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Algorithms for Multiplying Matrices of Arbitrary Shapes
Using Shared Memory Primitives on Boolean Cubes

S. Lennart Johnsson and Ching-Tien Ho
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract. We investigate the multiplication of two arbitrarily shaped matrices on Boolean cube configured
multiprocessors. We present algorithms in terms of generic communication primitives, which effectively allows
the programmer to express the algorithms as shared memory algorithms. Some of the communication primitives
we present yield communication within a factor of two of the lower bound, and have the best known routing
times. For the multiplication of a P X @ matrix by a @ X R matrix three loops are required in a language like
Fortran 77. One-, two- or all three loops may be parallelized. We show that with the communication primitives
we use parallelizing all three loops yield a complexity that at most is equal to that of parallelizing two loops,
which in turn is at most equal to that of parallelizing only one loop, for all matrix shapes. In parallelizing only
one loop the processors shall be aligned with the axis (P, @, or R) with the maximum number of elements to yield
the lowest arithmetic and communication complexity. In parallelizing two loops the processors shall be assigned
to the plane with the maximum number of elements. In parallelizing two or all three loops the aspect ratio of
the processor array shall be the same as that of the matrix element domain. We also derive expressions for the
optimal number of processors and show that for large start-up times for communication the optimum number
of processors may be significantly smaller than the number of matrix elements in the dimensions parallelized.
Experimental results for the Intel iPSC are presented.

1 Introduction

One of the most frequent operations in scientific and engineering computations is multiplication of matrices. We
analyze this problem for arbitrarily shaped matrices and Boolean n-cube configured multiprocessors, and express
the algorithms in generic communication primitives. The concurrent algorithms for matrix multiplication that
we present here are general. Cannon’s algorithm [1] for multiplication of square matrices on a mesh is a special
case of the algorithms presented here, and so is Dekel’s [2] algorithm for multiplication of square matrices on a
Boolean cube. Another special case included in our formulation is the multiplication of N X N matrices on a
Boolean cube of at least N> processors in O(log, N) time.

For uniprocessors there exists a well defined set of operators in which computations are conveniently expressed.
For multiprocessors such a set has yet to be established. In particular global operations need to be considered.
Broadcasting, or copying, of data from one processor to a set of other processors, possibly all other processors,
or the concurrent copying from all processors to all other processors are important global operations. We refer
to these operations as one-to-all broadcasting and all-to-all broadcasting [10]. For the reverse operations various
reduction operators apply. The most common are ‘+’, ‘—’, ‘maz’, and ‘min’. Other pure communication
operators are the splitting of a data set among all other nodes, i.e., scatter, or the reverse operation, i.e.,
gatter [13]. We refer to this communication as one-to-all personalized communication, or all-to-all personalized
communication [10] for the case that every processor splits and distributes its data set to all other processors.
These communication with operation primitives are very powerful for expressing parallel algorithms. With
operations of this type being part of the machine instruction set efficient portable code can be written. The code



is also compact.

For multiprocessors proper partitioning significantly reduces the communications requirements. If each pro-
cessor holds a square block matrix of M elements of each of the operands, then 2M+/M arithmetic operations are
required per communication of two blocks, i.e., 2M elements. The number of arithmetic operations per element
communication is /M. However, if the aspect ratio of the blocks increases then the ratio between elementary
arithmetic operations and element communications approaches 1. As the number of processors increases relative
to the matrix size, the importance of efficient communication increases.

In languages like Fortran 77 a matrix multiplication requires three nested loops. Any one, two, or all three
loops can be parallelized. With N processors one important consideration is how to factor N = N; X N2 X N3 in
the row (P), column (R), and “outer product direction” (Q) in multiplying a P X @ by a @ X R matrix. We first
investigate parallelizing one of the loops by a one-dimensional partitioning of the matrices, then parallelizing two
loops, and finally all three loops. We show that the three-dimensional partitioning always yields a complexity
that is at most as high as that of the two-dimensional partitioning, which in turn is at most as high as the
one-dimensional partitioning. We also show that the aspect ratio of the processor array in the two- and three-
dimensional partitionings shall be the same as that of the matrix guiding the choice of algorithm, i.e., A, C or
D. The processors shall be aligned with the axis with the largest number of elements in the one-dimensional
partitioning, and with the plain with the largest number of elements in the two-dimensional partitioning. Data
permutations may be required to accomplish this processor allocation.

In the Boolean n-cube architectures we consider, storage is uniformly distributed among nodes of identical
architecture. The main feature of Boolean cube configured architectures, and other architectures designed to be
scalable to a large number of processors, is that a high storage and communication bandwidth can be achieved
at a relatively low cost. Similarly, the processing capability is obtained through replication, which, in VLSI
technology, is cheap. The ensemble architecture can be operated with a single instruction stream, SIMD (Single
Instruction Multiple Data) [11], or each node, or a subset thereof, may have their own instruction stream,
resulting in a MIMD (Multiple Instruction Multiple Data) architecture. We present algorithms suitable for both
kinds of architectures.

The outline of this paper is as follows. In the next section the notation and definitions used throughout
the paper are introduced. Section 3 introduces some communication routines and their complexity. Section 4
presents matrix multiplication algorithms and a complexity analysis using the generic communication primitives
for one-, two-, and three-dimensional partitioning. Section 5 gives a summary and conclusions. Some of the
estimated communication complexities have been verified through measurements on the Intel iPSC [6].

2 Notation and Definitions

Throughout the paper N denotes the number of processors. With respect to algorithms and data structures we
factor N as Ny X Ny X N3. We consider the matrix operation A + C x D + E where all matrices are dense, C
a P x @ matrix, D a @ X R matrix, and A and E P X R matrices. A Boolean n-cube has N = 2™ nodes and
diameter n. It can be constructed recursively by joining corresponding nodes of two (n — 1)-cubes. Nodes can
be given addresses such that adjacent nodes differ in precisely one bit, Figure 1. The distance between a pair of
nodes ¢ = (1,_12n—2...%0) and j = (Jn—1Jn—2...J0) is equal to the Hamming distance between ¢ and j, where
Hamming(¢,7) = EZ;& (%x ® Jk), and ‘@’ is the exclusive-or operator. Between any pair of nodes (%, j) there are
Hamming (7, ) paths of length Hamming(s, 7), and n — Hamming(s, j) paths of length Hammaing(s, ) + 2 [14].
The fanout of every node is n, and the total number of communication links is -;—nN . The number of nodes at

distance ¢ from a node is (") and the average distance between nodes is in.

i 2

For the communication system we consider one-port communication, for which communication can only take
place on one port at a time for each processor, and n-port communication for which all ports on each processor
can be used concurrently. Note that we assume one send and one receive operation (possibly through different
ports) can be done in one communication step for one-port communication. In one-to-all broadcasting a single
node communicates the same information to every other node. In the all-to-all case every node performs one-to-
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Figure 1: A recursive construction of Boolean cubes.

all broadcasting. In one-to-all personalized communication a node sends a unique piece of information to every
other node. In all-to-all personalized communication every node performs one-to-all personalized communication.
The time for a complete communication is denoted T'(number of ports used concurrently, source address, number
of destinations; array identifier, data volume). The symbol - is used as a dummy argument, and the * denotes
that the operation is applied to all values the argument can assume. The routing schemes are indexed similarly.
T denotes lower bound estimates.

The Intel iPSC can be configured with up to 128 processors. It has a message passing programming model.
The operating system subdivides messages into 1k byte packets. With the current operating systems, NX,
the start-up time is & 1.5 msec. The storage bandwidth allows concurrent communication on 2 — 3 ports.
However, we have been unable to realize this potential effectively with any of the available operating systems.
The concurrency in communication on different ports of the same processor amounts to an overlap of about
20%. The computational rate realized from FORTRAN is approximately 30 kflops per node. With a relatively
large start-up time it is desirable to send long messages. This may require internal data movement. However,
the copy time is also significant on the iPSC.

For the analysis we denote the maximum packet size by B,,, the communication start-up time with r, the
time for transmission of an element by t,, and the time for an arithmetic operation by t,. On the Intel iPSC there
exists a block size B,opy < By, above which it is better to minimize copy time than start-up time. We have not
included the time for data movement internal to a node in the complexity estimates below for reasons of clarity.
For details see [4]. We assume that arithmetic and communication operations do not overlap in time, and that
no two global communication operations overlap. We do not here include a start-up time for the arithmetic, but
discuss features of the local computations of importance for processors with pipelined arithmetic units, or units
with fast inner-product instructions, or cache based processors. The model is verified on the Intel iPSC/d5.

3 Communication Routines

The communication routines we use for matrix multiplication on the Boolean cube are the following. The
routines are described in detail in [10].

One-to-all communication:
o A single Hamiltonian path for one-port communication, GC(1,-, N;-, ), and n rotated paths for n-port
communication, GC(n, -, N;-, ).
e A Spanning Binomial Tree, SBT(:,, N;-, ).
e n Rotated Spanning Binomial Trees, nRSBT(-,-, N;-,-).



| Algorithm | Element transfers | start-ups | Bope | min start-ups |

GC(1,-, N;-, M) M+ (N-2)B [M]4 N -2 \/(N"_‘—z), N-2+2\/[N—2)M&
SBT-b(1,-, N;-, M) Mn 2 1n M n
nESBT-b(1,-, N;-, M) M+ nBn (35T +n o n+2y/nMi
nRSBT-b(1, -, N; -, M) Mn AN b M 2n — 1
GC(n,~,N;~,M) %(N—l) ["gm-](N—l) %:I‘ N-1
SBT-b(n,-, N;-, M) M+(n—1)B M) +n—1 \/W n—1+2/[n- )M
nESBT-b(n,, N;-, M) M +nB (M7 +n o/ n+2¢/ Mk
nRSBT-b(n,-, N;-, M) M [2—|n M n

Table 1: Estimated one-to-all broadcasting times for various spanning graphs.
e A Spanning Balanced n-Tree, SBnT(-, -, N;-,-).
All-to-all communication:

e N translated Hamiltonian paths, called a Gray code exchange algorithm, GCEA(-, %, N; -, ).

A single path for one-port communication and n rotated paths for n-port communication, called cyclic
rotation algorithm CRA(-,*, N;-,-).

N translated Spanning Binomial Trees, SBT(-,*, N;-, ).

N translated nRSBT graphs, nRSBT(:, %, N;-, -).

N translated Spanning Balanced n-Trees, SBnT(:, *, N;-,-).

Translation is accomplished by a bit-wise exclusive-or operation on the root of the graph, and rotation by a
cyclic shift on the dimensions. When there is a need to distinguish between routing for broadcasting and routing
for personalized communication, we do that by affixing -b, or -p to the name of the routing scheme. As an
example, SBT-b(1,*, N; A, M) denotes all-to-all broadcasting of an array A having M elements using one-port
communication for a spanning binomial tree routing on N processors.

The Boolean cube is Hamiltonian. Such a path can be constructed by a binary-reflected Gray code {7]. For
n-port communication n paths can be constructed through rotation of the dimensions. However, these paths are
not edge-disjoint [10], in general, and messages can be pipelined only to a limited extent. For instance, it can be
shown, that there does not exist 3 (directed) edge-disjoint Hamiltonian circuits in a 3-cube. However, there exist
4 (directed) edge-disjoint Hamiltonian circuits in a 4-cube. In the Gray Code Ezchange Algorithm (GCEA), the
sequence of exchange dimensions is exactly the sequence of dimensions encountered in traversing the cube in
the binary-reflected Gray code order [12]. In the cyclic rotation algorithm (CRA), a node always sends to and
receives data from the same neighbors for all routing steps, whereas in the former all the nodes have the same
exchange sequence.

A Spanning Binomial Tree can be generated by complementing leading zeroes of the processor addresses.
The path length to every node is minimal. A spanning tree does not fully use the bandwidth of the Boolean
cube. A higher utilization can be achieved by spanning graphs, for instance by forming the union of n distinctly
rotated SBTs, which is the nRSBT graph [10], or by rotation and translation, which can yield n Edge-disjoint
SBTs (nESBT). Yet another tree that can be used for lower bound routing algorithms in the case of all-to-all
broadcasting is a Spanning Balanced n-Tree (SBnT) [10,5]. In such a tree the node set of the cube is divided
into n approximately equal sets, with each such set forming a subtree of the source node.



| Model | Algorithm | Element transfers | start-ups [ Bope | min start-ups
CRA(L,+,N; -, M) V- 1)M ESGED) M N-1
GOEA(L, +, N;-, M) (N—1)M EAIGER) M N-1
one-port SBT-b(1,*, N;-, M) (N-1)M o [TM} aM n
SBnT-b(1, %, N;-, M) (N-1)M max(2n — 1, ﬁe;”M) (F=nM 2n —1
nRSBT-b(1, *, N;-, M) (N-1)M max(Zn -1, 2y U 2n —1
GCEA(n, *,N;-, M) I(N-1)M -1) M N-1
" M
SBT-b(n,+, N;-, M) INM PO ( e | e n
n-port $BnT-b(n, *, N;-, M) LN -1)M s ( ) Y \/"TA;% n
RSB, M) | SOV | SIS
Table 2: The communication complexity of all-to-all broadcasting.
| Model | Algorithm | Element transfers | start-ups | Bope | min start-ups |
one-port | SBT-p(1,-,N;-, M) (N-1)M noiEM oM
SBT-p(n, -, N;-, M) iNM Yo 17 ) =] 72% n
n-port SBnT-p(n,-, N; -, M) 2(N-1)M 1[( ) an] 2 NM
ARSBT-p(m N;, M) | SN =DM | S ()] | /o n

Table 3: The communication complexity of one-to-all personalized communication.

The communication complexities of one-to-all broadcasting are summarized in Table 1, and the complexities
for all-to-all broadcasting are summarized in Table 2. For one-port communication the SBT-b(1, *, N;-, M) algo-
rithm is optimal within a factor of 2 for sufficiently large maximum packet size, By, > N2M For B, £ M
the routing complexity of SBT-b(1,*, N;-, M), SBnT-b(1,*, N;-, M), and nRSBT-b(1, *, N;-, M) are approx1-
mately equal. For By, < M the routing complexity of all algorithms presented here are approximately equal, i.e.,

no better than a Hamiltonian path based routing. For n-port communication the nRSBT-b(n, *, N;-, M) and
SBnT-b(n, *, N;-, M) routings are optimal for B,, > %f,% For B,, < % these two routings are no better

than the GCEA(n, %, N;-, M) routing. The SBT-b(n, *, N;-, M) routing is inferior.

In one-to-all personalized communication there are N — 1 distinct sets M to be sent from the source node.
The root is the bottleneck. In personalized communication each internal node of the spanning graphs sends
out data for all the nodes in the subgraph for which it is the root. The lower bound for one-port one-to-all
personalized communication is T; 4(1,, N;-, M) = max((N — 1)Mt.,nr). The SBT-p(1,-, N;-, M) is optimal
within a factor of 2 for sufficiently large maximum packet size, B, > %NM. The SBT-p(n,-, N;-, M) routing
is not optimal. The lower bound for n-port communication is ma.x(LN;nlmtc,n'r). The nRSBT-p(n, -, N;-, M)

and SBnT-p(n,:, N;-, M) routings yield minimal (within a factor of 2) routing times if B,, > /2 N,% All-

to-all personalized communication performed by N SBTs amounts to a sequence of exchange operations in
the different dimensions with one-port communication. Unlike the case in all-to-all broadcasting, the data
volume being exchanged remains constant through all steps, and equal to the maximum in the broadcasting
case, l.e., %NM. The SBT-p(1,*, N;-, M) is optimum within a factor of 2. With n-port communication the
lower bound for the transmission time is reduced by a factor of n. Hence, T} y(n, %, N;-, M) = ma.x(ﬂiM-—tc,nr).
The SBT-p(n, *, N;-, M) routing has a data transfer time a factor of n higher than the minimum [10]. But,
the nRSBT-p(n, #, N;-, M) and the SBnT-p(n, *, N;-, M) routings can route in a time proportional to the lower
bound if B,, > gﬁ'f (or > LE:'}M—I for the latter) [10]. Tables 3 and 4 summarize the communication complexities
for personalized communications.




{ Model l Algorithm l Element transfers l start-ups ] Bopt [ min start-ups
one-port SBT-p(1, *, N;+, M) snNM M 24 n
n-port SBnT-p(n,*, N;-, M) iNM S DD ( ) M =1 | = M n
nRSBT-p(n, +, N;-, M) iNM 2an'|n ez n

Table 4: The communication complexity of all-to-all personalized communication.
4 Matrix Multiplication

We refer to the three loops in a Fortran like language for the operation A — C X D + E as the P, @, and R
directions. One, two, or all three loops can be parallelized. We refer to these three forms of concurrent matrix
multiplication as one-, two- and three-dimensional partitioning. The maximum number of processors that can
be used depends on which loop(s) are parallelized, and the algorithms also depend thereupon. The maximum
arithmetic speed-up for the three partitionings are max(P, @, R), max(PQ, QR, PR), and 5?1‘6%56 respectively.
We will show that the communication complexity is lower for the three-dimensional partitioning than for the
two-dimensional partitioning, which in turn is lower than that of the one-dimensional partitioning.

With multiple matrix elements per processor elements can be assigned cyclicly or consecutively to processors
[8]. In two-dimensional cyclic partitioning, matrix element (2, 5) is stored in processors PID(z)||PID(j), where
PID(') = imod N, PID(5) = jmod Ny, Ny x N; = N. In the consecutive storage, matrix element (%, 5)

is stored in processor PID(:}|PID(j), where PID(i) = [fL]J, and PID(j) = f_-QJ-_'IJ for a P X Q matrix.
N Ng

Note that in the consecutive partitioning matrix elements with the same high order bits are allocated to the
same processor. In the cyclic partitioning, elements in the same processor have the same low order bits. The
communication and computational complexity for matrix multiplication with matrices stored according to either
of these two storage schemes is the same. We assume consecutive storage. In a three-dimensional partitioning N -
N3-N3 = N, and the loop ranging over the set of @ outer-products is instantiated in N3 spatial components. The
two- and one-dimensional partitionings are degenerate cases of the three-dimensional partitioning. Algorithms
for which the inner-products for each element of A are accumulated in the same location as the elements of A
are called in-place algorithms. Algorithms accumulating inner-products through the communication of partial
sums are called ¢n-space algorithms [7).

4.1 One-Dimensional Partitioning

We consider four basic algorithm for the computation A — C x D + E with all matrices stored by column-
wise partitioning. The algorithms differ in which loop is parallelized for the multiplication, the required data
permutations, and other communication operations.

e Algorithm A(-,1,1). Compute A in-place by broadcasting of C' from every processor that has elements
of C' to every processor that has elements of D. Processor k = PID(j) computes CD(x, [f—%‘TJ) for all 5
N

mapped to k.

e Algorithm A(-,1,2). Compute A by a transpose of C and broadcasting of CT from every processor
that has elements of CT to every processor that has elements of D. Processor k = PJ D(j) computes
CD(*, £ 7%= |) for all j mapped to k.

e Algorithm A(-,1,3). Compute A by a transpose of C, broadcasting of D from every processor that has
elements of D to every processor that has elements of CT, and transpose AT. Processor k = PID(j)
computes C([f—é—TJ, *)D.

N

e Algorithm A(-,1,4). Compute A in-space by a transpose of D, and reduction of partial inner products
of A.
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Figure 2: Notation summary of algorithms for one-dimensional partitioning.

The algorithms are identified by A(number of ports used concurrently, number of loops parallehzed, algorithm
identifier). Algorithm A(-,1,2) is clearly inferior to algorithm A(-,1,1) and is not further considered for the
one-dimensional partitioning, but will be considered for the two-dimensional partitioning. For row partitioning
the roles of C and D are interchanged. Figure 2 characterizes the basic algorithms. The two subscripts denote
the ordinal numbers of block rows and block columns. The superscript denotes the ordinal number of the partial
inner product result. The number in the square brackets (eg. [R] in A(-,1,1)) is the number of processors that
minimizes the arithmetic time for each algorithm.

4.1.1 Arithmetic Complexity

The total number of arithmetic operations in sequence, and the characteristics of the local computations organized
as AXPY, or inner-product computations are summarized in Table 5. The vector length is shortest for algorithm
A(-,1,3), and the potential for register operations the smallest for algorithm A(-,1,4). f Pmod N = Q mod N =
Rmod N = 0, then all the algorithms use the processors evenly, and the arithmetic complexity is the same.
But, if P = ¢;N, @ = coN and R = 1, then the arithmetic complexities are 2c;coN2, 2¢;coN?, 2¢1¢,N, and
2¢c1¢c2 N +cynN, respectively. Distributing D in space (Algorithms A(-,1,3) and A(-,1,4)) is clearly more effective
than distributing C for computations of type matrix-vector multiplication. By distributing D in space the
processors are aligned with the axis with the largest number of elements.

Lemma 1 For one-dimensional partitioning, the arithmetic complexity 1s minimized if the processors are aligned
with the direction P, if 3[F] < 5[F1, 5[ #], with @ if F[R] < 3[F], 2[R], ond with R if 5[] <
kAN dba
eINLFPINI-

Corollary 1 If P, Q, and R all are multiples of N, then the parallel arithmetic complezity 1s the same regardless
of the axis with which the processors are aligned. For P,Q,R < N, the arithmetic complezity 1s minimized if the
processors are aligned with the dimension with the largest number of components.

4.1.2 Communication Routines and Their Complexities

The basic algorithms consist of different combinations of broadcasting/reduction and personalized communication
for matrix transposition [9], in addition to the arithmetic operations. The choice of communication routine is
affected by available temporary storage, start-up times and transmission rates of the channels. Tables 6, 7, and
8 give the communication complexity for the different multiplication algorithms (assuming column partitioning).



Algorithm Number of max. no. of GEMV inner-products
Arithmetic operations processors no. of | no. of AXPY | v-length | no. of | order
A(-,1,1) 2PQ[ L] R = Q P pP= Q
A(-,1,2) 2PQ[£] R = Q P P Q
A(-,1,3) 2QR[£] P R Q = RE Q
AGL4) | PRE[FZT-D+P(E1+ >0 [21) Q R g P PR | &

Table 5: The local arithmetic operations for one-dimensional partitioning.
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Figure 3: Computing A «+ C x D + E by rotation of C.

For one-port communication the CRA(L, %, N;-,-), GCEA(L,, N;-, ), and SBT(1, *, N;-,-) routines all have
the same complexity, if B,, < the message size (per processor). The CRA(1, %, N;-,-) yields a one-dimensional
version of Cannon’s [1] algorithm, and the GCEA(1, , N; -, -) routine yields a one-dimensional version of Dekel’s
[2] algorithm. With the CRA(1,, N;-,-) routine products are formed on the shaded parts of D during step
1, 1 <7 < N, Figure 3. C is rotated N — 1 times to the right (or left). The SBT-b{l,*,N;-,-) and SBT-

p{1,*, N;-, ) algorithms are optimal for one-port communication and unlimited buffer size, i.e., By, > %PQ (or

-}23)—32), for all-to-all broadcasting (or all-to-all personalized communication) of a P X @ matrix partitioned evenly

by rows or columns. Figure 4 displays the steps during which a % X % block of D is multiplied by a Px %
block column of C for partitioning by columns and algorithm A(-,1,1).

Figure 5 (left) shows the measured times of the GCEA and the SBT routings on the iPSC with fixed matrices,

ColCi|Ca|Cs Co|C1|C2|Cs Co|CL]C| Cs
C1|Co|Cs|Cy Cil|Co|Cs|Ca
C|Cs|Co | Oy
Cs|ca|C |G

Step 2
Initially Step 1 P

Figure 4: Computing A + C X D + E by algorithm A(-,1,1,) and SBT-b(1, ¥, N; C’,P%) routing applied to C.
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Figure 5: Measured times for matrix multiplication using the GCEA and the SBT routings on the iPSC.
P = @ = R = 32. On the left, the solid lines are total times and the dashed lines are communication times. On
the right, the relative difference of the arithmetic time is shown as a function of cube dimensions.

P = @ = R = 32, and varying cube dimensions. The communication times of the SBT routing are less than
10% for cubes with 4 or fewer dimensions. For the GCEA, the communication times are greater than the
arithmetic times for cubes with 4 or more dimensions. For the GCEA communication routine the total time
for a matrix multiplication has a minimum for a 4-cube. The arithmetic times of an algorithm based on the
GCEA communication are higher than that of the SBT communication due to the larger loop overhead. With
the GCEA communication N multiplication steps are required, whereas in the SBT communication one or two
steps are sufficient. The measured multiplication time for the GCEA based multiplication routine is 10% - 100%
higher than that of the SBT based routine as shown on the right of Figure 5.

The number of start-ups of the SBT routing grows linearly with the number of cube dimensions, if the buffer
size is sufficiently large. In the last step of the SBT-b(1,*, N; C, P%) routing half the matrix (;PQ elements) is
communicated. If the maximum buffer size is less than this size, additional start-ups are required. The required
temporary storage and buffer size grows exponentially with the routing step. If the buffer size is less than the
matrix partition residing in a processor, then the time complexities of the SBT and GCEA routings are the
same. But, the SBT routing needs additional temporary storage, if multiplication is performed only after the
completion of each step of the routing. For the case of limited temporary storage a hybrid of the SBT and
the GCEA (or the CRA) routings can be used. The hybrid method will perform k steps of the SBT routing,
0 < k < n, during which data is accumulated, followed by 2" % — 1 steps of the GCEA or the CRA. Both the

maximum temporary storage and the optimum packet size of the hybrid method are 2,:;%‘ Note that a single
step of the SBT routing is indeed equivalent to one step of the GCEA routing, and it follows that the hybrid
routing scheme with k =n — 1 and k = n are the same. Figure 6 (left) shows the total time on a 5-cube of the
iPSC with P = @ = R = 32. The optimum buffer sizes required for the 4- and the 5-cubes exceed the 1k bytes
internal packet size of the iPSC, so the total time decreases only up to the 3-dimensional cube. The total times
of the 4- and 5-cubes are greater than that of the 3-cube due to the different overheads. The temporary storage

required with respect to the number of steps in the SBT routing are shown on the right.

With n-port communication the GCEA(n,*,N;- ) algorithm can be employed instead of the
GCEA(1,*,N;-,-) algorithm. The data transfer time is thereby reduced by a factor of n, and the total start-up
time too, if B, < ]'—A,{-] It is also possible to use the SBT(n, %, N;-,-) algorithm. The latter algorithm does not
fully utilize the bandwidth of the cube. While the former algorithm does fully utilize the bandwidth of the cube,
it requires many more start-ups, in general. The SBnT(n,*, N;-,-) and nRSBT(n, %, N;-,-) algorithms yield a
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Figure 6: Measured times for matrix multiplication using the hybrid method of the GCEA and the SBT routings
on a 5-dimensional cube of the iPSC. P=Q = R = 32.

lower time for data transfer regardless of the maximum packet size, and offers the potential for lower bound
all-to-all broadcasting and all-to-all personalized communication within a factor of 2.

4.1.3 Summary and Comparison

We summarize the communication complexities of the multiplication algorithms in Tables 6, 7, and 8 for P, @, R >
N. Table 6 gives the communication operators, Table 7 the number of element transfers and the number of
start-ups, and Table 8 the optimum buffer size and the corresponding total time with the optimum buffer. The
superscript [ denotes a linear array algorithm, and superscript ¢ a Boolean cube algorithm. Note that in A(r,1,3),
the SBnT-p(n,*, N;C, LQ—) and the SBnT—b(n, * N; D, 'J%NR;) can in fact be combined into one routing so

that n start-ups results, if By, \/‘ %75 .- For some values of P, @, R less than N, the communication

complexity can be smaller than what is glven in the tables, because some of the broadcastings and personalized
communications can complete earlier. The communication complexity for the general case is complicated, and
we only give that of A°(1,1,4) as an example. The complexities of other algorithms can be derived similarly.
The number of elements transferred is

(max(ty — £1,0) + 2~ DPI 2] 4 (14 K2y max(el 21, R 2)),

where k; = min(log @, n), k, = min(log R, n) and kg = min(log @, log R, n). The number of start-ups is

SERE om0 [ 21 2]

=0

lkg—Fk]
5 [ me LA + b | g w0l R

=1

The minimum number of start-ups is 2 max(kg, k).

Lemma 2 The communication complezity 1s minimized if for the multiplication the processors are aligned with
the azis with the largest number of components.

10



{ Comm. model | Algorithm |

Communication operations ]

A(1,1,1) CRA(1,+,N;C,P2) or GCEA(1,+,N;C,P%)
one-port A°(1,1,1) SBT-b(1,*, N;C, P2)
A°(1,1,3) SBT-p(1, *, N; C, P2)+8BT-b(1, ¥, N; D, Q £)+SBT-p(1,*, N; A, RL)
A°(1,1,4) SBT-p(1,*,N; D, QR)+SBT-b(1,*,N A PZ)
A'(n,1,1) GCEA(n,+,N;C,P2)
n-port A°(n,1,1) SBnT-b{n, ¥, N; C, PQ‘) or nRSBT-b(n,*,N C,P%)
A°(n,1,3) | SBnT-p(n,*,N;C, P9-)+SBnT-b(n,*,N D,Q=)+8BnT-p(n,x, N; A, RL)
A°(n,1,4) SBnT- p(n,*,N; D, QR)+SBnT—b(n,*,N APE)
Table 6: Communication operators.

[ Algorithm { Element transfers start-ups | min start-ups |
A(1,1,1) (N -1)P[Z] (N - 1)f3 [#11 N-1
4°(1,1,1) (N — 1)p[31 P IEEIR n
A°(1,1,3) (N - I)QFN1 + &= [N1 + 5 "P f91 iE!LrB rNTI + "rslm 3 {NT] + "[Bm 2 rgﬂ 3n
A°(1,14) (N—l)PrNH%rm EEIR + 5~ F18N 2n
#!(n,1,1) LV -1P[E] (N -2 N-1
A (mL1) L(N-1)P[4] (2 212 n
A°m13) | 2N-1)Q[R1+ E[R1+ FIF] (D) fNﬂ +nf,,B AE AL RE Fy-r dbal 3n
A°(n,1,4) %(N— I)Pl-}%-] + %f%1 :‘=1|-(,') Y- [N]] + "ran ) I_N-” 2n

Table 7: The communication complexity using one-dimensional column partitioning, assuming P,Q, R > N.

| Algorithm | Byt Trmin
A(1,1,1) P[] 2PQ(%1ta + (N - 1)(P[§§]tc +71)
A°(1,1,1) =< 2PQ[Eta + (N —1)P[ 2]t + nr
A°(1,1,3) 1 3QR, T2 2QR[ ]t + {((N —1)Q+ 25 [ R]+ 3 [f 1} e + 3n7
A°(1,1,4) :Q[%1, 3PR {PR2[Z1 -1+ P([§ 1+E.—J2'1)}ta+((N—1)P+ &1t + 2n7
A(n,1,1) +P[E] 2PQ[§ta + (N - 1)(2 P[]t + 1)
A°(n,1,1) ViES 2PQ[E1t, + (N~ 1)P[L]t. + nr
A13) | E[121,V/295, 218 2QR[F1ta + {(Z(N—-1)Q + E)[E] + £[€1}¢. + 3n7
A°(n,1,4) R LVESEE {PRR[FI -V +P(R1+2 0, [E DM+ & (N— 1P + $)[R1te + 207

Table 8: The optsmum buffer size and time for one-dimensional column partitioning, P,Q,R > N.
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Algorithm | Temporary Storage
C | D[ A
A(-,1,1) Lt 0 0
A4(-,1,3) 0 <E | o
A(-,1,4) 0 o [ EE
A°(,11) | 1PQ 0 0
A°(-,1,3) 0 [2QR] 0
A°(-,1,4) 0 0 | PR

Table 9: The temporary storage requirements for one-dimensional column partitioning.

Theorem 1 For P,Q, R multiples of N or P,Q,R < N, and one-dimensional partitioning, the total complezity
for matriz multiplication is minimized if an algorithm s chosen such that for the multiplication the processors
are aligned with the azis with the largest number of components.

Theorem 1 follows from corollary 1 and lemma 2.

Corollary 2 For the scaling of a column vector, column-vector X scalar, the processors shall be aligned with the
P-azis (algorithm A(-, 1,8)), for scaling of a row vector the processors shall be aligned with the R-azis (algorithm
A(,1,1)), and for an outer product and P = R the processors shall be aligned with the R-azis. For an inner-
product the processors shall be aligned with the Q-azis (algorithm A(-,1,4)). For a (square matriz)-vector product
algorithm A(-,1,4) is preferable and for a vector-(square matriz) product algorithm A(-,1,1) should be chosen.

The matrix shapes for which the different algorithms yield the lowest total estimated running times for a
few combinations of machine parameters are given in Figures 7 to 11. For the first several Figures it is assumed
that P, Q, and R are multiples of N. In such a case the communication complexity is the only distinguishing
feature between the different algorithms. As the aspect ratio of i increases, Figure 8, the regions for algorithms
A(-,1,3) and A(-,1,4) are gradually taken over by algorithm A(:,1,1). As the number of processors increases,
part of the A(-,1,1) region is taken over by the A(-,1,3) and A(-,1,4) algorithms. For a sufficiently large number
of processors (such as N = 1024) the cube is partitioned into three symmetric regions of approximately equal
size, Figure 9. Note that for % = % = %, the communication complexity of the A(-,1,1) is less than that of the
A(-,1,4), which in turn is less than that of the 4(-,1,3) as shown in Table 8, and Figures 7 to 9.

Theorem 2 The temporary storage needs are minimaized with the algorithm that minimazes the communication
complezity.

Lemma 8 The communication time decreases monotonically with increasing buffer size.

The lemma is apparent from Table 7. The number of start-ups decreases as a function of B,,,. The temporary
storage requirements are summarized in Table 9. From Tables 7 and 8 it is also possible to derive an optimum

for the number of processors N. For instance, for B,, = Bgyt, Nopt = min(R, 4/ MM) if Rt, —t. > 0,

otherwise N,,; = 1 for algorithm ,4’(1,1,1). Table 10 shows the Ny, for various algorithms with By, 2> By
(left column) and By, < B(+,1,-) (right column). The values of B(-,1,-) are shown in Table 11.

The special case where 1 < P, @, R < N is shown in Figure 10. The qualitative behavior is the same for
the case where P, @, and R are multiples of N. The P, @, R space is divided in a similar way with respect to
arithmetic as it is with respect to communication.

With n-port communication the SBnT(n, *, N;-,-) or nRSBT(n, *, N; -, -) based algorithms offer a reduction
in the data transfer time by a factor of n. The reduction in the number of start-ups is a factor of n for B, < %8‘

12
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defined by the algorithm of lowest communication complexity. (d) shows the contour of the upper plane.
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Algorithm |

Nopt, Bm 2 Bopt

Nept, Bm < B{(+,1,)

(see Table 11)

l

Al(]-’l:l) min (R, \/M) R, Ri,>tc+ ‘g‘;, 1, Rt <t.+ I;_m
A°(1,1,1) min (R, FRGAtazt)) R, 2Rt >t.+ & 1, 2Rt, < to + 2—
4°(1,1,3) | min (P, 29ECEL =t ¥ los N-DPEFANS | [o¢ N, = min(P,1 + P(Q+R) ~ IR (ats7Em)
A°(1,1,4) min (Q, 2PQ(2Q’“_t°)+('°gN L)QRty log Nope = min(Q@, 1 + 2P _ ﬁg,—'{)
A(n,1,1) ~ min (R, 345 + 2Rt“:¢°" ) ~ min(R, —4—3—22;:7Bm

A°(n,1,1) ~ min (R, r—;c;aﬁ:nﬁ ) ~ min(R, %;l—}’-g%)

A°(n,1,3) & min (P, 4P?fi’5'£i(/?:'§)$/2) ~ min(P, P log? N(?-f-#é: + %))
A°(n,1,4) ~ min (Q, %) ~ min(Q, Qlog® N(;74%:— + %))

Table 10: The optimum number of processors.

Algorithm | Buffer

’4(111’1) B(l’l’l) = P

A(1,1,3) | B(1,1,8) = min(%, 2K, T2
A(1,1,4) | B(1,1,4) = min(EE, &)
A(n,l, 1) B(n,l,l) = :

A(n,1,3) | B(n,1,3) = min( 25, IE T2
A(n,1,4) | B(n,1,4) = min(EE, S

Table 11: The packet size for which ¢, and 5— — have the same coefficient.

for algorithm A°(-,1,1). The SBnT(n,*, N;-,-)-based (or the nRSBT(n, *, N;-
communication complexity as the GCEA(n,*, N;- ) algorithm, if B,, < ny
of start-ups for the SBuT(n,*, N;-,-) and nRSBT(n, *, N; -, -) algorithms is £=L for B,,, > ( )
temporary storage).

-)-based) algorithm has the same
The reduction in the number

PQ
nN

B:

(and larger

The regions for the communication algorithm of lowest complexity are ordered in the same way for the
n-port communication case as for the one-port communication case. The plot which shows the region of the

lowest complexity algorithm with - = v and one-port communication is the same as that of = = I and n-port
communication, if B,, > Bop:.

Theorem 3 The communication and arithmetic complezity 1s the same for matrices embedded in a Boolean
cube by binary code encoding and binary-reflected Gray code encoding.

The complexity of broadcasting is independent of of the encoding [10], and so is the matrix transposition time
[9]. Note, that the summation order for inner products differ for different algorithms, and that for non-associative
operators, such as floating-point addition, some algorithms may loose more precision than others.

4.2 Two-Dimensional Partitioning

The algorithms described for the one-dimensional case have analogues in the two dimensional case. Algorithm
A(-,1,1) that computes A in-place by broadcasting C in its two-dimensional form requires broadcasting of
elements of C along rows and broadcasting of elements of D along columns. The two broadcasting operations need
to be synchronized in order to conserve storage. Cannon {1] has described such an algorithm for mesh configured
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multiprocessors (that can be emulated on Boolean cubes) and Dekel et al. [2] described such an algorithm making
use of the Boolean cube topology. These algorithms are special cases for particular broadcasting algorithms.

The algorithms corresponding to the four one-dimensional algorithms (A(-,1,4) has two variations) are

e Algorithm 4(-,2,1). Compute A in-place by broadcasting of C in the row direction and D in the column
direction such that each processor receives all elements of the rows of C mapped into that processor row
and all elements of D mapped into the corresponding column of processors. Processor k,! then computes
C’(l_r : ]J %) D(*, I_r—hj) for all ¢ mapped to k and all y mapped to . The communication operations are

broadcastmg from mu1t1p1e sources within rows and columns.

e Algorithm A(-,2,2). Transpose C, perform a multiple source broadcast along processor rows for the ele-
ments of C7 in that processor row, and accumulate inner products for A through multiple sink reduction in
the column direction (of the processors) The accumulation can be made such that 3~ - elements for each col-

umn of D are accumulated in each processor by all-to-all reduction. A processor k l receives C/(*,

I‘fx?‘] )
during the broadcasting operation, then computes the product C(x, [r‘T]J)D(l_—rZ‘L—]J, I.[_.BJ__]J) The sum-
N; Ny Na

mation over index 7 is the reduction operation along columns.

e Algorithm A(-,2,3). Transpose C, perform multiple source broadcasting of the elements of D within
processor rows, accumulate inner products in the column direction. The multiple sink reduction is per-
formed such that each processor receives all "1% elements of Nil distinct columns of D, such that AT is
computed. (Alternatively, the accumulation can be made such that m elements for each column
are accumulated in a processor selected such that the proper allocation of A is obtained through a some-
to-all personalized communication within rows.) Processor k,! computes C(| TL1J I‘f—q-1 N D( f—q-1J %)

for all 7, 7 such that I-Ti—TJ =1l and I‘f—Q-1J = k.
Na

e Algorithm A(-,2,4). Transpose D, perform a multiple source broadcasting of the elements of DT within
processor columns, accumulate the partial inner products for elements of A by multiple sink reduction along
processor rows such that the elements of at most f%—-] columns are accumulated within a processor column.

After the transposition and broadcasting processor k,! has the elements C(I-f-"—]J I‘[x?-]J)D(I-[_T,QJ-_]J’*)
2 2

for all 7 such that [[—5-1J = k and j such that | L

A 1J
e Algorithm A(:,2,5). Transpose D, perform a multiple source broadcasting of the elements of C within
processor columns, accumulate inner products for elements of A by multiple sink reduction along processor
rows, such that each processor receives —P; elements of AT for each of § columns of D. Processor k,!

computes C(x, | fé—]J)D(I' [é_]J, | T'B-1J) for all 7 such that L[_B_]J = k and j such that | =1

f]J

Figure 12 characterizes the 5 algorithms. The two subscripts in sequence are used to denote the ordinal
numbers of block rows and block columns among the Ny X N, partitioned blocks. The “+” sign means union of
all the block rows (or columns). The superscript denotes the ordinal number of the partial inner product result.
The number in the square brackets (eg. [PR] in A(-,2,1)) is the minimum maximum number of processors to
minimize the arithmetic time for each algorithm. Algorithm A(:,2,2) has a matrix transpose in addition to the
communication of C as in algorithm A(-,2,1). But, unlike in the one-dimensional case algorithm A(-,2,2) may
have a higher processor utilization than algorithm A(-,2,1).

In algorithm A(-,2,2) the operation C(x,*)D(*, I.[__B_J_]J) requires a summation, which is made by all-to-all
Ng A
reduction such that processor k,! receives the product C(I_[_P_]J *) D (%, I.[__R_J_]J) The reduction in the first

version of algorithm A(-,2,3) is made such that processor k,! receives C(I_[_E_]J %) D(*, | ]) for all z such

[ } 1
, "
that I‘%TJ = | and 7 such that I_[—_é;—]J = k. The local computations in algorithm A(-,2,4) are the same
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Figure 12: Notation summary of the algorithms for two-dimensional partitioning.

as in algorithm A(-,2,3). The difference is that reductions corresponding to summation on j are performed
along processor rows, instead of columns as in algorithm A(-,2,3). One transposition of D suffice instead of a
transposition of both C and A in algorithm A(-,2,3).

4.2.1 Arithmetic Complexity

The arithmetic complexities and temporary storage requirements of algorithms A(-,2,1) - A(-,2,5) are given in
Table 12.

Lemma 4 The arithmetic complezity of all five algorithms is the same if P, Q, and R all are multiples of N,
and N2.

Theorem 4 For P, Q, R < N,, Nj, the arithmetic complezity 1s minimized if the normal of the processing
plane s aligned with the azis having the fewest elements.

The lemma and the theorem can be proved by direct evaluation. For instance, if Q < P, R, then algorithm
A(-,2,1) for which the processing is in the P, R plane is of lowest arithmetic complexity, and if P < Q, R then
algorithms A(-,2,2) and A(-,2,5) have the lowest arithmetic complexity, and if R < P, Q then algorithms A(-,2,3)
and A(-,2,4) are the algorithms of choice. The first case is similar to an outer product, the second to producing
a row vector, and the third to producing a column vector.

4.2.2 Communication Routines and Their Complexities

Algorithm 4(-,2,1):

Algorithm A(-,2,1) carried out as a sequence of one-to-all broadcasts for a row and a column with a multipli-
cation phase between each such operation constitutes an outer-product algorithm, but becomes an inner-product
algorithm, if it is implemented by multiple source broadcasting followed by the multiplication operations. A linear
array type algorithm used for one-to-all broadcasting conserve storage, but requires a total of O(NZ, N2) start-
ups, and data transfer times. In order that multiple source broadcasting also conserve storage the computations
for successive outer products must be pipelined, which requires a proper alignment of the operands. Alignment
of the two matrices C and D may be explicit or implicit. We describe one algorithm of the latter type suitable
. for MIMD architectures, and two algorithms of the first type. For a few variations see |7].

With the mapping of the matrices defined previously, only the diagonal blocks have the proper index sets
for the multiplication operation assuming N, = N, = 1/N. The outer products can all be initiated at the same
time. The computations proceed from the main diagonal towards the bottom and right for each outer product.
It can be shown that for v/N being odd, 2v/N — 1 steps suffice to complete the algorithm with constant size
buffer. Each step consists of communications of two block matrices, one block matrix multiplication and one
block matrix addition. For v N being even, we can put one more buffer at the boundary processors and delay
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Figure 13: Computing A — C x D+ E by a pipelined outer product algorithm.

sending the message to the opposite side of the boundary processors. 2¢/N + 1 steps are sufficient to complete
the algorithm. For Ny # N, and for instance Ny > N the situation N; = N, can be simulated by a further
partitioning in the second dimension such that %‘: virtual partitions are assigned to each real partition.

Figure 13 illustrates some of the steps. A total of 24/N + 1 steps are needed. Each step requires only
nearest neighbor communication. For a MIMD mode of operation the coding of the algorithm is straightforward.
In a SIMD mode masking is required to define the set of active processors in each step. Notice that if more
than one matrix multiplication is performed, the subsequent matrix multiplications can be initiated every v N
cycles from the main diagonal without any communication and computation conflict. Hence, a total of K matrix
multiplications only require (K + 1)\/_ +1 steps compared to approximately =5+ 3X /N steps by Cannon’s algorithm
as described next.

Cannon [1,2] describes a matrix multiplication algorithm suitable for SIMD architectures configured as two-
dimensional arrays. The algorithm consists of two phases; an alignment phase and a multiplication phase
including 2Q (or max(Ni, N;) for both N} and N, being powers of 2) communication steps for one-port commu-
nication. During the alignment phase row ¢, 1 = {0,1,2,..., P—1} of C is rotated left ¢ positions, i.e. C(s,7) «
C(%,5+% mod Q), and column j, 7= {0,1,2,...,Q—1} rotated up j positions, D(z,5) « D(t+7 mod @Q, 7). The
alignment of the matrices allows all processors to participate in each step of the multiplication phase. After the
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Figure 14: Matrix multiplication on a mesh according to [1,2].

alignment phase the matrix C is stored such that diagonals are aligned with columns of the array, and diagonals
of D aligned with rows of the array. During the multiplication phase the matrix C is rotated left one step at a
time, and the matrix D rotated up one step at a time. Figure 14 shows the data structures after the alignment
phase. If the alignment is carried out as a sequence of shifts, and the CRA algorithm is used, then for one-port
communication the row shifts use CRA(1, *, No; C, 1{; Nz) and require I_I—VZ-ZJ steps, and the column shifts require

[_—1J steps by CRA(L, *, Ny; D, NQ 1? ). The total data volume communicated across an edge for the alignment

of C is [—] [%] [ %2]. For the alignment of D the number of element transfers is [ﬁ—] [lﬁ] [ 21]. There are

max(Ni, N2) — 1 steps of the algorithm, and each such step requires communication of | Nl][%] elements for

the rotation of C' and [Nil] |'1—V-R;] elements for the rotation of D. If N; > Ni, then %f shifts of C are required
for each shift of D. In a Boolean cube the number of communication steps for the alignment of C and D can be

reduced to at most 2log N1 and 2log N steps, respectively [7].

It is also possible to base a matrix multiplication algorithm on the GCEA algorithm. As was the case with
the CRA algorithm an alignment is required between C and D, and the movement synchronized. The use of the
GCEA algorithm is equivalent to the following recursive procedure. Let C' be partitioned into 4 blocks: Coo,
Co1, Ci0, and Cy;. Similarly, let D be partitioned into Dgg, Do1, Dyo and D;; of appropriate sizes. Then, an
exchange of blocks Cjo and Ci; and of blocks Do; and Dj;, respectively, brings block matrices into positions
such that four independent matrix multiplications can be performed on matrices of half the number of rows and
columns of the original problem. To complete the matrix multiplication an exchange of blocks in the same row
is made for C' and in the same column for D, followed by a new multiplication of half sized matrices. If there
is a different number of partitions in the two dimensions, say N; > Ny, then %: virtual partitions are added to
each partition in the second dimension. The virtual partitions are local to a processor. For each communication
in the second dimension there are %1 communications in the first dimension. For the multiplication phase there

are N; — 1 communication steps for C in the second dimension, each step communicating [ ][1—%] elements.
For D there are N1 — 1 steps of [ ][%] each. The communications are between adjacent processors, if the
matrices are embedded in the Boolean cube by a binary encoding of partitions.

Dekel [2] describes the above algorithm in detail for P = Q@ = R = /N. For Q = 2*1N; = 2%3N, the
algorithm is directly portable. A certain number of the low order bits are mapped to the same processor for
consecutive partitioning, and communications corresponding to those bits are internal to a processor. The set-up
phase requires log N; and log N; communications respectively.

It is also possible to design a matrix multiplication algorithm based on the SBT-b algorithm. With this
algorithm the number of communication steps for the multiplication phase is reduced to log N2 and log N,
respectively. The need for temporary storage is equal to éQ([ £ -1+ (35 i =1). The alignment described for Dekel’s

algorithm is applicable. With a temporary storage of Q([+- -] + [ -1), the alignment step can be eliminated. In
this case, the computation is performed only after all necessa.ry communications are done.
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For n-port communication we only consider the SBnT-b and nRSBT-b routings. The maximum edge load is
reduced compared to the one-port case. The communication time is

min. (S22 (][R £ [ [R] ]

=1

SRR SO R Elsx])

The reduction in the element transfer time is by a factor of . The number of start-ups is also reduced by the
same factor if B,,, < 2[£2].

N
Algorithm A(-,2,2):

For the transposition of C we use a transpose algorithm as described in [4,3]. The multiple source broad-
casting of CT can be made with algorithm CRA(1,* N2,Cfr, ), GCEA(1,*,No; CT, & N L), or SBT-

b(l,*,NQ,CT, NN ) for one-pert communication. The reductlon can be carried out by the same algorithms,

executed in reverse order, for instance by SBT-b(1, ¥, Ni; AL N Nz

Let Npaz and Ny,in, be max(Ny, N2) and min(Ny, N2), respectively. The transposition of the P x Q matrix
partitioned by a N; X N, processor hypercube can be viewed as 2log, N, mm steps of matrix transposition

exchanging [ '||'N—Q—2'| elements between processors, log2 % steps in which 2 [ A ] |'N—9—2'| elements are exchanged

between processors, and the transposition of —m‘“ loca.l ma.trlces of size NP ¥
azT mu.z

Tyop(1, N1, N3 P,Q) = 210gNm,.n<{N£11 [32] H ”Te‘] L] )
sy (3w | % =] 1%
(g+min(n1,n2)) ([-NI—J;] L%] tc+r) . By,
(] [wleer) w2 [R][R]

With n-port communication, pipelining can be used. The communication time becomes

Tizp(n, N1, N2; P,Q) = (HNL:] [%] —;;] +n— 1) (Bt.+ 1)

- ([T vmm) . - ETET

In the above expressions for the time of a transpose we have ignored the time for copying, which indeed is
significant [4]. However, the expression is quite complex and does not qualitatively affect the results. The total
communication complexity for algorithm A(-,2,2) is given in Tables 13, 14, 15, and 16. Notice that in Tables 14,
15 and 16, it is assumed that P,Q, R > Ny, N;. For arbitrary P, Q, R, the communication complexity is very
complicated. We give the communication complexity of 4°(1,2,2) for arbitrary P,Q, R as an example. The
complexities of other algorithms can be derived similarly. The number of elements transferred is

P.Q..Q. P PN L AT AT ko 1L B
TVT”E]’[TV‘;”Nz])”Jr(m“("” kp2,0)+2 )fN1HN21 (max(kq1—kp1,0)+2 l)fJ—V:HEL

where k2 = min(log R, n2), kp2 = min(log P,nz), kg1 = min(log @,n1) and kp, = min(log P,n;). The number
of start-ups is

-17)
] 5]

v

IA

max([

|l ) 1 )| ot matn = k) [ T2 +Z ExEall
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| Model | Algorithm | Communication operations |

AN(1,2,1) CRA-b(1,*,N3; C, &- 7 %) + CRA-b(1,+,N;; D, = i N
A™T(1,2,1) GCEA-b(1,%,N2;C, ) + GCEA—b(l ,Ni; D, & E)
A™I(1,2,2) TXP(1, Ni, N2; P, Q) + CRA-b(1, %, Np;C7T, & F) + CRA- b(l Ny A, F X))
ATX1(1,2,3) TXP(1, N1, Na; P,Q) + CRA-b(1, %, Na; D, 7 75)
| + CRA-b(1,*,Ny; AT, & N,) + TXP(l N1, N3 R, P)
A™X(1,2,4) | TXP(1, Ny, N2; @, R) + CRA-b (1, N; DT, E &) + CRA-b (L,x, Nps A, - F
A71(1,2,5) TXP(1, N1, N2; @, R) + CRA-b(1, %, Ni;C, - 1%)
one-port | + CRA-b(1, * Nz,AT, » 7z) + TXP(1, Ny, No; R, P)
A°(1,2,1) SBT-b(1, *, N2; C, 5~ 7) + SBT-b(1, *, Ny; D, £ &)
A°(1,2,2) TXP(1, N1, N3; P,Q) + SBT-b(1,%,N3;C7, #=5) + SBT—b(l NG A, - 2)
A°(1,2,3) TXP(1, N1, N3; P,Q) + SBT-b(l ' N2; D, 3 %
| + SBT-b(1,%,Ni; AT, £ L) + TXP(l N1, Na; R, P)
A°(1,2,4) TXP(1, N1, N2; Q, R) + SBT-b (1,*,N1,D s ) + SBT-b (L, Vo A, - =
A°(1,2,5) TXP(1,N1,No;Q, R) + SBT-b(l N C - 2)
| + SBT-b(l,*,Ng,AT, e w-) + TXP(1, N1, Nz; R, P)
A°(n,2,1) SBnT-b(nz, ¥, N2; C, 5~ 7=) + SBnT-b(n1,*, N1;; D, & K
A°(n,2,2) | TXP(n, N1, Na; P,Q) + SBnT-b(nq, *, N2; CT, & N Nz) + SBnT-b(n1,*, Ni; A, 1—5',}'1%
A°(n, 2, 3) TXP(n, N1, N2; P, Q) + SBnT-b(nz,*,Ng,D, =)
n-port | + SBnT-b(ni, *, Ni; AT, & N,) + TXP(n, N1, Nz; R, P)
A°(n,2,4) | TXP(n,Ni, No; Q, R) +8BnT-b(ns, *, Ni; DT, o ) + SBnT-b(nz,*,Ng,A, )
A°(n,2,5) TXP(n, N1, N2; Q, R) + SBnT-b(n1,*, Ny;C, = 1)
| + SBnT-b(na, *, Na; AT, & L-) + TXP(n, N1, Nz; R, P)

Table 13: Communication operators.

+max(o ~ £51,0) | T 1| +k:;201[3;r§1w%1].

The minimum number of start-ups is n + max(krz, kp2) + max(k,1, kp1).

Algorithm A(-,2,3):

For version 1 of algorithm A(-,2,3) two matrix transposition operations are needed, one on the ma-
trix C, and one on the matrix A. For the multiple source broadcasting of D within rows algonthm SBT-
b(l,*,Nz,D [N-Q—l][ ~1]) can be used. For the multiple sink reduction SBT-b(1,*, Ny; AT, [7\%][ 1) is a pos-
sible choice. The complex1ty of the SBT-b(1,%,;-, ) algorithm i is the same as that of the CRA(1,*,-,) or
GCEA(1, *,;-,-) if the buffer size B,, < [-9—] [N ], and By, < [ ”1? ], respectively. With n-port communi-

cation the SBnT-b(n, *,-;-,-) or the nRSBT-b (n, *, ;- )routmgs are used instead.

For version 2 of algorithm A(-,2,3) the reduction is carried out such that the inner products for the set of
NLZ rows of A allocated to a column of processors are accumulated with contiguous sets of 1{,’ inner products
per processor in the same column, and in the processor row in which the inner product shall finally reside.
The divide and conquer strategy is applied to ——; (if Ny > Nz), and repeated R times, since every processor
column contains every column of D. After this reduction operation the elements of A are in the proper processor
row, but all elements of a row are confined to one or a few processors in that row. The desired distribution
is obtained by one-to-all personalized communication, or some-to-all personalized communication if N; < N,.
For one-port communication we choose the SBT-p(1, #, -; -, -) algorithm, and for n-port communication either the
SBnT-p(n, *,+;+,-) or nRSBT-p(n, *, ;-,-) algorithm.
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[ Algorithm | Element transfers start-ups min start-ups

2°(1,2,1) | (N2 = )£ ] E:‘:.,‘rrm %121 n
+ (M- )21 :':;‘rr 1mﬁ1
21,22 | [£1EIn+E1&1W:-1) rr,—sﬂr A ln o 2B ] 2n
! +r 1rn,1(N1—1) fia‘rr,v,u,v, 1
2(1,28) | [E1Zn+ £V -1) rr;%u 1n+2:‘:;’rri1r 12 3n
i+r%1rN,1(M—1)+rs¢%1r,—v‘E1n +2::':;‘rr~,1r§,1m+HN11rN, 2n
21,24 | [ZUEIn+[EZIO:-1) | [T 1r:,15m1n+z:‘;;‘ R 2n
| R~ 1) + 2 A 1Bm1
21,25) | [SUEIn+TEZI-1) | [[Z1T&E1&In+ ,."_‘;‘rr—r,ﬁ 3n
| [ RIE1 N =)+ [E1&]n | +30 ‘rrm,—% 21 +EEIE

Table 14: The communication complexity using two-dimensional partitioning.

| Algorithm | Bopt ] Tmin ]
A1,2)) | FIil5] 1% 2Q[ [ lta + {2 = D[ 1[5 1+ (M ~ DI [m D e + o7
Z 120 | (gL A, (T~ DTETP + S, TR+ T et 20r
bl +{|"m” ]n+f ]f'@](Nz—l)‘*'fN—,”NJ(Nl-'1)}tc
AW | TEIAL TR I~ IR+ S, TR+ (1 Tt oo
Szl #1051 | +HIE% ]n+f 1[N,](N2—1)+TN,TFN](N1“1)+f 1)t
50 | TEITE] TR, (CrET= DR IR S22, R + TR e+ 20r
Pl +HI# ”N,]"+f 1% ](N1—1)+fN,]f ](Nz-l)}tc
A | TR S TETTET (CL &1~ DT ETP + 2 0m, TR ET+ I 1)+ 307
FIEUSLIAE | +HIZ& ]n+[N][-9-](N1—1)+[ AR - 1) + [R1[E]n}

Table 15: The communication complexity for optimum buffer sizes, two-dimensional partitioning, and one-port
communication.
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[ Algorithm | Bopt Tmin— arith. time ]

A%(n,2,1) \/_nz,,,rNJr 1, max(R2L[ 21T Z ]t + nar,
VI [STA] MLl Q1811 4 mr)
A®(n,2,2) \/fTvﬂfN,]rﬁ;: m’+(\/[N1][ Lt + 4/(n = 1)r)?
VIS R, VI TATTAT | AR+ AT M
VIE T o nr+ ([ TE1 &t + /(n = 1))’

A%(n,2,3) VI % oo +(/ T3 #Tte + A/ (n = D)r)?

VESHIRIELVESRITE | +TAR15%2 + TRTE 15

A¢(n,2,4) \/[]%”%1(,,_'1),6 n1'+(\/|' '||'N2'|tc+ (n—1)7)?
VIS AR VELS [ H1TA] | +URR1 N2 + [&11R152
VIR e nr + (T &t +/(n = Dr)?

A%(2,2,5) N +(/TEN &t + /o= D7)

VISR AL VI [ R1TE] | +(E1TR1 52 + 21121 %)

Table 16: The communication complexity for optimum buffer sizes, two-dimensional partitioning, and n-port
communication. The arithmetic time is the same as in the one-port case and is omitted from the last column.

4.2.3 Summary and Comparison

Tables 13 to 19 summarize the communication and arithmetic complexities. Note that if P, Q and R are
multiples of N7 and Ny, then the arithmetic complexities of the algorithms are the same, and indeed the same
as for a one-dimensional partitioning.

Theorem 5 For P, Q, R nultiples of Ny, Ny or P, Q, R < N, N, and two-dimensional partitioning, the
arithmetic and communication complezities are minimized if the processing plane is the same as the plane with
the mazimum number of matriz elements, and the aspect ratio of the processing domain 1s the same as the aspect
ratio of the corresponding matriz domain. The optimum aspect ratio of the processing domain 1s independent of
architectural parameters such as 1, t;, or t,.

Figure 15 shows the optimum values of %: for algorithm A(1,2,1) as a function of %. The same Figure also
applies to the other algorithms by the appropriate relabeling of the axis. Figure 16 shows the measured and

predxcted communication times of algorithm A¢(1,2,1) on the iPSC as a function of —’- for different values of
£ = {2,8,32}. The measured minima are the same as the predicted.

With a significant communication time it might be preferable to use fewer than the maximum possible number
of processors. Table 18 shows the approximate optimum values of N for algorithms A(1,2,1) to 4(1,2,5) where

a= é and B = h Nopt is derived from Table 17 using some simplified approximations. For instance, it is

assumed that Q << N for A(1,2,2). For algorithm A(1,2,1), N, is approximated by PR, if Q > 4’7‘,*, tg 2 te,

orif Q > 5, ta > tc, and PRﬁ—'l if @ < 37, ta > tc. Similar results can be derived for algorithms A(1,2,2)
to A(1,2,5).

Lemma 5 For sufficiently high data transfer rate compared to the arithmetic rate, the arithmetic load per pro-
cessor shall be greater than the ratto of the start-up time and the time for an arithmetic operation in order to
achieve mazimum performance. In the extreme case where Nopt = Npmaz processors are used, the time for the
snner product should be greater than {:—

26



[Algorithm | N | N» | Twmin, By, > Bopt |

A°(1,2,1) EN EN ARy, + 2 (2/PR— EEE)t, 4 nr
£°(1,2,2) Qr By AR, + Lo (2 QR + 2R, 4 2nr
4°(1,2,3) Qu |\ JEE | 2EQRy, 4 B (2/PQ+ —————ﬂ—"””%/_jv‘(”q’)tc +3nr
4°(1,2,4) \/—%; Ll 2EQRt, + L (2yPQ + 2, 4 2nr
4°(1,2,5) \/% Qn | QR + Lo(2VQR+ ﬂg%‘—g‘”—a—))tc 4 3nr

Table 17: The optimum values of N7 and N, for P, Q and R being multiples of N and one-port communication.

{ Algorithm | Nop: | Nopt, P/Q/R > aff | Nopt, P/IQ/R < of |
2 2
A(1,2,1) | LEROHVIH8B/ | PR, 4,,2 @BR) if Q> 8af | min(PR, 222R8) if Q < 8af

2 2

4(1,2,2) | To9RGHyIHeas/R)} | QR ,6",) if P> 1608 | min(QR, 298), if P < 1608
2 ™ 2 .

A1, 2, 3) 2 PQ(H;’:::“ £/5) min(PQ, & 36(,, BP9 if R> 2408 | min(PQ, Ja—é) if R« 24ap

2 2
A1, 2, 4) B PQ(H}ﬁimaﬂ/m min{PQ, R—PQ), if R>>» 16af | min(PQ, —%—é), if R« 16af

1602
2 2
A1, 2, 5) i QR(H};":};ZM‘Q/P) min(QR, ££2), if P> 2408 | min(QR, %Qaﬁé), if P« 24afp

Table 18: The optimum number of processors for different algorithms. {: = a and

S
i
™

Lemma 6 For P, Q, and R multiples of Ny and Ny the complezities of algorithms A(-,2,8) and A(-,2,5) are
always higher than that of min (A(-,2,2), A(-,2,4)), if the optimum values of Ny and Ny are chosen for each
algorithm.

Proof: From Table 15, if TA(»>3) < 74022 hen R < P. Also, by exchanging Ny and N, in 4(-,2,4), if

T,ﬂ,ﬁ 3) < TA( 24) then P < R. Similar arguments can be applied to A(-,2,5). For n-port communication,

Table 16 is used instead. |

Lemma 7 The complezity is monotonically decreasing as a function of B,

The smallest value of B,, that minimizes the number of start-ups, Bopt, is given in Table 15.

Figures 17 to 19 show how the P, @, R space is divided into regions according to algorithm of minimum
complexity as a function of N, tT_G’ %, % and %. Each plot is generated from the complexity estimates and with
the optimum values of N; and Nj. It is assumed that P,@Q and R are multiples of N; and N2, and B,, =
Decreasing B,,, has the same effect as decreasing Z- t . For sufficiently small B,,, the coeflicient of & B becomes the
same as the coeflicient of ¢.; the data transfer becomes the dominating factor. All Figures contains four plots.
The upper left plot (a) shows the boundary between A(1,2,2) (above the boundary) and A(1,2,1) + A(1,2,4).
Plot (b), the upper right plot, shows the boundary between A(1,2,4) (above the boundary) and A(1,2,1} +
A(1,2,2). Plot (c), the lower left plot, shows the boundary between A(1,2,1) (below the boundary) and A(1,2,2)
+ A(1,2,4). Plot (d), the lower right plot, shows a contour of plot (c). For N = 16 and 7 = t,, the volume for
which .4(1 2,1) is optimum are larger than the volume for which 4(1,2,2) (and A(1,2,4)) is optimum, Figure 17.
With an increasing ratio of & and small N, the regions for the 4(1,2,2) and A(1,2,4) algorithms both decrease
as shown from Figure 17 to Flgure 18.
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Figure 15: Optimal values of %;- for algorithm A(1,2,1).
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Flgure 16: Measured and predicted communication times for algorithm 4(1,2,1) on an Intel iPSC as a function
of —1 with N = @ = 32 and PR = 1024N.

As the number of processors increases, such as from Figure 17 to 19, the region in which algorithms 4(1,2,2)
or A(1,2,4) is optimum increases. Increasing the ratio of = ~ for large NV has less effect than that for small N.

In fact, when N = 1024, the Figure for tL =1 is the same as that for = 1000, Figure 19. For £ N = % = R
the communication complex1ty of algorithm A(1,2,1) is less than that of algorithms A(1,2,2) and A(1,2,4); the
complex1t1es of A4(1,2,2) and A(1,2,4) are the same. The volume for which 4(1,2,1) is optimum is always at least
% of the whole volume The volumes for 4(1,2,2) and A(1,2,4) are the same and symmetrical to P = R plane

They are at most X 3 of the whole volume. As N increases, the volume for each of the 3 algorithms approaches 2 5

of the whole volume For A(1,2,1), the shape of its optimum volume is a pyramid with a square base at Q =0
plane.

Theorem 6 The temporary storage 1s minimized for the algorithm that minimizes the communication complez-
ittes.

Theorem 6 implies that for P, Q, R multiples of N, the temporary storage is minimized for the algorithm that
minimized the total complexity. The temporary storage requirements for the different algorithms are summarized
in Table 19. For instance, if algorithm A(1,2,1) is optimum, then max(PQ, QR, PR) = PR, and the required

temporary storage is Q(FJ’VLR).

Theorem 7 The complezity of matriz multiplication ts the same for both matrices encoded in binary code and
binary-reflected Gray code.

For broadcasting and reduction the same algorithms can be used for both embeddings. Moreover, the same
transposition algorithm also apply to both embeddings [7]. The difference between the two encodings is the
order in which operations are carried out, and the alignment of operands.

With n-port communication and unlimited buffer size the communication time is minimized, if the data
transfer time is minimized. The optimum value of Ny for algorithm A(n,2,3) minimizes R—L— + Q—z_—l if
P, @, R are multiples of N. As in the one port case the optimum is independent of 7, t., and £,. Moreover, the

optimum is only a function of the ratio £ o a8 in the one-port case. Figure 20 shows the optimum values of Ny
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Figure 17: Lowest complexity algorithm as a function of matrix shape; N = 16, r = ¢, B,, = oo, two dimensional
partitioning, one-port communication. (a) The boundary between A(1,2,2) and A(1,2,1) + A(1,2,4). (b) The
boundary between A(1,2,4) and A(1,2,1) + A(1,2,2). (¢} The boundary between A(1,2,1) and A(1,2,2) +

A(1,2,4). (d) Contour plot of (c).
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Algorithm | Temporary storage

1 D4
Alx,(‘)zyl) P_J\? QI\TR 0
Alxl(_’z’z) P_A? 0 IjV_R
AXi(23) | o | SF [ EE
AIXl("z»‘i) 0 'OFR %
A8 | T 1 0 |4
Ac(”z;l) %PT? %%_}: 0
Ac(‘,2,2) %% 0 %
Ac(',2,3) 0 %QNLI% %
Ac(-,2,4) 0 |1%% | EE
A28 | 22| o | £E

Table 19: Temporary storage requirements for matrix multiplication using two-dimensional partitioning.

for algorithm A(n,2,2). For algorithms A(n,2,3), 4(n,2,4) and A(n,2,5), (@, R) are replaced by (Q, P), (P, Q)
and (R, Q) respectively. For 4(n,2,1), Q is replaced by P, approximately. For a sufficiently small buffer size the
number of start-ups is proportional to the number of element transfers, and the optimum values of N; and N;
remain the same as for an unlimited buffer size.

Figures 21 and 22 show the partitioning of the P, @, R space according to the algorithm of minimum
complexity with n-port communication. The four plots of each Figure are organized the same way as in the
one-port case. For P, @, and R multiples of N algorithm A(n,2,1) is preferable with respect to execution time
for most values of P, @, and R. Algorithm A(n,2,1) shall be chosen if P, R > Q. Algorithm 4(n,2,2) shall be
chosen only if @, R > P, and A(n,2,4) only if Q, P > R. The volume for A(n,2,2) (A(n,2,4)) is significantly
smaller than that for 4(1,2,2) (A4(1,2,4)) of the corresponding one-port case. For the case 1 < (P,Q, R) < N;, N,
the arithmetic complexity is also of concern, and the processor utilization is different. Algorithm A(n,2,1) is
always preferable for P, R > Q; algorithm A(n,2,2) is mostly preferable for Q, R > P, and algorithm A(n,2,4)
mostly for @, P > R. The choice of algorithm with respect to arithmetic complexity is similar to the choice
with respect to communication complexity. The boundaries in the case 1 < (P,Q,R) < N are illustrated in
Figures 23 and 24. Note that for r = t,, N = 1024, various ratios of t, to t., such as 0, 1 or 100, all result in the
optimum regions as Figure 23. Interestingly, it has a same shape as Figure 19. For r = t,, N = 1024, %‘: =1

has the same Figure as = = 1000, which is almost the same as i = 0 of Figure 24.

te te

4.3 Three-Dimensional Partitioning

Before considering the three dimensional case, we study the communication complexity of broadcasting from
each node in some k-dimensional subcube to the whole n-cube. Assume that the amount of data to be broadcast
is M per source node. The broadcast can be realized by all-to-all broadcasting in the k-cube containing source
nodes followed by one-to-all broadcasting of data 2¥M in the (n — k)-cube. Alternatively, we can carry out the
one-to-all broadcasting in the (n — k)-cube with data M concurrently for all the k independent subcubes. Then
perform all-to-all broadcasting within the k-cube for all the n — k independent subcubes. The latter is obviously
preferable to the former. We denote the some-to-all broadcasting by SBT-b(1, 2¥,2"; -, M), which can be realized
by SBT-b(1,-,2"~%;-, M) + SBT-b(1, %, 2*; ., M). The second argument represents the number of source nodes
in this case. The complexity is

T={(n—k)+(2’°—1)}Mtc+{(n—-k) [%]ﬂuznm}r
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In applying the some-to-all broadcasting in the following, M = 1 if k < n, so we choose the SBT algorithm
instead of the nESBT algorithm for the one-to-all broadcasting part.

In the case of a three dimensional partitioning of the Boolean cube each N; X N, subset of processors compute
the product of a P x ma.trlx and a J—VQ— X R matrix. If the matrices are initially allocated such that there are
distinct submatrices P x ~, and 1—% x R assigned to each set of I~ ¥, Processors then the multiplication in each
subset is the same as in the two dimensional partitioning, except that Q is replaced by ﬁ— In addition there
is an accumulation phase at the end. The accumulation can be made by the SBT-b(1, *, Ns; A, -£- NN &) or SBT-
b(ns, *, Na; A, =~ N N—) algorithms depending on the communication capability of the system. The arithmetic
time for this part of the computation is [—i—” ]log Nst, without any p1pehn1ng, and all partial products

being accumulated in the same way. The ma.trlx A is allocated among N processors. If there are several
elements of the matrix A that are stored in the same processor, then the “accumulation can be made faster

by using all-to-all reduction. The complexity becomes E‘.___l[r—"%‘r—""‘l]t

PR
for the reduction is 2, [r" Lk ]]tc + 3 [r—'vz‘%—]]'r. When P < N; and R < N,, it is an all-to-one

- The communication complexity .

reduction, and the communication complexity of the reduction is (]'NLIH' 1t + [r_lixllﬁz_]],-) log N3. When

L17&] > Na, it is an all-to-all reduction, and the communication complex1ty of the reduction is approximatel
N W y
FnlEA
Q= & a5t + X2 [ T agr.

To change the processor allocation from a two-dimensional partitioning, Nj - N = N, to a three-dimensional
partitioning, Ny - N2- N3 = N, one-dimensional matrix transpositions within each block of C and D are needed.
Let N = a1 N; and N} = aoNj, ie., N3 = ajap. The matrix C needs to be changed from an a;N; X aaN,
partitioning to an N X a;ap N partitioning. Similarly, the matrix D needs to be changed from an a; N1 X apNa
partitioning to an ajas Ny X N, partitioning. Conceptually, o;a; can also be viewed as the third dimension.
Each —1% X BfN_, block matrix of C needs to be transposed from a; block rows to «; block columns. Similarly

for D that each ZQNT X 1\% block matrix of D needs to be transposed from oy block columns to ag block rows.
1
Since the optimum ratio of %Z = %‘; (as will become clear later), oy = az = /N3 (assuming ns is even), if NJ,

N}, Ny, N; and N3 are optimally chosen.

In order to guarantee that a subset of columns of C resides in the same subcube as the corresponding subset
of rows of D, an extra permutation is required. This permutation is equal to transposing a matrix partitioned
by a3 X a3 blocks. Figure 25 shows an example of the conversion from two-dimensional to three-dimensional
partitioning.

Let f1 = log, @3 and 2 = log, az. Before conversion, the address field of elements of matrix C used to
encode the processor id is:

(I”_l s+ Tp=ny Tp—ny=1---Tp—n1=Py Tp—ny—P1~1+++70; Cq—1-++Cq~nyCq=ny—1---Cq—na—fa Cg—ng—pPa~1--- <0},
~~ ~~

ni 31 n3 B2

and after conversion:
(Tp_l cesTp—ny Ypeni—1---70;
7y
Cg—1--. cq—nzlfq—ng—l <+« Cq-n3—B3Cq—nz—P3—1¢--Cq—ny—Ps— P, Cq—ny—P3—F1-1--- CO)'
n3 B2 B1
The processor id before the conversion is :

pid(r,c) = Tp=1+++Tp—ny Hrp—ni—1--- Tp—n1—fy leg=1--- Cq—nsy I Cq—ny—1-+ - Cq=ny—fa;

-~

ny B n3 Ba
and the processor id after the conversion is:
pzd(r, c) =Tp—1-.-- ’p—mj“ fq—nz—ﬁn—l ceeCqg—nyz—P2—p ” fq—l ce cq—ng ” fq—nz—l cee cq—nz—ﬁg'

=~ ~~ "

ni B na : Ba
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Before conversion, the address field of elements of matrix D used to encode the processor id is:

(Pgm1.v TqnyTg—ni—1+++Tq—ni—Py Tq—ni—Bi—1---T0s Cre1.++CrongCrong—1--:Crony—fs Creng—fa—1- - €0),

ny 81 na Ba

and after conversion:

(rQ"l s rq-nlqu_nl_l ceoTq—n1—PaTg—n1—Pa—1---Tq—n1-P3—p1 Tq—n1—B2—p1—1-- - 70,

ny Ba . o1

Cre1--+Crong Crong—1---€0)-
—_————
na

The processor id before the conversion is:

pid(r, c) = fq-1 ceeTqmny ” rq—fu—l ceoTgon1-p; ” Cr—1-.- C,-..,,,,/” ff—nz—l c++Cr—ng~Bs

ny o1 na Ba

and the processor id after the conversion is:

pid(r,c) =rg—1...7ny | Tgeni—pa—1-+-Tg—n1—ps—py [ ¢r=1... Cr—nsy lra—ni-1-+-Tg—n,—p, -

ny B1 na Ba
The algorithm can be implemented as

SBT-p(1, %, V2*¢; C, Q) + SBT-p(1, ¥,V 2¥%¢; D, %) + TXP(1, a1, az; [NQ], [F])
1 2

.R ”? P
+SBT-b(1,24,2%; D, [5-1] N?Ns])+SBT-b(1,2’°«,2"*;0,[Fl][ NQN 1)+SBT-b(1, 25>+, 2%0; 4, [[ ;1][ ]1\321}%,;]

where kp = min(log P, n1), k, = min(log R, n), k; = min(log Q, ns), k, = min(log[ & =], n1), kg = min (log[ & =1, n2)
and kp, = min(log[# =135 1, ma). Also let kf, = min(log[ #- -], n3), k. = min(log[ 31, n3), kis = mm(log[—q—] ns),
v = mm(log[—Q—] n3) kpq = min(ky, kys3) and kg, = mln(k ki3). The total complexity is

T - {(2[ 21~ )fP1r,§21+i[r-§}1rN%1§]+[r%wNﬁz]NiS]}ta

{0 e man( o 1 )
+ (14 e max(| o1 b e )

[ ]

+ (max(ky, — K}, 0) + 2% — DIy,

b=

+ (max(k, — kg, 0) + 2k — 1)[

(%

+ (max(ky —kyry0) +27 ~1) {r51r£1—3~]

Ny " Na ' Nj
|, k% P 0 P 0
{ O P ANl )]
+ {Z,k,_ku.ﬂB o e e v )|



|k’ kq3|

Q
+ 2 [2mema"([N1N3”E]’[F1 N2 N

=1

1
+ kgr [W_,c,—mma—x(fm] _N—;]’ A m]

o1
ot~ [  + 7
st 220 (1511 |+ 5 [ 1 T

The total communication complexity for min(PQ, QR, PR) > N is

S P PIE S N I B RS
+ = )T 3]+ (= DI ] + e =) [ | e
R E v Al AT~ Bl Al AP R [ Al
N [ B (e P o A e |
and for PQR< N is

Teomm = (log PQR + 2log Q)7 + (log PQR + 2log Q)t..

In analyzing the arithmetic complexity, we consider three cases:

1. PR > N: The arithmetic complexity is 2528¢, if Ny < P, N, < R and N5 < Q.

2. PQR > N > PR: The arithmetic complexity is (M + log PR) a f Ny < P Nz < Rand N3 < Q.
Note that it is sufficient to minimize the arithmetic time for any N3 satlsfymg 7 < N3 < Q. This can be
derived from the above arithmetic complexity by assuming 3 P R = some constant

3. N > PQR: The arithmetic complexity is (2 + log @)t,. The efficiency is m for N = PQR.

In summary, the minimum arithmetic complexity is

2PQR N’
(=g tlee[ 5z 1)ta

where N' = min (N, PQR).

When P, @ and R are multiples of N1, N2 and N3 respectively, the optimum packet size
QR PQ PR )
2NyNs’' 2N N3’ 2N, N,

The minimum number of start-ups is n + 2n3. The data transfer time is at most

3n3Q(P + R) QR PQ _ PR
TN LR A

Bopt = max (

+ (N1 —-1)
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Figure 26: Optimum values of N3 as a function of log -tf; and aspect ratios of the matrices; PQR = 10243, P= R
or P = 2R, By, = co. The right plot is the contour of the left plot.

The optimum values of Ny, N; and N3 for algorithm A(1,3,1) with respect to the data transfer time are {/ PQ’ g ,

v/ I—}.%V- and ¢/ QP%V, respectively, by considering the higher order terms only. With the optimum values of N,
N3, N3 and B, > B,pt, the minimum total complexity becomes

Toin % {21Z2E] + log(min (@700 }e

PQR z PQ+QR+ PR  3n3Q(P+ R)
+{3( N ): — N + iN }tc
+ (n + 2n3)7.

Figures 26 and 27 show the optimum values of N3 with various parameters. In Figure 26 the number of
processors is fixed, and the ratio of r to ¢, and @ to P (and R) varied. The optimum N; increases as %
increases. For a sufficiently large t’—c, the advantage of the third dimension is offset by the extra 2ns start-up
times. Therefore, the optimum Nj decreases. The optimum Nj is independent of ¢, in the PR > N domain.
Figure 27 shows the optimum Nj as a function of é, matrix size (for upper plots) and :—’: (for lower plots). The
optimum Nj in the upper plots is independent of ¢, because PR > N. The lower plots consider the case where
PR < N. Increasing N3 up to min(lﬁv—R, Q) will increase the processor utilization. Increasing N3 up to VN will
decrease the data transfer time for P = Q = R (by ignoring the lower order term). These advantages will be

offset by the extra start-up time, 2n3r and, to a less extent, the ignored lower order term of the data transfer

ime. 37:Q(P+R)
time, 3”3%§+R .

The optimum number of processors, Nopt, can be derived as

2t,

Nopt ~ PQR - min (1, (17_::—1—)7

)s for t, < t,.

Increasing N (up to PQR) decreases arithmetic time and data transfer time, but will increase the start-up time.

The ratio of element transfers to arithmetic operations is 3,
2 PNQR

For algorithms 4(1,3,2) to 4(1,3,5), the optimum value of Nj is one, and the optimum values of N; and N
are the same as in the two-dimensional case. The complexity of algorithm A(1,3,1) is at most equal to that of
A(1,2,2) to A(1,2,5).
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5 Conclusions

e For the one-dimensional partitioning algorithms A(-,1,1), A(-,1,2), and A(-,1,3) yield inner-products of the
highest order, and algorithms A(-,1,1) and A(-,1,4) AXPY of maximum vector length.

e For P, @ and R multiples of N, one-, two- and three-dimensional partitionings yield the same linear
speedup with respect to arithmetic.

e For PQ, QR and PR multiples of N and max(PQ,QR,PR) > N > max(P,Q, R), two- and three-
dimensional partitionings yield the same linear speedup with respect to arithmetic. The one-dimensional
partitioning is inferior.

e For PQR > N > max(PQ, QR, PR), a three-dimensional partitioning yields a lower arithmetic complexity
than the two-dimensional partitioning, which in turn has a lower complexity than the one-dimensional
partitioning.

e With the optimum aspect ratio for the partitioning, the number of elements transferred are approximately

min(PQ, QR, PR), 2\/min(P’QR’§;PR’R2PQ) and 3¢/ (%)2 for one-, two- and three-dimensional parti-
2 3
2

tioning, respectively. For square matrices, the number of elements transferred compares as 1, T and e
approximately. With a bounded buffer size, the communication complexity is propotional to the number

of element transfers.

¢ The minimum number of start-ups for algorithms A(-,1,1) and A(-,2,1) are the same, and so is that of
A(-1,3) and A(-,2,3). Algorithm A(-,2,4) may have n fewer start-ups than algorithm 4(n,1,4). The number
of start-ups in the three-dimensional case may be lower than in the one- and two-dimensional cases.

¢ For the one-dimensional partitioning the algorithm that minimizes the complexity is mostly the one that
have the processors aligned with the largest dimension, i.e., algorithm A(-,1,1) for R > P, Q, algorithm
A(-1,3) for P > Q, R, and algorithm A(-,1,4) for Q > P, R.

o For the two-dimensional partitioning the algorithm that minimizes the complexity mostly has the normal
for the processing plane in which the multiplication takes place aligned with the direction of minimum
data points. Hence, algorithm A(-,2,1) is chosen if @ < P, R, algorithms A(-,2,2) or A(-,2,5) if P < Q, R
and algorithms A(-,2,3) or A(-,2,4) if R< P, Q.

¢ The optimum aspect ratio of the two-dimensional partitioning is mostly dependent upon the ratio of the
number of elements in the two dimensions spanning the plane in which the multiplications take place, i.e.,
-ﬁ- for algorithm A(-,2,1), % for algorithm A(-,2,2), % for algorithm A(-,2,3), £ for algorithm A(-,2,4)
and % for algorithm A(-,2,5). The optimum aspect ratio of the three-dimensional partitioning is mostly
dependent upon P : @ : R.

e With the optimum algorithm with respect to matrix shape the temporary storage requirements and the
optimum packet size are minimized.

e For algorithm A(1,#,1),

d . a2d . . 2t . 2Qt, . 2PQt,
prt.prt.le‘ftzPQR-mm(1,@):PR'mm(1, ==) : R-min (1, ).

If matrix C is initially partitioned into N; by Ny N3 blocks and matrix D is initiaﬂy partitioned into N; N3
by N3 blocks where NLI = 'N% = 1%, then N34 ~ PQR - min (1, Z=).

e The same complexity results hold for both a binary-reflected Gray code encoding and a Binary encoding
of the matrix elements. It also holds for both consecutive storage and cyclic storage [7].

With a temporary storage or the maximum packet size equal to the size of the partitioned matrices, and
one-port communication, N — 1 communication steps are required for the one dimensional partitioning while only
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O(N1, N2) and O(Ny, N2, N3) communication steps are required for the two- and three-dimensional partitioning
respectively. For square matrices and one-port communication, the communication complexity compares as N,
2v/N and 3v/N for one-, two- and three-dimensional partitioning respectively.

For the one-dimensional partitioning, the CRA and the GCEA algorithms require constant storage, and
for the two-dimensional partitioning, Cannon’s and Dekel’s algorithms have the same property. The Spanning
Binomial Tree algorithm only requires log N communication steps at the expense of larger (exponentially growing)
temporary storage. With limited temporary storage (and maximum buffer size), a hybrid method can be used
by performing k steps of the SBT algorithm and 2"~* — 1 steps of a linear time algorithm. The number of
communication steps can be halved, approximately, by doubling the temporary storage and the optimum buffer

size. With n-port communication, the edge load is reduced by a factor of n. The start-up time becomes more
significant.
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