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1 Introduction

Randomized computations play a central role in theoretical computer science today, arising natu-
rally in the study of efficient algorithms, pseudorandom number generators, zero knowledge inter-
active proofs, cryptographic protocols, and probabilistically checkable proofs.

A randomized algorithm computes a probabilistic function f , where for each x, f(x) is a prob-
ability distribution. Most applications of randomized algorithms, however, do not fully specify the
function f to be computed; rather, they only require that f approximates some target function
g. The output distribution of a probabilistic primality test, for example, should approximate the
true primality predicate is prime(x). Similarly, the output distribution of a pseudorandom number
generator should approximate u(x), the uniform distribution on binary strings of length |x|.

Both of these examples share the notion of a randomized algorithm computing an approximation
to a desired function. However, the particular notion of approximation differs in the two cases. For
the primality test, the probability that f(x) 6= is prime(x) is required to be exponentially small in
|x|. For pseudorandom number generators, it is required that f(x) “looks like” u(x) to polynomial-
time Turing machines, a much weaker condition. Disparate notions of approximation that have
appeared in the literature are perfect (equality), statistical, and computational indistinguishability.

In this paper, we generalize and extend computational indistinguishability to allow for arbitrary
classes of judges (distinguishers), arbitrary numbers of samples and arbitrary families of tolerance
functions defining the distinguishing threshold. We also generalize statistical indistinguishability
to arbitrary families of tolerance functions. We compare our various notions of indistinguishability
with each other and investigate how restrictions on the indistinguishability parameters affect the
corresponding indistinguishability relation.

Of particular interest to our general indistinguishability framework is the number of samples
given to a judge. Under the usual definition of computational indistinguishability, the judge is
given one sample from either f(x) or g(x). The judge is said to distinguish between f and g if its
output behavior varies significantly depending on which distribution the sample was drawn from.

A natural question to ask is, “What happens to the distinguishing power of a family of judges
when given two samples from the (same) unknown distribution?” In the case of families of
polynomial-size circuits, if a judge distinguishes f from g given two samples, then a simple mod-
ification of that judge distinguishes f from g given only one sample. In light of this observation,
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2 PROBABILISTIC FUNCTIONS 2

one might be tempted to conjecture that changes in the number of samples would affect the distin-
guishing power of arbitrary judges only in small quantitative ways. It is particularly surprising that
the conjecture does not hold for Turing machine judges. To the contrary, there exists a simple and
fast Turing machine judge that, given two samples, can distinguish pairs of probabilistic functions
that are otherwise indistinguishable by any polynomial time Turing machine given one sample.

The additional complexity of two-sample indistinguishabilities is reflected in the techniques
needed to construct pairs of statistically different but judge indistinguishable probabilistic func-
tions. One-sample judges give rise to linear equations over unknown probabilities. In the case of
two or more samples, the corresponding equations are non-linear, and the techniques from linear
algebra that solve the one-sample case [PS82] do not apply. Instead, deep results from algebraic
topology [Mas89] are needed.

At the heart of many of our indistinguishability results lies a standard diagonalization, a rather
basic tool that we borrow from the realm of recursive function theory [Rog67]. Tools from prob-
ability theory [DeG86] and statistics [Pol84] are naturally also of great use when dealing with
probabilistic functions.

We informally summarize our indistinguishability results below.

1. For any recursively presentable class J of Turing machine judges, we can “shrink” a prob-
abilistic function f in such a way that the new function has arbitrarily small (yet growing)
support at every x, but it is indistinguishable from the original f .

2. By sufficiently shrinking u as in 1, we construct a probabilistic function g that is statistically
different from the uniform function u, yet indistinguishable from u for the judges in J given
one sample.

3. We present a simple judge J2α that distinguishes u from the function g of 2 given two samples.

4. For any recursively presentable family J of Turing machine judges and any arbitrary number
of samples, we construct a pair of computable probabilistic functions f, g that are indistin-
guishable for the judges in J from the given number of samples.

5. For any pair f, g of statistically different probabilistic functions, we present a judge that
distinguishes them given sufficiently many samples.

2 Probabilistic Functions

A probabilistic function is a probabilistic analog to an ordinary deterministic function.

Definition 1 A probabilistic function (or probabilistic ensemble) f with domain A and range B,
denoted f : A → B, is a function mapping every element x ∈ A to a probability distribution f(x)
over B.

In the literature of pseudorandom number generators and zero knowledge interactive proofs, a
probabilistic function f : A → B is often denoted {f(x)}x∈A. This notation suggests that a
probabilistic function can also be thought of as a collection of probability distributions over the set
B, one distribution for every x ∈ A.
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Our formal model of probabilistic computation is the probabilistic Turing machine [Gil77]. It
is obtained from the usual Turing machine when given access to an unbiased coin or, equivalently,
to a random tape containing an infinite sequence of bits independently and uniformly distributed
in {0, 1}. The probability associated with any given finite computation is 1/2k, where k ∈ N is the
number of random bits read during the computation. Then, the probability that the machine does
not halt on a certain input is equal to one minus the probability of all finite computations. We use
the symbol ⊥ to denote the output of an infinite computation. Without loss of generality, we also
set Σ = {0, 1}.

A probabilistic Turing machine M computes a probabilistic function. On input x ∈ Σ∗, M
computes a probability distribution over all possible output values y ∈ Σ∗ ∪ {⊥}. Computable
probabilistic functions, however, are only a special case of probabilistic functions. Just as there exist
non-computable deterministic functions, there also exist non-computable probabilistic functions.

Definition 2 Let f : Σ∗ → Σ∗ ∪ {⊥} be a probabilistic function. f is computable iff there exists a
probabilistic Turing machine Mf such that, for every x, Mf (x) = f(x). f is total iff, for every x,
Pr[f(x) = ⊥] = 0.

Definition 3 A family F of probabilistic (resp. deterministic) functions is recursively presentable
iff there exists an effective enumeration of probabilistic (resp. deterministic) Turing machines
M1, M2, . . . computing exactly the functions in F .

Of special importance to our indistinguishability theory is the uniform function u : Σ∗ →
Σ∗∪{⊥}. For every x ∈ Σ∗, u(x) assigns equal probability to all strings y ∈ Σ∗ that have the same
length as x and probability 0 to all other strings. Obviously, u is total and computable.

3 Generalized Indistinguishabilities

In this section, we generalize the four standard notions of indistinguishability studied in the liter-
ature of pseudo-random number generators [Yao82, BM84], probabilistic encryption [GM84], and
zero-knowledge interactive proofs [GMR89, GMW91].

3.1 Statistical Indistinguishabilities

We generalize standard statistical indistinguishability by parametrizing the distinguishing threshold
and allowing for arbitrary thresholds other than inverse polynomials.

Definition 4 A function ε : Σ∗ → (0, 1) is called a tolerance function.

Definition 5 Let f, g : Σ∗ → Σ∗ ∪{⊥} be two probabilistic functions. The statistical difference of
f and g is a function Sdiff : Σ∗ → [0, 1] such that, for every x ∈ Σ∗,

Sdiff(x) =
∑

α∈Σ∗∪{⊥}

∣

∣

∣Pr[f(x) = α]− Pr[g(x) = α]
∣

∣

∣ (1)
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Definition 6 Let E ⊆ {ε : Σ∗ → (0, 1)} be a family of tolerance functions. Two probabilistic
functions f, g : Σ∗ → Σ∗ ∪ {⊥} are statistically indistinguishable at tolerance E iff, for all ε ∈ E and
all sufficiently long strings x ∈ Σ∗,

Sdiff(x) < ε(x) (2)

Two probabilistic functions that are not statistically indistinguishable at tolerance E are said to be
(weakly) statistically distinguishable at tolerance E.

As many of our results involve a stronger notion of statistical distinguishability than simply the
negation of statistical indistinguishability, we also introduce strong statistical distinguishability.

Definition 7 Let E ⊆ {ε : Σ∗ → (0, 1)} be a family of tolerance functions. Two probabilistic
functions f, g : Σ∗ → Σ∗∪{⊥} are strongly statistically distinguishable at tolerance E iff there exists
an ε ∈ E such that, for all sufficiently long strings x ∈ Σ∗,

Sdiff(x) ≥ ε(x) (3)

3.2 Judge Indistinguishabilities

The literature considers two kinds of computational indistinguishabilities. One is based on
polynomial-time probabilistic Turing machines and the other on polynomial-size circuits. In both
cases, the computational devices, which we call judges, are used as statistical tests. If the statis-
tical behavior of a judge varies significantly depending on the distribution from which its input is
drawn, then we say that the judge distinguishes the corresponding functions. Two functions are
computationally indistinguishable if no judge in the family can distinguish them.

We generalize computational indistinguishability by considering arbitrary families of judges.
We also parameterize the distinguishing threshold, as we did for statistical indistinguishability, and
present the judges with a set of samples of arbitrary size instead of just a single sample.

A judge J is himself a probabilistic function which we use to distinguish between two probabilis-
tic functions f and g. J takes two inputs, an index x and a set of samples y. The individual samples
in y are independently drawn either all from f(x) or all from g(x) and are separated with #’s. The
judge’s distinguishing power is measured on the absolute difference between the probability of his
outputting 0 when he sees a sample set from f and the probability of his outputting 0 when he
sees a sample set from g. The line between distinguishing and not distinguishing is set by a family
of tolerance functions E . Judges are not necessarily computable, total or polynomially bounded.

Definition 8 A probabilistic function J : Σ∗ ×A→ Σ∗ ∪ {⊥} with

A =
{

α1#α2# · · ·#αk | k ∈ N and αi ∈ Σ∗ ∪ {⊥}, 1 ≤ i ≤ k
}

(4)

is called a judge.

Definition 9 Let f, g : Σ∗ → Σ∗ ∪ {⊥} be two probabilistic functions, a : Σ∗ → N a function
and J a judge. The distinguishing power of J between f and g from a(x) samples is a function
DpowerJ,a : Σ∗ → [0, 1] such that, for every x ∈ Σ∗,

DpowerJ,a(x) = (5)
∣

∣

∣Pr[J(x, Y1#Y2# . . .#Ya(x)) = 0]− Pr[J(x, Z1#Z2# . . .#Za(x)) = 0]
∣

∣

∣
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where Yi, Zi are random variables independently distributed according to f(x), g(x) respectively,
for all i = 1, 2 . . . , a(x).

Definition 10 Let J be a class of judges, a : Σ∗ → N a function and E ⊆ {ε : Σ∗ → (0, 1)} a family
of tolerance functions. Two probabilistic functions f, g : Σ∗ → Σ∗ ∪ {⊥} are J -indistinguishable
from a(x) samples at tolerance E iff, for all judges J ∈ J , functions ε ∈ E and sufficiently long
strings x ∈ Σ∗,

DpowerJ,a(x) < ε(x) (6)

Two probabilistic functions that are not J -indistinguishable from a(x) samples at tolerance E are
said to be (weakly) J -distinguishable from a(x) samples at tolerance E .

Definition 11 Let J be a class of judges, a : Σ∗ → N a function and E ⊆ {ε : Σ∗ → (0, 1)}
a family of tolerance functions. Two probabilistic functions f, g : Σ∗ → Σ∗ ∪ {⊥} are strongly
J -distinguishable from a(x) samples at tolerance E iff there exists a judge J ∈ J and a function
ε ∈ E such that, for all sufficiently long strings x ∈ Σ∗,

DpowerJ,a(x) ≥ ε(x) (7)

3.3 Downward Closure of Tolerance Functions

All standard indistinguishabilities—perfect, statistical, computational—are equivalence relations
over the set of computable probabilistic functions. Furthermore, perfect indistinguishability is a
refinement of statistical, statistical is a refinement of computational by families of polynomial-size
circuits, and computational by families of polynomial-size circuits is a refinement of computational
by polynomial-time Turing machines.

Generalized statistical and judge indistinguishabilities defined on arbitrary families of tolerance
functions are not necessarily equivalence relations, as they do not necessarily satisfy transitivity. A
special property of tolerance families, downward closure, guarantees that our indistinguishabilities
are equivalence relations.

Definition 12 Let E ⊆ {ε : Σ∗ → (0, 1)} be a family of tolerance functions. E is downward closed
iff, for all ε ∈ E , there exists an ε̂ ∈ E such that, for all sufficiently long strings x,

ε̂(x) <
1

2
· ε(x) (8)

Theorem 1 Let F ⊆ {f : Σ∗ → Σ∗ ∪ {⊥}} be a family of probabilistic functions. Let J be a class
of judges, a : Σ∗ → N a function and E ⊆ {ε : Σ∗ → (0, 1)} a family of tolerance functions. If E is
downward closed, then

(a) statistical indistinguishability at tolerance E and

(b) J -indistinguishability from a(x) samples at tolerance E

are equivalence relations over F .
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4 One-Sample Judge Indistinguishabilities

4.1 Statistical Refines One-Sample Judge Indistinguishabilities

In the same way that standard statistical indistinguishability refines computational indistinguisha-
bilities [GMW91], our generalized statistical indistinguishability refines any one-sample judge in-
distinguishability of the same tolerance.

Theorem 2 Let ε : Σ∗ → (0, 1) be a tolerance function. For every pair f, g : Σ∗ → Σ∗ ∪ {⊥}
of probabilistic functions, if a judge J weakly (resp. strongly) distinguishes between f and g from
one sample at tolerance {ε}, then f and g are weakly (resp. strongly) statistically distinguishable at
tolerance {ε}.
Corollary 3 Let E ⊆ {ε : Σ∗ → (0, 1)} be a downward closed family of tolerance functions.
For every class of judges J , statistical indistinguishability at tolerance E is a refinement of J -
indistinguishability from one sample at tolerance E.
Proof: Immediate from theorems 1 and 2.

4.2 Shrinkable Probabilistic Functions

Intuitively, a probabilistic function f is m(x)-shrinkable, when we can compute another probabilistic
function g that is indistinguishable from the original f , although the support of g(x) has size at
most m(x) for every x.1 In theorem 4, we show that, under some basic computability restrictions,
every computable probabilistic function is m(x)-shrinkable given an m that grows without bound.

Definition 13 Let J be a class of judges, E a family of tolerance functions and m : Σ∗ → N a
function. A probabilistic function f : Σ∗ → Σ∗ ∪ {⊥} is m(x)-shrinkable for J at tolerance E iff
there exists a probabilistic function g : Σ∗ → Σ∗ ∪ {⊥} such that:

1. for every x ∈ Σ∗, Supportg(x) ⊆ Supportf(x) and |Supportg(x)| ≤ m(x);

2. f and g are J -indistinguishable from one sample at tolerance E .
If g is also computable, then f is recursively m(x)-shrinkable for J at tolerance E .
Theorem 4 Let f : Σ∗ → Σ∗ ∪ {⊥} be a total computable probabilistic function such that, for
every x ∈ Σ∗, f(x) has finite support, and the family S = {Supportf(x)}x∈Σ∗ is computable. Let
J be a recursively presentable class of total judges, EJ a recursively presentable class of tolerance
functions and m : Σ∗ → N a computable function with lim inf m(x) = ∞. Then, f is recursively
m(x)-shrinkable for J at tolerance EJ .

Proof sketch: Diagonalization gives rise to a feasible and highly underconstrained system of linear
equations. There exists a basic feasible solution with at most m(x) non-zero coordinates [PS82].
We can easily compute it and use it to define g.

Corollary 5 For every recursively presentable class of total judges J , recursively presentable family
of tolerance functions EJ , and computable function m : Σ∗ → N with lim inf m(x) =∞, the uniform
function u is recursively m(x)-shrinkable for J at tolerance EJ .

1Given a probability distribution P over a set B, the support of P , denoted Support
P
, is the subset of B containing

all elements assigned positive probability by P .



5 MANY-SAMPLE JUDGE INDISTINGUISHABILITIES 7

4.3 Support Size and Statistical Difference

In this section, we show that the uniform function is statistically different from any other prob-
abilistic function whose support is sufficiently smaller than the support of the uniform at every
x. Having already proven that u is m(x)-shrinkable, we combine the two to compute probabilistic
functions of arbitrary (growing) supports that are indistinguishable from the uniform for recursively
presentable judges, one sample, and arbitrary tolerance.

Theorem 6 Let εs : Σ∗ → (0, 1) be a tolerance function. Let u : Σ∗ → Σ∗ ∪ {⊥} be the uniform
function, and let g : Σ∗ → Σ∗ ∪ {⊥} be a probabilistic function such that, for infinitely (resp. all
but finitely) many x ∈ Σ∗,

| Supportg(x) | ≤
1

εs(x) + 1
2|x|

(9)

Then, u and g are weakly (resp. strongly) statististically distinguishable at tolerance {εs}.

Corollary 7 Let J be a recursively presentable class of total judges, EJ a recursively presentable
family of tolerance functions and u : Σ∗ → Σ∗ ∪ {⊥} the uniform function. For every computable
function εs : Σ∗ → (0, 1) with lim sup εs(x) = 0, there exists a total computable probabilistic function
g : Σ∗ → Σ∗ ∪ {⊥} such that:

1. u and g are J -indistinguishable from one sample at tolerance EJ ;

2. u and g are strongly statistically distinguishable at tolerance {εs}.

Proof: Consider the function m : Σ∗ → N such that, for every x ∈ Σ∗,

m(x) =

⌊

1

εs(x) + 1
2|x|

⌋

(10)

Since m is computable and lim inf m(x) = ∞, we can apply corollary 5 to m. The result follows
from theorem 6.

Corollary 8 Let J be a recursively presentable class of total judges, and let E ⊆ {ε : Σ∗ → (0, 1)}
be a recursively presentable and downward closed family of tolerance functions. Restricted to total
computable probabilistic functions, statistical indistinguishability at tolerance E is a strict refinement
of J -indistinguishability from one sample at tolerance E.

Proof: Immediate from corollaries 3 and 7.

5 Many-Sample Judge Indistinguishabilities

5.1 Two Samples

It is well-known that circuit judges are insensitive to changes in the size of the sample set. The
distinguishing power of families of polynomial-size circuits, for example, remains the same as the
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number of samples increases from one to polynomially many [GMR89]. In sharp contrast, we show
that the distinguishing power of Turing-machine judges is greatly affected by the slightest change
in the size of the sample set.

Consider the judge J2α defined by:

J2α(x, α1#α2) =

{

0 if α1 = α2

1 otherwise
(11)

for all x, α1, α2 ∈ Σ∗. Judge J2α is total and computable.

Theorem 9 Let εJ : Σ∗ → (0, 1) be a tolerance function. Let u : Σ∗ → Σ∗ ∪ {⊥} be the uniform
function, and let g : Σ∗ → Σ∗ ∪ {⊥} be a probabilistic function such that, for infinitely (resp. all
but finitely) many x ∈ Σ∗,

| Supportg(x) | ≤
1

√

εJ(x) + 1
22|x|

(12)

Then, judge J2α weakly (resp. strongly) distinguishes between u and g from two samples at tolerance
{εJ}.

Corollary 10 Let J be a recursively presentable class of total judges with J2α ∈ J , EJ a recursively
presentable family of tolerance functions, and u : Σ∗ → Σ∗ ∪ {⊥} the uniform function. For every
computable tolerance function ε2 : Σ∗ → (0, 1) with lim sup ε2(x) = 0, there exists a total computable
probabilistic function g : Σ∗ → Σ∗ ∪ {⊥} such that:

1. u and g are J -indistinguishable from one sample at tolerance EJ ;

2. u and g are strongly J -distinguishable from two samples at tolerance {ε2}.

Proof: Consider the function m : Σ∗ → N such that, for every x ∈ Σ∗,

m(x) =









1
√

ε2(x) + 1
22|x|







 (13)

Since m is computable and lim inf m(x) = ∞, we can apply corollary 5 to m. The result follows
from theorem 9.

Corollary 11 Let J be a recursively presentable class of total judges with J2α ∈ J , and let E ⊆
{ε2 : Σ∗ → (0, 1)} be a recursively presentable and downward closed family of tolerance functions.
Restricted to total computable probabilistic functions, J -indistinguishability from two samples at
tolerance E is a strict refinement of J -indistinguishability from one sample at tolerance E.

Proof: Immediate from corollaries 3 and 10.
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5.2 Arbitrarily Many Samples

Theorem 12 Let J be a recursively presentable class of total judges, a : N → N a computable
function and EJ a recursively presentable family of tolerance functions. Let S = {Sx}x∈Σ∗ be
a computable family of finite subsets of Σ∗, and let εs : Σ∗ → (0, 1) be a computable tolerance
function such that, for infinitely (resp. all but finitely) many x ∈ Σ∗, εs(x) < 2/|Sx|. Then, there
exist two total computable probabilistic functions f, g : Σ∗ → Σ∗ ∪ {⊥} such that:

1. for all x ∈ Σ∗, Supportf(x) ⊆ Sx and Supportg(x) ⊆ Sx;

2. f and g are J -indistinguishable from a(x) samples at tolerance EJ ;

3. f and g are weakly (resp. strongly) statistically distinguishable at tolerance {εs}.

Proof sketch: Diagonalization gives rise to a continuous, multi-dimensional function Φ. By
applying the Borsuk-Ulam theorem to Φ (see appendix), we get a pair p,q of antipodal points on
a simplex that are mapped to the same point through Φ. We can closely approximate those points
and use them to define f and g.

5.3 Many Samples Allow Arbitrarily Fine Discrimination

In section 4, we showed that statistical indistinguishabilities refine one-sample judge indistinguisha-
bilities at the same tolerance E . Here, we show that the distinguishing power of judges can be made
arbitrarily large by increasing the number of samples sufficiently. In particular, if f and g are statis-
tically distinguishable at some tolerance {εs}, then they are judge distinguishable at any arbitrarily
small tolerance {εJ}, provided the judge is presented with enough samples from f(x) or g(x). The
number of samples required depends on εs and εJ as well as on the size of the support of f(x) and
g(x).

The distinguishing judge Jd depends on f and a threshold function d and is defined in figure
1. Jd is presented with a set of t(x) samples, either all drawn from f(x) or all drawn from g(x).
It generates a second set of t(x) samples from f(x) and computes a frequency table for the input
sample set and for the generated sample set. If the tables are similar enough, as defined by the
threshold d(x), Jd outputs 0. Otherwise it outputs 1. We show that, given a sufficient number of
samples, Jd can distinguish f from any other statistically different function g.

Theorem 13 Let εs, εJ : Σ∗ → (0, 1) be tolerance functions. Let f, g : Σ∗ → Σ∗ ∪ {0, 1} be two
total probabilistic functions that are weakly (resp. strongly) statistically distinguishable at tolerance
{εs} and such that, for every x ∈ Σ∗, |Supportf(x)∪Supportg(x)| ≤ k(x). Then, there exist functions
d : Σ∗ → (0, 1) and t : Σ∗ → N such that judge Jd weakly (resp. strongly) distinguishes between
f and g from t(x) samples at tolerance {εJ}. If f and εs are computable, then judge Jd is also
computable.

Proof: We define d and t as follows. For all x ∈ Σ∗,

d(x) =

⌊

εs(x)

2

⌋

and t(x) =









2 · k(x)2 ·
[

log(2
√

2)− log(
√

2−
√

1 + εJ(x))
]

log e · d(x)2









(14)

The result follows from Höffding’s inequality (see appendix).
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Input:
x, α1#α2# · · ·#αt with x, αi ∈ Σ∗;

Description:
draw k samples β1, β2, · · · , βt from f(x);
for every string α in the sample sets

set f̂α ← number of α’s in α1#α2# · · ·#αt;

set ĥα ← number of α’s in β1#β2# · · ·#βt;

if
∑

α |f̂α − ĥα|/t < d(x) then output 0;
else output 1.

Figure 1: Judge Jd.

6 Related Work

In related work, Goldreich and Krawczyk prove the existence of sparse pseudorandom probabilistic
functions that are not statistically close to any distribution induced by probabilistic polynomial-
time algorithms [GK92]. By applying their results to zero-knowledge interactive proofs, they show
that there exist protocols that are zero-knowledge in the original sense of the term, but auxiliary-
input zero-knowledge.

Ostrovsky and Wigderson compare the notions of statistical and polynomial indistinguishability
under the assumption that one-way functions do not exist [OW93]. They conclude that zero-
knowledge is trivial under this assumption, as only languages in BPP can have zero-knowledge
proofs.

Meyer separates the four standard indistinguishabilities from the zero-knowledge literature by
constructing appropriate pairs of computable probabilistic functions [Mey94]. His separation proofs
make use of a method for deterministically simulating in space S2 an S space-bounded probabilistic
Turing machine with running time bounded by 2S .

7 Future Directions

One interesting problem that arises in our general indistinguishability framework is whether the
distinguishing power of Turing machine judges always (or infinitely often) improves as the num-
ber of samples given to them increases from k to (k + 1), k ∈ N . Most importantly, however, it
would be interesting to apply our results to the domains where indistinguishabilities were origi-
nally defined; that is, randomized algorithms, pseudorandom number generators, zero-knowledge
interactive proofs, etc. Results of this flavor were presented in [KR88, Bac87], where randomized
algorithms were used to judge the quality of certain pseudorandom number generators.
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A Appendix

A.1 The Borsuk-Ulam Theorem

Consider the two objects Sm and Ŝm, m ∈ N :

Sm =

{

x ∈ Rm+1 |
m+1
∑

i=1

x2
i = 1

}

(15)

Ŝm =

{

x ∈ Rm+2 |
m+2
∑

i=1

xi = 1 and min
i

xi = 0

}

(16)

Notice that both the sphere Sm and the simplex Ŝm are m-dimensional objects embedded in the
spaces Rm+1 and Rm+2 respectively. The Borsuk-Ulam theorem from algebraic topology [Mas89]
shows that any continuous mapping of the m-dimensional sphere to Rm has two antipodal2 points
mapped to the same value. The formal statement of the theorem follows.

Theorem 14 (Borsuk-Ulam [Mas89]) For every continuous function F : Sm → Rm, there
exists a pair of antipodal points p,q ∈ Sm such that F (p) = F (q).

As the sphere can be mapped onto the simplex through a continuous mapping that preserves
antipodality, a similar theorem is true for the simplex.

Theorem 15 For every continuous function F : Ŝm → Rm, there exists a pair of antipodal points
p̂, q̂ ∈ Ŝm such that F (p̂) = F (q̂).

Antipodal points on the sphere and the simplex are of special interest because of their large
distance from each other. We use them to define probability distributions of large statistical
difference. The following corollary of theorem 15, formalizes this idea for the case of the simplex.

Corollary 16 For every continuous function F : Ŝm → Rm, there exists a pair of points p̂, q̂ ∈ Ŝm

with
∑

i |p̂i − q̂i| ≥ 2/(m + 2) such that F (p̂) = F (q̂).

A.2 Höffding Inequality

Theorem 17 (Höffding’s Inequality [Hoe63]) Let Y1, Y2, . . ., Yt be independent random vari-
ables with zero means and bounded ranges: ai ≤ Yi ≤ bi, i = 1, 2, . . . , t. For every δ > 0,

Pr
[

Y1 + Y2 + . . . + Yt ≥ δ
]

≤ exp

(

−2δ2

∑t
i=1(bi − ai)2

)

(17)

2In general, two points p, q on an object S are antipodal iff the center c of S lies on the line segment connecting

p and q. In the special case of Sm, p,q are antipodal iff p = −q.


