, we analyze singularities of the form
log [z —t| or the form |z —t|*, with 0 < |a| < 1. An operator with such a kernel
K, expanded in one of the multi-wavelet bases defined above, is represented as
a sparse matrix. This sparseness is due to the smoothness of K on rectangles
separated from the “diagonal”.
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x=t

X

Figure 2.1: Rectangular regions (just) separated from the diagonal.

Definition 2.2 We say that a rectangular region oriented parallel to the coor-
dinate axes z,t is separated from the diagonal if its distance in the horizontal or
vertical direction from the line z =t is at least the length of its longer side. In
symbols, a region [z,z + a] X [t,t + b] C R? is separated from the diagonal if
a + max{a,b} <t—z or b+ max{a,b} <z -t

This definition is illustrated in Fig. 2.1.

Suppose that k is a positive integer and that {1, bo,...} is the multi-wavelet
basis for £2[0,1] of order k, defined in Section 2.1. We let I; denote the interval
of support of b;, and we assume that the sequence of basis functions by, b,,. .. is
ordered so that Iy, I,... have non-increasing lengths. For large n, the matrix
{I(ij}{’j=1"”’n is sparse, to high precision, as is proved in the following proposi-
tions.

Lemma 2.3 Suppose that the function K : [0,1] x [0,1] — R is given by the
formula K(z,t) = log|z — t|. The expansion of K in the multi-wavelet basis of
order k (Eq. 2.9) has coefficients K;; which satisfy the bound

1
sl < gt

(2.13)
whenever the rectangular region I; X I; is separated from the diagonal.

Proof. Suppose that the intervals I; and I; are given by the expressions
I; = [z0,70 + a] and I; = [to,to + b]; without loss of generality we assume (one
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of two equivalent cases) that b+ max{a, b} < zo — o. It is immediate from this
inequality that
To+ a2 -z

<
.’130+(1/2'—t -

% (2.14)

for (z,t) € I; x I;.
We use the Taylor expansion for the natural logarithm about ¢ > 0,

log(c+y) = log(c) + (y/c) — (¥/0)*/2 + (¥/0)*/3 — (y/c)* /4 + - -,

for |y] < c¢. Wenowlet ¢ =2¢9+a/2—t and y = £ — 2o — a/2 and for
(z,t) € I; x I; we obtain the formula

e zo+a/2—z\"
1 -t =1 ~t) — — | —] . 2.15
ogle — ] =log(au-+ /2 ) - 3° (24222 .19

We now apply Egs. (2.10), (2.15), (2.2), and (2.14), each in turn, to obtain

|Ki;| =

to+b rxo+a
/t / K(x’t)bz’(m)bj(t)dmdt.

T
/to+b
to
/io-{—b
to

|b;(t)] dt

Tro+a
/ log |z — t| b;(z) dz

0

To+a a
/ [log(a:o + 3~ t)

0

= 1 (zo+a/2—x m
2o\ an—t) Y b;(t)| dt
Z_::lm ($o+a/2—t> ]b’(m)d‘” 16;(t)] d
ot prote =1 (3o +a/2— )"
= — N b b.
- /t° o 1712:=km($0+a/2—t) i(2) dz |b;(t)] dt
to+b pzota | X /1\™
< 7 . b; .
B /to z0 kmzk<3) |bi(z)| dz |b;(t)] dt

to+b prota ?
</ | d [b;(t)] dt
to

ok g1 10(0)

1 to+b To+a To+a

&< 2 ) )

< s /t \/(/x b, (:r)da:) (/ 1dz ) [b;(t)] dt
Vab 1

<
T 2k-3k1 T 8. 3k-17

as was to be proved. O

Lemma 2.4 Suppose that the function L: D x D — C is given by the formula
L(z,w) = f(z,w)log |z — w|, where D is the closed disk of radius 2 centered at

z = % and f is analytic in a domain containing D x D C C*. Suppose further
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that the function K is the restriction of L to [0,1] x [0,1]. The ezpansion of K
in the multi-wavelet basis of order k has coefficients K;; which satisfy the bound

k3 1
2l < — + — w .

whenever the rectangular region I; X I; is separated from the diagonal.

Proof. We combine the method of proof used in Lemma 2.3 with the formula
for the derivative of a product,

omK(z,t) & (m) 9 f(z,t) 9™ log |z — ¢

9z E r oz" Jdzm™-r

r=0

By the Cauchy integral formula we obtain
9 f(z,1)

<l
L2l <l sup |f(zw)]

z,w€dD

for (z,t) € [0,1] x [0, 1]. For the logarithm, differentiation yields the formula

o™ "loglz —t|  (=1)""'(m—r—1)
dzm=r B (z —t)m-

)

for r < m. Combining these expressions, we obtain

amK(x,t)’ i (m) Iaff(x,t)

dz™ r oz

9™ " log |z — t|
dx™-7

r=0

< s e (32 () s + mipog o - o)

z2,w€dD r=0 r lx - tIM*T
< s (ms %i%ﬁﬂ) (2.17)
T — m

for [z —¢| <1 and m > 1, where Sy = sup, ,¢sp |f(2, w)|.

Suppose that the intervals I; and I; are given by the expressions I; = [zq, o+
a] and I; = [to, 1o+ b]; we assume without loss of generality that 6+ max{a, b} <
zo — to. It follows directly from this inequality that

Zo+af2 —zx

<
zo+af2—-t| "

% (2.18)

for (z,t) € I; x I;. We now apply Egs. (2.10), (2.2), (2.17), and (2.18), to obtain

to+b pro+ta
K| = / / K(z,1) bi(z) b;(t) de dt

to o
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zo+a i xo+a/2-—x) 8’"1{(m0+a/2,t)
0 a.'lfom

To + 0/2

zo + a/2 —1

bi(z) dz||b;(t)] dt

Zo

ma=
/to+b zota X
t >

° zo m=k

/tto+b zo+a Sy f: ( ) (m + 1) |b;(z)] dz |b;(t)] dt

0 Zo m=k

s (B3 L ) de [by(1)] dt
/ 1543 5o (@)l do Jbs(2)]

3 1 to+b :f:o+ab2 J ( xo+ald) b t[dt
Da ) T R@e) ([ ) i
E 3\ Vab E 3\ 1
R Tl < BT I
5 (2 + 4) g1 S5 (8 + 16) 3k-1
which was to be proved. O

The proofs of the following two lemmas closely resemble those of Lemma 2.3
and Lemma 2.4, and are omitted.

IN

Sf (2 4 logm) |b;(z)| dz |b;(t)] dt

IN

AN

IA
n
NN
o

INA

Lemma 2.5 Suppose that the function K : [0,1] x [0,1] — R is given by the
formula K(z,t) = |z — t|* with 0 < |a| < 1. Then the ezpansion coefficient K;;
of the function K in the multi-wavelet basis of order k satisfies the bound

K| < —

= (2.19)

whenever the rectangular region I; x I; is separated from the diagonal.

Lemma 2.6 Suppose that the function L : D x D — C is given by the formula
L(z,w) = f(z,w)|z—w|*, with 0 < |a| < 1, where D is the closed disk of radius 3
centered at z = % and f is analytic in a domain containing D x D C C%. Suppose
further that the function K is the restriction of L to [0,1] x [0,1]. The ezpansion
of K in the multi-wavelet basis of order k has coefficients K;; which satisfy the

bound

2 3k-1 z,w€dD

whenever the rectangular region I; X I; is separated from the diagonal.

Kol (5+3) 3 s £l (220

The four preceding lemmas show that for a smooth kernel K with logarithm
or power singularity at z = ¢, the order k of the multi-wavelet basis in which
K is expanded may be chosen large enough that the expansion coefficient K;; is
negligible, provided I; x I; is separated from the diagonal. A similar statement
can be proven for any kernel of the form K(z,t) = ¢(z,t)s(|z—t|)+v(z,t), where
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¢, are entire analytic functions of two variables and s is an analytic function
except at the origin (where it has a singularity), provided that s is integrable.
We do not prove this statement here.

The next lemma establishes the fact that, asymptotically, most regions I; x I;
are separated from the diagonal.

Lemma 2.7 Suppose that I, ..., I, are the (non-increasing) intervals of support
of the first n functions of the multi-wavelet basis of order k. Of the n? rectangular
regions I; X I;, we denote the number separated from the diagonal by S(n) and
the number “near” the diagonal by N(n) = n* — S(n). Then N(n) grows as
O(nlogn); in particular, for n = 2'k with | > 0, we have the formula

N(n) = 6nlk — 15nk — 61k* 4+ 16k, (2.21)

Proof. The restriction that n = 2'k ensures that the first n basis functions
consist of those functions whose intervals of support have length at least 2!~
We define S;(p) to be the number of pairs (z, ) such that the rectangular region
I; x I is separated from the diagonal and |I;| = |I;] = 277, and we observe that
Si(p) = (2P = 1)(2°» — 2) k? for p =0,1,2,.... We further define Sz(p, q) to be
the number of pairs (%, ) such that I; X I; is separated from the diagonal and
|| = 277, |I;] = 279, and we observe that Sy(p,q) = Si(min{p, ¢})2P-9 for
p,q=0,1,2,.... Finally, we combine these formulae to obtain

5(”). = i (51(1’)'*' i (52(19,(1)'*'52((1,1?)))

p=0 q=p+1

-1
= 3 Sip) (1+2(27 -2)
= Ii(zp —1)(2" —2) K* (2!t — 3)

= (4 -6-21+15-2' +61—16) k*
= n®—6nlk + 15nk + 61k* — 162,
from which Eq. (2.21) follows directly. The assertion that the general growth of

N(n) is O(nlogn) follows from Eq. (2.21) and that fact that N is a monotonic
function of n. O

2.4.2 Products of Integral Operators

The previous subsection established the fact that a wide class of integral op-
erators, when expanded in multi-wavelet coordinates, are represented to high
accuracy as sparse matrices. It readily follows that a product of such integral
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operators can be similarly represented. For if we define integral operators Ky, K,
by the formulae

‘:iH@) = [ Kifa,) ) e
(af)(e) = [ Kale,t) f(2) b,
then the product operator Kz = K5K; is given by the formula
(Kkif)@) = [ [ Kalay) Kaly,0) £(2) de dy
| 1 ( / ' Ka(z,y) Ki(y,t) dy> f() dt
= /:Kg(a:,t) £(t) dt,

where the kernel K3 of the product has the form

1
Ks(a,t) = [ Ka(z,y) iy, ) dy.

If kernels K; and K, are analytic except along the diagonal z = ¢, where they
have integrable singularities, then the same is true of the product kernel K3. As a
result, the product operator K3 also has a sparse representation in a multi-wavelet
basis.

2.4.3 Schulz Method of Matrix Inversion

Schulz’s method [17] is an iterative, quadratically convergent algorithm for com-
puting the inverse of a linear operator. Its performance is characterized by the
following lemma.

Lemma 2.8 Suppose that A is an invertible linear operator, Xy is the operator
given by Xo = A" /||AF A, and for m = 0,1,2,... the operator Xm4, is defined
by the recursion

Xm+1 =2Xm — X AXon.
Then X, satisfies the formula

I —XmpA=({I-X,A)>~% (2.22)
Furthermore, X,, — A™! as m — oo and for any € > 0 we have
Il — XAl <€ provided m > 2log, x(A) + log, log(1/¢), (2.23)

where kK(A) = ||A|| - ||A™|| is the condition number of A and the norm ||A|| =
(largest eigenvalue of A% A)1/2,



2.5. NUMERICAL EXAMPLES 21

Proof. Eq. (2.22) is obtained directly from the definition of X,,;;. Bound
(2.23) is equally straightforward. Noting that A¥ A is symmetric positive-definite
and letting Ao denote the smallest and \; the largest eigenvalue of A” A we have

1] - XoA|| = “I - HQ—ZZ!“
L= Jo/A, (2.24)
1 - k(A)™

From Eq. (2.22) we obtain I — X,, A = (I — X,A)?", which in combination with
Eq. (2.24) and simple manipulation yields bound (2.23). DO

The Schulz method is a notably simple scheme for matrix inversion and its
convergence is extremely rapid. It is rarely used, however, because it involves
matrix-matrix multiplications on each iteration; for most problem formulations,
this process requires order O(n®) operations for an n x n matrix. As we have
seen above, on the other hand, a discretized integral operator A represented in
the basis of Section 2.1 has only order O(nlogn) elements (to finite precision).
In addition, A¥ A and (A¥ A)™ are similarly sparse. This property enables us to
employ the Schulz algorithm to compute A~! in order O(n log® n) operations.

2.5 Numerical Examples

2.5.1 Basis Functions

In this section we give numerical expressions for the multi-wavelet functions
fo, fi,.., fi-1 and show their graphs for several values of k. Table 2.1 con-
tains, for small k, the polynomials which represent the f; on the interval (0, 1),
together with the reflection formula to extend the functions to (—1,1), which is
their interval of support. Fig. 2.2 shows the graphs of the functions for £ = 4
and k = 5.

2.5.2 Integral Operators and Their Inverses

We compute the expansion in multi-wavelet bases of the integral operator K
defined by the formula

(Kf)(z) = /0 Nog|z — t] f(1) dt, (2.25)

which yields the matrix
T = {Ki;}ij=1,..n; (2.26)
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Table 2.1: FEzpressions for the orthonormal, vanishing-moment functions
fi,-o oy fi, for wvarious k, for argument x in the interval (0,1). The function
fi is extended to the interval (—1,1) as an odd or even function, according to the
formula fi(z) = (=1)**1 fi(-z) for 2 € (—1,0), and is zero outside (—1,1).
The functions, given here for k =1,...,5, are tabulated for larger values of k in
the chapter appendiz.

k=1
file)=_ 3
k=2
file)= 3 (-1+29)
@)= i (=2+3q)
k=3
A)= 3/ (1-2c +3022)
h@)= 3/ (3-16c+152%)
fs(z) L2 (4-152 4+ 1222)
k=4
fz) = 32 (14 4z — 302% + 2827)
fao(z) = 25 (—4+ 105z — 30022 + 210z°)
fs(x) =  3/Z (=54 48z — 10522 + 642°)
fal@) = & (—16+ 105z — 19222 + 1052°)
k=5
fi(z) = 15 (14 30z + 21022 — 840z + 630z4)
fo(z) V3 (=5 — 144z + 115522 — 22402° + 1260z*)
fs(z) = /15 (22— 735z + 350422 — 5460z + 2700z*)
fa(z) VA (35— 512z + 189022 — 25602 + 1155z4)
fs(z) = 3/ (32— 315z + 96022 — 11552° + 480z*)

where Lo
K,~J-=/0 /0 K(z, ) bi(c) bi(t) dz dt

and {by,b,...} is a multi-wavelet basis of £?[0, 1]. This computation is done for
the multi-wavelet basis of order k = 4, for various sizes n.

In addition the inverse matrix (/ — T)~! is obtained by the Schulz method.
Table 2.2 displays, for various precisions ¢, the average number of elements per
row in the matrices I —T and (I—-T)~!. Fig. 2.3 displays the matrices for n = 128
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1 1 1 i 1 1 L 1 ] [ 1 1 1 1 1 1 1

1 L
-1.0 -0.5 a.o 0.5 1.0

Figure 2.2: Functions fi,..., fi are graphed for k = 4 (top graph) and k = 5
(bottom). Each function (given in Table 2.1) is a polynomial on the interval
(0,1), is an odd or even function on (—1,1), and is zero elsewhere.

and € = 1073,
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Table 2.2: The average number of elements per row of the matrices I — T and
(I —T)7', where T is defined in Eq. (2.26), is tabulated for various precisions e
and various sizes n. Here k = 4.

e=10"2 e=10"3 e=10"*
n I-T (I-T)1 I-T (I-T)™ I-T (I-7)1!
32 8.8 9.7 19.3 19.6 22.8 23.6
64 9.3 10.0 25.8 26.0 31.9 32.6
128 9.9 10.1 29.2 29.4 38.2 38.8
256 11.8 11.8 30.1 30.3 41.9 42.7

2.6 Discussion

The results of the previous subsection demonstrate, for a particular integral oper-
ator, that the multi-wavelet representations are sparse. The matrix has a peculiar
structure in which the non-negligible elements are contained in blocks lying along
rays emanating from one corner of the matrix. Furthermore, the inverse matrix
shares that structure. This property is a general characteristic of integral opera-
tors with non-oscillatory kernels that possess diagonal singularities, and further
examples will be given in Chapter 4.

The kernel K(z,t) = log |z —t| of the previous subsection was chosen, however,
because the projections Kj;; could be computed analytically, thereby avoiding use
of quadratures. The dlﬁiculty here with quadratures is that they would be re-
quired for each element K; (in two dimensions), and would have to cope with the
singularity of the logarithm. It was felt that the analytical computation would
be more efficient. In fact, the analytical computation, which requires integrating
monomials 7 (0 < j < k) against the logarithm and combining the results with
large coefficients, is a very poorly-conditioned procedure. The computations de-
scribed above required quadruple-precision arithmetic to obtain single-precision
accuracy for n as small as 64. This procedure is not recommended.

The fault lies, of course, not with the idea of projection to the multi-wavelet
basis, but with the method of projection. The integration should be performed
numerically, with quadratures. As mentioned above, such a procedure would
require use of quadratures for each matrix element Ki;; ij, or potentially order
O(nlogn) times. A more efficient procedure is to use the Nystrom method, in
which only n quadrature applications are required. Numerical quadratures and
a vector-space analogue of the multi-wavelet bases are developed in Chapters 3
and 4; these tools enable efficient solution of integral equations using Nystrém’s
method.
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Figure 2.3: Matrices representing the operators 1 — K (top) and (1 — K)™! (bot-
tom), with K defined by Eq. (2.25), expanded in the multi-wavelet basis of order
k = 4, for n = 128. The dots represent elements above a threshold, which is
determined so as to bound the relative truncation error at e = 1073.

2.7 Appendix: Tabulation of Basis Functions

In the following table we present the functions fi, ..., fi, expressed in expansions
of orthonormal polynomials for the interval (0, 1), and tabulated for £ = 4,8, 12.



Co
C1
C2
c3

co
(4]
c2
c3
Cq
Cs
Ce
c7

Co
4]
c2
C3
Cq
Cs
Ce
c7
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Table 2.3: Coefficients for the orthonormal, vanishing-moment functions
fis--y fx, for various k, for argument z in the interval (0,1). Each function

is given in the form f(z) = Zf;é cj - pj(z), where pj(z) = P;(2z — 1) /27 +1,
the Legendre polynomial of degree j, shifted to the interval (0,1) and normalized.
The function f; is extended to the interval (—1,1) as an odd or even function,
according to the formula fi(z) = (=1)**k-1f,(=z) for z € (—1,0), and is zero
outside the interval (—1,1).

k=4
h fa fa fa
.0000000000000000 ~.1543033499620919 .0000000000000000 .2156454872944857
—.1533929977694741 .2672612419124244 ~ .0878668779193509 ~.3735089404169980
.5940885257860046 —.1725163898355886 —.3403069548648863 .4436221311410142
.3514675116774037 —.6123724356957945 .6135719910778963 —.3423265984407288

k=8
h fa fa fa
.0000000000000000 —.0843312289034136 .0000000000000000 .0742292692888546
—.0394514921576236 .1460659731254334 .0258430814883384 —.1285688658170082
.1527949721095086 —.1616317375321096 —.1000898242190157 .1503045161172336
—.3013157484854446 .0637484169813985 .2127004256180621 —.1036447629483221
.2049959665542275 .2168517314659207 —.2558883246467202 ~.0669121025632302
.5288069924640356 —.3995643491174248 —.0103051686103246 .3099911232623849
.2463744895581894 —.4560908549012228 .4962827560403292 —.2333502563584798
.0441081091391231 ~.1633067225540632 .3635809208901253 -.5381471079157126

fs fs fr fs
.0000000000000000 —.0871939722326493 .0000000000000000 .1309942892720891

—.0213434791213834 .1510243900206985 .0192854509208144 —.2268887645206330
.0826629391872435 —.1841022341475768 —.0746922302404146 .2899079084461328
—.1829592311019578 .1663892400581053 .1723717448166373 —.3288050657844448
.2692181887254343 —.0520293149261530 —.2992501225820789 .3336898392328423
—.1968270025380475 —.1836375913703662 .4050432626343038 —.2900996008838325
—.1805321245713286 4401344681347232 —.4003612351829521 .1945752095162505
.5616280477927965 —.4217364916434134 .2245825563246441 —.0763964570434043
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h
co .0000000000000000
¢ —.0179405992366968
c2 .0694836420647080
c3 —.1530096755279723
c4 .2201077082230140
cs  —.1431401336550512
ce —.1805072879652185
c7 .3717453015731024
Ccs .4413074075372503
Ccy .1881229915369518
10 .0395553032931457
c1y .0041396058259610

fs
co .0000000000000000
¢y —.0104273737468520
c2 .0403850448662383
c3 —.0918988661694854
c4 .1514809211499543
¢s  —.1754801708549531
cs .0929109878353303
c7 .1216196841160863
cs  —.2844627881902686
Ccy .0147751774362919
10 .4359353132957034
€11 .3761307967348913

fo
co .0000000000000000
c1  —.0090771349437703
c2 .0351555924684996
c3 —.0816263402165753
C4 .1447831048236192
¢cs —.2066628313763642
Ce .2287027892690286
¢z —.1579200668486585
cg —.0366328605538905
cy .2951802756507381
10 —.4314237351640850
c11 .2765929192982552

Table 2.3: (continued)

k=12
fa
—.0592042739052351
.1025448104290915
—.1233585459417166
.1032398584967429
—.0064287469139523
—.1680946588317245
.2749158159062862
—.0081064654950250
—.4549238393986653
—.3636376752880584
—.1281176981334961
—.0236611435924639

fe
-.0490852233087548

.0850181006716274
—.1054116332841276
.1041544568835931
—.0626055685259494
—.0348056650511157
.1662387148811842
—.2280521421975709
.0647562432345634
.2752581716809581
—.2219439549151931
—.5043899953764185

flO
—.0663210971285699

.1148715098403935
—.1458392917293345
.1609203666648590
—.1500812540366636
.0983488566098737
.0060095635684675
—.1566209531327825
.3115846050759926
—.3921104938549786
.3270789009891432
—.1437437082969879

f3
.0000000000000000

.0132868156385064
—.0514596156920636
.1156254051056246
—.1813181292375394
.1765547047788799
—.0058679070010733
—.2736941647216635
.1993616369248909
.4671192165219669
.2822961661345380
.0847279654920732

fz
.0000000000000000
.0094614910169722
—.0366441971390245
.0842044896200951
—.1439433554135965
.1860088057424346
—.1548304378705184
.0001986646990547
.2270020705291812
—.2763185483542785
—.1129177018240620
.5211079830677339

f11
.0000000000000000

.0078798389563931
—.0305184850489067
.0716769100690038
-.1321728306705118
.2074571615484287
—.2845256425672342
.3405574275289650
—.3475763522283202
.2872585567373639
—.1727059110267771
.0572056487761727

27

fa
.0516869543201819

—.0895244309710467
.1096491458548548
—.1016897863958198
.0408535191494144
.0858956775115070
—~.2211070510482991
.1853011503121983
.1593931614774968
—.3452248228872576
—.4313594000122254
—~.2098115229292681

fs
.0549972807548283
—.0952580845454926
.1194424834832239
—.1245947511300136
.0954606130089946
—.0149295180909320
—.1154462360082784
.2421338205360575
—.2425421502237302
.0010478959001006
.3713168669707026
—.4243990923037588

f12
.0971353300365081

—.1682433268332032
.2165192505829722
—.2529614538466701
.2777662732296559
—.2875975640399399
.2777726278131828
—.2447881538876456
.1897944657285511
~.1218486998229358
.0578048706132345
—.0152658200454800



Chapter 3

Numerical Quadratures

An integral equation to be solved numerically must be converted into a finite-
dimensional problem. The equation’s solution, completely characterized by its
infinite expansion in a chosen basis, is approximated by a finite truncation of
that expansion. Alternatively, the solution may be represented by its values at a
finite set of points.

In the previous chapter, a projection method was used, in which the infinite
expansion in a multi-wavelet basis was approximated by a truncated expansion
containing a finite number of terms. By contrast, in this chapter and the next, we
use the method of Nystrém, in which the integral is approximated by a quadra-
ture (a weighted average of values of the integrand at selected points). The
quadrature’s rate of convergence to the integral, as the number of points in-
creases, affects the amount of computation needed to achieve a given accuracy
in the solution to the integral equation. The convergence rate depends on the
behavior of the integrand and in particular on whether the integrand is singu-
lar in the interval of integration. In this chapter we develop rapidly-convergent
quadratures for several types of singularities encountered in physical problems.

3.1 Nystrom Method

A linear Fredholm integral equation of the second kind may be written in the
form

b
f(@) = p(a) [ K(z,t) £(t) dt = g(z), (3.1)

where the function p is the coefficient, K is the kernel, g is the right hand side,
and f is the unknown. The coefficient p is often included as part of the kernel K,
but we separate them, for in the following development we allow p considerable
freedom (including oscillatory behavior) while K is more restricted. We use the
symbol K to denote the integral operator of Eq. (3.1), which is given by the

28



3.1. NYSTROM METHOD 29

formula .
(KN(@) =p(z) [ K(z,t) 5@ at,

for all f € Cl[a,b] and z € [a,b]. Then Eq. (3.1) written in operator form is

(I-K)f =g. (3-2)

The Nystrém, or quadrature, method for numerical solution of integral equations
approximates the integral operator X by the finite-dimensional operator R, char-
acterized by weights w;,w,,...,w, € R and points z;,zs,...,2. € [a,b], and
given by the formula

(RF)(2) = p(2) 3 w; K(z,25) f(z3),

i=1

for all f € Cla,b] and z € [a,b]. Substitution of R for K in Eq. (3.2), plus the
requirement that the resulting equation hold for z = z;,z,,...,,, yields the
following system of n equations in the n unknowns fi, fa,..., fa:

fi—P(zi)zn:wj K(z;,z;) f; = g(x:), i=1,...,n.

I=1

The approximation (fi,..., fa) to the solution f of Eq. (3.1) may be.extended
to all = € [a, b] by the natural formula

fa(®) = 9(2) + p(z) Yo w; K(z,25) fi, (3.3)

1=1

which satisfies fr(z;) = f; for i =1,...,n. A bound on the error e = f — fr of
the Nystrom solution is given in Chapter 2 by (2.12),

llerll < (1 = K)7H - 1K = R)£r]-

The error depends, therefore, on the conditioning of the original integral equation,
as is apparent from the term ||( — K)~!||, and on the fidelity of the quadrature
R to the integral operator K. It is not necessary that || — R|| be small, rather
merely that R approximate K well near the solution f. In this chapter we develop
quadrature rules that have this property; nevertheless, they are of a somewhat
different form than R and are defined only on the mesh points z,...,z, rather
than the whole interval [a, b].
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3.2 Corrected Trapezoidal Rules for Singular
Functions

The quadrature method we develop arises from a method developed by Rokhlin
[16]. Some changes have been made with the aim of solving non-periodic integral
equations; in addition, one improvement permits higher order quadratures in
practice. These differences from [16] are noted as they are presented.

It is well known that the trapezoidal rule for integration can be modified at the
ends via the Euler-Maclaurin summation formula to a rapidly convergent rule,
provided the integrand is sufficiently differentiable. We will suppose, instead,
that the integrand is singular at one end of the interval and the form of the
singularity is known. In this case a modification at that end may be determined
so that the corrected trapezoidal rule is rapidly convergent.

3.2.1 Differentiable Integrands

We begin with the assumption that the integrand is differentiable throughout the
interval of integration. For positive integers /,n, and m = 2! + 2, and a function
f € C™[a,b], the Euler-Maclaurin summation formula is given by the equation
(see, e.g., [18])

/ab f(z) dz = To(f) + D7 (f,a) — D7 (f,b) + E7*(f), (3.4)
where
1 1
T.(f) = h <§f(a) + f(a + h) +o 4 f(b— h)+§f(b))
e 2 Bai

DX (f,z) = ; h @fui'l)(:ﬁ)

n=1l coph(i+1) —a —17) —
ET(f) = h"‘Z/,,+:f+ Sl )4:: :

A" 22 (b~ a) f(g)

B f™(z) dz

and kb = (b—a)/n and a < ¢ < b. Here B; are the Bernoulli numbers,

1 1 1 1
-, By = —— B, = —, = —"...
6" ! 6= Ds 30

By = 30°

The derivatives which appear in D7*(f,a) and D™(f,b) may be approximated
by finite differences, to obtain high-order quadrature rules which depend only on



3.2. RULES FOR SINGULAR FUNCTIONS 31

the values of f at equispaced points. Using the Taylor expansion for f about the
point a we have, for : = 1,2,...,m — 2,

flatih)=fla) + 3 f9(a) ) 4 ey ER™ g

= (m—1)!

with @ < v; < a + th. Eqgs. (3.5) can be considered to be a system of equations
in the unknowns hfM(a), A2f®(a),..., k™"2f(m=D(q), and the matrix A™ of
this system, given by the formula

1 1 1

2! (m-2)!
2 2 ., a2
1 =2\t
A™ = . 2! (m . 2)! :
m — 2 L—L"‘;f : o l_l___"(‘:’_;';:2
is non-singular, since the functions z’/j! for j = 1,2,... form a Chebyshev sys-
tem. We define the vector vf* = (v, ... ,v,’:m_2)T of finite differences by the
expression
f(a+h) - f(a)
a+ 2h) — f(a
op=(amt| eI

fla+(m—2)h) - f(a)
and from Eqgs. (3.5) we obtain, for j = 1,...,m — 2, the error bound

o = W fO(@)| <enh™  sup  |FmN(g) (3.6)
£€[a,a+(m~2)k]

where e,, is independent of [a, b], k, and the function f.

The expressions v}’ for the derivatives are used to define the left-end correc-
tion 1 D*(f,a) by the formula

m/2 1 BQ,
DRfia)= X h i vFer (3.7)

Similarly, in Eqs. (3.5) we replace a by b and i by —i to obtain finite-difference
expressions wi' = (wpy,...,wp,._,)7 for the derivatives at the right endpoint
(hf'(b), K2 fD(B),..., k2 fm=D(p)\T  and we define the right-end correction
1D (f,b) by the formula

mf2-1 B2z
1D (f,b) E h Wi (3.8)
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We thus obtain the corrected trapezoidal rule

1T (f) = Ta(f) + 1 D7 (f,0) — 1 DS, 0) (3.9)

that depends only on the values of f at the equispaced points a, a + h,...,
b— h, b. Combination of the Euler-Maclaurin formula (Eq. 3.4) with the finite
differences error bound (3.6) yields the bound

< 1em (b—a) A" sup_|FM(¢)],
EE[a,b]

T - [ fz) do

where 1e,, is independent of [a, b], k, and the function f.

Alternatively, the corrections to the trapezoidal rule may be concentrated in
the subintervals [a,a + h) and (b — h,b] by replacing h by &' = h/(m — 1) in
Egs. (3.5) to define revised endpoint corrections ; D™( f,a) and o DT (f, b) by the
formulae

2D7(f,a) = Z h m Vi 9i_1 (3.10)
=1 N
mf2-1 Bz.‘

2D1T(f’ b) = Z h (_22‘5} w;ﬁﬂi—-l‘ (3-11)
=1 .

.These endpoint corrections give us the “crowded” corrected trapezoidal rule
oI () = Tu(f) + D7 (f,0) = 2 D7 (£, 0). (3.12)

For the quadrature ;T we obtain the error bound (as for ;T")

T2 - [ @) do| < sem (b= a) A" sup |17,

£€[a,f]

where se,, is independent of [a,d], h, and the function f. This rule has the
advantage over the equispaced rule that the constant of the error term is smaller;
it has the disadvantage that the coefficients are larger and hence produce larger
round-off errors. Independently of these two characteristics, the crowded rule
is a suitable starting point for construction of rules for integral equations with
singular kernels, as we shall see below.

Coefficients of finite-difference expressions for the derivatives, equispaced cor-
rected trapezoidal rules, and crowded corrected trapezoidal rules are given in the
chapter appendix.



3.2. RULES FOR SINGULAR FUNCTIONS 33

3.2.2 Singular Integrands

We now consider integrands of the form

f(z) = ¢(z) s(z) + ¥(z) (3.13)

for all z € (0,b}, where ¢,3 € C™[0,b] and the function s contains the singular
part of f. In particular, we construct quadratures for f, where s is given by the
formula s(z) = log(z) or the formula s(z) = z* with 0 < |a| < 1.

We define T, to be the trapezoidal rule on [0,b] minus the left-end, by the
formula

, 1
Ta(f,0) = b (§(B) +-+- + S0 — B) + 3£
where h = b/n, and define the right-end corrected rule T by the formula

T7,z,(f’ b) = Tr,z(fa b) - 2D:¢n(f’ b)7 (3'14)

where the term ,DJ(f,b) is the finite-difference approximation to the Euler-
Maclaurin correction, as defined in Eq. (3.11). Given a positive integer  and two

finite sequences 8 = (1, Ba,..., A1) and x = {x1,X2,---,X1), With 0 < x1 < X2 <
-+ < x1 £ 1, we define the left-end correction Lf by the formula

LYf) =SB f(xi b).

i=1

We now define the linear mapping 77 : £![0,5] — R by the formula
TI(f,8) = T(f,b) + Ly (). (3.15)

Although L? and T# depend on ¥, this sequence is generally implied (see Remark
3.1 below) and we omit the symbol x from our notation. The mapping T with
suitable choice of 3 and x will be used as a quadrature formula for functions f
of the form given in Eq. (3.13). We now show how 8 may be chosen, given .

For positive integers k and n we consider the following system of linear equa-
tions with respect to the unknowns 8™ = (87,...,85):

2k . b :
Y806k = [ofde - T b)

7=1
(3.16)
2k . b .
38 (kY sOh) = [ ot () do - Ta(a* s(2),b),
ot
for ¢ =0,1,...,k — 1. We will see below that this system has a unique solution

p" and for functions f of the form given in Eq. (3.13) the rule 7% is a quadrature
with convergence of order at least k — 1.
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Remark 3.1 In Rokhlin [16], the points x1, ..., X2r are chosen to be equispaced,
namely x; = i/(2k). While this choice leads to satisfactory quadratures for £ < 3,
larger values of k correspond to coefficients 87,. .., 8% which are large enough to
introduce substantial round-off errors to fixed-precision computations. We have
found that alternative spacing of the points can be chosen so as to delay the
growth in the coefficients. Letting x4, ..., x2r be half-Chebyshev points

2t —1
Xi =1 - cos ( Z4k . —g) (3.17)

results in 87,..., A% which are satisfactory for £ < 5. Coefficients for both
equispaced points and half-Chebyshev points are given in the chapter appendix.

Our purpose in this chapter is the development of quadratures for integral
operators with diagonally-singular kernels. We consider kernels of the form

K(z,t) = ¢(z,t) s(|lz — t]) + ¢(z, 1),

where ¢,9 € C™([a,d] x [a,b]) and s is as introduced above. To compute the
value

(KN@) =) [ K1) f0)dt (3.18)

the interval [a, b] is divided into [a, z] and [z, ]. The integrand is singular on one
end of each of these intervals, so the quadrature T?" is applicable. We augment
our notation by defining the quadrature ;77" for an interval [c, b] with a left-end
singularity by the formula

LTV (f(z),¢,0) = T (f(= + ¢), b= o).

Similarly, we define the quadrature gT?" for an interval [a,c] with a right-end
singularity by the formula

RTf"(f(x)’ a, c) = Tnﬂ"(f(c - 1:), c—= a)'

Now we define a quadrature for the integral in Eq. (3.18) by defining the mapping
TY : £'([a,b] x [a,b]) = R by the formula

TH(G) = rT’ (Giya,3:) + LT (Gyy i, b), (3.19)

and further define T}\(G) = T?"(Go,a,bd) and T (G) = rT?"(G,a,b). Here
G: [a,b] x [a,b] » R and G; : [a,b] = R is the restriction of G defined by the
formula G;(t) = G(z;,t) where z; =a+ihfori=0,1,...,n,and k = (b—a)/n.
The quadrature T* has convergence of order k — 1, uniformly in 7, as we will
show in the next section.



3.3. ANALYTICAL PROPERTIES OF THE CORRECTED RULES 35

3.3 Analytical Properties of the Corrected Rules

The following lemma is a restatement of a classical result (see, e.g., [11]).

Lemma 3.2 Suppose that the function s : (0,b] — R is given by the formula
s(z) = log(z) or the formula s(z) = z* with 0 < |a| < 1. Then the system of
Egs. (3.16) has a unique solution ™ = (B},...,B5).

The next two lemmas are proven in [16]. Lemma 3.3 states that the coefficients
Bt, ..., B% have limiting values as n — oo and that the rate of convergence to
these values depends on the difference between the orders of correction k on the
left end and m on the right end. Lemmas 3.3, 3.4, and 3.5 will be used in the
proof of Theorem 3.6, below.

Lemma 3.3 (Rokhlin) Suppose that k and m are positive integers with k < m,
the function s is as specified in Lemma 8.2, and for each positive integer n, the
coefficients ™ = (BT, ..., B3) are the solution to the linear system of Egqs. (3.16).
Then there exist coefficients B = (f1,...,Bu%) and a constant ¢ > 0 such that

C

1B — Bi <

nm—k
fori=1,...,2k and all n.

Lemma 3.4 (Rokhlin) Suppose that the function s is one of the singular func-
tions specified in Lemma 3.2, k is a positive integer, and ¢ € C¥[0,b] satisfies

Then the function w = ¢ - s is defined on the closed interval [0,5] and
0 = w(0) = w(0) = - -- = w1 (0),

For the function w = ¢ - s, whose kth derivative is unbounded near 0, the
simplified Euler-Maclaurin error expression

v
k!

with 0 < ¢ < b, is not useful. In this case we substitute the following bound.

Ep(w) = =h* =3 (b~ a) w(¢),

Lemma 3.5 Suppose that k and n are positive integers and the function w :
[0,6] — R is as specified in Lemma 3.4, above. Then the error E¥(w) of the
Euler-Maclaurin formula (Eq. 3.4) has the bound

EF(w) < k¥ sup
z€[0,1]

&% g |0 (2)| da. (3.20)




36 - CHAPTER 3. NUMERICAL QUADRATURES

Thus, there is a constant c¢; > 0, independent of n, b, and the function w, such
that

T" (w0, b) — /0 ’ w() dz| < h* o /0 b o ®(z)| da, (3.21)

where h = b/n.

Proof. The bound (3.20) is immediate from the definition of E* given in
Eq. (3.4). The error bound (3.21) then follows from the combination of the
Euler-Maclaurin formula, the observation that D¥(w,0) = 0, the definition of T}
(Eq. 3.14), and bound (3.6). O

The following theorem is the foundation for the corrected trapezoidal rules
for singular functions. It is a slight generalization of a theorem found in Rokhlin
[16], in that the error bound is established for integrals taken on subintervals
[0, -:;b], fori=1,...,n, of the interval [0, 8], provided that the trapezoidal points’
spacing h = b/n is preserved.

Theorem 3.6 Suppose that k and m are positive integers with 2 < k < m and
the function f : (0,b] — R is given by the formula f = ¢ - s + 1, where
@, € C™[0,b] and the function s is as specified in Lemma 3.2. Further suppose
that for each positive integer n, ™ is the solution of Egs. (3.16) and T?" is
defined by Eq. (3.15). Then there exists ¢ > 0 independent of b and the function
f such that

< cbh* ! sup (Igb(k ! + ld)(k)(f)]) (3.22)
¢€f0.8]

TP (f,i/n-b) — /jb f(z) do

foralln andi=1,.

Proof. We write the function f as a sum of two functions; one is integrated
exactly by the quadrature and the other has several zero derivatives at 0.
Let P(y) denote the k-term Taylor expansion of a function ¢ € C™[0, b] about

z =0 )
v :
Z;) .
Now we define ¢, = ¢ — P(¢) and 3, = ¢ — P(3) so we have
0 = 6.(0) = %,(0) = ... = ¢ 1(0) = p¥~(0). (3.23)

We further define f, = P(4)-s+ P(¥) and f, = ¢, - s+ 4,, so that f = f, + f;,
and we let b; = b Now we bound the error by the inequality

T8(f8) - [ 1z

<

T8 (o) = [ fole

+|T8(f.,b: /f, ) dz|,
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where by Eqgs. (3.16) the first term on the right vanishes. By the definition of
T?" (Eq. 3.15), the second term satisfies

Eﬂ' fr(xih

T (f,,b:) /f;<u

T/ (fr,b: / fr(z) dz| +

By Eq. (3.23) and Lemma 3.4 the function f, = ¢, - s+, vanlshes at 0 and has
vanishing derivatives,
0= f(0) = £(0) = ... = f¥(0),

from which, in combination with error bound (3.21), we obtain

T (fr, bs) /fr ) dz

for some constant ¢, independent of n, b, 7, and the function f,. For the remaining
term, we define My = k!sup l(ﬁ(k)(:c)] and M, = k!sup '¢(k)(a:)|, both suprema
taken for = € [0, b], therefore finite, and Mgz = sup ﬂj, taken over positive integers
tand j =1,...,2k. Mg is finite by Lemma 3.3, and we obtain

< ke / |4 (z)|dz (3.24)

2k
< MY lfe(xih)l

]: fr(Xj h) L
2k
< Mg 2_: (My (x5 BY* [s(x; B)| + My (x; b))
< Mg (2k) (My+ M) R¥1, (3.25)

for sufficiently large n. Combining bounds (3.24) and (3.25) yields (3.22). O
Note that Theorem 3.6 establishes that the quadrature T:2"(f,b) converges
to the integral of f on the fixed interval [0, 5], with order of convergence at least
k —1. Additionally, however, it establishes the same convergence on subintervals
[0, -:;b] of [0, b] with correspondingly fewer quadrature points. This characteristic
is essential for proper treatment of non-periodic integral operators; in fact, it
assures uniform convergence of the quadratures T'%. defined in Eq. (3.19).

Corollary 3.7 Suppose that k and m are positive integers with k < m and that
the kernel K : [a,b] X [a,b] — R is given by the formula

K(z,t) = ¢(z,t) s(lz — 1) + ¥(=,1)
where ¢, € C™([a,b] X [a,b]) and s is as specified in Lemma 3.2. We further
suppose f € C™|a, b] and define the function G : [a,b] x[a,b] — R by the formula
G(z,t) = K(z,t) f(t). There exists cx > 0 such that

THG) - [ 6la,0) S0 di| <

(3.26)

k-1

foralln and 1 =0,1,.
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Proof. We observe that My and M, defined by the formulae

*¢(z,1)
M, = sup ——=
? :c,te[E,b] otk
k
t
M, = sup —8 (ACIL)

z,t€[a,b) otk

are finite, then apply Theorem 3.6. O

The quadratures T achieve uniform convergence and thus, combined with
the kernel K and the coefficient p, represent an operator R which approximates
the integral operator K defined above. An issue that arises in computing Rf
for a function f, however, is that T* requires the values of f at non-equispaced
points in the interval [a, b] in addition to the points a,a + h,...,b — h,b. This
issue can be handled by using k-point interpolation, for f € C™[a,b]. We have

the estimate
k

1) = Y e&) fla+ i+ b)| < =,

i=1
where ¢;(£),...,ck(§) are Lagrange interpolation coefficients and j¢ is chosen
such that £ € [a + (1 + j¢) hya + (k + j¢) k). Replacing f(¢) in T5(K f) by the

interpolation preserves our error estimates.

3.4 Numerical Examples

In this section we present numerical examples of the corrected quadrature rules
applied to differentiable and singular integrands. FORTRAN routines were writ-
ten which incorporate the corrections developed in Section 3.2, and the quadra-
tures were computed in double-precision arithmetic on a Sun Sparcstation 1. The
correction weights themselves, which are given in the chapter appendix, were com-
puted exactly with Maple, and in quadruple-precision arithmetic in FORTRAN
running on a DEC microVAX.

Table 3.1 shows the errors in using quadratures of order 4, 8, and 12 to ap-
proximate the integral of a smooth function, comparing the equispaced corrected
trapezoidal rule to the “crowded” corrected trapezoidal rule. Errors from the
uncorrected trapezoidal rule are also shown for comparison. We make several
observations:

1. Full single or double precision accuracy is easily achievable with the higher-
order rules.

2. The observed rate of convergence matches that expected quite closely, as
can be seen by comparing the errors for various n.
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Table 3.1: The quadrature rules T, of Eq. (3.9) and ;T of Eq. (3.12) are used
to compute [;[cos(21lz) + sin(22z)] dz and relative errors are shown for various
values of n,m.

Trapez. Equispaced rule ;T

n Rule m=4 m=8 m =12
10 —-0.397E+00 ~0.235E400 0.128E401 —-0.499E+01
20 -0.936E-01 0.840E-02 -0.119E-01 0.385E—-02
40 -0.231E-01 0.137E-02 -0.181E-04 -0.226E-05
80 -—-0.575E-02 0.108E-03 0.863E—-07 -—0.847E—10
160 -0.144E-02 0.733E-05 0.617E-09 0.676E—13
320 -0.359E-03 0.474E-06 0.286E—-11 —0.189E-15
640 '—0.897E—04 0.301E-07 0.966E—14 -0.227E-14
1280 -0.224E-04 0.190E~-08 -0.170E-~14 -0.151E-14

“Crowded” rule oT7"

n m=4 m=2_§ m = 12
10 0.425E-02 0.103E-04 0.119E-06
20 0.133E-02 0.866E—06 0.653E-09
40 0.109E-03 0.462E-08 —0.420E-11
30 0.748E-05 0.201E-10 0.121E-11
160 0.486E—06 0.793E-13 0.810E—12
320 0.309E-07 0.000E4-00 0.863E-13
640 0.195E—08 —0.227E—-14 -0.172E-12
1280 0.122E-09 -0.170E—14 0.130E-12

3. The “crowded” rules get a substantial jump on the equispaced rules and
show small errors almost as soon as the integrand is resolved by the quadra-
ture points.

4. The crowded rules ultimately achieve somewhat less precision than the
equispaced rules, due to roundoff error resulting from the large correction
weights, but this effect is important only if full double-precision accuracy
is required.

In summary, the corrected rules should be preferred to the trapezoidal rule when-
ever high accuracy is desirable. The “crowded” corrected trapezoidal rule of order
12 performs very well.

Table 3.2 shows the errors from using the corrected trapezoidal rule for singu-
lar functions to compute the integral of an integrand with logarithm singularity.
The rule was applied for various numbers of quadrature points n and various k,
and for equispaced and half-Chebyshev xi,..., x2;. In each case the correction
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Table 3.2: The quadrature rule T? of Eq. (3.15) used to compute [;[cos(21z) +
sin(22z)+log(x)(cos(23x)+sin(24z))] dz and relative errors are shown for various
values of n, k. The right end is corrected to eighth order (m = 8).

Equispaced points x1,..., X2k

n k=2 k=3 k=4 k=5
10 —-0.548E+00 -0.219E-01 0.429E-01 -0.608E-02
20 0.386E—02 —0.657E—02 0.506E—-03 0.394E-04
40 0.403E-02 —0.242E-03 -0.169E-05 0.614E-06
80 0.663E—-03 —0.341E~05 —0.236E—06 0.482E-08
160 0.964E—04 0.381E-06 —-0.971E-08 0.809E-11
320 0.139E-04 0.545E-07 -0.363E-09 -0.593E-12
640 0.202E-05 0.509E-08 -0.135E-10 0.258E—-14
1280 0.292E-06 0.414E-09 -0.497E-12 0.861E—-15

Half-Chebyshev points x1,..., X2k

n k=2 k=3 k=4 k=5
10 -0.510E-01 -0.667E—-02 ~-0.503E-02 -0.110E-02
20 0.143E-02 0.599E-04 -0.166E—04 0.553E-05
40 0.484FE—-03 0.615E-05 0.732E-06 0.877E-07
80 0.750E-04 0.349E-06 0.351E~07 0.653E-09
160 0.108E-04 0.203E-07 0.132E-08 -0.312E-12
320 0.156E—-05 0.125E-08 0.492E-10 -0.148E-12
640 0.227E-06 0.796 E—10 0.183E—11 —0.445E—14
1280 0.327E-07 0.519E-11 0.670E—-13 -0.100E-14

weights 8 = (B, ..., Ba) were chosen to be the limiting values (of Lemma 3.3),
given in the chapter appendix. Note that Theorem 3.6 assures us of convergence
of order at least k — 1. We observe:

1. Although we have proven that the order of convergence is at least k — 1,
the actual order of convergence appears to lie between k and k + 1 and the
convergence pattern is somewhat irregular.

2. The correction weights from equispaced points x1i,. .., X2x are much larger
than those from half-Chebyshev points; nevertheless, both versions of the
quadrature rule perform well and lead to nearly full precision accuracy in
practice.

The uncorrected trapezoidal rule, with the left end omitted, gives very slow

convergence for this problem and is not practical for achieving high accuracy.
Our final examples of the corrected trapezoidal rules, in Table 3.3, demon-

strate the uniform convergence of the quadratures for various integral operators.
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Table 3.3: The quadrature rule TX of Eq. (3.19) is used to compute F(z) =
Jo[cos(21zt) + sin(22xt) + s(|z — t|)(cos(23xt) + sin(24xt))] dt, with = = i/n for
¢ =0,1,...,n. The function s is singular and has one of three forms given below.
The relative L£? errors for the quadratures with k = 4 are shown.

Three Choices of Integrand f(z,t)

n  s(z) =log(z) s(z)=z"12 s(z)=2zl/?
10  0.302E-03 0.134E-03  0.482E-04
20 0.527E-05 0.187E-05 0.579E-06
40 0.681E-07 0.487E—07 0.206E—07
80 0.573E-08 0.266E—-08 0.611E-—-09
160  0.283E-09 0.132E—09 0.181E-10
320 0.118E-10 0.613E—-11 0.547E-12
640 0.454E-12 0.300E-12 0.169E-13
1280 . 0.216E-13 0.155E-12 0.271E-14

In these examples, we approximate the integral F; = [} f(z;,t) dt for z; = i/n
and ¢ = 0,1,...,n, by the quadrature T%(f), defined in Eq. (3.19). The table
shows the relative £? error of the approximations, defined by the formula

€r2 = ( ?:o[T:i(f) " E]2)1/2 .
?:0 ‘F‘i2

(3.27)

By taking ratios of the errors for different n, it can be seen that (for k¥ = 4) the
rate of convergence is uniformly of order at least 4. For the logarithm singularity,
the order of convergence is about 4.5, and for the square root singularity, it is
nearly 5. In each case, n = 20 produces roughly single-precision accuracy.

3.5 Appendix: Quadrature Weights

This appendix contains various weights and correction coefficients used in the
quadratures of the chapter. The coefficients in the finite difference expressions for
odd-numbered derivatives, which appear in the Euler-Maclaurin formula, as well
as the corresponding correction coefficients are tabulated (Tables 3.4 and 3.5 and
3.6). The limiting values of the correction weights used for the singularities s(z) =
log(z) and s(z) = x* for @ = +1 are shown for equispaced correction points
(Table 3.7) and for half-Chebyshev correction points. The correction weights for
finite n, which are very numerous, are not shown.
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Table 3.4: Finite-difference coefficients for odd-numbered derivatives to various
orders of approzimation are shown. The table entries are coefficients from the
formula R fU)(z) = (1/d) 052 f(z +ih) + O(A™), for j =1,3,5,7,9 and
m = 4,6,8,10,12.

hF(a) B £O)(a)
O(h*) O(KS) O(h®) O(K%)  O(h2)  O(K®) O(h9)  O(h!2)
d 2 12 60 840 2520 2 6 288
co -3 —-25 147  —2283 —7381 -7 -81 -8591
c1 4 48 360 6720 25200 40 575 72492
c2 -1 —-36 450 -11760 —56700 -95 ~1790 278313
c3 16 400 15680 100800 120 3195 640752
C4 -3 -225 -14700 -—132300 -85 3580 979878
Cs 72 9408 127008 32 2581 1039656
Ce -10 -3920 —-88200 -5 —=1170 -774402
cr 960 43200 305 399408
cs -105  —14175 -35 ~136347
Cy 2800 27788
C10 —252 —2565
B £O)(z) T fO(a) B FO(z)
O(hS) O(h®) O(h1) O(h'2)  O(K9) O(A!2) O(h12)
d 2 8 240 30240 2 24 2
co -5 -49  —-2403 —420475 -9 —605 -11
c 18 232 13960 2876363 70 5628 108
c2 —-24 —461 -36706 —9389763 -238 23583 —477
c3 14 496 57384 19227792 462 58632 1248
c4 -3 =307 -—58280 -—-27098442 —-560 —95802 —2142
Cs 104 39128 27147960 434 107520 2520
Ce —-15 -16830 -—-19395138 —210 —83958 —2058
c7 4216 9693648 58 45048 1152
cs —469  -3229227 -7 —15897 —423
Co 645412 3332 92

c10 —58635 =315 -9
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Table 3.5: FEquispaced endpoint corrections transform the trapezoidal rule
into a high-order quadrature for functions with several continuous deriva-
tives. The quadrature rules are given by the formula [° f(z) dz = T.(f) +
(h]d) Tns%ci[f(a + ih) + f(b — ih)] + O(h™), where h = (b — a)/n and
Ta(f) = h[3f(a) + fla+ h) + -+ f(b— ) + 3 /(B)].

O(h?) O(h') O(hS) O(h®)  O(RY) O(h1?)
d 1 24 1440 120960 7257600 958003200
Co 0 -3 =245 —-23681 —1546047 —216254335
] 4 462 55688 4274870 679543284
Co -1 -336 -66109 -6996434 —1412947389
c3 146 57024 9005886 2415881496
Cq4 —27 -31523 -—8277760 —3103579086
cs 9976 5232322 2939942400
Cg —-1375 -=2161710 —2023224114
cr 526154 984515304
cs —57281 —321455811
Cy 63253516

€10 —5675265
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Table 3.6: Corrections crowded into the intervals [a,a + h) and (b — h,b] con-
vert the trapezoidal rule into a high-order quadrature for functions with sev-
eral continuous derivatives. The quadrature rules have the form f: f(z) dz =

To(f)+(h/d) S22 i [ f(a+ =5 h) + f(b— =5 h)] + O(A™), where h = (b—a)/n
and T,(f) = h[3f(a)+ f(a+h)+---+ f(b—h)+17(b)]. These rules have smaller

error constants, but larger coefficients, than the equispaced corrected trapezoidal
rules.

O(h?) O(h%) O(RS)  O(h®) O(h1°) O(h12)
d 1 8 288 17280 89600 87091200
Co 0 -3 -125 —T7889 —41943 —41374135
c1 4 30 13832 —-372570 4717178004
) -1 240 -57421 2898654 —43825028709
c3 —190 133056 —9112466 180245487576
cq 45 -130067 15663360 —428859839166
cs 58744 —15657582 649926182400
cg ~10255 9131810 —649910688834
cr —2897574 428850243624
(4] 388311 —180220260891
Cg 43821791596

€10 —4703691465
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Table 3.7: The limiting values of the correction weights, at equispaced points, for
the corrected trapezoidal rules for singular functions are tabulated. The corrected
quadrature rules are given by the formula PP f(z)dz = TI(f) + X%, B: fla +
3wh) + (/) Lo e f(b— 755 h), where h = (b—a)/n, T;(f) = h[f(a+h)+
fla+2h) +--- 4 f(b—h) + 3 f(b)], and the coefficients d and co,...,cm_2 are
given by Table 3.6.

Singularity s(z) = log(z — a)

k=2 . k=3
51 0.1601298415357170E4-01 0.2228766018460087E+01
o)) —0.3382558521919485E+01 —0.1231212070062612E+402
e 0.3627888464434128E4-01 0.3157965997308673E+02
B4 —0.1346628357871812E4+01 —0.3840391590010434E+02
Bs 0.2267350459115253E402
Be —0.5265893981968890E+01

k=4 k=35
51 0.3093483401777122E401 0.4335882754006495E+01
Ba —0.3101788376740780E+02 —0.6931374375731333E+02
B3 0.1362059155903270E+03 0.4590379369965628 403
B4 —0.3147474808724213E+03 —0.1630223863113166E+04
Bs 0.4215054127612634E403 0.3509093316535128 404
Be  —0.3287854038787327TE+03 —0.4819809483739626E+04
b7 0.1388011671370668E+03 0.4271587513841620E+404
Bs  —0.2455521037187227E+02 —0.2374001155274844E+404
Ba 0.7547424129498612E+03
510 —0.1049488171922296E+03

Singularity s(z) = (z — a)~1/2

k=2 k=3
o 0.3338954623777353E+01 0.5156862384200115E4-01
o)) —0.1036918555513964E+02 —0.3718025418572306E+02
Jo 2 0.1238817390561390FE4-02 0.1050278047880726E+03
B4 —0.4857942974251604E4+01 —0.1388205130918806E+403
Bs 0.8799431664143500E+02

Be

—0.2167821653610409E4-02
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Table 3.7: (continued)

Singularity s(z) = (z — @)~1/2 (continued)
k=4 k=5
£ 0.7889576157976986E+01 0.1191640221424121E4-02
B2  —0.1014839102693306E+03 —0.2431211398143441E+03
B3 0.4982052353339497E4-03 0.1823927314310889E4-04
Bs  —0.1241778604543411E+04 —0.7083666085060807E+04
Bs 0.1751093993580452E4-04 0.1635686640624526 E405
Be  —0.1419085152097947E+04 —0.2381679753707451E+05
Br 0.6179863268019096 E+4-03 0.2217597560756524E4-05
Bs  —0.1123274649636003E+03 —0.1285030321889555E+05
Bo 0.4231931207608981E+-04
B1o —0.6062289570994023E4-03

Singularity s(z) = (z — a)'/?
k=2 k=3
£ 0.1076226369733505E+01 0.1403733895743621E+01
B2 —0.1472473730142097E+01 -0.6106269754659710E+01
B3 0.1382935017750346E+01 0.1458214411894674E+02
B4+ —0.4866876573417537E4+00 —0.1639615278631818E+02

Bs 0.8952282755716858E+01
Bs —0.1935738229429337E+01
k=14 k=5

B 0.1761384695584808E4-01 0.2301960768321394E4-01
Bz  —0.1382118344852977E+02 —0.2856244752621036E+02
B3 0.5459150117813370E4-02 0.1642204330046712E4-03
Bs —0.1173574845498706E+03 —0.5199121092937581E+03
Bs 0.1507790199321616E+4-03 0.1011593120489479E4-04
Be  —0.1147784911579322E4+03 —0.1264688737067177E+04
B 0.4762309598361213E+02 0.1027260908792144E+-04
Bs  —0.8297842633159577TE+01 —0.5280676861522366E+03
Bo 0.1570202164406574E+03
Bo —0.2066565945589198E+ 02
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Table 3.8: The limiting values of the correction weights, at half-Chebyshev
points, for the corrected trapezoidal rules for singular functions are tabulated.
The quadratures are given by [P f(z)de = T!(f) + RX, B f(a + x:h) +
(h/d) 062 ¢ f(b— -7;'71- k), where h = (b—a)/n, xi = 1 — cos((2i — 1)7/(8k)),
T.(f)=h{fla+h)+ fla+2k)+---+ f(b— k) + 3 f(b)], and the coefficients d
and cg,...,Cm—2 are given by Table 3.6.

Singularity s(z) = log(z — a)
k=2 k=3
£ 0.5603992216960789E—-01 0.2395413023703419E—-01
B2 0.2870630583396921E+4-00 0.1743092878178258E+00
B3 0.2563533589170907E+00 —0.1631724711422584E400
B4 —0.9945633942639063E—01  0.9387069242218954E+00

Bs —0.5880276430135620E+00
Be 0.1142297718790650E+00

b1 0.3338537800974016E—01  0.1916264301337224E—02
B2  —0.1737066212781738E+00  0.1567268574189051E+00
B3 0.1198836762516400E+01 —0.4334786391079948E+00
Bs —0.2591374963545573E+01  0.7215818540402889E+00
Bs 0.3883697343902998E+01  0.1482966328206821E+01
Bs —0.2430220427598129E+01 —0.6595938685246877E+01
B7 0.6270755476376530E4+00  0.1169258889232862E+-02
Bs —0.4769301964491491E—-01 —0.9958531304701892E+01
Bs 0.4103424553775595E401
B1o —0.6712561210148048E+00
Singularity s(z) = (z — a)~1/2
k=2 k=3
B1 0.8353164416920675E—~01  0.3888639530245085E—01
B2 0.1911747004918826E+00  0.8640672385266692E—01
B3 0.3657110693973134E4+00  0.3880300543933000E—01
Bs —0.1404174140584028E+00  0.7069014304227469E+00
Bs —0.4537263116382184E+00
Be 0.8272875662102377E—-01




48

B
B2
Bs
Ba
Bs
Be
Br
Bs

,310

B

Ba
Ba
Bs

o
B2
Ba
Ba
Bs
Be
Br
Bs
Bo
,B 10

CHAPTER 3. NUMERICAL QUADRATURES

Table 3.8: (continued)

Singularity s(z) = (z — @)~'/? (continued)
k=4 k=5

0.2823063071751857TE—-01 0.1604517803043481E~01
—0.1016030472473191E400 —0.2672763418512212E—-01
0.8957498450168363E+00 0.495249986682566 TE+-00
—0.1944630011805141E4+01 —0.1916835699721412E+-01
0.3079540564910779E4-01 0.6247645777407226E+-01
—0.1835281366554477E4+01 —0.1233093115169777E+02
0.3822511312525950E+00 0.1631924962150504E402
—0.4257746290791726E—02 ~—0.1237865585994330E4-02
0.4849695950284900E4-01

—0.7747361683625560E4-00

Singularity s(z) = (z — a)/?

0.3685550676579945E—-01 0.1729631990952830E—01
0.3411680628277778E+4-00 0.2024441114244492E4-00
0.2026521530973060E4+00 —0.2155157764926719E4-00
—0.8067572269088319E-01 0.9910326020047757E4-00
—0.6154646588009935E4-00

0.1202074019549121E4-00

k=4 =5

0.7512196681423955E—~01 —0.6317627640571476E—01
—0.4538891994788910E+00 0.7370068868212822E4-00
0.2050275204711021E4+01 —0.2828700163634487E+-01
—0.4084723895152133E+401 0.6657003574957570E+4-01
0.5503263764388441E+01 —0.8199869710972154E4-01
—0.3512451256619964E+401 0.4165258132856930E4-01
0.1038747521068656E+01 0.3554455470298683E4-01
—0.1163441057313696E4+00 —0.5923097194990581E4-01
0.2913478385611404E4-01

—0.5123591045429318E+4-00



Chapter 4

Vector Space Bases

In this chapter we construct a class of bases, analogous to the multi-wavelet
bases of Chapter 2, that transform the dense n x n-matrices resulting from the
discretization of integral equations into sparse matrices with order O(n log n) non-
zero elements (to arbitrary finite precision). In these bases, the inverse matrices
are also sparse, and are obtained in order O(n log?n) operations by the classical
Schulz method.

A recent paper [3] introduces the use of wavelets for the application of an
integral operator to a function in O(nlogn) operations, where n is the number
of points in the discretization of the function. In the present chapter, rather
than employ a wavelet basis for £L2(R), we construct bases in which we represent
the operators discretized by Nystrém’s method. If S = {z1,...,z,} denotes
the points of the discretization, we define a class of wavelet-like bases for the
finite-dimensional space of functions defined on S.

4.1 Wavelet Bases

4.1.1 Properties of the Bases

Given a set of n distinct points S = {z1,z3,...,2,} C R (the discretization) we
construct an orthonormal basis for the n-dimensional space of functions defined
on S. For simplicity, we assume that n = k-2! where k and [ are natural numbers,
and that z; < 3 < --- < z,. The basis has two fundamental properties:

1. All but k basis vectors have k vanishing moments, and
2. The basis vectors are non-zero on different scales.

Fig. 4.1 illustrates a matrix of basis vectors for n = 128 and k£ = 4. Each row
represents one basis vector, with the dots depicting non-zero elements. The
first k£ basis vectors are non-zero on zy,...,T, the next k are non-zero on

49
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Tok41,---, T4k, and so forth. In all, one half of the basis vectors are non-zero
on 2k points from S, one fourth are non-zero on 4k points, one eighth are non-
zero on 8k points, etc. Each of these n/2 +nf4+n/8+ --- 4+ k = n — k basis
vectors has k zero moments, i.e., if b= (by,...,b,) is one of these vectors, then

n

bz =0, j=0,1,...,k—1.

i=1
The final k£ vectors result from orthogonalization of the moments {x;7, z57,. .., z,7)
forj =0,1,...,k—1.

These properties of local support and vanishing moments lead to efficient
representation of functions which are smooth except at a finite set of singularities.
The projection of such a function on a vector of this basis will be negligible
unless the vector is non-zero near one of the singularities. As a simple example,
we consider the function f(z) = log(z) on the interval [0,1] with the uniform
discretization x; = ¢/n. A hand calculation shows that for any ¢ > 0, f may be
interpolated on the interval [¢, 2¢] by a polynomial of degree 7 with error bounded
by 47°, or roughly single precision accuracy. If we choose k = 8 in constructing
the basis, f will be represented to this accuracy by the k basis vectors non-zero
on zy,..., T, the k basis vectors non-zero on z;,..., T4, and so forth, down to

Figure 4.1: The matriz represents a wavelet basis for a discretization with 128
points, for k = 4. Fach row denotes one basis vector, with the dots depicting
non-zero elements. All but the final k rows have k vanishing moments.
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the k basis vectors non-zero on z,...,z,, in addition to the k£ orthogonalized
moment vectors. The number of non-negligible coefficients in the expansion of f
in this basis grows logarithmically in n, the number of points of the discretization.
Although this example is idealized, its behavior is representative of the general
behavior of an analytic function near a singularity.

4.1.2 Construction of the Bases

The conditions of “local” support and zero moments determine the basis vectors
uniquely (up to sign) if we require somewhat more moments to vanish. Namely,
out of the k vectors non-zero on z,,..., Zg;, we require that one have k vanishing
moments, a second have k+ 1, a third have k£ 4+ 2, and so forth, and the kth have
2k — 1 vanishing moments. We place the same condition on the k basis vectors
NON-Zero on Tag4i,-..,ZL4k, and so on, for each block of k basis vectors among
the n — k basis vectors with zero moments. :

We construct the basis by construction of a finite sequence of bases (shown in
Fig. 4.2), each obtained by a number of orthogonalizations. The first basis results
from n/(2k) Gram-Schmidt orthogonalizations of 2k vectors each. In particular,

the vectors (z,7,...,z9’) for j = 0,...,2k — 1 are orthogonalized, the vectors
(z2k417, ..., z4’) for § = 0,...,2k —1 are orthogonalized, and so forth, up to the
vectors (ZTn—2k417,-..,2,7) for § = 0,...,2k — 1 which are orthogonalized.

Half of the n vectors of the first basis have at least k£ zero moments; in
forming the second basis, these vectors are retained; the remaining n/2 basis
vectors are transformed by an orthogonal transformation into basis vectors, each
of which is non-zero on 4k of the points z,,...,z,, and half of which have at
least k£ vanishing moments. The orthogonal transformation results from n/(4k)
Gram-Schmidt orthogonalizations of 2k vectors each. Similarly, the third basis
is obtained from the second basis by an orthogonal transformation that itself
results from n/(8k) Gram-Schmidt orthogonalizations of 2k vectors each. Before
we can specify these orthogonalizations, we require some additional notation.

Suppose V is a matrix whose columns vy, ..., vy are linearly independent. We
define W=0Orth(V') to be the matrix which results from the column-by-column
Gram-Schmidt orthogonalization of V. Namely, denoting the columns of W by
wy, ..., Wk, We have

linear span{wy,...,w;} = linear span{vy,...,v;}

wiij=6ij t,7=1,...,2k.

For a 2k x 2k-matrix V we let VU and VI denote two k x 2k-matrices, VY
consisting of the upper k rows and V% the lower k rows of V,

e=(%).



52 CHAPTER 4. VECTOR SPACE BASES

Now we proceed to the definition of the basis matrices. Given the set of points
S={z1,...,2,} C Rwithz; < --- < z,,, where n = k-2, we define the 2k x 2k

moments matrices M;; for i =1,...,n/(2k) by the formula
1 2541 - "’33.‘+12k_1
2k—1
7 S (4.1)
i Top2k - Topor !

Figure 4.2: FEach of the four matrices represents one basis, as in Fig. 1. The
upper-left matriz is formed by orthogonalizing moment vectors on blocks of 2k
points. The upper-right matriz is obtained from the upper-left matriz by premul-
tiplying by an orthogonal matriz which is the identity on the upper half. Simi-
larly, the lower matrices are obtained by further orthogonal transformations. The
lower-right matriz represents the wavelet basis for n = 64, k = 4.
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where s; = (i — 1)2k. The first basis matrix U; is given by the formula

((Una” )

Uy =

\ Ul’nl v }

where Ul,,-T = Orth(M;;) and n; = n/(2k). The second basis matrix is UsUj,
with U, defined by the formula

I,
Up( /2 U,)
2

where I, is the m x m identity matrix and Uj is given by the formula

[ Uzs® \

\ UZ)HQU )

where ny = n/(4k), UgyiT = Orth(M,;), and M,; is given by

U

Mo = Ut 2i-1” My 2i1

20 = U .
Ui 2" My 2

In general, the jth basis matrix, for j =2,...,log,(n/k), is U;---Uy, with U;

defined by the formula
Uj — ( In-—n/ZJ-l U )
j



54 CHAPTER 4. VECTOR SPACE BASES

where U] is given by the formula

( Uit \

U; .t
' Uj,n‘L
Uj - Uj,lU ? ’
Uiz
\ ij"jU )
where n; = n/(2°k), U;; is given by
Uj,,‘T = Orth(M;,), (4.2)
and M;; is given by
Ui yor UMy 0i
M'i = 1-1,2:-1 1—-1,2:-1 ) 4.3
. ( Uj_a2i” Mj_y 2 (43)

The final basis matrix U = U, - - - Uy, where | = log,(n/k), represents the wavelet
basis of parameter k on zy,...,z,.

Remark 4.1 The definitions given for the basis matrices are mathematical def-
initions only; in a numerical procedure, considerable roundoff error would be
introduced by the orthogonalizations defined above. In the actual implementa-
tion, the matrices M;; are shifted and scaled, resulting in a numerically stable
procedure that is equivalent to the above definitions (in exact arithmetic). Details
of this procedure are provided in Section 4.3.

It is apparent that the application of the matrix U to an arbitrary vector
of length n may be accomplished in order O(n) operations by the application
of Uy,...,U; in turn. Similarly, U™! = U7 may be applied to a vector in order
O(n) operations. Certain dense matrices, in particular those arising from integral
operators, are sparse in the basis of U and their similarity transformations can
be computed in O(nlogn) operations. These techniques are developed in the
following sections.

We conclude this section with an illustration of the vectors of one basis from
this class, in Fig. 4.3.
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L~~~

W

Figure 4.3: Basis vectors on four scales are shown for the basis where n = 128,
points x,,...,T, are equispaced, and k = 8. The first column of vectors consists
of rows 1-8 of U, the second column consists of rows 65-72, etc. Note that half
of the vectors are odd and half are even functions, and that the odd ones are
generally discontinuous at their center.
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4.2 Second-Kind Integral Equations

4.2.1 Sparse Representation of Integral Operators

Asin Chapters 2 and 3, we concern ourselves here with kernels K = K(z,t) which
are analytic except at z = t, where they may possess an integrable singularity.
We discretize the integral operator K,

(K@) = [ K(e0) f(0)dt

by Nystrém’s method, using an equispaced quadrature. Given n > 2, we define
points z;,...,z, to be equispaced on the interval [a, 8],

z;=a+(E—-1)(b—-a)/(n-1), (4.4)

and define the elements T;; of the n X n-matrix T by the formula

L K(z;,x;) i#J
A n—-1 L)
T;; —{ 5 iz (4.5)

Note that the matrix T' = T'(n) corresponds to a primitive, trapezoid-like quadra-
ture discretization of the integral operator K. The matrix T possesses the same
smoothness properties as the kernel K(z,t). Transformation of T' by the bases
developed in Section 4.1 produces a matrix that is sparse, to high precision. The
number of elements is effectively bounded by order O(nlogn).

When the matrix representing the quadrature corrections developed in Sec-
tion 3.2 is added to T, producing high-order convergence to the integral operator,
this bound remains valid.

The matrix T, transformed by the orthogonal n x n-matrix U, can be decom-
posed into the sum of a sparse matrix and a matrix with small norm. That is,
given € > 0, there exists ¢, > 0, independent of n, such that the transformed
matrix can be written in the form

UTUT =V + E,

where the number of elements in V = V(n) is bounded by ¢, nlogn and E = E(n)
is small: ||E|| < €||T||. This assertion can be proven very similarly to Lemmas 2.3
and 2.4; in fact, substitution of the finite sums which determine the elements of
UTUT for the integrals in those lemmas yields the assertion.

4.2.2 Solution via Schulz Method

The sparse matrix representing the integral operator also has a sparse inverse,
as was the case for the multi-wavelet bases developed in Chapter 2. We invert
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the matrix by the Schulz method, described in Section 2.4.3. Each iteration
requires two matrix-matrix multiplications, where the multiplicands are sparse,
and yields a sparse product. The method is quadratically convergent; the number
of iterations, given by bound (2.23, grows only as the logarithm of the condition
number.

4.2.3 Oscillatory Coefficients

We now consider a somewhat more general class of integral equations, in which
the integral operator is given by the formula

b
(DKf)(e) = ple) [ K(a,t) £(2) at,

a

where the kernel K is assumed to be smooth, but the coefficient function p
can be oscillatory. In particular, we only restrict p to be positive. In terms of
generality, these problems lie between the problems with smooth kernels (and
constant coefficient) and those with arbitrary oscillatory kernels.

Writing the corresponding integral equation in operator form, we obtain the
equation

(I-DK)f =g. (4.6)

Although D is a diagonal operator, and K is smooth, it is clear that the dis-
cretization of the operator DK will not be a sparse matrix in wavelet coordi-
nates. In this framework, it would appear that the constructions of Chapter 2
and this chapter are inapplicable. If we instead consider the operator DV/2K D2,
in which oscillations in the rows match those in the columns, it becomes clear
that the construction of Section 4.1 can be revised. Rather than constructing
basis functions orthogonal to low-order polynomials z’, we can construct them
to be orthogonal to p(z)!/2z7. The sole revision in our definition of basis matri-
ces Uy,...,U; is to replace the definition (4.1) of the moments matrices M, ; for
¢t =1,...,n/(2k), by the new definition

2k-1
p3i+1 0 M 0 1 xs,‘-{-l e $3i+1
2k—1
0 ps+2 -+ O S Y
Ml,i = . . . ?
2k—1
0 coo 0 psitok L 4ok 0 Tsipok
where s; = (i — 1)2k and p; = p(z;)!/2.

Now the integral equation (4.6) can be transformed to the equation
(I _ Dl/2KD1/2)(D_1/2f) = (D—l/2g),

which is discretized to a system that is sparse in the revised wavelet coordinates.
The inverse matrix is also sparse.
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4.3 Numerical Algorithms

In Section 4.1 we defined a class of bases for functions defined on {z,...,z,} and
in Section 4.2 we showed that, to finite precision, second-kind integral operators
and their inverses are asymptotically sparse in these bases. In this section we
present procedures for computation of the bases, discretized integral operators
in these bases, and the inverses of these operators. In Section 4.4 we give some
numerical examples based on our implementations of these procedures.

The computation of the wavelet bases is discussed next, followed by a dis-
cussion of the transformation of the integral operators to the wavelet bases. We
defer discussion of the computation of the inverses, sketched above, to subsec-
tion 4.3.3, which contains detailed descriptions of all of the algorithms. Finally,
subsection 4.3.4 gives the complexity analysis for the algorithms.

4.3.1 Computation of Wavelet Bases

It was mentioned in Section 4.1 that the mathematical definition of Uy,..., U,
if used directly, would result in a numerical procedure that would create large
roundoff errors. A correct procedure is obtained by shifting and scaling the
matrices M;; defined there.

For a pair of numbers (¢, 0) € R x (R\{0}) we define a 2k x 2k-matrix S(u, o)
whose (7, j)th element is the binomial term

Stmaks = (127) 2 (7

g1

for : < j, and S(y,0):; = 0 otherwise. The matrix S(u,o) is upper-triangular
and non-singular, and its inverse is given by the formula

S(p,0)7" = S(~n/o,1/0). (4.8)
Furthermore, the product formula
S(p1,01)S(p2,02) = S(p1 + p201,0107) (4.9)

is easily verified.
We define M;; for j =1,...,land i =1,.. .,n/(2°k) by the formula

M = M;iS(pji,05,), (4.10)

where p;; = (T14(-1)k2s + Tiks)/2, 050 = (Tirzs — T1g(i-1)kes)/2 and the matrix
M;; is defined by Eq. (4.1) and Eq. (4.3) in Section 4.1. The matrix Uj;; is given
by the formula

ij,’T = Orth(MJ{,,-), (4.11)
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which is equivalent to the definition given by Eq. (4.2). This equivalence imme-
diately follows from the fact that S(u,o) is upper-triangular and non-singular.
The matrices M ; for i = 1,...,n/(2k) are actually computed by the formula

1 ZutiTeui (Is,-+1—u1,i )2"_1
01,4 a1,
1 Tei42—H1,i . (Is,-+2 —p1,i )2"_1
’ . .
Mli — T4 O1,5 , (4.12)
¥ . .
1 Toj42k—H1i (-”-'s|~+2k — i )2k—l
a1,i o1,

where s; = (¢ — 1)2k. Likewise, the matrices Mj; for j = 2,...,! and ¢ =
1,...,n/(2°k) are computed by the formula

Uiy VM ... . S1.
(- J-1,21-1 J-1,2i-135,d 4.13
MJ” ( UJ-]"z'UMJI_lvz'S]zv' ) ’ ( )
where S}; and S?; are defined by the formulae
Sii = S(pi-10i-1,05-12i-1) 7 S (4, 5,) (4.14)
St = S(Mj—1ir05-1,2) 7 S5 05)- (4.15)

Application of the inverse and product rules given in Eq. (4.8) and Eq. (4.9) to
Eq. (4.14) and Eq. (4.15) yields formulae by which S}; and S?; can be computed:

Sii = S((uii — #ij-12i-1)/i-12i-1, 03] i—12i1) (4.16)
S = S((pii — pi—12)]0i-12i, 05i]05-12i)- (4.17)

The matrices M;; given by Eq. (4.12) and Eq. (4.13) are easily seen to be
mathematically equivalent to those defined by Eq. (4.10); nonetheless, computa-
tion of M ; using Egs. (4.12) and (4.13) avoids the large roundoff errors which
would otherwise result.

4.3.2 Transformation to Wavelet Bases

We assume that for equispaced points z,...,z, (defined in Eq. (4.4)) and some
k the orthogonal matrices Uy, ..., U; defined in Section 4.1 have been computed
(I = log,(n/k)). We now present a procedure for computation of UTUT, where
U=U,;---U; and T is the discretized integral operator defined in Eq. (4.5).

Simple Example

We begin with a simplified example in which T is replaced by an n X n-matrix
V of rank k whose elements V;; are defined by the equation

kK k
r-1 5-1 R .
Vii=> ) Az, ,j=1,...,n.

r=1 s==1
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Each row and each column of V' contain elements which are the values of a
polynomial of degree k — 1. The matrix V can be written as V = PTAP, where
the elements of the k X n-matrix P are defined by P;; = z;"! and A is the
k x k-matrix with elements A;;. Recalling that the last k rows of the basis
matrix U consist of an orthogonalization of the moment vectors {z,7, ..., z,7) for
J=0,...,k—1, we can rewrite V as V = (P")TA’P’. Here the k x n-matrix P’
consists of the last k rows of U and A’ is a new k x k-matrix with elements A’;.

By the orthogonality of U, it is clear the n xn-matrix UVUT = U(P")TA'P'UT
consists entirely of zero elements except the k x k-submatrix in the lower-right
corner, which is the matrix A’. Given a function to compute elements of the
n X n-matrix V, the matrix A’ can be computed in time independent of n by
using a k x k extract of values from V. We form the matrix V' with elements V;
defined by the formula

' V;; = Vinfk,jn/ks ,7=1,...,k. (4.18)

Then V' = (P")TA’P", where P” is the k x k extract of P’ with elements given
by P/ = P/, /- Thus we obtain

A/ = ((PII)T)—IVI(PII)-—I (4.19)

from P” and V'’ readily in O(k®) operations, and we have obtained UVUT.

General Case

The integral operator matrix T is, of course, not of low rank, but it can be divided
into submatrices, each approximately of rank k (see Fig. 4.4). The submatrices
near the main diagonal are of size k x k, those next removed are 2k x 2k, and
so forth up to the largest submatrices, of size n/4 x n/4. The total number of
submatrices is proportional to n/k. Given an error tolerance ¢ > 0, k¥ may be
chosen (independently of n) so that each submatrix of T, say T*, may be written
as a sum, T* = V' 4 E* where the elements of V* are given by a polynomial of
degree k — 1 and || E*|| < €||T7|].

The simplified example, in which the matrix to be transformed is of rank
k, is now applicable. Each submatrix of T is treated as a matrix of rank k
and is transformed to wavelet coordinates (for its own scale) in order O(k®)
operations. To make this precise, we write T' = Ty + - - - + T;_, where T; consists
of the submatrices of size 2°k x 2'k. For each 1, the submatrices of T; may be
interpolated by rank k submatrices, as indicated by the extract of Eq. (4.18), to
obtain matrices V;. Thus T; = V; + E;, where ||E;|| is small. In the simplified
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Figure 4.4: The matriz represents a discretized integral operator with a kernel
that is singular along the diagonal. The matriz is divided into submatrices of
rank k (to high precision) and transformed to a sparse matriz with O(nlogn)
elements. Here n/k = 32.

example above, we have shown that the transformed matrices

W = Vo
W = AU
W, = VUi V2 UL T 0T (4.20)

WI—2 - UI—2 e Ul V;—2U1T v UI—2T

can be computed by many applications of Eq. (4.19), all in order O(nk?) oper-
ations. This estimate follows from the fact that there are O(n/k) submatrices,
each of which is transformed in O(k3) operations. Now we define n x n-matrices
Ro, ..., R recursively:

fi= { UiRiaUT +W; i > 1 (:21)

(here Wi_;y = W; = 0). Then R; contains the final result, B; = U(T — E)UT,
where E = Fog+---+ Ej_.
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The matrix-matrix products in the definition of Ry,..., R; can be computed
directly, since the factors and the products contain no more than O(nlogn) ele-
ments. A simple implementation with standard sparse matrix structures results
in a total operation count of order O(nlog®n), but an implementation using
somewhat more elaborate data structures, in which repetitive handling of data
is avoided, requires only order O(nlogn) operations.

Computation using the result R; is made more efficient by removing the ele-
ments of R; which can be neglected, within the precision with which R; approx-
imates UTUZ. For a given precision ¢, we discard a matrix E’ by eliminating
elements from R; below a threshold 7. The threshold depends on the choice of
norm; in our implementation, we use the row-sum norm

A = max Y- A,

for an n X n-matrix A. The element threshold

r=—|T] (4.22)

clearly results in a discarded matrix £’ with ||E'|| < €||T|.

4.3.3 Detailed Descriptions of Algorithms
Procedure to compute Uy,...,U;

Comment [Input to this procedure consists of the number of points n,
the number of zero moments k, and the points z;,...,z,. Output is the
matrices U;; for j=1,...,land ¢ = 1,...,n/(27k), which make up the
matrices Uy,...,U; (note | = log,(n/k)).]

Step 1.
Compute the shifted and scaled moments matrices Mj; for
i=1,...,n/(2k) according to Eq. (4.12).

Step 2.
Compute U,; from Mj; by Eq. (4.11) using Gram-Schmidt
orthogonalization for : =1,...,n/(2k).

Step 3.
Comment [Compute M!; and U;; for j=2,...,1 and
i=1,...,n/(2%k).]
doj=2,...,1
doi=1,...,n/(2°k)
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Compute Uj—l,zi—lUM;_l,zi_l and Uj_l,inM;_l,zi.
Compute S}; by Eq. (4.16) and S?; by Eq. (4.17);
multiply to obtain M;; by Eq. (4.13).
Orthogonalize M}; to obtain Uj; by Eq. (4.11).
enddo
enddo

Procedure to compute UTUT

Comment [Input to this procedure consists of n, k, the matrices Uj;
computed above, a function to compute elements of T, and the chosen
precision e. Output is a matrix R; such that ||R, — UTUT|| < €||T|.]

Step 4.
Compute the k x k extracts, indicated by Eq. (4.18), of the
submatrices of T' shown in Fig. 4.4.

Step 5.
Extract the matrices P” (Eq. (4.19)) from Uy, UyUy, ..., Up--- Uy
and compute Wp,...,W)_; according to Egs. (4.20).

Step 6.
Compute Ry,...,R; by Eq. (4.21), discarding elements below
a threshold 7 determined by the precision ¢ (Eq. (4.22)).

Procedure to compute UT-'UT

Comment [Input to this procedure consists of n, the matrix R; which
approximates UTU7T | and the precision e. Output is a matrix X,
that approximates UT~1UT.]

Step 7.
Compute the matrix Xp = R,TRl/HRlTRln by direct matrix
multiplication, discarding elements below a threshold =
determined by the precision ¢ (Eq. (4.22)).

Step 8.
Comment [Obtain the inverse by Schulz iteration.]
dom =0,1,... while |[I - X, R > ¢
Compute X411 = 2X,, — X Ri X, discarding elements

63
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below threshold.
enddo

4.3.4 Complexity Analysis

In the following table, we provide the operation count for each step of the com-
putation of UT-1U7.

Step Complexity Explanation
1.  O(nk) There are n/(2k) 2k x 2k-matrices; each element
of the matrices is computed in constant time.

2. O(nk? For each of the n/(2k) matrices, perform a Gram-
Schmidt orthogonalization requiring order O(k3)
operations.

3.  O(nk? For each of n/(4k)+n/(8k)+---+1=n/(2k)—1

matrices, compute four products of a k x 2k-
matrix with a 2k x 2k-matrix, construct two
2k x 2k-matrices, and orthogonalize one 2k x 2k-
matrix.

4.  O(nk) There are 6(14+3+7+---+(n/(2k)—1))+ 3(n/k)—
2, or order O(n/k), submatrices of 7" and for each
matrix we compute k? elements.

5.  O(nk?) There are n/(2k)+n/(4k)+---+1 =n/k—1 ma-
trices P”, each the product of two k X k-matrices.
These are each inverted and multiplied with the
O(n/k) matrices of the previous step.

6. O(nlogn) The diagonally-banded matrix W, which contains
O(n) elements, grows to O(nlogn) elements by
the computation of UW,UT, as can be seen by
simply examining pictures of Wy and U. The non-
zero elements of the transformed W1, ..., W,_, are
a subset of those of Wj.

7. O(nlog®n) Multiplication of two matrices, each with order
O(nlogn) elements, to obtain a product with or-
der O(nlogn) elements.
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Step Complexity Explanation
8. O{nlog’n) Two multiplications like that of Step 7 are made
per iteration; the number of iterations is indepen-
dent of n and given by bound (2.23).

Total O(nlog?n)

4.4 Numerical Examples

In this section we present operators from several integral equations, the discretiza-
tion and transformation of the operators to our wavelet bases, and the inversion
of the operators via Schulz method.

4.4.1 Uncorrected Quadratures

We first examine simple quadratures with equal weights, except weight zero at
the singularity, as represented by matrix T = T'(n) defined by Eq. (4.5). We
transform the matrix I — T to wavelet coordinates as described in Section 4.3.2,
then compute (I — T)7!.

These discretizations are not particularly useful for the solution of the inte-
gral equations, due to their slow convergence to the integral operators. They
nonetheless make good illustrative examples, for they retain the smoothness of
the operator kernels and produce correspondingly sparse matrices. In the next
subsection, we examine the results of using high-order quadratures.

For various sizes n of discretization, we tabulate the average number of ele-
ments per row in the transformed matrix U(I — T)UT and the computation time
to obtain the matrix. In addition, we display the average number of elements
per row of its inverse, and the time to compute the inverse. Finally, we show the
error introduced by these computations. The error is determined by the appli-
cation of the forward and inverse transformations to a random vector: Choose a
vector v of length n with uniformly distributed pseudo-random elements; com-
pute (I —T)v directly, by a standard procedure requiring order O(n?) operations;
transform to wavelet coordinates, obtaining U(I —T')v; apply the computed value
of U(I = T)™'UT to the vector U(I — T)v; transform to original coordinates by
application of UT; compare the result to v. The measure of error is the relative
L? error eg2, defined by Eq. (3.27).

The programs to transform and invert, as well as those to determine the error,
were implemented in FORTRAN. All computations were performed in double-
precision arithmetic on a Sun Sparcstation 1.

The first set of examples is for the kernel K(z,t) = log |z — t|, for a wavelet
basis of order k¥ = 4 and various choices of precision €. The matrix sparsities,
execution times, and errors appear in Table 4.1. Although the sparse matrices
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Table 4.1: The integral operator K defined by the formula (Kf)(z) = f(z) —
fdlog |z — t| f(t)dt is discretized, transformed to the wavelet coordinates with
k = 4, and inverted. For various precisions € and various sizes of discretization,
we tabulate the average number of elements/row Ny of the matriz in wavelet
coordinates and the time in seconds t, to compute it, corresponding statistics N2
and ty for the inverse, and the error (see text).

Transform.  Inversion L?
€ n N 2] Ny 1) Error

10~2 64 7.2 2 8.3 2 0.503E-02
128 5.9 3 6.5 4 0.257E—-02

256 3.8 7 4.4 4 0.250E-02

512 2.8 13 3.1 6 0.236E-02

1024 1.9 26 2.1 6 0.227E-02

2048 1.4 49 1.4 6 0.221E~-02

4096 1.2 97 1.2 8 0.221E-02

8192 1.1 195 1.1 12 0.217E-02

103 64 17.6 2 19.5 14 0.350E—03
128 18.1 20.0 36 0.270E-03

256 18.0 11 20.0 83 0.331E-03

512 14.5 21 15.7 123 0.257TE—-03

1024 13.3 41 15.5 262 0.340E—-03

2048 8.5 73 9.8 287 0.233E-03

4096 58 131 6.5 304 0.222E-03

8192 3.7 242 44 312 0.221E-03

(<,

10~4 64 28.4 3 30.3 36 0.104E-03
128 32.1 6 343 111 0.140E-03

256 345 15 37.5 302 0.161E-03

512 33.1 31 35.8 618 0.177E-03

1024 30.2 63 33.6 1280 0.189E-03

2048 25.0 121 27.6 2040 0.192E-03

are not banded, we loosely refer to the average number of matrix elements per
row as the matrix bandwidth. We make the following observations:

1. The bandwidths Ny, N, of the operator and its inverse decrease with increas-
ing matrix size. In other words, in the range of matrix sizes tabulated, the
number of matrix elements grows sublinearly in the matrix dimension n.

2. The operator matrix in wavelet coordinates is computed in time that grows
nearly linearly in n.
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Figure 4.5: The matrices constructed in the transformation of I — T, matrices
Ro,...,R; defined in Eq. ({.21), are shown for kernel K(z,t) = loglz — t|,
€ =10"3, and n = 64. The matrizr Ry looks like R3 and is not shown.

3. The inverse matrix is computed in time which grows sublinearly in n. This
is due to the fact that the cost of multiplying the sparse matrices is roughly

order O(nN?), for size n and bandwidth N. One result is that the cost
sometimes drops as n increases.

4. The accuracy is within the precision specified. In fact, due to the conser-
vative element thresholding (Eq. 4.22), the actual error is considerably less
than e.

5. The cost increases with increasing precision ¢, due to the increasing band-
widths generated. The the bandwidths increase approximately as log(1/¢).

6. For k = 4, our fast transformation algorithm does not maintain the specified
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Figure 4.6: Transformed matriz U(I — T)UT (top) and its inverse (bottom) are
shown for kernel K(z,t) =log|z —t|, e = 107>, and n = 128.

precision of € = 10~*. This anticipated result follows from the error estimate
for polynomial interpolation of logarithm on intervals separated from the
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origin. An unanticipated attendant result is that the bandwidth increases
as the quality of approximation deteriorates (compare to k = 8, below). As
a result, we did not complete examples for n = 4096, 8192.

7. The inversion of the 8192 x 8192 matrix preserving 3-digit accuracy is done
in 5 minutes on the Sparcstation. This compares to 95 days (estimated)
for inverting the dense matrix by Gauss-Jordan and to 24 minutes for one
dense matrix-vector multiplication of that size.

The condition number of the problem, as approximated by the product of the
row-sum norms of U(I — T)UT and its computed inverse, is 3 (independent of
size). Five iterations were required by the Schulz method to achieve convergence.

In Fig. 4.5 we show stages in the transformation of the matrix / —T. In par-
ticular, for € = 103 and n = 64, the matrices Ry,..., Ri-; defined in Eq. (4.21)
are shown. In addition, for n = 128 the transformed matrix U(I — T)UT and its
inverse are shown in Fig. 4.6. ’

In the next set of examples, for which results are displayed in Table 4.2, we
used the wavelet basis of order & = 8. We observe:

1. The bandwidths of the operator matrix and its inverse are less for k = 8
than for £ = 4. The inversion times are correspondingly smaller.

2. The time required to compute the operator matrix is almost four times
as large as that for ¥ = 4. This is due to the cost of transforming the
near-diagonal band, which is twice as wide for £ = 8 as for k = 4.

3. The obtained accuracy exceeds the specified precision consistently.

4. As for k = 4, the scaling with size n is linear for the transformation step
and sublinear for the inversion step.

In the final set of examples in which uncorrected quadratures were used, we
perform computations for k¥ = 4 and € = 1073, with various operator kernels.
Table 4.3 presents the results. The first three kernels contain singularities of the
types s(z) = log(z) and s(z) = z* for @ = £3, and are nonsymmetric and non-
convolutional. It is readily seen that the bandwidth is strongly dependent on the
type of singularity, with the singularity £~1/2 producing the greatest bandwidth.
We mention also that this particular integral equation is poorly-conditioned;
the condition numbers of the discretizations for n = 64,128,256,512,1024 are
9,17, 34, 98,469, respectively.

The fourth kernel provides an example with an oscillatory coeflicient p(z) =
(1 + 3sin(100z)). The bases developed in Section 4.2.3, which depend on p, are
used to transform the discretized integral operator to sparse form. We see in
Table 4.3 that the inverse is also very sparse.
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Table 4.2: The integral operator K defined by the formula (Kf)(z) = f(z) —
Jdlog|z — t| f(t)dt is discretized, transformed to the wavelet coordinates with
k =8, and inverted. (See Table 4.1 and text.)

Transform.  Inversion £?
€ n N1 31 N2 ta Error

10~2 64 58 4 6.2 1 0.191E-02
128 5.0 10 5.5 2 0.368E-02

256 3.3 22 3.6 3 0.184E—-02

512 2.7 46 2.9 4 0.113E-02

1024 1.8 92 1.8 4 0.177E-02

2048 1.4 182 1.4 5 0.170E-02

4096 1.2 363 1.2 8 0.928E-03

8192 1.1 729 1.1 11 0.166E—02

10-3 64 13.4 5 14.5 8 0.373E-03
128 142 13 15.5 21 0.332E-03
256 13.5 28 14.5 46 0.259E—03
512 12.7 57 13.6 90 0.225E—03
1024 10.2 114 11.1 134 0.198E-03
2048 77 221 83 176 0.179E-03
4096 4.9 429 52 185 0.174E~03
8192 3.5 818 3.7 208 0.173E-03

10—4 64 21.8 6 23.0 23 0.280E—04
128 26.3 15 28.0 81 0.253E—-04
256 287 35 31.0 235 0.246E—04
512 284 75 30.9 538 0.184E—04
1024 25.5 149 27.2 969 0.925E—05
2048 22.0 297 23.8 1739 0.899E—05
4096 17.7 561 19.1 2610 0.798E—05

4.4.2 Solution of Integral Equations

In the preceding subsection, we examined the characteristics of various integral
operators and their inverses in wavelet coordinates. We used completely straight-
forward discretizations; the quadratures represented sums of the integrands at
equispaced points (excluding singular points). Such simple quadratures converge
too slowly to the integral operators to be of much use in solving integral equa-
tions, and we now turn to the high-order quadratures developed in Chapter 3.
We first present examples which correspond to the various kernels already
tested and shown in Table 4.3. In Table 4.4 we tabulate the results, and differ-
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Table 4.3: The integral operator K defined by the formula (Kf)(z) = f(x) —
Iy K(z,t) f(t)dt, for nonsymmetric, nonconvolutional kernels K(x,t) shown be-
low, is discretized, transformed to the wavelet coordinates with k = 4 and
€ = 1073, and inverted. (See Table 4.1 and tezt.)

Transform.  Inversion L?
K(z,t) n Ny, ot N, tg Error
cos(zt®)log|z — t] 64 18.2 2 20.2 15 0.318E-03

128 18.6 5 20.4 37 0.302E-03
256 179 11 19.8 82 0.301E-03
512 149 22 16.3 131 0.284E-03
1024 12.9 42 14.7 242 0.315E-03

2048 8.5 76 9.5 283 0.241E-03
4096 5.5 137 6.1 291 0.231E-03
8192 3.6 252 43 310 0.230E-03

cos(zt?)|z — t|~1/2 64 272 3 289 32  0.256E-03
128 316 7 341 122  0.357E-03

256 356 16  40.6 454  0.434E—03

512 37.3 35 463 1509  0.643E—03

1024 345 72 454 4166  0.821E-03

cos(zt?)|z — t|1/2 64 6.8 2 7.3 2 0.303E-03
128 44 4 4.7 2 0.204E-03

256 29 8 3.0 3 0.209E-03

512 2.1 15 2.3 3 0.165E-03

1024 1.5 30 1.5 3 0.208E-03

2048 1.4 60 1.4 6  0.909E-03

4096 1.1 119 1.2 7 0.614E-03

8192 1.1 242 1.1 12 0.666E-03

(1+ isin(100z))x 64 305 3 338 44  0.344E-03
loglz—t] 128 318 6 351 103  0.363E—03

256 212 12 241 119  0.348E-03

512 186 23 207 225  0.372E-03

1024 158 45 184 404  0.392E—03

2048 106 82 122 466  0.355E—03

4096 6.4 145 74 497  0.336E-03

8192 4.0 265 46 510  0.331E-03

ences from Table 4.3 reflect the effect of the quadratures.
For the remaining examples we choose integral equations that can be solved
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Table 4.4: The integral operator K defined by the formula (Kf)(z) = f(z) —
I3 K(z,t) f(t)dt, for nonsymmetric, nonconvolutional kernels K(z,t) shown be-
low, is discretized with the corrected trapezoidal rules, transformed to the wavelet
coordinates with k = 4 and € = 1073, and inverted. (Compare to Table 4.3.)

Transform.  Inversion L2
I((Q:, t) n N1 11 Ng 12} Error

cos(zt?)log |z — ¢ 64 28.3 4 31.6 38 0.164E—03
1286 315 9 343 103  0.162E-03

256  30.8 21 339 221  0.172E-03

512  27.0 41  29.7 370  0.177E-03

1024  21.0 80  23.7 454  0.357TE-03

2048  14.8 143  17.2 566  0.317E-03

4096 9.5 250 104 555  0.282E-03

8192 5.8 448 69 665  0.271E-03

cos(zt?)|z —t|"/2 64 324 4 398 87  0.133E-02
128 383 10 457 251  0.412E-03

256 427 23 493 638  0.464E-03

512 451 51  51.3 1494  0.562E-03

1024 462 110  52.1 3309  0.635E-03

cos(zt?)|z — t|1/2 64 104 3 18.4 9  0.867TE-03
128 76 6 138 13  0.526E-03

256 51 13 93 16  0.358E-03

512 33 25 52 15  0.292E-03

1024 2.3 48 31 15  0.201E-03

2048 1.9 96 23 20  0.393E-03

4096 1.5 188 1.7 25  0.405E-03

8192 1.3 374 1.4 36  0.404E-03

analytically, so that the accuracy of the method can
class of integral equations with logarithmic kernel,

7(@) = p(e) [ loglz — t £(8)dt = gm(z),

be checked. We consider a

z € [0,1],

(4.23)

where the right hand side g,, is chosen so that the solution f is given by the
formula f(z) = sin(mz). The integration can be performed explicitly, yielding

the formula
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Table 4.5: The integral equations f(z)— Jy log |z —t| f(t) dt = gm(z), for which an
explicit solution is known, are solved by the methods of this chapter (compare to
Table 4.1 and see text). For e =107%,1073,10~* we set k = 4,4, 8, respectively.

Transform. Inversion L£?
€ n,m Ny t1 N, 12 Error
10~2 64 114 3 14.4 7 0.283E-02
128 10.7 7 13.2 14 0.212E-02

256 8.6 13 10.6 20 0.140E—-02
512 6.3 26 7.6 26 0.112E-02
1024 3.6 48 4.5 28 0.821E-03
2048 1.9 90 2.3 21 0.932E-03
4096 1.3 174 1.5 15 0.674E—-03
8192 1.1 344 1.1 13 0.499E-03

10-3 64 21.7 4 31.3 36 0.235E-03
128 31.0 9 34.2 99 0.169E-03

256 306 20 33.6 215 0.161E—-03

512 27.5 41 30.2 377 0.130E-03

1024 21.7 79 244 470 0.597E—-03

2048 15.5 143 18.1 604 0.479E-03

4096 9.7 248 10.6 579 0.415E-03

8192 6.0 444 7.3 690 0.354E—-03

104 64 37.2 8 45.9 78 0.127E-03
128 471 23 56.5 278 0.473E—-04
256 52.9 54 60.9 745 0.311E—04
512 55.0 118 61.4 1701 0.100E—04
1024 52.3 248 57.2 3287 0.734E—-05

/01 log |z — t| sin(mt)dt = log(z) — cos(m)log(l — z)
— cos(mz)[Ci(mz) — Ci(m(1 — z))]
— sin(mz)[Si(mz) + Si(m(1 — z))],

where Ci and Si are the cosine integral and sine integral (see, e.g., [1], p. 231).
Equation (4.23) clearly requires quadratures with increasing resolution as m in-
creases; for our examples we let n = m, which corresponds to 27 points per
oscillation of the right hand side g,,.

Initially we choose coefficient p(x) = 1. The results are given in Table 4.6.
Here the error shown is the error of the computed solution relative to the true
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solution of the integral equation. Many of the observations of the preceding
examples can be repeated here; additionally, we make the following comments:

1. The bandwidths are greater than for the uncorrected quadratures, but this
effect generally decreases with increasing size.

2. The integral equations are solved to within the specified precision in every
case but one. The exception, for € = 10™* and n = 64, is likely due to the
small number of quadrature points and high specified precision.

3. An integral equation requiring an 8192-point discretization is solved to 3-
digit accuracy in less than 20 minutes on the Sparcstation.

For our second set of integral equations, we let the coefficient p be the oscil-
latory function given by the formula p(z) = 1 + ] sin(100z). We carry out the
transformation described in Section 4.2.3 to solve the integral equation 4.23. The
results are shown in Table 4.6 and as with Table 4.5 the error refers to the error of
the computed solution relative to the true solution of the integral equation. For
the oscillatory coefficient we see performance similar to the constant-coeflicient
problem, but the cost is higher.
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Table 4.6: The integral equations f(z) — p(z) f§ log |z — t| f(t)dt = gm(z), for
which an ezplicit solution is known, are solved by the methods of this chapter
(compare to Table 4.1 and see text). For ¢ = 1072,1073,10™* we set k = 4,4,8,
respectively.

. Transform. Inversion L2
€ n,m Ny t Ny 12 Error
10—2 64 19.7 4 23.9 18 0.360E—-02
128 17.7 8 21.0 36 0.182E-02
256 12.6 15 14.6 47 0.174E-02

512 8.4 29 9.8 57 0.112E-02
1024 4.7 55 5.7 56 0.104E-02
2048 2.4 103 2.7 45 0.902E-03
4096 1.6 198 1.7 38 0.720E-03
8192 1.3 392 1.3 35 0.543E-03

103 64 36.2 4 41.3 63 0.228E-02
128 40.8 10 47.0 186 0.209E-03

256 40.5 23 47.3 427 0.177E-03

512 34.7 46 40.9 712 0.125E-03

1024 26.6 87 32.5 1042 0.134E-03

2048 18.7 158 22.5 1065 0.597E-03

4096 12.2 281 14.2 1127 0.529E-03

8192 7.2 502 8.4 1104 0.461E-03

10~ 64 47.6 9 58.2 123 0.230E-02
128 60.7 25 773 479 0.180E-03

256 64.1 39 81.2 1204 0.124E-03

512 62.5 128 76.3 2492 0.125E-04

1024 58.8 267 69.3 4672 0.862E-05



Chapter 5

(Generalizations and
Applications

A new class of bases for £2[0, 1] has been constructed in which a variety of integral
operators are represented as sparse matrices. The inverses of these matrices are
also sparse, a fact which enables the corresponding integral equations to be solved
rapidly.

Vector-space analogues of the bases were also developed, and the latter bases
appear preferable, due to their flexibility, for the solution of a variety of problems.

To pose integral equations as finite-dimensional numerical problems, the Ny-
strom, or quadrature, method was used. Quadrature rules based on the trape-
zoidal rule, corrected to yield high-order convergence, were developed for several
types of singularities. The combination of these quadratures and the vector-
space wavelet bases yields a fast algorithm for the solution of second-kind in-
tegral equations. We have proven a time complexity of order O(nlog®n), but
observed order O(n) performance in practice, where n is the number of points in
the discretization. This cost should be contrasted with a cost of order O(n?) for
direct application of a dense matrix, and order O(n?) for direct inversion.

A number of limitations exist in the procedures described above. These re-
strictions may be categorized as “software limitations” and “research questions”.
We discuss software limitations first.

Software Limitations

In both the function-space and vector-space settings, we have assumed that the
size of the problem n has the form n = 2'k for some . This restriction is not
fundamental; it merely simplifies the software. For the multi-wavelet bases, one
could expand “deeper” in some parts of the interval of definition than others, to
efficiently resolve the the right-hand-side. A similar effect can be obtained in the
discrete case from non-uniform spacing of the discretization points.
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A second software restriction is the assumption of only diagonal singularities.
This case is an important one in practice, but in certain situations one may
encounter singularities or near-singularities off the main diagonal. The scheme
described in Section 4.3.2 for transformation of a matrix to wavelet bases can
be readily revised to an adaptive scheme, which works as follows: an m x m
submatrix A is transformed to wavelet coordinates, under the assumption that
it can be approximated to high precision in each direction by a polynomial of
degree less than k. This assumption is then checked by dividing A into four
submatrices, each of dimension m/2 x m/2, transforming each submatrix, and
“glueing” the pieces together. If the results from the two computations match
(to high precision), no further refinement of the original submatrix is needed.
Otherwise, the procedure is repeated recursively on the m/2 x m/2 submatrices.
The cost of this adaptive procedure is roughly 5 times as great as the cost of a
static procedure in which the structure of the singularities is known a prior:.

Research Questions

The list of research issues is of course much longer. One of the most pressing
issues is the generalization to two and three dimensions. Although the general-
ization of the multi-wavelet bases to several dimensions is described in Chapter 2,
and an analogous construction creates vector-space bases for several dimensions,
quadratures corresponding to those of Chapter 3 have not been developed for
two and three-dimensional problems.

There exist integral equations, as observed in the numerical examples of the
previous chapter, in which the inverse operator’s wavelet representation is less
sparse than that of the original integral operator. In such cases it would be
advantageous to avoid inversion of the operator and instead obtain a sparse LU-
factorization. This was attempted with the bases developed in this thesis, but
for the operators we examined the LU factors have substantial fill-in. We believe,
however, that a somewhat different class of bases can be constructed with the
property that the LU factors preserve the sparsity of the operator matrix.

Another question is whether similar “custom-constructed” bases can be used
to create sparse representations of integral operators with oscillatory kernels.
Initial efforts in this direction for a limited class of such operators, in particular for
Fourier transforms with non-equispaced points and frequencies, appear promising

7).
Applications

In this thesis the primary application of our new wavelet bases has been the
solution of second-kind integral equations. The bases are very effective for the
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fast solution of a wide class of such problems. In addition, many other classes of
problems can be solved efficiently using these techniques. We list a few of these
problem types.

1. Elliptic partial differential equations rewritten as integral equations by
the Lippman-Schwinger method, in which the Green’s functions are non-
oscillatory.

2. Evolution of homogeneous parabolic PDEs with constant or periodic bound-
ary conditions, by explicit time steps. This method consists of repeated
squarings of the operator for a single time step, leading to an order O(nlog t)
algorithm for evolving an n-point discretization for ¢ time steps. '

3. Evolution of general parabolic PDEs by implicit time steps, in which the
elliptic problem on each time step is solved in wavelet coordinates.

4. Evolution of hyperbolic PDEs by a- method of operator squaring analogous
to the scheme proposed for homogeneous parabolic PDEs above.

5. Problems of potential theory and pseudo-differential operators.

6. Signal compression, including signals of seismic, visual, and vocal origin.
There is also reason to expect that analysis of such compressed data will
be simpler than analysis of data resulting from less eflicient compression
schemes.

In this thesis we strayed from the original mathematical definition of wavelets
to construct classes of bases tailored for numerical computation. The basis func-
tions’ (or vectors’) principal properties of local support and vanishing moments
lead to sparse representations of functions and operators that are smooth except
at a finite number of singularities. There is little doubt that other bases can be
constructed along similar lines to possess various properties. One current chal-
lenge is the construction of bases suitable for the efficient representation of a
variety of oscillatory operators.
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