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We introduce a new approach to the rapid numerical application to arbitrary vectors of cer-
tain types of linear operators. Inter alia, our scheme is applicable to many classical integral
transforms, and to the expansions associated with most families of classical special func-
tions; among the latter are Bessel functions, Legendre, Hermite, and Laguerre polynomials,
Spherical Harmonics, Prolate Spheroidal Wave functions, and a number of others. In all
these cases, the CPU time requirements of our algorithm are of the order O(n log n), where
n is the size of the matrix to be applied. The performance of our algorithm is illustrated
via a number of numerical examples.

A new class of analysis-based fast transforms

Michael O’Neil and Vladimir Rokhlin
Technical Report YALEU/DCS/TR-1384

August 6, 2007

The authors were supported in part by ONR Grant #N00014-07-1-0711, AFOSR Grants #FA9550-
06-1-0197, #FA9550-06-1-0239, and #FA9550-05-C-0064, and NGA Grants #HM1582-06-1-2037
and #HM1582-06-1-2039.
Approved for public release: Distribution is unlimited.
Keywords: fast, transform, algorithm, matrix, special functions



1 Introduction

Transforms associated with classical special functions occur in a wide variety of fields. Examples of
such transforms are Fourier-Bessel (Hankel) transforms, orthogonal polynomial transforms, Fourier
transforms, etc. They are encountered in geophysical modeling, submarine warfare, quantum me-
chanical calculations, simulation of radar phenomena, etc. For the purposes of this paper, we define
special functions as the eigenfunctions on some (finite or infinite) interval [a, b] of the differential
equation

d

dx

(

p(x)
dϕ

dx

)

+ (r(x) + λw(x)) ϕ = 0, (1.1)

subject to appropriate boundary conditions at the points a and b. The class of special functions in
question is defined by the interval [a, b], the functions w, p, r : [a, b] → R, and the boundary condi-
tions; the function w is assumed to be strictly positive. We will be denoting the nth eigenfunction
of (1.1) by ϕn, and the corresponding eigenvalue by λn. As is well-known (for example, see [2]), the
functions ϕ1, ϕ2, ϕ3, . . . constitute an orthogonal basis in L2[a, b] with respect to the inner product
defined by the weight function w. Thus, for any square integrable function f : [a, b] → R there
exists a sequence of real numbers α1, α2, α3, . . . such that

f(x) =

∞
∑

j=1

αj ϕj(x), (1.2)

with

αj =
1

‖ϕj‖w

∫ b

a
f(x)ϕj(x)w(x) dx, (1.3)

and

‖ϕj‖w =

∫ b

a
ϕ2
j (x)w(x) dx. (1.4)

Given a collection of n points x1, x2, . . . , xn on [a, b], it is often desirable to determine coefficients
β1, β2, . . . , βn such that for k = 1, 2, . . . , n

f(xk) =

n
∑

j=1

βj ϕj(xk). (1.5)

It is possible to choose x1, x2, . . . , xn such that the linear mapping A : R
n → R

n,

A (f(x1), f(x2), . . . , f(xn)) = (β1, β2, . . . , βn) (1.6)

is well-conditioned. The mapping in equation (1.6) is given in matrix form as












w1 ϕ1(x1) w2 ϕ1(x2) · · · wn ϕ1(xn)

w1 ϕ2(x1) w2 ϕ2(x2)
...

...
. . .

...
w1 ϕn(x1) · · · · · · wn ϕn(xn)























f(x1)
f(x2)

...
f(xn)











=











β1

β2
...
βn











, (1.7)

where w1, w2, . . . , wn are determined from the weight function w and the norm of the functions
ϕ1, ϕ2, . . . , ϕn. With the proper choice of n and x1, x2, . . . , xn, not only is A well-conditioned, but
the function g : [a, b] → R, given by the formula

g(x) =

n
∑

j=1

βj ϕj(x), (1.8)
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provides an accurate and stable approximation to f for all x ∈ [a, b]. Additionally, since A is
well-conditioned, so is its inverse A−1, making both matrices suitable for numerics. The direct
application of A and A−1 each require O(n2) operations, while the algorithm presented in this
paper enables the numerical application of A and A−1 in only O(n log n) operations. Our algorithm
enables an accelerated numerical summation of the functions ϕj(xk) over j or k. For reasons
described later in the paper, we will refer to our procedure as the “butterfly” algorithm.

Another class of transforms common in mathematical physics and classical mathematics are
integral transforms. An integral transform K : L2[a, b] → L2[c, d] maps functions on one interval,
[a, b], to functions on another interval, [c, d]. For square integrable functions f : [a, b] → C and
k : [a, b] × [c, d] → C, the operator K takes the form

(Kf)(y) =

∫ b

a
k(x, y) f(x) dx. (1.9)

The function k is referred to as the kernel of the integral transform. One may desire to evaluate the
function Kf at n values y1, y2, . . . , yn. Standard methods for the numerical application of integral
operators replace the integral in equation (1.9) with a quadrature consisting of appropriately chosen
points x1, . . . , xm and weights w1, . . . , wm such that for some class of appropriately chosen functions
f ,

m
∑

i=1

wi k(xi, yj) f(xi) ≈
∫ b

a
k(x, yj) f(x) dx (1.10)

for j = 1, 2, . . . , n. The convergence of the approximation is consistent with the order of the
quadrature chosen. The computation of the integral in equation (1.9) for y1, y2, . . . , yn has thus
been reduced to a matrix-vector multiplication. For certain choices of the kernel k, we are able to
accelerate this multiplication using the algorithm of this paper.

One such integral transform is the Fourier-Bessel transform. Fourier-Bessel transforms arise
when computing the Fourier transform of a radially symmetric function on the disk. This occurs
commonly in the fields of optics, acoustics, geophysics, etc. Let R be a positive real number and ν
a positive integer. Suppose that we have a function f : R2 → C, given by the formula

f(x, y) = g(r) eiνθ , (1.11)

where (r, θ) are the usual polar coordinates, and the function g : R
+ → R is such that g(r) = 0 for

r > R. After a change of variables, the Cartesian Fourier transform

(Ff)(u, v) =

∫∫

R2

ei(ux+vy) f(x, y) dx dy (1.12)

becomes

(Ff)(ρ, ψ) = 2π iν eiνψ
∫ R

0
Jν(ρr) g(r) r dr, (1.13)

where

u = ρ cosψ, x = r cos θ,

v = ρ sinψ, y = r sin θ. (1.14)

The integral in equation (1.13) is referred to as the Fourier-Bessel (or Hankel) transform of order
n of the function g.
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If we wish to evaluate the integral in equation (1.13) for n values of ρ, ρ1, ρ2, . . . , ρn, we may
discretize the integral and use the algorithm of this paper to apply the resulting matrix. For reasons
described in Section 2.2, ρ1, ρ2, . . . , ρn are usually chosen to be the first n positive roots of Jν .
Previous methods for numerically computing Fourier-Bessel transforms include using an exponential
change of variables, asymptotic expansions of Bessel functions, and projection techniques (see [5],
[12], and [17]). These algorithms often had limitations on the choices for ρ in equation (1.13) (due
to the requirement of equispaced points for FFTs), the requirement of sampling g on an exponential
grid, and on the order ν of the transform. In this paper we eliminate all such restrictions.

It should be pointed out that the algorithm of this paper is very similar to that of [16], and has
been motivated by the latter.

The paper has the following format: Section 2 gives some background information and lemmas
concerning certain special functions, and the approximation of low-rank matrices. In Section 3 we
build the analytical apparatus to be used in the construction of the algorithm of this paper. In
Section 4 we describe our algorithm. Section 5 contains numerical examples illustrating the perfor-
mance of the algorithm, and Section 6 summarizes the work and discusses its possible extensions.

2 Mathematical and numerical preliminaries

This section contains definitions, lemmas, and basic mathematical facts that are used in the re-
mainder of the paper. For any positive integer n, and column vector v ∈ C

n, we define the norm
‖v‖ of v to be the root-sum-square (l2 norm) of the entries of v, that is,

‖v‖ =

√

√

√

√

n
∑

j=1

|vj |2, (2.1)

where vj is the jth entry of v. For any positive integer m and matrix A ∈ C
m×n, we define the

norm ‖A‖ of A to be the spectral (l2-operator) norm of A,

‖A‖ = max
x∈Cn

‖Ax‖
‖x‖ = max

1≤j≤min(m,n)
|σj | (2.2)

where σ1, σ2, . . . , σmin(m,n) are the singular values of A. (Obviously, the norm of v as viewed as
an n × 1 matrix is equal to the norm of v as viewed as an n × 1 column vector.) The transpose
of matrix A will be denoted by At. Unless otherwise stated, we denote the natural logarithm of
x ∈ R

+ by log x. The largest integer that is less than or equal to x will be denoted by ⌊x⌋, i.e. ⌊x⌋
is the floor of x. We use L2[a, b] to denote the space of square integrable functions f : [a, b] → C,

L2[a, b] =

{

f :

∫ b

a
|f(x)|2 dx <∞

}

. (2.3)

2.1 Approximation of low-rank matrices

The principal numerical tool used in this paper is the approximation of a series of low-rank matrices
via interpolative decompositions. Lemma 2.1 below restates (in a slightly different form) Theorem 3
in [4]. It states that for any m × n matrix A whose approximate rank is k, there exist an m × k

matrix B whose columns constitute a subset of the columns of A, and a k×n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,
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2. P is not too large, and

3. B P −A is small.

Lemma 2.1 Suppose that m and n are positive integers, and A is a real m× n matrix. Then, for
any positive integer k with k ≤ m and k ≤ n, there exist a real k × n matrix P , and a real m× k

matrix B whose columns constitute a subset of the columns of A, such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,

3. ‖P‖ ≤
√

k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k+1)st greatest
singular value of A.

Remark 2.2 Properties 1, 2, 3, and 4 in Lemma 2.1 ensure that the interpolative decomposition
B P of A is numerically stable. It should also be observed that Property 3 follows directly from
Properties 1 and 2, and Property 4 follows directly from Property 1.

Observation 2.3 Existing algorithms for the construction of the matrices B and P in Lemma 2.1
are computationally expensive. We use an algorithm to produce B and P which satisfy conditions
slightly more relaxed than those in Lemma 2.1, but still sufficient for numerical purposes. We
compute B and P such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P − A‖ ≤
√

4k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k + 1)st

greatest singular value of A.

Thus, for any positive real number ε, the algorithm can identify the least k such that ‖B P−A‖ ≈ ε.
Furthermore, there exists a real number C such that the algorithm computes both B and P using
at most Ckmn log(n) floating-point operations and Ckmn floating-point words of memory (see [4],
[11], and [15]).
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2.2 Bessel functions

This section contains a brief summary of various facts regarding Bessel functions, and defines the
Fourier-Bessel transform (see [1] and [23]). For any integer ν ≥ 0, we denote by Jν the Bessel

function of the first kind of order ν, Yν the Bessel function of the second kind of order ν, and H
(1,2)
ν

the Hankel function of the first and second kinds of order ν. For any z ∈ C,

H(1)
ν (z) = Jν(z) + iYν(z), (2.4)

H(2)
ν (z) = Jν(z) − iYν(z). (2.5)

The functions Jν and Yν are two linearly independent solutions to the differential equation

d

dz

(

z
dw

dz

)

+

(

z − ν2

z

)

w = 0, (2.6)

given by the formulas

Jν(z) =
1

π

∫ π

0
cos(z sin θ − νθ) dθ, (2.7)

Yν(z) =
1

π

∫ π

0
sin(z sin θ − νθ) dθ − 1

π

∫ ∞

0
(eνt + e−νt cos νπ) e−z sinh t dt, (2.8)

where we require in (2.8) that Re(z) > 0. The functions J0, J1, J2, . . . are known to satisfy the
recurrence

Jν+1(z) =
2ν

z
Jν(z) − Jν−1(z). (2.9)

Bessel functions of the second kind (and thus Hankel functions of the first and second kind) satisfy
the same recurrence as Bessel functions of the first kind, as in (2.9).

Remark 2.4 Recurrence (2.9) can be used for the numerical evaluation of Bessel functions. For
x ∈ R

+, given initial values Y0(x) and Y1(x), the recurrence is stable and can be used to accurately
calculate Y2(x), Y3(x), . . . . On the other hand, given initial conditions J0(x) and J1(x), recur-
rence (2.9) is unstable. However, as is well known, given initial conditions JN (x) and JN+1(x) for
some large N , the backwards recurrence

Jν−1(z) =
2ν

z
Jν(z) − Jν+1(z) (2.10)

is stable and can be used to calculate JN−1(x), . . . , J1(x), J0(x) (see, for example, [1]).

For a fixed order ν, we use the method found in [9] to numerically integrate differential equation (2.6)
to evaluate Bessel functions of the first kind. For any λ ∈ C, after a change of variable equation (2.6)
becomes

d2w

dz2
+

(

λ2 − ν2 − 1
4

z2

)

w = 0, (2.11)

which has linearly independent solutions

J̃ν(z) =
√
z Jν(λz), (2.12)

Ỹν(z) =
√
z Yν(λz). (2.13)
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It turns out that for any ν ≥ 0, and any subinterval [0, R] ⊂ R
+, there exists a choice of λ1, λ2, λ3, . . .

such that
∫ R

0
r Jν(λir)Jν(λjr) dr = 0 (2.14)

for i 6= j. Indeed, for any R > 0 and integer ν ≥ 0, let the real numbers ρ1 < ρ2 < ρ3 < . . . be all
the positive zeros of the function g : R

+ → R, given by the formula

g(ρ) = Jν(2πρR). (2.15)

Let the real valued functions J̄ν,1, J̄ν,2, J̄ν,3, . . . on [0, R] be given by the formula

J̄ν,k(r) =

√
2

R

√
r Jν(2πρkr)

Jν+1(2πρkR)
. (2.16)

It is easily verified (see [23]) that the functions J̄ν,1, J̄ν,2, J̄ν,3, . . . are dense in L2[0, R] and orthonor-
mal, i.e. for any j, k > 0

∫ R

0
J̄ν,j(r) J̄ν,k(r) dr = δjk, (2.17)

where δjk is the Dirac delta function. To numerically calculate the roots ρ1, ρ2, ρ3, . . ., we use the
method found in [9]. Since the functions J̄ν,1, J̄ν,2, J̄ν,3, . . . are dense, we may express any square
integrable function f : [0, R] → R in the form

f(r) =
∞
∑

k=1

βνk J̄ν,k(r), (2.18)

where the coefficients βν1 , β
ν
2 , β

ν
3 , . . . are given by the formula

βνk =

∫ R

0
J̄ν,k(r) f(r) dr

=

√
2

R

1

Jν+1(2πρkR)

∫ R

0

√
r Jν(2πρkr) f(r) dr. (2.19)

The number βνk is known as the kth Fourier-Bessel coefficient of order ν of the function f . We call
the mapping Aνn : L2[0, R] → R

n,

Aνn(f) = (βν1 , β
ν
2 , . . . , β

ν
n), (2.20)

the Fourier-Bessel transform of order ν and size n. To calculate the Fourier-Bessel transform
numerically, it is necessary to evaluate the integral in (2.19) for k = 1, 2, . . . , n. We numerically
calculate this integral using an (n+ 2)-point trapezoidal quadrature. Setting h = R

n+1 , trapezoidal
integration gives

βνk ≈
√

2

R

1

Jν+1(2πρkR)
h





n+1
∑

j=0

√

jh Jν(2πρkjh) f(jh) − 1

2

√
RJν(2πρkR) f(R)





=

√
2

R

1

Jν+1(2πρkR)
h

n
∑

j=1

√

jh Jν(2πρkjh) f(jh), (2.21)

since for all k > 0
Jν(2πρkR) = 0. (2.22)
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In matrix notation,

β ≈ h

√
2

R
SJν TJν f, (2.23)

where
β = (βν1 , β

ν
2 , . . . , β

ν
n)
t , (2.24)

f = (f(h), f(2h), . . . , f(nh))t , (2.25)

and

SJν =













1
Jν+1(2πρ1R)

1
Jν+1(2πρ2R)

. . .
1

Jν+1(2πρnR)













, (2.26)

TJν =







√
h Jν(2πρ1h) · · ·

√
nhJν(2πρ1nh)

...
. . .

...√
hJν(2πρnh) · · ·

√
nhJν(2πρnnh)






. (2.27)

The algorithm we describe in Section 4 accelerates the application of the matrix TJν in equa-
tion (2.27).

Remark 2.5 If we contrast equation (2.19) with equation (1.13), it appears as though the Fourier-
Bessel transform has been defined with two different kernels; the integrand in equation (2.19)
contains a

√
r and the integrand in equation (1.13) contains an r. These are merely two different

conventions, and the difference will not affect the speed with which the algorithm of Section 4
applies the matrix resulting from their discretization. Multiplication (or division) by an extra

√
r

in the integrand is a well-conditioned diagonal transformation and has a negligible effect on the
numerical rank of any submatrix.

In addition to computing Fourier-Bessel coefficients, one may wish to perform other numerical
calculations involving Bessel functions, including evaluating sums of Bessel and Hankel functions
over varying order. These expansions are analogous to expansions in orthogonal polynomials (see
[21] and [22]). For x ∈ R and complex α0, α1, . . . , αn−1, it may be desirable to evaluate the sums

g(x) =

n−1
∑

k=0

αk Jk(x) (2.28)

and

w(x) =

n−1
∑

k=0

αkH
(1,2)
k (x). (2.29)

To evaluate the function g at real points x1, x2, . . . , xn we must apply the matrix EJ ,

EJ =







J0(x1) · · · Jn−1(x1)
...

. . .
...

J0(xn) · · · Jn−1(xn)






, (2.30)

to the vector (α0, α1, . . . , αn−1)
t. To evaluate the function w at real points x1, x2, . . . , xn we must

apply the matrix EH ,

EH =







H
(1,2)
0 (x1) · · · H

(1,2)
n−1 (x1)

...
. . .

...

H
(1,2)
0 (xn) · · · H

(1,2)
n−1 (xn)






, (2.31)
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to the vector (α0, α1, . . . , αn−1)
t. It will be shown in Section 5 that the algorithm of this paper will

accelerate the application of matrices EJ and EH .
For fixed argument and large order, Bessel functions of the first kind have a predictable behavior,

used in proofs contained in Section 3. Lemma 2.6 below shows that for R > 10 and large ν, Jν(r)
will be very small for 0 ≤ r ≤ R. It is reproduced from [18].

Lemma 2.6 For any real R > 10 and 0 < ε < 0.1,

Jν(R) < ε (2.32)

for any
ν > (R1/3 + αR−1/3)3, (2.33)

where

α =
3−1/3

2
log2/3

(

1

ε

)

. (2.34)

Thus, Jν(r) < ε for any 0 ≤ r ≤ R.

Remark 2.7 The following theorem provides an error estimate for the approximation of an integral
by the n-point trapezoidal rule (see [6]), and is a motivation for the popularity of trapezoidal
integration in such environments.

Theorem 2.8 (Euler-Maclaurin Summation Formula) For any n > 1, and function ϕ :
[a, b] → R, let

h =
b− a

n− 1
, (2.35)

and

T̂n(ϕ) = h





n−1
∑

j=0

ϕ(a+ jh) − ϕ(a) + ϕ(b)

2



 . (2.36)

If the function ϕ has 2k+2 continuous derivatives, then for some ξ ∈ [a, b], the error of the n-point
trapezoidal quadrature rule T̂n for the integration of ϕ on [a, b] is given by the formula

T̂n(ϕ) −
∫ b

a
ϕ(x) dx =

k
∑

l=1

h2lB2l

(2l)!
(ϕ2l−1(b) − ϕ2l−1(a)) +

h2k+2B2k+2

(2k + 2)!
ϕ2k+2(ξ), (2.37)

where Bi is the ith Bernoulli number.

In many cases, the function f : [0, R] → R whose Fourier-Bessel transform is to be taken is zero at
the point x = R, along with many of its derivatives. Furthermore, for any integer ν ≥ 2, it follows
from the formula (see [10])

Jν(x) =
(x

2

)ν
∞
∑

k=0

(−1)k

k! Γ(ν + k + 1)

(x

2

)2k
(2.38)

that the function Jν is not only zero at the point x = 0, its first ν−1 derivatives are also zero at the
point x = 0. These two observations, when combined with Theorem 2.8, show that the trapezoidal
rule converges rapidly when used for the approximation of Fourier-Bessel coefficients.
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2.3 Fourier series

The following information concerning complex exponentials can be found in any standard Fourier
analysis textbook (see [14], for example). We also describe discrete Fourier transforms for noneq-
uispaced data, and refer the reader to [7] and [8] for more information.

A continuous periodic function f : [−π, π] → C can be represented by its Fourier series as

f(x) =

∞
∑

k=−∞

ck e
ikx, (2.39)

where ck is given by the formula

ck =
1

2π

∫ π

−π
f(x) e−ikx dx. (2.40)

Without loss of generality, assume for the moment that n > 0 is an even integer. If f is supplied
as a discrete function, known only at n equispaced points x1, x2, . . . , xn, xj = −π+ π(j−1)

n , then we
can represent f at these points using the formula

f(xj) =

n
∑

k=1

αk e
iωkxj , (2.41)

where ωk = −n
2 + k − 1 and αk is given by

αk =
1

n

n
∑

j=1

f(xj) e
−iωkxj . (2.42)

We refer to the linear operator AF : R
n → R

n,

AF (f(x1), f(x2), . . . , f(xn)) = (α1, α2, . . . , αn), (2.43)

as the forward discrete Fourier transform. Determining the values of f at x1, x2, . . . , xn given the
coefficients α1, α2, . . . , αn will be referred to as the inverse discrete Fourier transform. The Fast
Fourier Transform (FFT) algorithm for computing the forward and inverse transforms is widely
known (see, for example [6]). Note that the FFT, as well as equation (2.42), relies on the fact that
x1, x2, . . . , xn are equispaced and ω1, ω2, . . . , ωn are integers ranging from −n

2 to n
2 − 1.

Suppose now that we wish to evaluate sums of the form

αk =
n
∑

j=1

f(xj) e
−iωkxj (2.44)

where x1, x2, . . . , xn is an arbitrary set of n real numbers on [−π, π] and ω1, ω2, . . . , ωn is an arbitrary
set of n real numbers on [−n2 ,

n
2 ], neither of which is equispaced. Sums of this type are known as

discrete Fourier transforms for nonequispaced data. The algorithm developed in Section 4 can be
used to calculate discrete Fourier transforms for nonequispaced data, as well as equispaced data.
For a given n, this requires that we apply the matrix TF ,

TF =







e−iω1x1 · · · e−iω1xn

...
. . .

...
e−iωnx1 · · · e−iωnxn






, (2.45)

to the vector (f(x1), f(x2), . . . , f(xn))
t, where ω1, ω2, . . . , ωn and x1, x2, . . . , xn are given (equi-

spaced or nonequispaced). As we show in Section 5, the application of the matrix TF will be
accelerated by the algorithm of this paper.
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2.4 Generalized Gaussian quadratures

This section contains information concerning generalized Gaussian quadratures (see [13] and [25]
for more detailed information). Given two functions f : [a, b] → R and w : [a, b] → R

+, we may
wish to approximate the integral

∫ b

a
f(x)w(x) dx (2.46)

by a sum. An n-point quadrature rule for the approximation of integral (2.46) consists of nodes
x1, x2, . . . , xn ∈ [a, b], weights w1, w2, . . . , wn > 0, and is given by the sum

n
∑

j=1

wj f(xj). (2.47)

For example, the formula for the well known n-point trapezoidal rule is

∫ b

a
f(x) dx ≈

n−1
∑

j=0

h f(a+ jh) − h

2
(f(a) + f(b)), (2.48)

where h = b−a
n−1 . Generalized Gaussian quadratures are quadratures for which the approximation

∫ b

a
f(x)w(x) dx ≈

n
∑

j=1

wj f(xj) (2.49)

is exact for a choice of 2n different functions f . We now give a more concise definition.

Definition 2.9 An n-point quadrature is referred to as an n-point generalized Gaussian quadrature
with respect to the weight function w : [a, b] → R

+ and functions f1, f2, . . . , f2n : [a, b] → R if

∫ b

a
fk(x)w(x) dx =

n
∑

j=1

wj fk(xj) (2.50)

for k = 1, 2, . . . , 2n. The nodes x1, x2, . . . , xn are referred to as Gaussian nodes and the weights
w1, w2, . . . , wn > 0 are referred to as Gaussian weights, both of which are unique.

Classical n-point Gaussian quadratures are those that exactly integrate polynomials up to degree
2n − 1 with respect to some weight function w. The nodes for these Gaussian quadratures turn
out to be the roots of the polynomial of degree n in the class of orthogonal polynomials associated
with the weight function w. Relevant orthogonal polynomials are discussed in Sections 2.5–2.8.

Table 1 lists some common weight functions, their associated orthogonal polynomials, and the
quadrature weights for the classical n-point Gaussian quadrature formula

∫ b

a
f(x)w(x) dx ≈

n
∑

j=1

wj f(xj). (2.51)

The column labeled “[a, b]” denotes the interval that the weight function is defined on. The column
“w(x)” gives the formula for the weight function. The column “associated polynomials” lists the
class of orthogonal polynomials associated with the given interval and weight function. The column
“wj” lists the formula for the jth weight in the classical n-point Gaussian quadrature. In all cases,
xj is used to denote the jth root of the associated polynomial of degree n.
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[a, b] w(x) Associated polynomials wj
[−1, 1] 1 Legendre 2 (1 − x2

j )
−1 P

′

n(xj)
−2

[−1, 1] (1 − x2)−1/2 Chebyshev π n−1

(−∞,∞) e−x
2

Hermite
√
π 2n+1H

′

n(xj)
−2

[0,∞) e−x Laguerre x−1
j L

′

n(xj)
−2

Table 1: Various weight functions, their associated orthogonal polynomials, and discrete weights
for n-point Gaussian quadratures.

2.5 Legendre polynomials

This section, and Sections 2.6–2.8, contain information about classical orthogonal polynomials (see
[10] and [20]). For an integer n ≥ 0, we denote by Pn the Legendre polynomial of degree n. As is
well known, Pn is the solution to the differential equation

d

dx

(

(1 − x2)
dy

dx

)

+ n (n+ 1) y = 0 (2.52)

that is bounded on the interval [−1, 1]. Legendre polynomials are orthogonal on the interval [−1, 1]
with respect to the inner product defined by the weight function w(x) = 1, i.e. for any m,n ≥ 0,

∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn. (2.53)

Legendre polynomials satisfy the recurrence

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x) (2.54)

with initial conditions
P0(x) = 1, (2.55)

P1(x) = x. (2.56)

Differentiating (2.54) yields a recurrence for the derivatives of Legendre polynomials, which are
used to calculate Gaussian weights (see Section 2.4). The recurrence (2.54) is well known to be
stable and can be used to calculate Legendre polynomials of all orders.

Since Legendre polynomials constitute an orthogonal basis in L2[−1, 1], for any square integrable
function f : [−1, 1] → R there exist real α0, α1, α2, . . . such that

f(x) =

∞
∑

k=0

αk Pk(x). (2.57)

In most numerical applications, the series in equation (2.57) is truncated after n terms, for some
appropriately chosen n. The resulting finite sum is a stable interpolating polynomial of degree
n − 1, and it is commonly used for accurate numerical evaluation of f . The function f is thus
approximated by a polynomial p : [−1, 1] → R, given by the formula

p(x) =

n−1
∑

k=0

αk Pk(x). (2.58)
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If f has n continuous derivatives, then for any x ∈ [−1, 1] the error of this approximation is of the
form

|f(x) − p(x)| =
2n n!

(2n)!
|f (n)(ξ)|, (2.59)

for some ξ ∈ [−1, 1]. We recall from Section 2.4 that the n-point Gaussian quadrature for weight
function w(x) = 1 on the interval [−1, 1] has nodes x1, x2, . . . , xn equal to the roots of Pn and
weights w1, w2, . . . , wn given by

wj =
2

(1 − x2
j)P

′

n(xj)
2
. (2.60)

Applying this quadrature to products of Legendre polynomials yields the identity

n
∑

j=1

wj Pk(xj)Pl(xj) =
2

2k + 1
δkl (2.61)

for all 0 ≤ k, l ≤ n − 1. If f is tabulated at the nodes x1, x2, . . . , xn, the expansion coefficients in
equation (2.58) are given by the formula

αk =
2k + 1

2

n
∑

j=1

wj f(xj)Pk(xj). (2.62)

For an integer n > 0, we define the linear operator AP : R
n → R

n,

AP (f(x1), f(x2), . . . , f(xn)) = (α0, α1, . . . , αn−1) , (2.63)

as the Legendre transform of size n. AP converts values of f at the roots of Pn into coefficients in
a Legendre polynomial expansion via equation (2.62). In matrix notation,

AP = SP TP WP , (2.64)

where

SP =











1
2

3
2

. . .
2n−1

2











, (2.65)

TP =







P0(x1) · · · P0(xn)
...

. . .
...

Pn−1(x1) · · · Pn−1(xn)






, (2.66)

WP =







w1

. . .

wn






. (2.67)

The algorithm presented in Section 4 accelerates the application of the matrix TP , and thus accel-
erates the evaluation of Legendre polynomial expansion coefficients.
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2.6 Chebyshev polynomials

This section contains facts concerning Chebyshev polynomials that will be used in Sections 3 and
5. For an integer n ≥ 0, we denote by Tn the Chebyshev polynomial of degree n. Tn is the solution
on [−1, 1] to the differential equation

d

dx

(

√

1 − x2
dy

dx

)

+
n2

√
1 − x2

y = 0, (2.68)

and is given explicitly by the formula

Tn(x) = cos(n arccos x). (2.69)

Chebyshev polynomials are orthogonal on the interval [−1, 1] with respect to the weight function
w(x) = (1 − x2)−1/2, i.e. for any m,n ≥ 0,

∫ 1

−1
Tm(x)Tn(x)

dx√
1 − x2

=







0 , if m 6= n
π
2 , if m = n 6= 0
π , if m = n = 0







. (2.70)

Chebyshev polynomials also satisfy the recurrence

Tn+1(x) = 2xTn(x) − Tn−1(x) (2.71)

with initial conditions
T0(x) = 1, (2.72)

T1(x) = t. (2.73)

Recurrence (2.71) is stable due to the fact that |Tn| ≤ 1 for all n ≥ 0, and can thus be used to
generate Chebyshev polynomials numerically.

Analogous to Legendre polynomials, Chebyshev polynomials are dense in L2[−1, 1]. Thus, for
any square integrable function f : [−1, 1] → R, there exist real α0, α1, α2, . . . such that

f(x) =

∞
∑

k=0

αk Tk(x). (2.74)

In most numerical applications, we approximate the function f using a polynomial p : [−1, 1] → R

constructed from a truncated version the sum in (2.74), such that

f(x) ≈ p(x) =
n−1
∑

k=0

αk Tk(x). (2.75)

If f has n continuous derivatives, then for any x ∈ [−1, 1] the error of approximation (2.75) is given
by the formula

|f(x) − p(x)| =
f (n)(ξ)

2n−1 n!
, (2.76)

for some ξ ∈ [−1, 1]. We recall from Section 2.4 that the n-point Gaussian quadrature for weight
function w(x) = (1 − x2)−1/2 on the interval [−1, 1] has nodes x1, x2, . . . , xn equal to the roots of
Tn, given explicitly by

xj = cos
(2j − 1)π

2n
, (2.77)
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and weights w1, w2, . . . , wn given explicitly by

wj =
π

n
. (2.78)

Applying this quadrature to products of Chebyshev polynomials yields the identities

n
∑

j=1

wj T0(xj)
2 = π, (2.79)

n
∑

j=1

wj Tk(xj)Tl(xj) =
π

2
δkl, (2.80)

for all 1 ≤ k, l ≤ n − 1. If f is tabulated at the points x1, x2, . . . , xn, the expansion coefficients in
equation (2.75) are given by the formulas

α0 =
1

n

n
∑

j=1

f(xj), (2.81)

αk =
2

n

n
∑

j=1

f(xj)Tk(xj), (2.82)

for k = 1, 2, . . . , n − 1. For an integer n > 0, we define the linear operator AT : R
n → R

n,

AT (f(x1), f(x2), . . . , f(xn)) = (α0, α1, . . . , αn−1) , (2.83)

as the Chebyshev transform of size n. AT converts values of f at the roots of Tn into coefficients
in a Chebyshev polynomial expansion using equations (2.81) and (2.82). In matrix notation,

AT =
1

n
ST TT , (2.84)

where

ST =











1
2

. . .

2











, (2.85)

TT =







T0(x1) · · · T0(xn)
...

. . .
...

Tn−1(x1) · · · Tn−1(xn)






. (2.86)

The algorithm of Section 4 will enable the accelerated application of the matrix TT in equa-
tion (2.86).

Remark 2.10 Although the algorithm of this paper accelerates the calculation of the expansion
coefficients α0, α1, . . . , αn−1 in equation (2.75) via the application of the matrix TT , it is well
known that due to the connection between trigonometric polynomials and Chebyshev polynomials
(see identity (2.69)), these expansion coefficients can also be calculated rapidly via the use of an
FFT. When the basis functions are Chebyshev polynomials (or complex exponentials) and the
quadrature nodes x1, x2, . . . , xn are the roots of Tn (or equispaced), the use of an FFT to calculate
the expansion coefficients is preferable, and faster than the algorithm of this paper. However,
for nonequispaced nodes x1, x2, . . . , xn, the algorithm of this paper becomes a new version of the
nonequispaced FFT.
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The integrals in Lemma 2.11 below are used in Section 3. These identities are a restatement of
Formulas 7.355.1 and 7.355.2 in [10].

Lemma 2.11 For any integer n ≥ 0, and any real number a > 0,

∫ 1

0
T2n+1(x) sin ax

dx√
1 − x2

= (−1)n
π

2
J2n+1(a), (2.87)

∫ 1

0
T2n(x) cos ax

dx√
1 − x2

= (−1)n
π

2
J2n(a), (2.88)

where Jn is the Bessel function of the first kind of order n.

2.7 Hermite polynomials

For an integer n ≥ 0, we denote by Hn the Hermite polynomial of degree n, which is the solution
on R to the differential equation

d

dx

(

e−x
2 dy

dx

)

+ 2n e−x
2

y = 0, (2.89)

given by the formula

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2

. (2.90)

Hermite polynomials are orthogonal on R with respect to the weight function w(x) = e−x
2

, i.e. for
any m,n ≥ 0,

∫ ∞

−∞
Hm(x)Hn(x) e

−x2

dx =
√
π 2n n! δmn. (2.91)

Furthermore, Hermite polynomials satisfy the recurrence

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (2.92)

with initial conditions
H0(x) = 1, (2.93)

H1(x) = x. (2.94)

Differentiating (2.92), we obtain a recurrence for the derivatives of Hermite polynomials, which
are used to calculate the weights of the Gaussian quadrature corresponding to the weight function
w(x) = e−x

2

(see Section 2.4). The use of Hermite polynomials in numerical applications is prohib-
ited due to poor scaling for large values of their argument, i.e. for large |x|, |Hn(x)| is very large,
for all n > 0. Thus, it is necessary that we instead use normalized Hermite functions, given by the
formula

hn(x) =
1

π
1

4 2
n
2

√
n!
Hn(x) e

−x2

2 . (2.95)

Normalized Hermite functions form an orthonormal basis in L2(R), and satisfy the differential
equation

d2y

dx2
+ (2n+ 1 − x2) y = 0. (2.96)

The functions h0, h1, h2, . . . can be calculated numerically using the recurrence

hn+1(x) =

√

2

n+ 1
xhn(x) −

√

n

n+ 1
hn−1(x) (2.97)
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with initial conditions

h0(x) =
1

π
1

4

e
−x2

2 , (2.98)

h1(x) =
x

π
1

4

√
2
e

−x2

2 . (2.99)

Since Hermite functions are dense in L2(R), for any square integrable function f : R → R there
exist real coefficients α0, α1, α2, . . . such that

f(x) =

∞
∑

k=0

αk hk(x). (2.100)

Most numerical applications involving Hermite polynomials use a truncated version of the sum in
equation (2.100) to provide an approximation to f , so that

f(x) ≈
n−1
∑

k=0

αk hk(x). (2.101)

We recall from Section 2.4 that the n-point Gaussian quadrature for weight function w(x) = e−x
2

on R has nodes x1, x2, . . . , xn equal to the roots of Hn and weights w1, w2, . . . , wn given by

wj =

√
π 2n+1 n!

H
′

n(xj)
2
. (2.102)

If this quadrature is applied to products of Hermite polynomials, we obtain the identity

n
∑

j=1

wj Hk(xj)Hl(xj) =
√
π 2k k! δkl (2.103)

for all 0 ≤ k, l ≤ n− 1. A straightforward algebraic manipulation shows that (2.103) is equivalent
to

n
∑

j=1

w̃j hk(xj)hl(xj) = δkl, (2.104)

where

w̃j =
2

h
′

n(xj)
2
. (2.105)

In this paper, we require the roots of Hn for use in computing the expansion coefficients in equa-
tion (2.101) and quadrature weights in equation (2.105). These roots x1, x2, . . . , xn can be numer-
ically calculated using the method contained in [9]; once calculated, αk is given by the formula

αk =
n
∑

j=1

w̃j f(xj)hk(xj) (2.106)

for k = 0, 1, 2, . . . , n − 1. For an integer n > 0, we define the linear operator AH : R
n → R

n,

AH (f(x1), f(x2), . . . , f(xn)) = (α0, α1, . . . , αn−1) , (2.107)

as the Hermite function transform of size n. AH converts values of f at the roots of Hn into
coefficients in a Hermite function expansion using equation (2.106). In matrix notation,

AH = WH TH , (2.108)
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where

WH =











w̄1

w̄2

. . .

w̄n











, (2.109)

TH =







h0(x1) · · · h0(xn)
...

. . .
...

hn−1(x1) · · · hn−1(xn)






. (2.110)

The algorithm described in Section 4 will accelerate the application of matrix TH in equation (2.110).

2.8 Laguerre polynomials

For an integer n ≥ 0, we denote by Ln the Laguerre polynomial of degree n, which is the solution
on R

+ to the differential equation

d

dx

(

x e−x
dy

dx

)

+ n e−x y = 0, (2.111)

given by the formula

Ln(x) =
1

n!
ex

dn

dxn
e−x. (2.112)

Laguerre polynomials form an orthonormal basis in L2(R+) with respect to the weight function
w(x) = e−x, i.e. for any m,n ≥ 0,

∫ ∞

0
Lm(x)Ln(x) e

−x dx = δmn. (2.113)

Laguerre polynomials satisfy the recurrence

(n+ 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x) (2.114)

with initial conditions
L0(x) = 1, (2.115)

L1(x) = 1 − x. (2.116)

Differentiating recurrence (2.114) yields a recurrence for the derivatives of Laguerre polynomials,
which are used to calculate weights for the Gaussian quadrature corresponding to weight function
w(x) = e−x on R

+ (see Section 2.4). Much like Hermite polynomials, Laguerre polynomials are
not functions that can be used numerically due to improper scaling. In numerical applications, we
instead use normalized Laguerre functions ℓn, given by the formula

ℓn(x) = Ln(x) e
−x
2 . (2.117)

Laguerre functions satisfy the same recurrence as Laguerre polynomials, recurrence (2.114), except
with the initial conditions

ℓ0(x) = e
−x
2 , (2.118)

ℓ1(x) = (1 − x)e
−x
2 . (2.119)
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The functions ℓ0, ℓ1, ℓ2, . . . can be numerically evaluated using recurrence (2.114) with initial condi-
tions above in equations (2.118) and (2.119). Since Laguerre functions form an orthonormal basis
in L2(R+), for any square integrable function f : R

+ → R there exist α0, α1, α2, . . . such that

f(x) =

∞
∑

k=0

αk ℓk(x). (2.120)

Many numerical applications use a truncated version of the sum in equation (2.120) to approximate
the function f , such that

f(x) ≈
n−1
∑

k=0

αk ℓk(x). (2.121)

To determine α0, α1, . . . , αn−1, we recall from Section 2.4 that the n-point Gaussian quadrature
corresponding to weight function w(x) = e−x on R

+ has nodes x1, x2, . . . , xn equal to the roots of
Ln and weights w1, w2, . . . , wn given by

wj =
1

xj L
′

n(xj)
2
. (2.122)

Applying this quadrature to products of Laguerre polynomials we obtain the identity

n
∑

j=1

wj Lk(xj)Ll(xj) = δkl, (2.123)

for all 0 ≤ k, l ≤ n− 1. After an algebraic manipulation of (2.123), we obtain a similar expression
involving normalized Laguerre functions,

n
∑

j=1

w̃j ℓk(xj) ℓl(xj) = δkl, (2.124)

where

w̃j =
1

xj ℓ
′

n(xj)
2
. (2.125)

The roots x1, x2, . . . , xn, which are used in formulas (2.122–2.125), can be numerically calculated
using the method contained in [9]. The coefficients in expansion (2.121) are then given by the
formula

αk =
n
∑

j=1

w̃j f(xj) ℓk(xj). (2.126)

For an integer n > 0, we define the linear operator AL : R
n → R

n,

AL (f(x1), f(x2), . . . , f(xn)) = (α0, α1, . . . , αn−1) , (2.127)

as the Laguerre function transform of size n. AL converts values of f at the roots of Ln into
coefficients in a Laguerre function expansion using equation (2.126). In matrix notation,

AL = WL TL, (2.128)

where

WL =











w̃1

w̃2

. . .

w̃n











, (2.129)
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TL =







ℓ0(x1) · · · ℓ0(xn)
...

. . .
...

ℓn−1(x1) · · · ℓn−1(xn)






. (2.130)

The application of matrix TL in equation (2.130) will be accelerated by the algorithm described in
Section 4.

Observation 2.12 In Section 5 we will use the fact that for integers n, ν ≥ 0, the normalized
generalized Laguerre functions ℓνn are the eigenfunctions of the Fourier-Bessel transform of order ν.
The normalized generalized Laguerre functions are given by the formula

ℓνn(x) =

√

n!

(ν + n)!
e−

x
2 x

ν
2 Lνn(x), (2.131)

where Lνn(x) is the solution on R
+ to the differential equation (similar to equation (2.111))

d

dx

(

xν+1 e−x
dy

dx

)

+ nxν e−x y = 0, (2.132)

given by the formula (which is very similar to that in equation (2.112))

Lνn(x) =
1

n!
ex x−ν

dn

dxn

(

e−xxn+ν
)

. (2.133)

The eigenfunction relation is given by the formula
∫ ∞

0
xJν(xy) ℓ

ν
n(x

2) dx = (−1)n ℓνn(y
2). (2.134)

More general forms of equation (2.134) can be found in [3] and [10].

2.9 Prolate spheroidal wave functions

In this section we summarize certain properties of prolate spheroidal wave functions to be used in
Section 5; more detailed information can be found in [19] and [24]. For a real c > 0, we define the
operator Fc : L2[−1, 1] → L2[−1, 1] as

(Fcϕ)(x) =

∫ 1

−1
eicxt ϕ(t) dt. (2.135)

The operator Fc has eigenvalues λ0, λ1, λ2, . . . such that |λn−1| ≥ |λn| for all n ≥ 1. Furthermore,
for each n = 0, 1, 2, . . .

λn = in |λn| . (2.136)

We denote by ψcn the nth prolate spheroidal wave function (PSWF), which is the eigenfunction of Fc
corresponding to the eigenvalue λn. The function ψcn is also a solution on [−1, 1] to the differential
equation

d

dx

(

(1 − x2)
dy

dx

)

+ (χn − c2 x2) y = 0, (2.137)

where 0 < χ0 < χ1 < χ2 < . . . are referred to as the separation coefficients. The functions
ψc0, ψ

c
1, ψ

c
2, . . . form an orthonormal basis in L2[−1, 1] under the usual inner product formula, i.e.

for any m,n ≥ 0
∫ 1

−1
ψcm(x)ψcn(x) dx = δmn. (2.138)
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For a given bandwidth c and properly chosen n, the functions ψc0, ψ
c
1, . . . , ψ

c
n−1 are a set of stable

interpolation functions which can be used to accurately approximate functions of the form eicx,
with x ∈ [−1, 1]. To rephrase, given a function f : [−1, 1] → C,

f(x) = eicx, (2.139)

there exist coefficients α0, α1, . . . , αn−1 such that

f(x) ≈
n−1
∑

k=1

αk ψ
c
k(x). (2.140)

If interpolation nodes are chosen to be the n roots of the function ψcn, the determination of
α0, α1, . . . , αn−1 is a well-conditioned procedure. Using the methods of [9], we can numerically
calculate the roots of any PSWF as well as evaluate any PSWF on the interval [−1, 1]. Suppose
now that the coefficients in expansion (2.140) are known, and one wishes to evaluate the expansion
at the n points x1, x2, . . . , xn (for example, the n roots of ψcn). For any integer n and complex
numbers α0, α1, . . . , αn−1, we define the linear operator Ecψ : R

n → R
n,

Ecψ (α0, α1, . . . , αn−1) = (f(x1), f(x2), . . . , f(xn)) (2.141)

as PSWF interpolation of size n. In matrix notation,

Ecψ =







ψc0(x1) · · · ψcn−1(x1)
...

. . .
...

ψc0(xn) · · · ψcn−1(xn)






. (2.142)

The algorithm described in Section 4 will accelerate the application of the matrix Ecψ in equa-
tion (2.142).

3 Analytical apparatus

The algorithm of this paper relies on the observation that for certain n×n matrices the numerical
rank of any m× k contiguous submatrix depends only on the quantity mk. This section contains
a proof of this fact for the discrete Fourier transform and the discrete Fourier-Bessel transform.
Inter alia, we first prove analogous results for the continuous Fourier transform and continuous
Fourier-Bessel transform.

3.1 Rank analysis of the Fourier transform

The Fourier transform F : L2(R) → L2(R) is given by the formula

(Ff)(x) =

∫ ∞

−∞
eixt f(t) dt. (3.1)

Let a, b, u, v be real numbers such that −π ≤ a < b ≤ π and u < v. We wish to show that the
operator S : L2[a, b] → L2[u, v], given by the formula

(Sf)(x) =

∫ b

a
eixt f(t) dt, (3.2)

has numerical rank that depends only on the quantity (v − u)(b − a). First, we define what we
mean by the numerical rank of an integral operator, as well as the numerical rank of a matrix.
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ρ k Error Predicted k

10 30 .99111E-12 49
50 83 .99726E-12 95
100 142 .99918E-12 152
500 570 .99992E-12 581
1000 1088 .99991E-12 1100
5000 5151 .99967E-12 5167
10000 10190 .99991E-12 10210
50000 50324 .99995E-12 50357

Table 2: Accuracy of Chebyshev expansion for complex exponential.

Definition 3.1 We say that an integral operator S : L2[a, b] → L2[c, d] with kernel s : [c, d] ×
[a, b] → C,

(Sf)(x) =

∫ b

a
s(x, t) f(t) dt, (3.3)

has rank k if s can be written as

s(x, t) =

k
∑

n=1

gn(x)hn(t), (3.4)

for some set of functions g1, h1, g2, h2, . . . , gk, hk. Likewise, S has rank k to precision ε > 0 if s can
be written as

s(x, t) =
∞
∑

n=1

gn(x)hn(t), (3.5)

where for every n > k,
|gn(x)hn(t)| < ε (3.6)

for all t ∈ [a, b] and x ∈ [c, d].
If A is an m×n matrix, we say that it has rank k if we can write the singular value decomposition

of A as
A = UDV t, (3.7)

where U and V are matrices of dimension m × k and n × k,respectively, both whose columns are
orthonormal and D is a k × k diagonal matrix with diagonal elements σi, σ1 ≥ σ2 ≥ · · · ≥ σk > 0.
We say that A has rank k

′
to precision ε if σk′ ≥ ε > σk′+1.

Our aim now is to show that the kernel of the operator in (3.2), s(x, t) = eixt, can be written in the
form (3.5). The following lemma is an immediate consequence of Formulas 9.1.44 and 9.1.45 in [1].

Lemma 3.2 For any ρ ∈ R and τ ∈ [−1, 1],

eiρτ = J0(ρ) +

∞
∑

n=1

2 in Jn(ρ)Tn(τ). (3.8)

Table 2 shows the numerical accuracy of a truncated version of expansion (3.8), along with the
predicted expansion order from Lemma 2.6. The column labeled “ρ” represents the same ρ as in
equation (3.8). The column labeled “k” gives the number of terms needed in expansion (3.8) to
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achieve an absolute accuracy of at least 10−12 for all τ ∈ [−1, 1]. The values in the column labeled
“error” are calculated as

max
τ∈[−1,1]

∣

∣

∣

∣

∣

eiρτ − J0(ρ) −
k
∑

n=1

2 in Jn(ρ)Tn(τ)

∣

∣

∣

∣

∣

. (3.9)

The value in the column “predicted k” is the smallest positive integer k such that

|2 in Jk(ρ)Tk(τ)| ≤ 2 |Jk(ρ)| < 10−12. (3.10)

This value of k is obtained via Lemma 2.6. We can now state and prove the following theorem.

Theorem 3.3 If a, b, u, v are real numbers such that −π ≤ a < b ≤ π, u < v, and (v−u)(b−a) >
1, then for any fixed positive ε < 0.1, the integral operator S : L2[a, b] → L2[u, v],

(Sf)(x) =

∫ b

a
eixt f(t) dt, (3.11)

has rank to precision ε at most a constant times (v − u)(b− a).

Proof. We first expand the kernel of operator (3.11) into the form of (3.5). We begin by rewrit-
ing (3.11) as

(Sf)(x) = S̄f(ξ) =

∫ b

a
ei(u+(v−u)ξ)t f(t) dt, (3.12)

where S̄ : L2[a, b] → L2[0, 1], and ξ is given by the formula

ξ =
x− u

v − u
. (3.13)

Letting t = b−a
2 τ + b+a

2 , we convert (3.12) into

(S̄f)(ξ) =

∫ 1

−1
ei(u+(v−u)ξ)( b−a

2
τ+ b+a

2
) b− a

2
f(τ) dτ. (3.14)

If we now define s̄ to be the kernel of integral operator (3.14), and let c = (v−u) b−a2 , after applying
Lemma 3.2 we obtain

s̄(ξ, τ) =
b− a

2
ei(u+(v−u)ξ)( b−a

2
τ+ b+a

2
) (3.15)

=
b− a

2
eiu

b+a
2 ei(v−u) b+a

2
ξ eicξτ eiu

b−a
2
τ (3.16)

=
b− a

2
eiu

b+a
2 ei(v−u) b+a

2
ξ

(

J0(cξ) +

∞
∑

n=1

2 in Jn(cξ)Tn(τ)

)

eiu
b−a
2
τ . (3.17)

To simplify the above expression for s̄, for n > 0 let the function κn : [0, 1] × [−1, 1] → C be the
nth term in expansion (3.17), i.e.

κn(ξ, τ) = in (b− a) eiu
b+a
2 ei(v−u) b+a

2
ξ Jn(cξ)Tn(τ) e

iu b−a
2
τ , (3.18)

and thus

s̄(ξ, τ) =
b− a

2
eiu

b+a
2 ei(v−u) b+a

2
ξ J0(cξ) e

iu b−a
2
τ +

∞
∑

n=1

κn(ξ, τ). (3.19)
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If we take the absolute value of expression (3.18) for κn, we arrive at the inequality

|κn(ξ, τ)| =
∣

∣

∣in (b− a) eiu
b+a
2 ei(v−u) b+a

2
ξ Jn(cξ)Tn(τ) e

iu b−a
2
τ
∣

∣

∣ (3.20)

≤ |(b− a)Jn(cξ)Tn(τ)| (3.21)

≤ 2π |Jn(cξ)|. (3.22)

Now, if c > 10, then by Lemma 2.6, |κn| is less than ε whenever

n > (c1/3 + α c−1/3)3, (3.23)

where

α =
3−1/3

2
log2/3

(

2π

ε

)

. (3.24)

If c ≤ 10, |κn| is less than ε whenever

n > (101/3 + α 10−1/3)3. (3.25)

It now follows from equations (3.23–3.25) that if (v − u)(b − a) > 1, the rank to precision ε of the
integral operator S is at most a constant times (v − u)(b− a). 2

Corollary 3.4 Let TF be the n × n matrix of the discrete Fourier transform, as described in
Section 2.3. If A is any m × k contiguous submatrix of TF such that mk > n, then for any fixed
positive ε < 0.1, the rank of A to precision ε is at most a constant times the quantity mk.

3.2 Rank analysis of the Fourier-Bessel transform

For any real number R > 0 and integer ν ≥ 0, the Fourier-Bessel transform of order ν Hν :
L2[0, R] → L2(R) is given by the formula

(Hνf)(ρ) =

∫ R

0

√
t Jν(ρt) f(t) dt (3.26)

(see Section 2.2). Let a, b, u, v be real numbers such that 0 ≤ a < b ≤ R and u < v. We wish to
show that the operator Uν : L2[a, b] → L2[u, v], given by the formula

(Uνf)(ρ) =

∫ R

0

√
t Jν(ρt) f(t) dt, (3.27)

has numerical rank at most a constant times (v − u)(b − a). We prove this fact in Theorem 3.5
below.

Theorem 3.5 For any fixed positive ε > 0.1, R > 0, and integer ν ≥ 0, if a, b, u, v, are real
numbers such that 0 ≤ a < b ≤ R, 0 ≤ u < v, and (v − u)(b − a) > 1, then the integral operator
Uν : L2[a, b] → L2[u, v], given by the formula

(Uνf)(ρ) =

∫ b

a

√
t Jν(ρt) f(t) dt, (3.28)

has rank to precision ε at most a constant times (v − u)(b− a).
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Proof. We prove Theorem 3.5 in the case where ν = 2m, for some integer m ≥ 0. The proof for
odd ν is virtually identical, and is omitted. Using Lemma 2.11, we rewrite (3.28) as

(U2mf)(ρ) =

∫ b

a

√
t

(

(−1)m
2

π

∫ 1

0

T2m(y)
√

1 − y2
cos(ρty) dy

)

f(t) dt. (3.29)

Changing variables according to

t =
b− a

2
τ +

a+ b

2
, (3.30)

ρ = (v − u)ξ + u, (3.31)

the operator U2m is converted into Ū2m : L2[−1, 1] → L2[0, 1], given by the formula

(Ū2mf)(ξ) =

∫ 1

−1

√

b− a

2
τ +

a+ b

2
(−1)m

2

π
·

∫ 1

0

T2m(y)
√

1 − y2
cos

(

[(v − u)ξ + u]

[

b− a

2
τ +

a+ b

2

]

y

)

dy · (3.32)

f(τ)
b− a

2
dτ.

We now write the kernel of Ū2m in the form of (3.5). Let µ2m : [0, 1]× [−1, 1] → R be the kernel of
Ū2m, given by the formula

µ2m(ξ, τ) =αm(τ)

∫ 1

0

T2m(y)
√

1 − y2
cos

(

[(v − u)ξ + u]

[

b− a

2
τ +

a+ b

2

]

y

)

dy (3.33)

=
αm(τ)

2

∫ 1

−1

T2m(y)
√

1 − y2
ei[(v−u)ξ+u][ b−a

2
τ+ a+b

2 ]y dy, (3.34)

where

αm(τ) = (−1)m
b− a

π

√

b− a

2
τ +

a+ b

2
. (3.35)

Letting c = (v − u) b−a2 , we expand the kernel µ2m using Lemma 3.2 into

µ2m(ξ, τ) =
αm(τ)

2

∫ 1

−1

T2m(y)
√

1 − y2
eiu

a+b
2
y ei(v−u)a+b

2
ξy eicξτy eiu

b−a
2
τy dy (3.36)

=
αm(τ)

2

∫ 1

−1

T2m(y)
√

1 − y2
eiu

a+b
2
y ei(v−u)a+b

2
ξy ·

(

J0(cξy) +

∞
∑

n=1

2 in Jn(cξy)Tn(τ)

)

eiu
b−a
2
τy dy. (3.37)

To simplify the expression for µ2m, for all n > 0 let ωn : [0, 1] × [−1, 1] → R be the nth term in
expansion (3.37), given by the formula

ωn(ξ, τ) =αm(τ) in
∫ 1

−1

T2m(y)
√

1 − y2
eiu

a+b
2
y ei(v−u)a+b

2
ξy Jn(cξy)Tn(τ) e

iu b−a
2
τy dy. (3.38)
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Taking the absolute value of ωn, we obtain the inequality

|ωn(ξ, τ)| =

∣

∣

∣

∣

∣

αm(τ) in
∫ 1

−1

T2m(y)
√

1 − y2
eiu

a+b
2
y ei(v−u)a+b

2
ξy Jn(cξy)Tn(τ) e

iu b−a
2
τy dy

∣

∣

∣

∣

∣

(3.39)

≤ R

π

√

3R

2

∫ 1

−1

|T2m(y)|
√

1 − y2

∣

∣

∣
eiu

a+b
2
y ei(v−u)a+b

2
ξy Jn(cξy)Tn(τ) e

iu b−a
2
τy
∣

∣

∣
dy (3.40)

≤ R

π

√

3R

2
max
r∈[0,1]

|Jn(cr)|
∫ 1

−1

dy
√

1 − y2
(3.41)

=R

√

3R

2
max
r∈[0,1]

|Jn(cr)|. (3.42)

Now, if c > 10, then by Lemma 2.6, |ωn| is less than ε whenever

n > (c1/3 + α c−1/3)3, (3.43)

where

α =
3−1/3

2
log2/3

(

R

ε

√

3R

2

)

. (3.44)

If c ≤ 10, |ωn| is less than ε whenever

n > (101/3 + α 10−1/3)3. (3.45)

It now follows from equations (3.43–3.45) that if (v − u)(b − a) > 1, the rank to precision ε of the
integral operator Uν is at most a constant times (v − u)(b− a). 2

Corollary 3.6 For fixed R > 0, let TJν be the n×n matrix of the discrete Fourier-Bessel transform,
as described in Section 2.2. If A is any m× k contiguous submatrix of TJν such that mk > n, then
for any fixed positive ε < 0.1, the rank of A to precision ε is at most a constant times the quantity
mk.

4 The butterfly algorithm

This section contains a description of an algorithm for the application of n×n matrices which have
the property that any m × k contiguous submatrix has numerical rank that depends only on the
quantity mk.

4.1 Notation

In this section, we establish notation that will be used in Sections 4.2–4.5 when describing the
algorithm.

A will denote the matrix being decomposed and applied, and it is of size n × n where n = 2N

for some positive integer N .
The precision to which all interpolative decompositions are performed is given by ε.
The algorithm imposes a dyadic hierarchy of columns and rows on the matrix A. Columns of

A are merged with increasing level while rows of A are split with increasing level. Levels 0 and 1
are shown in Figure 1. If we require that there can be at most Cmax columns in each submatrix
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Figure 1: Levels 0 and 1 of A.

Figure 2: Level L of A.

on level 0 of the hierarchy, then we have L levels, where Cmax2
L−1 ≤ n ≤ Cmax2

L. Level L of the
matrix is shown in Figure 2.

On every level l, 0 ≤ l ≤ L, there are a constant number of submatrices, 2L ≈ n
Cmax

. We denote

by Ali,j the submatrix in position (i, j) on level l. The index i denotes the row of submatrices

and j denotes the column of submatrices. For a given level l, i ranges between 1 and 2l and j

ranges between 1 and 2L−l. The contiguous submatrix Ali,j consists of the intersection of rows

(i − 1)2N−l + 1 through i2N−l and columns (j − 1)2N−L−l + 1 through j2N−L−l of A. Level 1 is
given by

A =

(

A1
1,1 A1

1,2 · · · A1
1,2L−1

A1
2,1 A1

2,2 · · · A1
2,2L−1

)

, (4.1)

and level L is given by

A =

















AL1,1
AL2,1

...
AL

2L−1,1

AL
2L,1

















. (4.2)

We denote the rank (to precision ε) of Ali,j by kli,j . The matrix Bl
i,j will be some selection of

kli,j columns of Ali,j that allow for a stable interpolative decomposition of the form Ali,j = Bl
i,j P ,

for some matrix P (see Section 2.1). The matrix Bl
i,j will be referred to as the column skeleton

matrix of Ali,j , and P will be referred to as an interpolation matrix.
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For a matrix X dimensioned 2m× k, we denote by X+ the m× k matrix obtained from the top
m rows of X. Likewise, X− is used to denote the m× k matrix obtained from the bottom m rows
of X. Thus,

X =

(

X+

X−

)

. (4.3)

If we are to use the algorithm described in Sections 4.2–4.5 to compute y = Ax, then for
j = 1, 2, . . . , 2L we denote by xLj the column vector of length 2N−L obtained from elements (j −
1)2N−L + 1 through j2N−L of x. Analogously, for i = 1, 2, . . . , 2L we denote by yLi the column
vector of length 2N−L obtained from elements (i− 1)2N−L + 1 through i2N−L of y.

4.2 Informal description

Given the matrix A, the general strategy of the algorithm is to form an interpolative decomposition
for every matrix on every level using previous interpolative decompositions that were created on
previous levels. It terminates with the application of a decomposed version of the matrix A to
an arbitrary vector x. We first describe a two level algorithm, and then generalize to a multilevel
algorithm.

If we let Cmax = n
2 , then there exists two levels of A. Level 0 is given by

A =
(

A0
1,1 A0

1,2

)

, (4.4)

where A0
1,1 and A0

1,2 are both n× n
2 matrices. Level 1 is given by

A =

(

A1
1,1

A1
2,1

)

, (4.5)

where A1
1,1 and A1

2,1 are both n
2 × n matrices. Using the interpolative decomposition described in

Section 2.1, we can write A0
1,1 and A0

1,2 as

A0
1,1 = B0

1,1 P
0
1,1, (4.6)

A0
1,2 = B0

1,2 P
0
1,2, (4.7)

where B0
1,1 is a selection of k0

1,1 columns of A0
1,1, B

0
1,2 is a selection of k0

1,2 columns of A0
1,2, and P 0

1,1

and P 0
1,2 contain k0

1,1×k0
1,1 and k0

1,2×k0
1,2 identity matrices, respectively. Using decompositions (4.6)

and (4.7), the matrix A is now given by the formula

A =
(

B0
1,1 B0

1,2

)

(

P 0
1,1 0

0 P 0
1,2

)

. (4.8)

Decomposition (4.8) expresses A through only k0
1,1 + k0

1,2 of its columns. We now form decomposi-

tions of A1
1,1 and A1

2,1 similar to those in (4.6) and (4.7).

Since A0
1,1 and A0

1,2 of level 0 can be represented using only the columns chosen for B0
1,1 and

B0
1,2, respectively, it is possible to choose columns of B0

1,1 and B0
1,2 to represent matrices A1

1,1 and

A1
2,1 of level 1. Thus, we can form the interpolative decompositions

(

B0
1,1 B0

1,2

)+
= B1

1,1 P
1
1,1 (4.9)

and
(

B0
1,1 B0

1,2

)−
= B1

2,1 P
1
2,1, (4.10)
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where B1
1,1 is a selection of k1

1,1 columns of A1
1,1 which were chosen from those used to form B0

1,1

and B0
1,2, B

1
2,1 is a selection of k1

2,1 columns of A1
2,1 which were chosen from those used to form B0

1,1

and B0
1,2, and P 1

1,1 and P 1
2,1 contain k1

1,1 × k1
1,1 and k1

2,1 × k1
2,1 identity matrices, respectively. The

submatrices A1
1,1 and A1

2,1 now have the decompositions

A1
1,1 = B1

1,1 P
1
1,1

(

P 0
1,1 0

0 P 0
1,2

)

, (4.11)

A1
2,1 = B1

2,1 P
1
2,1

(

P 0
1,1 0

0 P 0
1,2

)

. (4.12)

The final decomposition of the matrix A is

A =

(

B1
1,1 0

0 B1
2,1

) (

P 1
1,1

P 1
2,1

) (

P 0
1,1 0

0 P 0
1,2

)

. (4.13)

An examination of decomposition (4.13) shows how an arbitrary vector x may be applied to the
matrix A.

We have described a two level algorithm for the decomposition and application of the matrix
A. If n and Cmax are such that the highest level is L > 1, we proceed as follows. Level 0 of A is
then given by

A =
(

A0
1,1 A0

1,2 · · · A0
1,2L

)

, (4.14)

where A0
1,1, A

0
1,2, . . . , A

0
1,2L are all n × 2N−L matrices (since n = 2N , for some N). First, in-

terpolative decompositions are formed for these submatrices on level 0, creating the matrices
B0

1,1, P
0
1,1, . . . , B

0
1,2L , P

0
1,2L . Next, for j = 1, 2, . . . , 2L−1 the pair of matrices B0

1,2j−1 and B0
1,2j is

used to create an interpolative decomposition for A1
1,j and A1

2,j, creating matrices B1
1,j, P

1
1,j and

B1
2,j, P

1
2,j , respectively. This procedure is analogous to creating decompositions (4.11) and (4.12)

in the two level algorithm we described earlier in this section.
We continue forming interpolative decompositions on successively higher levels by combining

column skeleton matrices which are adjacent to each other on previous levels. To be more precise,
for l > 0, i = 1, 2, . . . , 2l, and j = 1, 2, . . . , 2L−l we use the matrices Bl−1

⌊ i+1

2
⌋,2j−1

and Bl−1
⌊ i+1

2
⌋,2j

to

create an interpolative decomposition for Ali,j, which results in the creation of column skeleton

matrix Bl
i,j and interpolation matrix P li,j . On level L, the decomposition of ALi,1 is given by the

formula

ALi,1 =BL
i,1 P

L
i,1





PL−1
⌊ i+1

2
⌋,1

PL−1
⌊ i+1

2
⌋,2

















PL−2

⌊
⌊ i+1

2
⌋+1

2
⌋,1

. . .

PL−2

⌊
⌊ i+1

2
⌋+1

2
⌋,4













· · ·

· · ·

















P 0
1,1

P 0
1,2

. . .

P 0
1,2L−1

P 0
1,2L

















(4.15)

for i = 1, 2, . . . , 2L. For L > 1, the decomposition of the whole matrix A is too complicated to give
here, but an examination of (4.15) shows how the matrix A can be applied to a vector x using the
individual decompositions of AL1,1, A

L
2,1, . . . , A

L
2L,1

.

28



Remark 4.1 Since for all l, i, and j the ranks of Ali,j are virtually the same, all the interpolation

matrices P li,j for l > 0 are of bounded size, k̃ × 2 k̃, where k̃ is the rank of any submatrix on any
level. The algorithm is able to apply A to an arbitrary vector x in O(n log n) operations due to
the fact that all of the interpolation matrices are of the same size.

Observation 4.2 The algorithm described in Section 4.2 will exhibit the same performance when
applied to the matrix At since all submatrix rank considerations remain the same under the trans-
pose operation.

4.3 Detailed description

This section contains a detailed description of the algorithm that was described informally in
Section 4.2 for the decomposition and application of the matrix A.

Step 1

Choose main parameters and create dyadic hierarchy

1. Set precision ε for interpolative decompositions.

2. Set submatrix size parameter Cmax.

3. Calculate the number of levels L such that Cmax2
L−1 ≤ n ≤ Cmax2

L.

Comment [Create the dyadic hierarchy of columns and rows. On each of the L + 1 levels of the
hierarchy, there will be 2L submatrices. Retain structure created for use in precomputation.]
do l = 0, 1, . . . , L

do i = 1, 2, . . . , 2l

do j = 1, 2, . . . , 2L−l

Denote the submatrix consisting of rows (i− 1)2N−l + 1 through i2N−l and
columns (j − 1)2N−L−l + 1 through j2N−L−l as Ali,j.

end do
end do

end do

Step 2

Precomputation
Comment [During this stage, all submatrices on all levels are compressed using the interpolative
decomposition described in Section 2.1.]
do l = 0, 1, . . . , L

do i = 1, 2, . . . , 2l

do j = 1, 2, . . . , 2L−l

if l = 0 then

1. Form the interpolative decomposition

A0
1,j = B0

1,j P
0
1,j. (4.16)

2. Store P 0
1,j .
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if (l > 0 and i is odd) then

1. Form the interpolative decomposition

(

Bl−1
⌊ i+1

2
⌋,2j−1

Bl−1
⌊ i+1

2
⌋,2j

)+

= Bl
i,j P

l
i,j. (4.17)

2. Store P li,j .

3. if l = L then store Bl
i,j.

if (l > 0 and i is even) then

1. Form the interpolative decomposition

(

Bl−1
⌊ i+1

2
⌋,2j−1

Bl−1
⌊ i+1

2
⌋,2j

)−

= Bl
i,j P

l
i,j. (4.18)

2. Store P li,j .

3. if l = L then store Bl
i,j.

end do
end do

end do
Comment [As noted above, the matrices Bl

i,j only need to be stored in memory for l = L. Only

these column skeleton matrices are used in the application of A in Step 3. For l < L, Bl
i,j can be

computed on the fly by only using column and row numbers of the original matrix A.]

Step 3

Application
Comment [During application, the matrix A that was decomposed during precomputation in Step
2 is applied to an input vector x to generate an output vector y.]
do l = 0, 1, . . . , L

do i = 1, 2, . . . , 2l

do j = 1, 2, . . . , 2L−l

if l = 0 then calculate and store

u0
1,j = P 0

1,j x
L
j . (4.19)

if l > 0 then calculate and store

uli,j = P li,j





ul−1
⌊ i+1

2
⌋,2j−1

ul−1
⌊ i+1

2
⌋,2j



 . (4.20)

if l = L then calculate and store

yLi = BL
i,1 u

L
i,1. (4.21)
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end do
end do

end do
Comment [The vectors yL1 , . . . , y

L
2L can then be concatenated to form the vector y ≈ Ax, which is

accurate to relative precision ε.]

4.4 Complexity

This section contains an operation count for applying the algorithm described in Section 4.3 to the
matrix A. A brief analysis of the algorithmic complexity is given in Table 3.

Remark 4.3 We claim in Table 3 that during Step 2, each of the interpolative decompositions
performed can be computed in O(n) operations. Recalling Observation 2.3, the interpolative de-
composition of an m× l matrix of rank k can be performed in O(kml log l) operations. Since the
ranks of all submatrices on all levels of A are virtually the same, k̃, we have that each interpolative
decomposition can be computed in O(2k̃2 n

2d log 2k̃) = O(n) operations, where d is the level of the
matrix being decomposed.

Observation 4.4 If the matrix A is non-singular to precision ε (as is the case for orthogonal
polynomial transform matrices), we can avoid the precomputation of level 0 since the interpolative
decomposition of matrices on that level will yield P 0

1,j = Ik0
1,j

, where Ik denotes a k × k identity

matrix and j = 1, 2, . . . , 2L.

Step Purpose Operation count Explanation

1 Initialization O(n log n)
No numerical computations are performed, but the
dyadic hierarchy is created and parameters are set.

2
Precomputation
compressions

O(n2 log n)
On each of the O(log n) levels, O(n) interpolative
decompositions must be performed. Each decompo-
sition can be performed in O(n) operations.

3
Application of
the transform
to a vector

O(n log n)

On each of the O(log n) levels, O(n) interpolation
P matrices must be applied, each of bounded size.
Then, on level L an additional O(n) column skeleton
B matrices must be applied, each of bounded size.

Table 3: Complexity of the algorithm.

Another important characteristic of any numerical algorithm is the storage requirement. Table 4
gives an overview of the storage requirements for our algorithm. We ignore requirements for work
arrays, and assume that we do not need to store the matrix A in memory, but that its elements
can be computed when needed.

Observation 4.5 For l > 0, i = 1, 2, . . . , 2l, and j = 1, 2, . . . , 2L−l, only the vectors ul−1
⌊ i+1

2
⌋,2j−1

and ul−1
⌊ i+1

2
⌋,2j

are used to compute uli,j in Step 3. Thus, the storage requirement for the application

of matrix A in Step 3 can be relaxed to O(n).
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Step Purpose Storage needed Explanation

1 Initialization O(n log n)
Only the dyadic hierarchy and parameters must be
stored.

2
Precomputation
compressions

O(n log n)

On each of the O(log n) levels, O(n) interpolation
P matrices must be stored, each of bounded size.
On level L, an additional O(n) column skeleton B

matrices must be stored, each of bounded size.

3
Application of
the transform
to a vector

O(n log n)

On each of the O(log n) levels, we store the vectors
uli,j . This requires O(n) memory for each level. On
level L, an additional O(n) amount of storage is
required to calculated and store the vectors yli.

Table 4: Storage requirements of the algorithm.

Figure 3: One possible adaptive level 1 of A.

4.5 An adaptive algorithm

The algorithm described in Sections 4.2 and 4.4 is based on the assumption that the rank of two
different contiguous submatrices is the same if they have an equal number of elements. In practice,
it is possible for this rank to fluctuate. To avoid calculating an interpolative decomposition for a
submatrix whose rank is too large, one can implement an adaptive regime to dyadically partition
the rows as much as needed on a given level. This results in accelerated matrix application times
(at the cost of possibly longer precomputation times).

To implement this optimization, we require that the maximum allowable rank of any submatrix
on any level be at most some constant kmax. Previously, it was only possible to have levels of the
matrix that looked like those in Figures 1 and 2. Now, by insisting that the maximum allowable
rank per submatrix is at most kmax, it is possible to have levels resembling that in Figure 3. The
columns of the matrix in Figure 3 are still dyadically partitioned, but the rows have been adaptively
dyadically partitioned, depending on the actual rank of submatrices. As the level increases, the
merging of columns and subdivision of rows continues appropriately with respect to the adaptive
hierarchy.

Observation 4.6 With the proper choice of kmax, we have yet to find a case in which the adaptive
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algorithm applies a matrix slower than the non-adaptive algorithm. It has not been determined
whether this is due to an actual decrease in the complexity of the algorithm or issues related to
on-board caching.

5 Numerical examples

The butterfly algorithm has been implemented in FORTRAN, and this section reports numerical
results obtained with our implementation. In all cases, we used the Lahey/Fujitsu compiler with
optimization flag --o2, and all examples were run on a 2.4 GHz Intel Pentium 4 processor with 1
GB of RAM and an L2 cache of 512 KB. CPU times listed are in seconds and all operations were
performed using double precision arithmetic. All examples (except where otherwise noted) reflect
the adaptive version of the algorithm as discussed in Section 4.5.

The columns labeled “n” list the size of the matrices to which the algorithm of this paper was
applied. All matrices in these examples are square.

The columns labeled “precomputation” list the times taken to decompose the said n×n matrix.
The columns labeled “direct eval” list the times taken for a direct n × n matrix-vector multi-

plication. Times in parenthesis are estimates.
The columns labeled “fast eval” list the times taken to apply the n×nmatrix using the algorithm

of this paper.
The columns labeled “l2 error” contain the relative errors between the solution obtained via the

algorithm and the solution obtained using a direct matrix-vector multiplication.
The columns labeled “MB used” list the amount of memory in megabytes required by the

algorithm for precomputation and evaluation.
In each example, the matrix was applied to a normalized vector containing random numbers

uniformly distributed on the interval [0, 1]. The value of kmax was chosen so as to produce optimal
run-times for size n = 2048. To find this value of kmax, the adaptive algorithm was run in each ex-
ample for size n = 2048 and kmax = 30, 32, 34, . . . , 138, 140; the value that gave the best evaluation
time was chosen. The value of kmax used is given below each table, and ε = 10−10 unless otherwise
stated. No effort was made to optimize the precomputation required. The precomputation scheme
used costs O(n2 log n), as described in Section 4.4.

5.1 Fourier-Bessel transforms

Tables 5–9 document results of applying our algorithm to Fourier-Bessel transform matrices TJν

in equation (2.27) with ν = 0, 1, 100, and 10000. Table 10 contains data for varying ε in the case
of ν = 0 and n = 8192. In all examples R = 1, where R is such that ρ1, ρ2, ρ3, . . . are the real
increasing positive zeros of the function g : R

+ → R,

g(ρ) = Jν(2πρR) (5.1)

(see equations (2.15–2.27)). The data listed in Tables 5–9 are illustrated in Figures 4–10, respec-
tively.

Observation 5.1 An examination of the data contained in Tables 5–9 shows that the algorithm
of this paper has consistent performance across all orders of transforms. The “fast eval” times
are virtually independent of the order of the Fourier-Bessel transform matrix being applied. This
observation is illustrated in Table 9, where for a matrix of size n we choose ν = n. For large values
of n, the “fast eval” times increase almost linearly. Figure 9 illustrates data from Tables 5–9 in one
plot.
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Tables 11 and 12 contain results from applying the algorithm to the matrices EJ in equa-
tion (2.30) and EH in equation (2.31), respectively. In both matrices EJ and EH , x1, x2, . . . , xn
are given by

xj = n+
2π

3
(j − 1). (5.2)

As a consequence of Lemma 2.6, choosing x1, x2, . . . , xn as in equation (5.2) ensures that all com-
puted values of Bessel functions and Hankel functions are properly scaled.

Remark 5.2 Tables 11 and 12 reflect results from applying the algorithm to the matrices EtJ
and EtH , respectively. This was done to greatly reduce extended precomputation times due to
the calculation of Bessel and Hankel functions using their recurrence relations. As mentioned in
Observation 4.2, applying the algorithm to EtJ and EtH yields results similar to those which would
have been obtained from applying the algorithm to EJ and EH .

34



n Precomputation Direct eval Fast eval l2 error MB used
256 .32E+00 .24E-03 .22E-03 .93E-12 .45E+00
512 .86E+00 .12E-02 .88E-03 .23E-11 .13E+01
1024 .34E+01 .50E-02 .24E-02 .15E-11 .36E+01
2048 .15E+02 .20E-01 .64E-02 .29E-11 .93E+01
4096 .70E+02 .81E-01 .16E-01 .21E-11 .23E+02
8192 .32E+03 .32E+00 .38E-01 .23E-11 .56E+02
16384 .15E+04 (.13E+01) .91E-01 .22E-11 .13E+03
32768 .65E+04 (.52E+01) .21E+00 .23E-11 .31E+03
65536 .28E+05 (.21E+02) .50E+00 .11E-11 .72E+03

Table 5: Times and errors for Fourier-Bessel transform with ν = 0 and kmax = 70.
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Figure 4: Comparison of the accelerated Fourier-Bessel transform of order 0 and its direct calcula-
tion.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .35E+00 .24E-03 .21E-03 .26E-11 .45E+00
512 .92E+00 .12E-02 .88E-03 .31E-11 .13E+01
1024 .35E+01 .50E-02 .24E-02 .21E-11 .36E+01
2048 .15E+02 .20E-01 .64E-02 .23E-11 .92E+01
4096 .72E+02 .81E-01 .16E-01 .20E-11 .23E+02
8192 .32E+03 .32E+00 .38E-01 .19E-11 .56E+02
16384 .14E+04 (.13E+01) .90E-01 .30E-11 .13E+03
32768 .65E+04 (.52E+01) .21E+00 .25E-11 .31E+03
65536 .29E+05 (.21E+02) .50E+00 .21E-11 .72E+03

Table 6: Times and errors for Fourier-Bessel transform with ν = 1 and kmax = 72.
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Figure 5: Comparison of the accelerated Fourier-Bessel transform of order 1 and its direct calcula-
tion.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .36E+00 .24E-03 .18E-03 .47E-11 .42E+00
512 .11E+01 .12E-02 .84E-03 .72E-11 .13E+01
1024 .43E+01 .50E-02 .24E-02 .11E-10 .35E+01
2048 .19E+02 .20E-01 .62E-02 .12E-10 .91E+01
4096 .88E+02 .81E-01 .16E-01 .14E-10 .23E+02
8192 .40E+03 .32E+00 .38E-01 .11E-10 .56E+02
16384 .18E+04 (.13E+01) .91E-01 .97E-11 .13E+03
32768 .77E+04 (.52E+01) .21E+00 .12E-10 .31E+03
65536 .34E+05 (.21E+02) .50E+00 .12E-10 .73E+03

Table 7: Times and errors for Fourier-Bessel transform with ν = 100 and kmax = 74.
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Figure 6: Comparison of the accelerated Fourier-Bessel transform of order 100 and its direct cal-
culation.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .22E+00 .24E-03 .54E-04 .22E-11 .15E+00
512 .64E+00 .12E-02 .32E-03 .46E-11 .55E+00
1024 .25E+01 .50E-02 .14E-02 .14E-10 .21E+01
2048 .12E+02 .20E-01 .45E-02 .22E-10 .65E+01
4096 .62E+02 .81E-01 .13E-01 .29E-10 .19E+02
8192 .31E+03 .32E+00 .34E-01 .26E-10 .50E+02
16384 .15E+04 (.13E+01) .84E-01 .31E-10 .12E+03
32768 .71E+04 (.52E+01) .20E+00 .32E-10 .30E+03
65536 .32E+05 (.21E+02) .48E+00 .29E-10 .71E+03

Table 8: Times and errors for Fourier-Bessel transform with ν = 10000 and kmax = 80.
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Figure 7: Comparison of the accelerated Fourier-Bessel transform of order 10000 and its direct
calculation.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .36E+00 .24E-03 .16E-03 .76E-11 .40E+00
512 .97E+00 .12E-02 .75E-03 .14E-10 .11E+01
1024 .39E+01 .50E-02 .21E-02 .17E-10 .31E+01
2048 .17E+02 .20E-01 .57E-02 .21E-10 .85E+01
4096 .77E+02 .81E-01 .15E-01 .25E-10 .22E+02
8192 .35E+03 .32E+00 .35E-01 .27E-10 .52E+02
16384 .16E+04 (.13E+01) .85E-01 .34E-10 .13E+03
32768 .68E+04 (.52E+01) .19E+00 .33E-10 .29E+03
65536 .29E+05 (.21E+02) .46E+00 .38E-10 .69E+03

Table 9: Times and errors for Fourier-Bessel transform with ν = n and kmax = 94.
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Figure 8: Comparison of the accelerated Fourier-Bessel transform of order n and its direct calcula-
tion.
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Figure 9: Comparison of accelerated Fourier-Bessel transforms of many orders and their direct
calculation.
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N ε Precomputation Direct eval Fast eval l2 error MB used
8192 10−3 .24E+03 .32E+00 .25E-01 .19E-04 .35E+02
8192 10−4 .26E+03 .32E+00 .27E-01 .21E-05 .38E+02
8192 10−5 .27E+03 .32E+00 .29E-01 .19E-06 .41E+02
8192 10−6 .28E+03 .32E+00 .31E-01 .20E-07 .44E+02
8192 10−7 .30E+03 .32E+00 .33E-01 .24E-08 .47E+02
8192 10−8 .31E+03 .32E+00 .35E-01 .22E-09 .50E+02
8192 10−9 .33E+03 .32E+00 .36E-01 .17E-10 .53E+02
8192 10−10 .34E+03 .32E+00 .38E-01 .23E-11 .56E+02
8192 10−11 .35E+03 .32E+00 .41E-01 .22E-12 .60E+02
8192 10−12 .37E+03 .32E+00 .57E-01 .16E-13 .80E+02

Table 10: Times and errors for Fourier-Bessel transform with ν = 0, kmax = 70, and ε =
{10−3, . . . , 10−12}.
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Figure 10: Comparison of the accelerated Fourier-Bessel transforms of order 0 for varying precision.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .35E+00 .24E-03 .75E-04 .41E-10 .22E+00
512 .67E+00 .12E-02 .26E-03 .54E-10 .52E+00
1024 .20E+01 .50E-02 .83E-03 .51E-10 .13E+01
2048 .75E+01 .20E-01 .19E-02 .44E-10 .28E+01
4096 .31E+02 .81E-01 .44E-02 .45E-10 .67E+01
8192 .13E+03 .32E+00 .95E-02 .49E-10 .15E+02
16384 .59E+03 (.13E+01) .21E-01 .52E-10 .34E+02
32768 .26E+04 (.52E+01) .46E-01 .66E-10 .79E+02
65536 .12E+05 (.21E+02) .10E+00 .73E-10 .20E+03

Table 11: Times and errors for evaluating Bessel function expansions with kmax = 72.
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Figure 11: Comparison of the accelerated evaluation of Bessel function expansions and their direct
evaluation.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .36E+00 .67E-03 .11E-03 .25E-10 .24E+00
512 .76E+00 .27E-02 .34E-03 .86E-10 .54E+00
1024 .20E+01 .11E-01 .93E-03 .43E-10 .13E+01
2048 .62E+01 .43E-01 .19E-02 .43E-10 .27E+01
4096 .22E+02 .18E+00 .44E-02 .51E-10 .64E+01
8192 .94E+02 (.72E+00) .92E-02 .49E-10 .15E+02
16384 .39E+03 (.29E+01) .20E-01 .52E-10 .37E+02
32768 .17E+04 (.12E+02) .42E-01 .56E-10 .10E+03
65536 .77E+04 (.48E+02) .89E-01 .55E-10 .31E+03

Table 12: Times and errors for evaluating Hankel function expansions with kmax = 38.
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Figure 12: Comparison of the the accelerated evaluation of Hankel function expansions and their
direct evaluation.
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5.2 Fourier transforms

Tables 13 and 14 document results obtained from applying the algorithm of this paper to the matrix
TF in equation (2.45). Table 13 contains results from applying our algorithm to the standard
equispaced discrete Fourier transform matrix TF . Table 14 contains results from applying the
algorithm to the matrix TF where x1 < x2 < · · · < xn are random numbers uniformly distributed
on the interval [−π, π] and ω1 < ω2 < · · · < ωn are random numbers uniformly distributed on
the interval [−n

2 ,
n
2 ]. The data listed in Tables 13 and 14 are illustrated in Figures 13 and 14,

respectively.

Observation 5.3 As a “numerical proof” of Corollary 3.4, for n = 16384 we examined the nu-
merical rank of each contiguous submatrix of the discrete Fourier transform matrix TF which was
decomposed using the non-adaptive regime of the algorithm. For Cmax = 64, the numerical ranks
ranged from 85 to 88 (except on the finest level where matrices were dimensioned 64×n). This ob-
servation is consistent with Corollary 3.4; numerical ranks of m×k contiguous submatrices depend
only on the quantity mk. For large values of n, the “fast eval” times increase almost linearly.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .32E+00 .67E-03 .65E-03 .34E-11 .95E+00
512 .13E+01 .27E-02 .18E-02 .91E-11 .26E+01
1024 .60E+01 .11E-01 .48E-02 .11E-10 .67E+01
2048 .28E+02 .43E-01 .12E-01 .12E-10 .16E+02
4096 .13E+03 .18E+00 .28E-01 .15E-10 .39E+02
8192 .56E+03 (.72E+00) .65E-01 .21E-10 .90E+02
16384 .26E+04 (.29E+01) .15E+00 .24E-10 .20E+03
32768 .12E+05 (.12E+02) .34E+00 .23E-10 .46E+03

Table 13: Times and errors for discrete Fourier transform with kmax = 74.
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Figure 13: Comparison of the accelerated discrete Fourier transform and its direct calculation.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .34E+00 .67E-03 .62E-03 .76E-09 .91E+00
512 .13E+01 .27E-02 .18E-02 .84E-08 .25E+01
1024 .62E+01 .11E-01 .47E-02 .17E-08 .65E+01
2048 .29E+02 .43E-01 .12E-01 .27E-09 .16E+02
4096 .13E+03 .18E+00 .28E-01 .72E-09 .38E+02
8192 .62E+03 (.72E+00) .65E-01 .47E-09 .89E+02
16384 .25E+04 (.29E+01) .15E+00 .79E-09 .20E+03
32768 .11E+05 (.12E+02) .33E+00 .15E-08 .46E+03

Table 14: Times and errors for discrete Fourier transform for nonequispaced data with kmax = 74.
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Figure 14: Comparison of the accelerated discrete Fourier transform for nonequispaced data and
its direct calculation.
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5.3 Legendre polynomial transforms

Table 15 contains results for using our algorithm to apply the Legendre transform matrix TP in
equation (2.66). Figure 15 illustrates the data listed in Table 15. Table 16 contains a comparison
between the adaptive and the non-adaptive schemes of the algorithm when used to apply the matrix
TP . Columns denoted with an “A” list results obtained from the adaptive scheme. Columns denoted
with an “NA” list results obtained from the non-adaptive scheme.

Observation 5.4 Despite an increase in precomputation times, the adaptive version of the algo-
rithm results in faster evaluation times than the non-adaptive version for every size n, even though
the parameter kmax was chosen only to produce an optimal evaluation time for n = 2048. It is
conceivable that for each n, kmax could be chosen to further improve evaluation times.

Observation 5.5 The algorithm of this paper, non-adaptive as well as adaptive schemes, can also
be used as a technique for matrix compression. Not only does the algorithm enable the O(n log n)
application of an n×n matrix, but, if the only purpose for storing the matrix is to apply it at a later
time, we only require O(n log n) memory for storage. For example, to directly store a 65536×65536
matrix we require 232 = 4, 294, 967, 296 ≈ .43E+10 real *8 words of memory. Using this algorithm,
we can compress and apply the same size Legendre transform matrix TP to 10-digit precision using
only .92E+08 real *8 words of memory. Memory usage was not fully optimized, as this was not
the main goal of the paper. Even so, we observed a decrease in memory requirement by a factor of
almost 50.

5.4 Chebyshev polynomial transforms

Table 17 contains the results for using the algorithm of this paper to apply the matrix TT in
equation (2.86). Figure 16 illustrates the data listed in Table 17.

5.5 Hermite function transforms

Table 18 contains the results for using the algorithm of this paper to apply the matrix TH in
equation (2.110). Figure 17 illustrates the data listed in Table 18.

5.6 Laguerre function transforms

Table 19 contains the results for using the algorithm of this paper to apply the matrix TL in
equation (2.130). Figure 18 illustrates the data listed in Table 19.

Observation 5.6 An examination of Tables 15, 17–19 shows that our algorithm gives consistent
application times for every size n independently of which orthogonal polynomial transform matrix
is used. This is illustrated in Figure 19.

5.7 Prolate spheroidal wave function interpolation

Table 20 contains the results for using our algorithm to apply the matrix Ecψ in equation (2.142)
with c = 8500.5 and x1, x2, . . . , xn the roots of the function ψcn. Figure 20 illustrates the data listed
in Table 20.
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n Precomputation Direct eval Fast eval l2 error MB used

256 .38E+00 .24E-03 .24E-03 .69E-11 .43E+00
512 .90E+00 .12E-02 .94E-03 .11E-10 .13E+01
1024 .33E+01 .50E-02 .26E-02 .10E-10 .35E+01
2048 .14E+02 .20E-01 .68E-02 .80E-11 .90E+01
4096 .66E+02 .81E-01 .17E-01 .82E-11 .23E+02
8192 .31E+03 .32E+00 .41E-01 .92E-11 .55E+02
16384 .14E+04 (.13E+01) .98E-01 .93E-11 .13E+03
32768 .65E+04 (.52E+01) .23E+00 .92E-11 .30E+03
65536 .28E+05 (.21E+02) .54E+00 .11E-10 .71E+03

Table 15: Times and errors for Legendre polynomial transform with kmax = 70.
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Figure 15: Comparison of the accelerated Legendre polynomial transform and its direct calculation.
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n Precomp NA Precomp A Direct eval Fast eval NA Fast eval A l2 error NA l2 error A
256 .29E+00 .29E+00 .24E-03 .20E-03 .19E-03 .51E-11 .69E-11
512 .65E+00 .76E+00 .12E-02 .88E-03 .87E-03 .53E-11 .11E-10
1024 .25E+01 .29E+01 .50E-02 .25E-02 .24E-02 .84E-11 .10E-10
2048 .12E+02 .13E+02 .20E-01 .65E-02 .63E-02 .75E-11 .80E-11
4096 .53E+02 .63E+02 .81E-01 .16E-01 .16E-01 .11E-10 .82E-11
8192 .25E+03 .30E+03 .32E+00 .40E-01 .38E-01 .10E-10 .92E-11
16384 .11E+04 .14E+04 (.13E+01) .94E-01 .90E-01 .10E-10 .93E-11
32768 .44E+04 .64E+04 (.52E+01) .22E+00 .21E+00 .96E-11 .92E-11
65536 .20E+05 .29E+05 (.21E+02) .50E+00 .49E+00 .11E-10 .11E-10

Table 16: Comparison of adaptive scheme and non-adaptive scheme for computing Legendre polynomial transform. In the adaptive case
kmax = 70. In the non-adaptive case Cmax = 64.
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n Precomputation Direct eval Fast eval l2 error MB used
256 .41E+00 .24E-03 .22E-03 .76E-11 .45E+00
512 .85E+00 .12E-02 .90E-03 .72E-11 .14E+01
1024 .31E+01 .50E-02 .25E-02 .16E-10 .36E+01
2048 .13E+02 .20E-01 .64E-02 .16E-10 .93E+01
4096 .61E+02 .81E-01 .16E-01 .22E-10 .23E+02
8192 .28E+03 .32E+00 .38E-01 .22E-10 .56E+02
16384 .13E+04 (.13E+01) .91E-01 .23E-10 .13E+03
32768 .56E+04 (.52E+01) .21E+00 .23E-10 .31E+03
65536 .25E+05 (.21E+02) .50E+00 .25E-10 .72E+03

Table 17: Times and errors for Chebyshev polynomial transform with kmax = 76.
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Figure 16: Comparison of the accelerated Chebyshev polynomial transform and its direct calcula-
tion.
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n Precomputation Direct eval Fast eval l2 error MB used

256 .44E+00 .24E-03 .18E-03 .38E-11 .45E+00
512 .12E+01 .12E-02 .85E-03 .15E-10 .13E+01
1024 .49E+01 .50E-02 .23E-02 .22E-10 .35E+01
2048 .24E+02 .20E-01 .61E-02 .28E-10 .91E+01
4096 .13E+03 .81E-01 .15E-01 .33E-10 .23E+02
8192 .63E+03 .32E+00 .37E-01 .34E-10 .54E+02
16384 .32E+04 (.13E+01) .88E-01 .38E-10 .13E+03
32768 .15E+05 (.52E+01) .20E+00 .46E-10 .30E+03
65536 .66E+05 (.21E+02) .47E+00 .51E-10 .71E+03

Table 18: Times and errors for Hermite function transform with kmax = 90.
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Figure 17: Comparison of the accelerated Hermite function transform and its direct calculation.
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n Precomputation Direct eval Fast eval l2 error MB used

256 .48E+00 .24E-03 .18E-03 .18E-10 .43E+00
512 .12E+01 .12E-02 .82E-03 .50E-10 .12E+01
1024 .52E+01 .50E-02 .23E-02 .86E-10 .34E+01
2048 .27E+02 .20E-01 .62E-02 .17E-09 .89E+01
4096 .14E+03 .81E-01 .15E-01 .17E-09 .22E+02
8192 .68E+03 .32E+00 .36E-01 .28E-09 .53E+02
16384 .33E+04 (.13E+01) .86E-01 .32E-09 .12E+03
32768 .15E+05 (.52E+01) .20E+00 .40E-09 .29E+03
65536 .65E+05 (.21E+02) .47E+00 .60E-09 .69E+03

Table 19: Times and errors for Laguerre function transform with kmax = 78.
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Figure 18: Comparison of the accelerated Laguerre function transform and its direct calculation.
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Figure 19: Comparison of the accelerated Legendre, Chebyshev, Hermite, and Laguerre transforms
and their direct calculation.
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n Precomputation Direct eval Fast eval l2 error MB used

256 .21E+01 .24E-03 .20E-03 .11E-11 .45E+00
512 .12E+02 .12E-02 .86E-03 .18E-10 .13E+01
1024 .75E+02 .50E-02 .24E-02 .18E-10 .35E+01
2048 .43E+03 .20E-01 .71E-02 .27E-10 .10E+02
4096 .25E+04 .81E-01 .20E-01 .28E-10 .30E+02
8192 .14E+05 .32E+00 .70E-01 .52E-11 .10E+03

Table 20: Times and errors for evaluating prolate spheroidal wave function expansions with kmax =
90 and c = 8500.5.
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Figure 20: Comparison of the accelerated evaluation of prolate spheroidal wave function expansions
and their direct evaluation.
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6 Conclusions and future work

We have presented an algorithm for the numerical computation of special function transforms of the
type in equation (1.3). The asymptotic computational complexity of our scheme is O(n log n). The
algorithm compresses the transform matrix using strictly analysis-based rank considerations involv-
ing contiguous submatrices. Interpolative decompositions (see Section 2.1) are used for the com-
pression of each contiguous submatrix. The asymptotic cost of this precomputation is O(n2 log n).
Fairly simple modifications are being implemented reducing this cost to O(n log2 n). The analysis-
based rank estimates have been proven for the cases of the Fourier transform, Fourier-Bessel trans-
form, and Legendre transform. Numerical examples demonstrate a much wider applicability; anal-
ysis of these cases is in progress and will be reported on at a later date.

In addition to enabling the accelerated application of certain matrices, it was observed that the
algorithm of this paper can be used as a tool for matrix compression. The n× n matrices that we
have examined were compressed using approximately O(n log n) memory.

An implementation of our algorithm is currently under development for the acceleration of asso-
ciated Legendre function transforms of arbitrary order. Also, there exist certain classes of matrices
where theory has yet to be developed, but numerical tests show that our algorithm accelerates their
application. Extensions of the algorithm to higher dimensions are straightforward, as is the theory,
but implementations and proofs are more involved and are currently being developed.
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