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Abstract

Multihoming is a popular method used by large enterprises and stub ISPs
to connect to the Internet to reduce cost and improve performance. Recently
researchers have studied the potential benefits of multihoming and proposed
protocols and algorithms to realize these benefits. They focus on how to dy-
namically select which ISPs to use for forwarding and receiving packets, and
assume that the set of subscribed ISPs is given a priori. In practice, a user
often has the freedom to choose which subset of ISPs among all available
ISPs to subscribe to. We call the problem of how to choose the optimal set of
ISPs the ISP subscription problem. In this paper, We design a dynamic pro-
gramming algorithm to solve the ISP subscription problem optimally. We
also design a more efficient algorithm for a large class of common pricing
functions. Using real traffic traces and realistic pricing data, we show that
our algorithm reduces users’ cost. Next we study how ISPs respond to users’
optimal ISP subscription by adjusting their pricing strategies. We call this
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problem the ISP pricing problem. Using a realistic charging model, we for-
mulate the problem as a non-cooperative game. We first prove that if cost is
the only criterion used by a user to determine which subset of ISPs to sub-
scribe to, at any equilibrium all ISPs receive zero revenue. We then study a
more practical formulation in which different ISPs provide different levels
of reliability and users choose ISPs to both improve reliability and reduce
cost. We analyze this problem and show that at any equilibrium an ISP’s
revenue is positive and determined by its reliability.

1 Introduction

Multihoming is a popular method used by large enterprises, stub ISPs, and even
small businesses to connect to the Internet [33]. A user is said to be multihomed if
it has multiple external links (either to a single provider, or to different providers).
According to a study by CAIDA [9], as of June, 2004, 51% of stub ASes are mul-
tihomed. When a multihomed user actively controls how its traffic is distributed
among its multiple links, we say that it implements smart routing. Smart routing
is also referred to as route optimization, or intelligent route control.

In the past few years, there has been significant research on evaluating and
realizing the benefits of multihoming. For example, in [1, 2], Akella et al. quan-
tify the benefits of multihoming and show that selecting the right set of providers
yields performance improvement. In [15], Goldenberg et al. propose smart rout-
ing algorithms to distribute traffic among multiple links to optimize both cost and
performance. A recent economic analysis shows that smart routing has the poten-
tial to benefit not only the end users, but also the service providers [13]. Many
companies are actively developing commercial products to realize the benefits of
multihoming (e.g., Internap, Proficient, Radware, RouteScience).

Although these previous studies have made much progress in realizing the
potential benefits of multihoming, two important problems remain unaddressed.
First, most of the previous studies focus on how to dynamically select which ISPs
to use for forwarding and receiving packets, and do not consider the ISP sub-
scription problem (i.e., how to determine which ISPs among all available ISPs to
subscribe to). Second, the freedom for users to choose ISPs introduces competi-
tions among ISPs. ISPs will respond to users’ selections by adjusting their pricing
strategies. We call this problem the ISP pricing problem. While there is a large
volume of literature on pricing and competition, most are based on abstract pric-
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ing models. There is no previous study on this problem using realistic Internet
pricing models.

To address the above issues, we first study the ISP subscription problem. We
develop an optimal algorithm using dynamic programming to minimize a user’s
cost. Based on the observation that many pricing functions are concave due to
diminishing marginal returns, we design a more efficient algorithm for this class
of pricing functions. Using real traffic traces and realistic pricing data, we show
that our algorithm reduces a user’ cost by up to 24% compared with a greedy
heuristic, and by up to 100% compared with random subscription.

Next we study the ISP pricing problem. Using the realistic percentile-based
charging model, we formulate the problem as a non-cooperative game. We prove
that if cost is the only criterion used by a user to determine which ISPs to sub-
scribe to, all ISPs receive zero revenue at any equilibrium. We then study a more
practical formulation of the ISP pricing problem in which different ISPs provide
different levels of reliability and users choose ISPs to both improve reliability and
reduce cost. We analyze this problem and show that an ISP’s revenue is positive
and determined by its reliability at any equilibrium. This result suggests that when
users use multihoming to both improve reliability and reduce cost, the increasingly
wide deployment of multihoming can be beneficial to the global Internet, since it
provides incentives for the ISPs to improve their reliability and thus benefits users.

Our key contributions can be summarized as follows:

• We design a dynamic programming algorithm to solve the ISP subscription
problem optimally. We also design a more efficient algorithm for concave
pricing functions. We demonstrate the effectiveness of the general algo-
rithm using real traffic traces and realistic pricing data.

• We study the effects of multihoming on ISPs by formulating the ISP pricing
problem as a non-cooperative game using a realistic charging model. We
prove that if cost is the only criterion used by a user to determine which
ISPs to subscribe to, all ISPs receive zero revenue at any equilibrium.

• We also study a more general formulation in which different ISPs provide
different levels of reliability and users choose ISPs to both improve relia-
bility and reduce cost. We show that an ISP’s revenue is positive and deter-
mined by its reliability at any equilibrium.

The rest of this paper is organized as follows. In Section 2, we describe the
network and charging models. In Section 3, we propose dynamic programming
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algorithms to solve the ISP subscription problem. In Section 4, we study the
ISP pricing problem when cost is the only criterion. In Section 5, we investigate
a more general formulation, in which different ISPs provide different levels of
reliability. In Section 6, we review related work. Finally we conclude the paper in
Section 7.

2 Network and Charging Models

We start with a description of our network and ISP charging models.

2.1 Network Model

ISP 1

ISP 2

ISP K

WANNetwork
User

Smart Router

Figure 1: An illustration of a user with K service providers.

A multihomed user has multiple links to the Internet for sending and receiving
traffic, as shown in Fig 1. The implementation techniques of distributing traffic
to the links are different for outgoing and incoming traffic. For outgoing traf-
fic, a border router inside the user’s network can actively control how traffic is
distributed. For incoming traffic, a user can use NAT, BGP prepending, BGP
selective announcement, and/or DNS to control the routes. For more detailed dis-
cussions about the implementations, we refer the readers to [1, 8, 11, 15, 16, 31].
In this paper, we consider only outgoing traffic.

2.2 Charging Models

Users pay ISPs for using their service. The cost incurred to a user is usually based
on the amount of traffic a user generates, i.e., cost = c(p), where p is a variable
determined by a user’s traffic (which we will term the charging volume) and c is
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a non-decreasing function which maps p to cost. Various charging models differ
from one another in their choices of charging volume p and cost function c.

Usually, the cost function c is a piece-wise linear (non-decreasing) function,
which we will use for our design and evaluation. There are several ways in which
the charging volume p can be determined. Percentile-based charging and total-
volume based charging are both in common use.

In this paper, we focus on percentile-based charging. This is a typical usage-
based charging scheme currently in use by many ISPs [27]. Under this scheme, an
ISP records the traffic volume a user generates during every 5-minute interval. At
the end of a complete charging period, the q-th percentile of all 5-minute traffic
volumes is used as the charging volume p for q-percentile charging. More specif-
ically, the ISP sorts the 5-minute traffic volumes collected during the charging
period in ascending order, and then computes the charging volume p as the traffic
volume in the (q%× I)-th sorted interval, where I is the total number of intervals
in a charging period. For example, if 95th-percentile charging is in use and the
charging period is 30 days, then the cost is based on the traffic volume sent during
the 8208-th (95% × 30 × 24 × 60/5 = 8208) sorted interval.

3 The ISP Subscription Problem

In this section, we first develop optimal algorithms to solve the ISP subscription
problem. Then we demonstrate the effectiveness of our algorithms using real
traffic traces and realistic pricing data.

3.1 Problem Formulation

The ISP subscription problem can be stated as follows: Given a set K = {∞, . . . ,K}
of ISPs with cost functions ck and charging percentiles qk, where k ∈ K, find a
subset S ⊆ K of ISPs that minimizes the user’s total cost

∑

k∈S ck(pk), where pk

is the charging volume of ISP k. Formally,

min
S

∑

k∈S

ck(pk)

subject to S ⊆ K.
(1)

Compared with the cost optimization problem formulated in [15], the ISP sub-
scription problem is different in that [15] assumes that the ISP subscription deci-
sion has already been made, so all ISPs can be used, while in our ISP subscription
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problem the user has the freedom to select a subset of ISPs to use in order to mini-
mize cost. A user can benefit from selecting a subset of the ISPs if the ISPs charge
non-zero base prices.

3.2 A Dynamic Programming Algorithm

Table 1 introduces the notations we will use. We define aggregated charging
volume and total peak percentile as follows. Suppose a user subscribes to a set
S of ISPs, then the user’s aggregated charging volume is defined as the sum of
pk, i.e.,

∑

k∈S pk, and the user’s total peak percentile is defined as the sum of zk,
i.e.,

∑

k∈S zk, where zk = 1 − qk. Assume a user subscribes to a set of ISPs,
denoted as S. Then aggregated charging volume and total peak percentile satisfy
the following two properties [15]. First, if the cost functions ck of all ISPs in
S are non-decreasing, then the user’s minimum total cost

∑

k∈S ck(pk) is also
a non-decreasing function of the user’s aggregated charging volume. Second,

the user’s aggregated charging volume has a lower bound, which is V0(S)
def
=

qt(V, 1−
∑

k∈S zk), where qt is the quantile function, and V is the time series of
the user’s total traffic volume. The lower bound is achievable when each ISP has
sufficient bandwidth to handle the user’s traffic by itself. Below we will focus on
this scenario, since multihoming is often used to provide high reliability – even
when all other ISPs fail, a user can still use the single remaining ISP to carry out
its traffic.

Based on the above properties, now we reformulate the ISP subscription prob-
lem as in (2).

min
S

∑

k∈S

ck(pk)

subject to S ⊆ K
∑

k∈S

pk = V0(S).

(2)

The reformulation in (2) allows us to design efficient optimal algorithms.
Instead of solving the ISP subscription problem for a fixed K, we first gener-

alize the problem. Let K = {∞, . . . ,K} be the set of all ISPs. Let C(n, k, p, z)
denote the minimum cost when the user has aggregated charging volume p, to-
tal peak percentile z, and subscribes to no more than k out of the first n ISPs
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Table 1: Notations

K The set of all ISPs, i.e., K =
{∞, . . . ,K}, where K is the total
number of ISPs.

ck The cost function of ISP k. We assume
that ck is a non-decreasing function.

I The number of time intervals in a
charging period.

v[i] The total traffic volume during interval
i. Let time series V = {v[i] | 1 ≤ i ≤
I}.

t
[i]
k The volume of traffic distributed to ISP

k during interval i. Let time series
Tk = {t

[i]
k | 1 ≤ i ≤ I}. Note that

V =
∑

k Tk (with vector summation).

qk The charging percentile of ISP k, e.g.,
qk = 0.95 if an ISP charges at 95th-
percentile.

zk zk
def
= 1 − qk.

qt(X, q) The dq ∗ |X|e-th value in Xsorted (or
0 if q ≤ 0), where Xsorted is X sorted
in non-decreasing order, and |X| is the
number of elements in X .

pk The charging volume of ISP k, (i.e.,
pk = qt(Tk, qk)). For example, if ISP
k charges at 95th-percentile, then pk

is the 95th-percentile of the traffic as-
signed to ISP k.

V0(S) V0(S)
def
= qt(V, 1 −

∑

k∈S zk), where
S ⊆ K is a subset of ISPs, and V is the
time series of the total traffic volumes
of a user.
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{1, . . . , n}. Formally,
C(n, k, p, z) = min

S

∑

k∈S

ck(pk)

subject to S ⊆ {1, . . . , n}

|S| ≤ k
∑

k∈S

pk = p

∑

k∈S

zk = z.

(3)

Note that for some combinations of n, k, p, and z, there may not be any S ⊆ K
that satisfies all of the constraints. In such cases, we define C(n, k, p, z) = +∞.

Given the definition of C(n, k, p, z), we have that the solution to (2) is minz C(K,K, qt(V, 1−
z), z). Thus we can solve the ISP subscription problem (1) if we can compute
C(n, k, p, z) efficiently.

The generalization allows us to observe that C(n, k, p, z) satisfies the recur-
rence relation shown in (4), assuming that the cut points on the cost functions are
all integers. This recurrence relation leads naturally to a dynamic programming al-
gorithm. The algorithm solves the ISP subscription problem optimally when there
is no capacity constraint (i.e., each ISP can handle the user’s traffic by itself).

C(n, k, p, z) = min

{

C(n − 1, k, p, z)
min0≤y≤p(cn(y) + C(n − 1, k − 1, p − y, z − zn))

(4)

C(n, k, p, z) = min







C(n − 1, k, p, z)
cn(0) + C(n − 1, k − 1, p, z − zn)
cn(p) + C(n − 1, k − 1, 0, z − zn)

(5)

Now, we analyze the complexity of the algorithm. Its time complexity is
O(K2ZP 2), and its space complexity is O(KZP ), where Z is the total number of
choices of z, and P is the total number of choices of p. The percentile z is of the
form i/I , where I is the total number of intervals in a charging period, and i is an
integer between 0 and I . So we have Z = I . Since the input specifies the user’s
traffic in each interval to decide the charging volumes, the input complexity is lin-
ear in I , instead of log I . In the worst case, the dynamic programming algorithm
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is exponential for general pricing functions. In practice, however, the cost func-
tions are usually piece-wise linear or step functions with very coarse-grained cut
points, so P is usually small. In addition, it is easy to use discretization to make
tradeoffs between precision versus computational time and space complexity.

3.3 Polynomial-time Dynamic Programming Algorithm for Con-
cave Functions

If the ISP’s cost functions are concave (as is often the case), we can special-
ize the preceding dynamic programming algorithm to design a more efficient,
polynomial-time algorithm. First, for concave cost functions, we have the fol-
lowing observation:

Lemma 1 Let S = {1, . . . , n} be a set of n ISPs. If the total cost function
c(p1, . . . , pn) is concave, then the following minimization problem

min
p1,...,pn

c(p1, . . . , pn)

subject to
n
∑

k=1

pk = p > 0

pk ≥ 0 ∀k ∈ S

(6)

has an optimal solution in which the charging volumes pk are 0 for all but one
ISP.

Proof: Denote by ek the k-th unit vector. Suppose (p1, . . . , pn) is an optimal solu-
tion. Since

∑n

k=1
pk

p
= 1, we have c(p1, . . . , pn) = c(

∑n

k=1 pkek) = c(
∑n

k=1
pk

p
(p ek)) ≥

∑n

k=1
pk

p
c(p ek) =

∑n

k=1 pk
c(p ek)

p
, where the inequality is due to the concavity of

c.
Let k∗ = argmink

c(p ek)
p

, we have
∑n

k=1 pk
c(p ek)

p
≥
∑n

k=1 pk
c(p ek∗ )

p
= c(p ek∗).

In addition, p ek∗ also satisfies the constraint in (6), so pk∗ = p, and pk = 0,∀k 6=
k∗ is an optimal solution to (6).

Given the above lemma, we observe that if all cost functions ck are concave,
then for any subset S = {1, . . . , n} of ISPs, the user’s total cost c(p1, . . . , pn) =
∑n

k=1 ck(pk) is also concave. Applying Lemma 1 to the second case of (4), we
have that the minimum occurs either when y = 0 or y = p. Therefore, we do not
need to search for y all the way from 0 to p. Instead, we only need to compare the
user’s total cost when y = 0 with that when y = p. This leads to a new recurrence
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relation shown in (5). Notice that now, in order to compute C(K,K, qt(V, 1 −
z), z), instead of having to compute C(n, k, p, z) for all p values as in (4), we only
need to compute C(n, k, p, z) values for p = qt(V, 1− z) and p = 0. Therefore, a
dynamic programming algorithm based on the recurrence relation in (5) has time
complexity O(K2Z) and space complexity O(KZ), which are both polynomial.

3.4 Greedy Subscription

The greedy algorithm chooses a set of k ISPs, denoted as Sk, as follows. In the first
iteration, it examines all ISP sets with size no larger than r (r ≤ k), and selects
the one which yields the lowest cost. In the second iteration, it searches for a new
ISP to add which in conjunction with the ISPs already picked yields the lowest
cost. It iterates until k ISPs have been chosen. Here r is a tuning parameter of the
algorithm, and all ISP sets with size no larger than r are exhaustively searched. If
r = n, all subsets are searched, and hence the solution is optimal; however, in this
case, its complexity is much higher than the dynamic programming algorithm.
Using different values of r can trade off running time for solution quality. In our
evaluation, we set r = 1.

3.5 Random Subscription

The random subscription algorithm randomly chooses a specified number of ISPs
under the constraint that the total bandwidth of the subscribed ISPs is large enough
to accommodate the user’s traffic. In our evaluation, we run the random subscrip-
tion algorithm 20 times and report the average.

3.6 Evaluations

In this subsection, we evaluate the performance of our ISP subscription algorithms
using two sets of Abilene traffic traces. The traces contain netflow data from an
institution (National Institutes of Health) and an enterprise (Red Hat Inc.) on the
Internet-2 from October 8, 2003 to January 6, 2004. In our evaluations, We scale
each set of traffic traces such that each ISP can handle the traffic by itself.

In each evaluation scenario, there are 10 ISPs and 1 subscriber. The 10 ISPs
have 5 different pricing functions as shown in Fig. 2. Each pricing function has
2 ISPs associated with it. The shape of the pricing functions reflects the general
pricing practice of decreasing unit cost as bandwidth increases; it is also consistent
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with the pricing functions we are aware of ( e.g., [4, 24]). We refer readers to [15]
for more details. The subscription cost is computed based on the 95-th percentile
of the subscriber’s traffic during each month.
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Figure 2: The complex OC3 pricing functions.

We compare our optimal subscription algorithm against the random subscrip-
tion algorithm and the greedy subscription algorithm. In our first set of experi-
ments, we assume that the user knows its traffic volume in advance. Fig. 3 com-
pares the total cost incurred using the three subscription algorithms as we vary the
number of ISPs the user subscribes to. We present here the results using traces
obtained in December 2003. Results using other months’ traces show the same
relative ranking of the three algorithms. Random subscription continues to do
much worse than the optimal, while the difference between the greedy and the
optimal algorithms is much smaller.

We make the following observations. First, as expected, our optimal subscrip-
tion algorithm yields the lowest cost in all cases. The random subscription algo-
rithm incurs about 50% higher cost on average for both traces, and leads to over
100% higher cost in worst cases, especially when subscribing to a small number
of ISPs. The greedy subscription yields similar cost to the optimal algorithm in
most cases, but could result in up to 24% higher cost in worst cases. Second, we
observe that adding ISPs initially helps reduce the total cost; as the number of
ISPs increases further, the cost increases. To explain this, we note that an ISP’s
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cost involves two components: base charge and usage-based charge. Adding ISPs
initially helps to accommodate burstiness of the traffic, thereby reducing usage-
based charge. The initial reduction in usage-based charge is large enough to offset
the additional ISPs’ base charge. As the number of subscribed ISPs increases fur-
ther, the reduction in usage-based charge becomes smaller than additional base
charge. Therefore the total cost increases with additional ISPs.
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Figure 3: Comparison of the three subscription algorithms. Traces are obtained in
December 2003.

In our second set of experiments, we study the case where the user does not
know its traffic a priori, but predicts one month’s traffic based on the previous
month’s traffic and applies the three subscription algorithms to the predicted traf-
fic. We call this scheme predicted subscription. We compare the results with the
optimal subscription that knows traffic in advance. We present the results using
trace obtained in November to predict the traffic of December 2003, as shown in
Fig. 4. Results using other months’ traces are similar.

We observe that our optimal subscription algorithm using predicted traffic
performs fairly well. It performs close to the optimal algorithm under perfect
knowledge about traffic patterns, and much better than the random subscription
algorithm. In most cases, uncertainty in traffic patterns yields less than 5% cost
increase on average for the optimal subscription algorithm. The greedy algorithm
performs close to the optimal in most cases, but could lead to 24% higher cost in
the worst case.

Although our evaluation shows that the greedy subscription algorithm per-
forms reasonably well in most cases, it is worth noting that its worst case approx-
imation ratio is unbounded for r < n − 1, as shown below. Consider r + 2 ISPs
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Figure 4: Impact of traffic fluctuation on subscription algorithms for December
2003. Prediction is based on traffic of November 2003.

that are available for subscription, and they all use 100-th percentile charging with
the following pricing functions,

c1(p) = A, (7)

ci(p) =

{

B if p < V/r,
2A if p ≥ V/r,

i = 2, . . . , r + 2, (8)

where A � B > 0, and V is the user’s peak traffic volume. The greedy algorithm
starts by exhaustively searching over all ISP sets within size r.

The optimal subscription cost is (r+1)B. In comparison, the greedy algorithm
first selects ISP 1, since all other ISP sets of size within r have higher cost. Its final
subscription is no less than A, since ISP 1 is included in the final selection. So the
ratio between the greedy solution and optimal solution is no less than A/(r+1)B,
which is unbounded. The above analysis can easily be generalized to the case of
more than r + 2 available ISPs by having cj(p) = 3A for j > r + 2.

To summarize, in this section we develop a dynamic programming algorithm
for solving the ISP subscription problem, and demonstrate its effectiveness using
real traffic traces.
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4 The ISP Pricing Problem

Our ISP subscription algorithm allows users to choose a subset of ISPs to sub-
scribe to and minimize their costs. In response, ISPs may adjust their prices to
maximize their revenue. How ISPs will adjust their prices is an interesting ques-
tion because it helps us understand the evolution of Internet multihoming. In this
section, we formulate the problem as a non-cooperative game and prove that, if
cost is the only criterion used by a user for ISP subscription, all ISPs receive zero
revenue at any equilibrium.

4.1 Problem Formulation

To make our game theoretical analysis more realistic, we use the realistic percentile-
based charging model in our formulation. Using this model makes our analysis
more involved, but we believe the results can be more relevant. In our formula-
tion, we focus on the case where multiple ISPs compete for a single subscriber.
Hereafter, we use subscriber and user interchangeably. We assume a special
structure of pricing functions: ISP k receives revenue by charging the subscriber
ck = akpk + bk if it is selected by the subscriber, and 0 otherwise. Here ak is the
unit price; pk is the charging volume determined by the charging percentile qk and
time series of the subscriber’s traffic assigned to ISP k; and bk is the base price.

We now define the game formally. The players of the game are a set K =
{∞,∈, ...,K} of ISPs. The action space of player k is R+×R+× [′,∞]. Specifi-
cally, a player adjusts its charging parameters {ak, bk, qk}, where ak, bk ∈ R+, and
0 ≤ qk ≤ 1, such that its revenue is maximized. When an ISP changes its charging
parameters, it should consider how the subscriber and the other ISPs will respond.
Specifically, there exists competition among ISPs, and the subscriber takes advan-
tage of our subscription algorithm to select a set of ISPs to minimize cost. It is
worth noting that, since all pricing functions are concave, when subscribing to a
set S of ISPs, the subscriber always allocates traffic in such a way that only ISPs
in S with minimum unit cost can have non-zero charging volume.

To state our assumptions clearly, we first introduce some more terms. We call
the set of ISPs computed by our subscription algorithm as a feasible set. An ISP
in a feasible set is called a feasible ISP. There may exist multiple feasible sets. Let
F denote the set of all feasible sets. Note that a subscriber has equal cost on any
feasible set of ISPs. Let amin(S) denote the minimum unit price of all ISPs in a
set S, and na(S) the number of ISPs having the same unit price as a in set S. Note
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that S may have multiple ISPs with the same minimum unit price. For a complete
list of notations we use hereafter, please refer to the Appendix.

Finally, we explicitly make the following assumptions in the analysis below:

• We assume that each feasible set has equal probability of being selected by
the subscriber. We also assume that when the subscriber is multihomed to a
feasible ISP set S, the aggregated charging volume traffic p(S) is distributed
evenly across those ISPs with minimum unit price.

• We assume that each of the ISPs has enough capacity to accommodate all of
the subscriber’s traffic, and that the total amount of traffic that the subscriber
generates is bounded. We also assume that each ISP only charges a finite
price and can adjust its unit price and base price in an infinitesimal amount.

• We assume that there is perfect information sharing among the subscriber
and ISPs; that is, each of them has perfect information about the others
when making decisions.

4.2 Summary of Results

Our analysis based on the percentile-based charging model is quite involved. In
the interest of clarity, we first summarize our results and the structure of our anal-
ysis.

The main result of this section is that an action profile of the ISP pricing prob-
lem is an equilibrium if and only if all ISPs receive zero revenue in the outcome.
It is obvious that any action profile with an outcome in which all ISPs receive
zero revenue is an equilibrium of the game, since if an ISP unilaterally increases
its price, the subscriber can always switch to other ISPs that charge zero; thus the
revenue of the ISP is not increased.

The remaining challenge then is to prove that all ISPs receive zero revenue
at any equilibrium. We first show that at any equilibrium, either all ISPs receive
zero revenue or all of them receive positive revenue. There does not exist an equi-
librium in which some ISPs receive zero revenue while others receive positive
revenue. Therefore, we only need to show that there does not exist an equilibrium
with positive revenue for all ISPs, which we call a positive-revenue equilibrium.
To do so, we derive the following properties that a positive-revenue equilibrium
should have. We first show that a subscriber is not able to free-ride all providers
(pay only the base price), and that any feasible ISP k must have a unit price equal
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to the maximum of all positive minimum unit prices of all of the feasible sets con-
taining ISP k, at any positive-revenue equilibrium. We then show that a feasible
ISP can reduce its unit price by a small amount without introducing any new fea-
sible set with the same minimum cost. We then prove that any ISP k in a feasible
set must have the unique minimum unit price in that set. Using these properties,
we prove that there exists no positive-revenue equilibrium.

4.3 Equilibrium Analysis

We consider an arbitrary ISP k. Without loss of generality, we assume k appears
in feasible sets Zi∈{1,...,Nk}. Note that there must exist at least one such set thus
Nk ≥ 1. Also, there are N−k ≥ 0 feasible sets that do not contain k, and N =
Nk + N−k is the total number of feasible sets. We sort Zi in non-increasing order
of amin(Zi). Let Si∈{1,...,Nk} denote the sorted sets. Without loss of generality,
we assume that S1, ..., Snk

have the same minimum unit price, and denote this
minimum unit price by a. Apparently, amin(Sj) = a,∀j ∈ {1, ..., nk}, and ak ≥
a. In addition, a subscriber has equal cost on all feasible sets of ISPs; that is,
c(Si),∀i ∈ {1, ..., Nk}, are equal and we denote it by cmin. We denote by Rk the
total revenue of ISP k.

We first notice that at any equilibrium, either all ISPs or none of them receives
positive revenue:

Theorem 1 At any equilibrium, either Rk = 0,∀k ∈ K, or Rk > 0,∀k ∈ K.

Proof: Proof by contradiction. Assume Rk = 0, Rk′ > 0, k 6= k′. Then ISP k
can increase its revenue from 0 to some positive value by reducing its charge to
the minimum of Rk′ (e.g., by setting ak = 0, qk = 0, and bk = mink′ Rk′), which
leads to a contradiction.

The above theorem tells us that there does not exist an equilibrium in which
some ISPs receive zero revenue while others receive positive revenue. Now we
only need to show that there does not exists an equilibrium with positive revenue
for all ISPs. Therefore, in the remaining part of this subsection, we consider only
these positive-revenue equilibria.

Next we show the first property of a positive-revenue equilibrium: the sub-
scriber is not able to free-ride all providers at a positive-revenue equilibrium.

Lemma 2 At any positive-revenue equilibrium, there exists at least one Sk′ ∈ F
such that p(Sk′) > 0, for some k′ ∈ {1, ..., nk}.
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Proof: Proof by contradiction. Assume that p(Sk′) = 0,∀k′ ∈ {1, ..., nk}. Then
we have pk = 0. Therefore, ISP k’s total revenue is

Rk =
Nk

Nk + N−k

bk.

We first prove that cmin > bk. Suppose that cmin = bk, then bj = 0 for an
arbitrary ISP j ∈ Sk′ , for some k′ ∈ {1, ..., nk}. We consider the following two
cases:

1. all feasible sets contain ISP k. Then any other feasible ISP j receives zero
revenue since bj = 0 and pj = 0 (because p(Sk′) = 0,∀k′ ∈ {1, ..., nk}).
This contradicts with Theorem 1.

2. some feasible sets do not contain ISP k. Then ISP k can set ak = 0 and
choose a small positive value

ε <
N−k

Nk + N−k

bk

so that it can attract all of the user’s traffic and receive revenue R′
k = bk−ε >

Rk.

Therefore, we have cmin > bk.
We next show that ISP k can increase its revenue by reducing its base price bk.

Because all original feasible sets of ISPs have equal costs and cmin > bk we can
find a small positive value δ satisfying

δ < cmin −
Nk

Nk + N−k

bk

such that ISP k can set bk = cmin−δ to increase its revenue to R′
k = cmin−δ > Rk.

Therefore we derive a contradiction.
Next we study the second property of a positive-revenue equilibrium: any

feasible ISP k must have the same unit price as all other ISPs in feasible sets
containing k.

Lemma 3 At a positive-revenue equilibrium, ak = a if a > 0.
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Proof: Proof by contradiction.
Assume ak > a. We compare the expected revenue of ISP k before and after

letting ak = a.
The expected revenue of ISP k when ak > a is

Rk =
Nk

Nk + N−k

bk,

since each of the N feasible sets is chosen by the subscriber with equal probability,
and ISP k receives bk revenue when any set Si∈{1,...,Nk} is chosen (recall that the
subscriber runs smart routing algorithm to optimize cost such that all ISPs in Si

with unit price higher than amin(Si) have zero charging volume; therefore, the
charging volume of ISP k is 0).

We next consider the expected revenue of ISP k, R′
k, after letting ak = a, in

the following three cases:

1. There are no new feasible sets introduced by ISP k’s action. Then we have

R′
k =

1

Nk + N−k

(

a

nk
∑

k′=1

p(Sk′)

na(Sk′)
+ bkNk

)

.

Therefore,

R′
k − Rk =

a

Nk + N−k

nk
∑

k′=1

p(Sk′)

na(Sk′)
.

Since a > 0, we only need to show that p(Sk′) > 0 for some k′ ∈ {1, ..., nk}.
Applying Lemma 2, we know that ∃k′ ∈ {1, ..., nk} such that p(Sk′) > 0.
Therefore, R′

k > Rk.

2. There are N ′
k ≥ 1 new feasible sets with the same total cost as cmin intro-

duced by setting ak = a.

Denote these new sets by S ′
i,∀i ∈ {1, ..., N ′

k}. Note that ISP k’s unit price
must be the minimum unit price of all ISPs in S ′

i. Then the expected revenue
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of ISP k is

R′
k =

1

Nk + N ′
k + N−k

(

a

nk
∑

k′=1

p(Sk′)

na(Sk′)
+ bkNk

)

+
1

Nk + N ′
k + N−k



a

N ′

k
∑

k′=1

p(S ′
k′) + bkN

′
k





>
Nk + N ′

k

Nk + N ′
k + N−k

bk

>
Nk

Nk + N−k

bk.

Note that the first inequality is derived by applying Lemma 2 and the fact
that a > 0.

3. There are N ′
k ≥ 1 new feasible sets with total cost c′min < cmin introduced

by setting ak = a. Denote these new sets by S ′
i, i ∈ {1, ..., N ′

k}. Note that
none of the old feasible sets in F is feasible now since they have higher
cost. Note also that k ∈ S ′

i,∀i ∈ {1, ..., N ′
k}.

Therefore, the expected revenue of ISP k is

R′
k =

a

N ′
k

N ′

k
∑

k′=1

p(S ′
k′)

na(S ′
k′)

+ bk.

Then by applying Lemma 2 and the fact that a > 0, we have

R′
k − Rk >

N−k

Nk + N−k

bk ≥ 0.

Apparently, we have contradiction R′
k > Rk in all cases. Therefore, ak = a if

a > 0 at a positive-revenue equilibrium.
The above lemma shows that a feasible ISP k is not able to increase its revenue

by increasing its unit price. However, it is still unknown if it is possible for ISP
k to increase revenue by reducing its unit price. We show below (Lemma 4) that
a feasible ISP can reduce its unit price by a small amount such that all feasible
sets remain unchanged; based on this lemma, we then prove by contradiction that
a feasible ISP can reduce its unit price by a small amount to increase its revenue,
if that unit price is not the unique minimum (Lemma 5).
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Lemma 4 At a positive-revenue equilibrium, if ak > 0, there exists a small num-
ber ε > 0 such that ISP k can reduce its unit price to ak − ε without introducing
any new feasible sets.

Proof: Consider the sets in U‖ − F , where U‖ is the set of all subsets of K con-
taining ISP k. Note that we can safely drop those sets that do not contain ISP k
since they are not affected by ISP k’s action of reducing ak.

For any set Z ∈ U‖ − F , we show that we can find a small value ε such that
c(Z) is still larger than cmin after ISP k reduces its unit price to ak − ε. Note that
when U‖ − F = φ, no new feasible set is introduced by ISP k’s reducing its unit
price.

Suppose Z = {k, u1, ..., ul} ∈ U‖ − F . Therefore, we have c(Z) > cmin. Let
c(Z) and c′(Z) denote the expected total cost of the subscriber before and after
ISP k reduces its unit price, respectively, if the subscriber uses ISPs in Z as the
providers. Now we derive the condition for ε such that c′(Z) > cmin.

Note that
c(Z) = akpk + bk +

∑

k′∈{u1,...,ul}

(ak′pk′ + bk′)

and
c′(Z) = akp̂k − εp̂k + bk +

∑

k′∈{u1,...,ul}

(ak′ p̂k′ + bk′),

where pk′ and p̂k′ are the charging volumes of ISP k′ before and after ISP k reduces
its unit price, respectively.

Consider three cases as follows.

• case 1: ak − ε is not the minimum unit price in set Z. Then we have c(Z) =
c′(Z) > cmin since p̂k = pk = 0.

• case 2: ak − ε is the minimum unit price while ak is not. Then we can
reduce ε such that ak − ε is no longer the minimum unit price and this case
degenerates to case 1.

• case 3: both ak − ε and ak are the minimum unit price. Then we have
p̂k = pk ≥ 0 (we have equality here because p(Z) ≥ 0); therefore, c(Z) =
c′(Z) > cmin.

Let εZ denote the appropriate ε value for a set Z satisfying the above condi-
tions. Therefore, we can always find an ε by taking the minimum of all εZ .
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Lemma 5 At a positive-revenue equilibrium, if ak > 0 and a > 0, then ak = a is
the unique minimum unit price in Si,∀i ∈ {1, ..., Nk}.

Proof: Proof by contradiction. Assume at a positive-revenue equilibrium, ak is
not the unique minimum unit price in Si,∀i ∈ {1, ..., nk}.

By applying Lemma 3, we have

ak = amin(S1) = amin(S2) = ... = amin(Snk
) = a.

By applying Lemma 4, we can find ε > 0 such that no new feasible set is
introduced by reducing ISP k’s unit price to ak − ε.

Now we compare the revenue received by ISP k before and after ISP k reduces
its unit price. The revenue received before the reduction of ak is

Rk =
1

Nk + N−k

(

ak

nk
∑

k′=1

p(Sk′)

na(Sk′)
+ Nkbk

)

.

The revenue after ak is reduced to ak − ε is

R′
k =

ak − ε

nk

nk
∑

k′=1

p(Sk′) + bk,

because

1. the sets Snk+1, ..., SNk
are no longer feasible because the user has lower

cost on S1, ..., Snk
and the user will subscribe to these sets; therefore, ISP k

receives no revenue from the sets Snk+1, ..., SNk
;

2. all of the sets SNk+1, ..., SN that do not contain k are no longer feasible
because the user has smaller cost on sets S1, ..., Snk

;

3. we have chosen ε carefully such that no new set is introduced by reducing
ak; therefore, ISP k receives no revenue from other sets in U − F .

Next, we compare R′
k and Rk by considering the following two cases:

1. N > 1: since N ≥ Nk, we note that if

ε <
N − Nk

N

bk
∑nk

k′=1 p(Sk′)
+ ak

nk
∑

k′=1

(1 −
nk

N
),

21



then R′
k > Rk (the right-hand side of the above inequality is always posi-

tive). Therefore, we could choose ε such that the above condition is satis-
fied, which leads to a contradiction.

2. N = 1: Then N = Nk = 1, and we have one single feasible set S1 (k ∈ S1).
If |S1| = 1, then we already have ak = amin(S1) and ak is the unique mini-
mum unit price; otherwise, we can choose a small positive value ε satisfying
the preceding inequality and derive a contradiction.

Finally, we prove the property of any equilibrium based on the preceding lem-
mas.

Theorem 2 At any equilibrium, every ISP k has zero revenue.

Proof: Proof by contradiction.
By applying Theorem 1, we know that there can be only two possible cases:

(1) Rk = 0,∀k ∈ K, or (2) Rk > 0,∀k ∈ K. Therefore, we only need to prove
that the second case does not show up in any equilibrium.

For an arbitrary ISP k, Rk > 0, ISP k must be in some feasible set. We next
consider the case where ISP k is in some feasible set. Specifically, we examine
the following two cases:

1. a > 0.

By applying Lemma 5, ak = a is the unique minimum unit price in all of the
sets Si∈{1,...,Nk}. Therefore, all the sets with non-zero minimum unit price
can have only one single ISP. Then we only need to consider N > 1 since
when N = 1 it is trivial to show that each ISP k has zero revenue.

Assume ISP k has positive revenue Rk; therefore, cmin > 0. Then, ISP k
can lower its price to increase its revenue. Let cmin denote the revenue of
each feasible set with a single ISP. Then we have

Rk =
cmin

N
.

ISP k can lower its charge to cmin − δ, where δ > 0 is a small number, and
receives revenue

R′
k = cmin − δ.

Since cmin > 0, we are always able to find a δ < N−1
N

cmin such that R′
k >

Rk. This leads to a contradiction.
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2. a = 0.

Note that in this case bk = 0, because otherwise the subscriber can dump
all traffic to the ISP with zero unit price in Si without using ISP k, which
means that Rk = 0 and leads to contradiction. Therefore, ISP k is not in
Si,∀i ∈ {1, ..., nk}. By the assumption Rk > 0, ISP k should be in any
feasible set since the subscriber can assign free-riding traffic to ISP k (by
making charging volume zero) without incurring any extra cost. Therefore,
all feasible sets containing k should have zero minimum unit price and k is
in all of these sets; otherwise, it contradicts with our assumption that a = 0.

Therefore, we prove that all ISPs receive zero revenue at any equilibrium if
cost is the only criterion used by a user to determine which subset of ISPs to
subscribe to.

5 Reliability and the ISP Pricing Problem

We have shown in the previous section that if the only difference among ISPs is
pricing, then all ISPs receive zero revenue at any equilibrium. However, in reality,
pricing is not the only difference among ISPs, and cost is not the only concern of
subscribers, either. Subscribers also consider many other factors, e.g., reliability,
ease of management, and security. In particular, reliability is a major motivation
for the deployment of multihoming.

Given the importance of both cost and reliability, we investigate a more real-
istic formulation of the ISP pricing problem: how ISPs respond to multihomed
subscribers when the subscribers optimize both cost and reliability.

5.1 Problem Formulation

Similar to the previous section, we formulate the problem as a non-cooperative
game. We consider the percentile-based charging model and focus on the case
where multiple ISPs compete for a single subscriber. The players, action spaces,
and ISPs’ revenue-maximization objectives are the same as those of the previous
section.

The major difference between this formulation and the preceding formulation
is that we consider both cost and reliability. Specifically, the subscriber takes
advantage of our subscription algorithm and smart routing algorithms to minimize
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cost and maximize reliability. To characterize the objective of the subscriber, we
define a utility function of the subscriber on a subset S of ISPs as follows:

U(S) = w
∑

k∈S

log mk −
∑

k∈S

ck,

where λk is the instantaneous failure rate of ISP k, mk = 1
λk

is the mean time
between failures (MTBF) of ISP k, and w > 0 is the weight of the subscriber’s
preference of reliability over cost. We consider finite constant mean time between
failures in this paper. The weight w reflects how much the subscriber is concerned
with reliability. The higher the weight is, the more the subscriber prefers reliability
over cost. The subscriber’s objective is to choose a subset of ISPs such that its
utility is maximized: maxS∈U w

∑

k∈S log mk −
∑

k∈S ck. We assume that the
subscriber always chooses as many ISPs as possible when maximizing its utility,
e.g., when the subscriber has equal utility over multiple feasible sets of ISPs, the
subscriber prefers to multihome to ISPs in the largest set in order to improve
reliability.

Note that our formulation and approach can be easily extended to consider
other metrics that subscribers are concerned with.

5.2 Analysis of Existence and Non-uniqueness of Equilibrium

Given our non-cooperative game-theoretic formulation, we will prove the exis-
tence and non-uniqueness of equilibrium of the game in this section. The intuition
of our proof is that no matter how ISPs change their charging parameters, the sub-
scriber excludes a particular ISP k from subscription if that ISP charges more
than w log mk, because the subscriber’s utility becomes less if ISP k is included
in subscription.

Formally, we have the following theorem stating the existence and non-uniqueness
of equilibrium:

Theorem 3 There exist multiple equilibria in the ISP pricing game.

Proof: We first show that {ak = 0, qk = 0, bk = w log mk},∀k ∈ K, is an equilib-
rium. Note that the subscriber has zero utility and uses all ISPs as providers. Let
S denote the set of ISPs used (i.e., all ISPs) in this scenario. We look at all of the
possible actions {a′

k, q
′
k, b

′
k} taken by an arbitrary ISP k:
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1. b′k < bk. We first consider the case where ISP k changes its base price only.
In this case, w log mk − b′k > 0 and the subscriber’s utility is maximized by
including all ISPs as providers. However, ISP k’s revenue decreases.

We next consider the cases where ISP k changes its unit price and/or charg-
ing percentile simultaneously. Note that no matter how ak and qk change,
the subscriber can always distribute the traffic in such a way that a′kp

′
k = 0.

For instance, if pk > 0 and a′
k > 0, then the subscriber re-distributes traffic

such that p′k = 0 and incurs no extra cost. This is achievable because all
of the other ISPs have zero unit price. Therefore, no matter how ak and qk

change, the subscriber’s utility is always maximized by using all ISPs as
providers, while ISP k’s revenue decreases.

2. b′k = bk. There are three cases to be considered: a′
k > ak and q′k = qk;

a′
k = ak and q′k > qk; a′

k > ak and q′k > qk. We present the proof for the
last case here and the proof for the first and second cases can be constructed
similarly. The intuition of our proof is that the subscriber can always dump
all aggregated charging volume traffic p(S) to the ISP with zero unit price
such that no extra cost is incurred. Therefore, no matter how ak and qk

change, the subscriber can always distribute the traffic in such a way that
a′

kp
′
k = 0. For instance, if a′

k > ak and q′k > qk, the subscriber assigns p′
k =

0 amount of traffic to ISP k. The difference between utilities of including
and excluding ISP k is:

U(S) − U(S − {k})

=

(

w

K
∑

k′=1

log mk′ −

K
∑

k′=1

bk′

)

−

(

w
K
∑

k′=1,k′ 6=k

log mk′ −
K
∑

k′=1,k′ 6=k

b′k′

)

= w log mk − b′k
= 0.

Therefore, no matter how ak and qk change, the subscriber’s utility is always
maximized by using all ISPs as providers, while ISP k cannot increase its
revenue by setting b′k = bk.
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3. b′k > bk. The subscriber has the option to choose from two possible feasible
sets S and S − {k} in this case. Note that we implicitly apply our previous
assumption that the subscriber chooses as many ISP as possible when max-
imizing its utility. Specifically, the subscriber has the same utility on any
subset of S − {k}.

Similarly, we know that the subscriber can always distribute the traffic in
such a way that a′

kp
′
k = 0 no matter how ISP k changes ak and qk. We

compute the difference of utilities on S and S − {k} as follows:

U(S) − U(S − {k})

=

(

w

K
∑

k′=1

log mk′ −

K
∑

k′=1

bk′

)

−

(

w
K
∑

k′=1,k′ 6=k

log mk′ −
K
∑

k′=1,k′ 6=k

b′k′

)

= w log mk − b′k
< 0.

Therefore, the subscriber chooses S − {k} as the feasible set, and ISP k
receives zero revenue by increasing bk.

Therefore, we have found an equilibrium. Furthermore, it is obvious to see
that {ak = 0, qk = 0.95, bk = w log mk} is another equilibrium. Therefore, there
exist multiple equilibria.

5.3 Properties of Equilibria

Given the results of existence and non-uniqueness of equilibria, we consider a
more challenging and important problem in this subsection: what properties does
an equilibrium have? In particular, we are interested in understanding how the
revenue is distributed across ISPs at an equilibrium.

We first show that every ISP has positive revenue at any equilibrium by prov-
ing Theorem 4. We summarize our intuition of the proof as follows. Any ISP
k can attract the subscriber’s subscription by charging the subscriber with some
amount smaller than w log mk. By doing so, an ISP k can always receive positive
revenue because the subscriber will receive a higher utility if ISP k is subscribed
to.
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Theorem 4 At any equilibrium, Rk > 0,∀k ∈ K. In other words, all ISPs receive
positive revenue at any equilibrium.

Proof: Proof by contradiction. Suppose Rk = 0,∃k ∈ K. For ISP k, we consider
the following two cases:

1. Rk = 0 because ISP k is not in any of the subscriber’s feasible sets.

ISP k can set its charging parameters to {a′
k = 0, q′k = 0, b′k = w log mk−δ}

, where w log mk > δ > 0 to increase its revenue. Note that the subscriber’s
utility is maximized if ISP k is included in the feasible sets since w log mk−
b′k = δ > 0.

2. Rk = 0 and ISP k is in some of the subscriber’s feasible sets.

Similarly, ISP k can set its charging parameters to {a′
k = 0, q′k = 0, b′k =

w log mk − δ}, where w log mk > δ > 0, and the subscriber’s utility is
maximized if ISP k is still included in the feasible sets. Then ISP k is able
to increase its revenue from 0 to w log mk − δ.

Therefore, ISP k can increase its revenue by taking the above actions. This
contradicts with our equilibrium assumption.

Theorem 4 above shows that every ISP has positive revenue when we consider
the competition among all ISPs. It also indicates that new ISPs have incentives to
join the competition and obtain a share of the total revenue. However, it is still not
clear how the revenue is distributed across ISPs, or, an equivalent question is that
what an ISP should do in order to increase its revenue in the game.

Next, we show that the revenue an ISP receives at any equilibrium is deter-
mined by both its own reliability of services and the weight of the subscriber’s
preference of reliability. Specifically, we prove the following theorem:

Theorem 5 At any equilibrium, Rk = w log mk,∀k ∈ K.

Proof: Theorem 3 shows that there exist (non-unique) equilibria, where Rk =
w log mk,∀k ∈ K. We now prove that this property indeed holds for every equi-
librium.

The proof follows from the fact that if an ISP k charges the subscriber Rk <
w log mk, then it must be included in all of the feasible sets of the subscriber,
because by including ISP k in the feasible set, the subscriber always increases its
utility.
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Suppose at an equilibrium, a particular ISP k charges the subscriber Rk <
w log mk, then ISP k can increase its charge by a small positive amount δ. As
long as Rk + δ < w log mk, ISP k can be sure that it will be included in all of
the feasible sets of the subscriber. Thus ISP k can increase its revenue to Rk + δ,
which contradicts with our equilibrium assumption.

On the other hand, suppose that at an equilibrium, a particular ISP k charges
the subscriber Rk > w log mk if the subscriber uses ISP k as a provider. This leads
to a contradiction: ISP k receives zero revenue because the subscriber has higher
utility by excluding ISP k from the feasible set; however, ISP k can increase
its revenue by charging the subscriber w log mk if the subscriber takes it as a
provider. This contradicts with our equilibrium assumption. Note that here we
assume that the subscriber uses as many ISPs as possible when there are multiple
utility-maximizing feasible sets.

A couple of comments follow.
First, by considering both reliability and cost, we show that ISPs receive pos-

itive revenue in the competition; therefore, new providers have incentives to join
the competition and share the total revenue.

Second, at any equilibrium, an ISP’s revenue is jointly determined by that
ISP’s reliability and the subscriber’s weight of preference. Therefore, ISPs have
incentives to improve their reliability by upgrading their networks. On the other
hand, the subscriber also benefits from the competition among ISPs. By adjust
relative preference between reliability and cost, a subscriber can trade reliability
for cost, or vice versa. Our results indicate that the wide deployment of multihom-
ing can be beneficial to the global Internet, since it provides incentives to ISPs to
improve their reliability.

6 Related Work

We classify the related work into four areas: analysis of multihoming benefits,
algorithm design for smart routing, implementation techniques for smart routing,
and Internet pricing.

There are several papers that evaluate the potential benefits of smart routing,
including [1, 13, 28, 29]. For example, in [1], Akella et al. quantify the poten-
tial performance and reliability benefits of multihoming using real Internet traces,
and conclude that a careful choice of upstream providers is crucial. Dai et al.
quantify the potential economic benefits to both subscribers and ISPs [13]. Our
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work differs from the above in that we use both cost and performance as metrics
of interest.

The potential performance and economic benefits of smart routing motivate re-
search studies on designing algorithms for smart routing (e.g., [1, 3, 15, 21, 23]).
For example, Akella et al. [3] propose and evaluate a series of schemes to op-
timize the performance of multihomed users. In [15] the authors design smart
routing schemes to dynamically distribute traffic among different external links to
optimize cost and performance. They also study the interactions between multi-
ple smart routing users, and between smart routing and single-homed users. Our
work is complementary to the above work in that both of the above work consider
the case where users have already decided which ISPs to subscribe to, whereas
in this paper we study the ISP subscription problem. Moreover we analyze the
implications of users’ cost minimization on ISP pricing strategies.

On the implementation side, [8, 11, 18, 26, 31] propose implementing smart
routing using BGP peering, whereas F5 Networks [14] and Radware [25] imple-
ment smart routingusing DNS and NAT.

Finally, there is a large body of literature on Internet pricing strategies and
competition (e.g., [5, 6, 7, 10, 12, 17, 19, 20, 22, 30, 32]). These papers consider
abstract charging models, while our work studies the percentile-based charging
model which is widely used by today’s ISPs. We believe analysis using a realistic
charging model can provide much needed insight in understanding the implica-
tions of multihoming.

7 Conclusion

In this paper, we study two related problems — which subset of ISPs a user sub-
scribes to to minimize cost, and how ISPs respond to the user’s selection by chang-
ing their pricing strategies. Our results show that a user can apply the dynamic
programming algorithm to effectively reduce its cost. In response to users’ cost
optimization, ISPs will adapt their pricing strategies. Using the percentile-based
charging model which is widely used by today’s ISPs, we formulate the pricing
problem as a non-cooperative game. Our results show that if cost is the only cri-
terion used by a user to determine which ISPs to subscribe to, at any equilibrium
all ISPs receive zero revenue. To be more practical, we consider the case where
different ISPs provide different levels of reliability, and users choose ISPs to both
improve reliability and reduce cost. In this case, at any equilibrium an ISP’s rev-
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enue is positive and determined by its reliability.
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• ak: the unit price of ISP k.
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• amin(Zi): the minimum unit price of all ISPs in set Zi, i.e., amin(Zi) =
min{ak′ |k′ ∈ Zi}.

• bk: the base price of ISP k.

• ck: the cost function of ISP k. We assume that ck is a linear non-decreasing
function.

• c(S): the minimum total cost of subscribing to all ISPs in set S (single-
homing when |S| = 1).

• F : the set of all feasible sets of ISPs which the subscriber obtains by ap-
plying our subscription algorithm. A feasible set is a set of ISPs that the
subscriber pays minimum cost to deploy multihoming over all possible sets
in U . There may exist multiple feasible sets.

33



• I: the total number of intervals in a charging period.

• K: the set of all ISPs, i.e., K = {∞, ...,K}, where K is the total number of
ISPs. We use k as the index.

• mk: mk = 1
λk

is the mean time to failure (MTTF) of ISP k.

• N : N = |F| is the number of feasible sets.

• Nk: the number of feasible sets in F that contain ISP k.

• N−k: the number of sets in F that do not contain ISP k. N−k = N − Nk.

• nk: the number of feasible sets containing ISP k and having maximum
unit price over all Nk sets which contain ISP k. In other words, nk =
|{Zi|amin(Zi) = max{amin(Zj)|j = 1, ..., N}}|.

• na(Zi): the number of ISPs in set Zi that have the same unit price as a.
na(Zi) = |{ak|ak = a, k ∈ Zi}|.

• pk: the charging volume of ISP k, (i.e., pk = qt(Tk, qk)). For example, if
ISP k charges at 95th-percentile, then pk is the 95th-percentile of the traffic
assigned to ISP k.

• pk(S): the charging volume of ISP k ∈ S when the subscriber subscribes to
all ISPs in the feasible set S.

• p(S): the aggregated charging volume of ISPs in set S. p(S) = V0(S).

• qk: the charging percentile of ISP k, e.g., qk = 0.95 if an ISP charges at
95th-percentile.

• qt(X, q) : the dq ∗ |X|e-th value in Xsorted (or 0 if q ≤ 0), where Xsorted
is X sorted in non-decreasing order, and |X| is the number of elements in
X .

• Rk: the total expected revenue of ISP k.

• t
[i]
k : the volume of traffic distributed to ISP k during interval i. Let time

series Tk = {t
[i]
k | 1 ≤ i ≤ I}. Note that V =

∑

k Tk (with vector summa-
tion).
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• U : the set of all subsets of K. U‖ denotes the set of all subsets of K contain-
ing k.

• U(Z): the subscriber’s utility function on a set Z of ISPs. U(Z) = w
∑

k∈Z log mk−
∑

k∈Z ck. The subscriber’s objective in ISP pricing problem is maxZ∈U U(Z).

• v[i] : the total traffic volume during interval i.

• V : time series of traffic volumes V = {v[i] | 1 ≤ i ≤ I}.

• V0(S): V0(S)
def
= qt(V, 1 −

∑

k∈S zk), where S ⊆ K is a subset of ISPs,

• w: the weight of the subscriber’s preference of reliability over cost.

• Zi: the enumeration of all the feasible sets in F . Here i ∈ {1, ..., N}.

• zk: zk
def
= 1 − qk.

• λk: the instantaneous failure rate of ISP k. We consider constant failure rate
in this paper.
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