Haskell Solutions to the Language Session
Problems at the 1988 Salishan High-Speed
Computing Conference

Paul Hudak and Steve Anderson

Research Report YALEU/DCS/RR-627
- May 1988

This research was supported primarily by DOE grant FG02-86ER25012

Haskell Solutions to the Language Session Problems
at the 1988 Salishan High-Speed Computing Conference

Paul Hudak
Steve Anderson

Research Report YALEU/DCS/RR-627*
Yale University
Department of Computer Science

May 11, 1988

1 Introduction

Haskell is a new functional language, named after the logician Haskell B. Curry, being designed
by a 14-member international committee representative of the functional programming research
community.! The committee was formed because it was felt that research and application of
modern functional languages was being hampered by the lack of a standard language. Having
a standard would allow faster communication of new ideas, provide a stable foundation for real
applications development, and encourage other people to learn and use functional languages. The
committee’s goals in designing Haskell include:

1. It should be suitable for teaching, research, and applications, including building large systems.
2. It should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available. Anyone should be able to implement the language and distribute
it to whomever they please.

4. It should be based primarily on well-tried ideas that enjoy a wide consensus.

5. It should be useable as a basis for further research. It is expected and desirable that extensions
or variants of the language may appear, incorporating experimental features (for example,
para-functional programming constructs).

*This research was supported primarily by DOE grant FG02-86ER25012.

!The committee members are Arvind (MIT), Richard Bird (Oxford University), Guy Cousineau (INRIA), Jon
Fairbairn, (Cambridge University), Joe Fasel (Los Alamos National Laboratory), Paul Hudak (Yale University), John
Hughes (Glasgow University), Thomas Johnsson (Chalmers Institute of Technology), Dick Kieburtz (Oregon Graduate
Center), Simon Peyton-Jones (University College London), Rinus Plasmeijer (University of Nijmegen), Mike Reeve
(Imperial College), Philip Wadler (Glasgow University), and David Wise (Indiana University).

Haskell is a general purpose, purely functional programming language exhibiting many of the
recent innovations in programming language research, including higher-order functions, non-strict
functions and data structures, static polymorphic typing, user-definable algebraic data types,
pattern-matching, list comprehensions, a module system, state-transition-based I/O, and a rich
set of primitive data types, including lists, arrays, arbitrary and fixed precision integers, and com-
plex, rational, and floating-point numbers.

This paper is intended to give the reader some familiarity with Haskell by giving solutions
to the four language session problems presented at the 1988 Salishan Conference on High-Speed
Computing. Unfortunately, the Haskell standard is not yet available! The committee has been
designing the language since September of 87, and a preliminary draft of the standard will be
completed by June 1, 1988; the final draft is expected to appear around August, 1988.

Since the committee has concentrated foremost on the core semantical issues, the concrete
syntax is currently the least defined component of the language. Therefore we will present the
solutions in a syntax that is typical of modern functional languages, although the reader should
be aware that the actual Haskell syntax may be quite a bit different. In any case, the solutions
will give the reader an idea of what programming in a modern functional language is like, and
that is our main goal. To emphasize the preliminary nature of the syntax, from now on we will
refer to the language as “pre-Haskell.” We will precede each section with a description of the
problem as presented at the Workshop. All of the solutions given have been run on the Alpha-Tau
implementation of Alfl, our functional language implementation at Yale.

2 Brief Overview of Pre-Haskell Syntax

In this section we will describe enough pre-Haskell syntax to allow understanding the programs
given later. As a result, there are significant parts of pre-Haskell that won’t be descnbed at all,
most notably user-defined data types, modules, and 1/0O.

Pre-Haskell is an “equational” language similar to Miranda, Hope, and several other modern
functional languages. A function is defined by a set of equations which can pattern-match against
their arguments. Lists are written [a,b,c] with [] being the empty list. An element a may be
added to the front of the list as by writing a:as. Two lists may be appended together by 11::12.
Here is an example of pattern-matching:

false
x=y =-> true,
member x 1

member x [J
member x (y:1)

Note in this example the use of a conditional, which has the general form “predicate -> consequence,
alternate.”

List comprehensions are a concise way to define lists, and are best explained by example:

[(x,7) | x<-11; y<-12]

which constructs the list of all pairs whose first element is from 11, and second is from 12. “Infinite
lists” may also be defined, and thanks to lazy evaluation, only that portion of the list that is

needed by some other part of the program is actually computed. Thus the infinite list of ones can
be defined by:

ones = 1:ones

The notation a..b denotes the list of integers from a to b, inclusive, and a.. is the infinite
ascending list of integers beginning with a.

There are many standard utility functions defined on lists. The ones we need in this paper are
the following:

takeWhile pred [1 = []
takeWhile pred (a:as) = pred a -> a : takeWhile pred as, []

foldl f a 0] = a
foldl f a (x:xs) = foldl f (f a x) xs

foldr f a [] = a
foldr £ a (x:xs8) = f x (foldr f a xs)

zip as 0o =1
zip [bs =[]
zip (a:as) (b:bs) = (a,b):(zip as bs)

Note in zip the use of tuples, which in pre-Haskell are constructed in arbitrary but finite length by
writing “a,b, ..., ¢” and may be pattern-matched like lists.

Note that for foldl and foldr the following relationships hold:

foldl f a [x1, x2, ..., xn] ==> (f ... (f (f a x1) x2) ... xn)
foldr f a [x1, x2, ..., xn] ==> (fx1 (fx2 ... (xna ...))

Pre-Haskell also has arrays and a special syntax for manipulating them, best explained by an
example:

{ 2p_array (1,n),(1,n)
| [i.j] = k*ali,j] Il i<-1..n, j<-1..n}

which returns a two dimensional array representing the matrix a multiplied by the scalar k.

A function f x = x+1 may be defined “anonymously” with expression \ x. x+1 and thus (\
x. x+1) 2 returns 3.

This description of pre-Haskell is quite brief, but should be enough to make the programs given
later self-explanatory. Nevetheless, experience with at least one other functional language would
be beneficial.

3 Hamming’s Problem (Extended)

“Given as input a finite increasing sequence of primes (a,b,c,...) and an integer n,
output in order of increasing magnitude and without duplication all integers less than
or equal to n of the form:

a'vek..., i,7,k,..>0

Notice that if m is in the output sequence then so are:
am, bm, em, ... <n

Our intention in posing the problem is to see how each language expresses such mutually
recursive stream computations.”

A natural way to solve this problem in pre-Haskell is to generate an infinite increasing sequence
of hamming numbers, and then filter out those less than n. But how do we create that infinite

sequence? To start, let’s define a function scale that multiplies every element in a stream by a
certain number:

scale p xs = [p*x | x<-xs5]

Now note that a “constructive” way to express the hint is as an inductive definition:

e 1 is in the output sequence.

e For each prime p, if k is in the output sequence, then so is k * p.

We can construct a dataflow diagram for this as shown in Figure ??a, where the repeating pattern
has been highlighted in a box. Capturing the box’s functionality in a function £, and using fold1 to

“unfold” £ over the list of primes, we arrive at this straightforward program to realize the dataflow
diagram: '

hamming primes =
h where h = 1 : (foldl £ [] primes)
f xs p = merge xs (scale p h)

where merge merges a list of streams in increasing numeric order. Unfortunately, merge must also
remove duplicates, since this simple definition will construct every permutation of the factors for a
particular number. For example, it will generate three 12’s: 2*2*3, 2*3*2, and 3*2*2. This is of
course inefficient, and we’d prefer a solution that avoided the extra multiplications.

The problem stems from the fact that the sub-streams are generated recursively from the entire
list h. What we really want is something that “chases its tail” so as to avoid generating all of the
combinations. The dataflow diagram in Figure ??b in fact does just that — note how the result of
each merge is fed back only to itself, thus avoiding the duplicates. As before we can express this
result by abstracting the repeating functionality and using foldl:

N / g

~N
Figure 2: Hamming Solution Without Duplicates

hamming primes = 1 : (foldl f [] primes)
where f xs p = h where
h = merge (scale p (1:h)) xs

in which case merge is defined simply by:

merge (a:as) (b:bs) = a<b -> a : (merge as (b:bs)),

b : (merge (a:as) bs)
merge [] bs = bs
merge as [] = as

and the result is just:
takeWhile (\ x. x<n) (hamming primes)

using the utility takeWhile defined in the introduction.

Here is a sample output transcript, run on our Alfl implementation:
takeWhile (\ x. x<46) C(hamming [2,3,5]);

Result: (1 : 2:3:4:5:6:8:9:10:12 : 15 : 16 : 18 :
20 : 24 : 25 : 27 : 30 : 32 : 36 : 40 : 45 : [1)

4 The Paraffin Problem

“The chemical formula for paraffin molecules is C;Hy;42. Given an integer n, out-
put without repetition and in order of increasing size, structural representations of all
paraffin molecules for ¢+ < n. Include all isomers, but no duplicates. You may choose
any representation for the molecules you wish, so long as it clearly distinguishes among
isomers.” The problem is discussed in:

Turner, D. A., The semantic elegance of applicative languages. Proc.
Conf. on Functional Programming Languages and Computer Architecture,
Portsmouth, NH, 1981 Oct., pp. 85-92.

This problem was solved in the above reference using the functional language Miranda, which
happens to be similar to pre-Haskell, and thus our job is already done for us! Actually there are
more efficient algorithms for solving this problem, but no more insight into understanding Haskell
will be gained by giving them. Thus we will simply duplicate Turner’s solution below, and refer to
the paper referenced above for a detailed description of it:

output = layn (append (map paraffin 1..))

paraffin n = quotient equiv [[x,"H","H","H"] | x<-(para (n-1))]

6

para 0 = ["H"]
para n = paralist n

paralist = map genpara (1..)

genpara n = [[a,b,c] | i<-0..(n-1)/3; j<-i..(n-1-1)/2;
a<-(para i); b<-(para j); c<-(para (n-1-i-j))]

equiv a b = member (equivclass a) b
equivclass x = closure_under_laws [invert, rotate, swap] [x]

invert [[a,b,c].d,e,f] = [a,b,c,[d,e,f]]
invert ("BE":x) = WH":x

rotate [a,b,c,d] = [b,c.d,a]

swap [a,b,c,d] = [b,a,c,d]

closure_under_laws f s = s :: closure’ f s s
closure’ f s t = closure’’ f s (mkset [a | £'<-f; a<-(map £’ t);
“member s a J])
closure’’ £ s t = (t=[1) -> [],
t :: closure’ f (s :: t) t

quotient £ (a:x) = a : [b | b<-(quotient f x); “f a b]
quotient £ [] = []

5 A Doctor’s Office

“Given a set of patients, a set of doctors, and a receptionist, model the following
interactions: Initially, all patients are well, and all doctors are in a queue awaiting
sick patients. At random times, patients become sick and enter a queue for treatment
by one of the doctors. The receptionist handles the two queues, assigning patients to
doctors in a first-in-first-out manner. Once a doctor and patient are paired, the doctor
diagnoses the illness and, in a randomly chosen period of time, cures the patient. Then,
the doctor and patient return to the receptionist’s desk, where the receptionist records
pertinent information. The patient is then released until such time as he or she becomes
sick again, and the doctor returns to the queue to await another patient.

You may use any distribution functions you wish to decide when a patient becomes
sick and how long a patient sees a doctor, but the code that models doctors must have
no knowledge of the distribution function for patients, and vice versa, and that for the
receptionist should know nothing of either. The receptionist may record any information
you wish: patient’s name, doctor assigned, illness, cure, wait times, queue lengths, etc.
The purpose of the problem is to evaluate how each language expresses asynchronous
communications from multiple sources.”

Of the four problems, this is probably the least well-defined. The main difficulty lies in just what
is meant by the verb “model” in the first sentence. Perhaps the most common kind of modelling
is a simulation of the actual time/event pairs, and that is what the first solution (written by Joe
Fasel) presented below does. However, such a solution removes completely the non-determinism
and asynchrony of the problem (since they are being simulated!), which conflicts with the state-
ment made in the last sentence of the problem description. Thus we also provide a solution that
uses explicit non-determinism. The two solutions are radically different, and reflect very different
characteristics of pre-Haskell.

5.1 Time/event Simulation

This model of the doctors’ office takes as input a number of patients, a number of doctors, an
initial list of times at which patients get sick, and two infinite lists of durations, representing the
distributions of times that patients remain well and of the times doctors take to cure patients. An
infinite list of tuples is returned, containing the following information for each office visit:

(patient, sick-time, doctor, start-treatment-time, cure-time)

That is, a patient number, the time the patient got sick and entered the patient queue, the number
of the doctor assigned, the time at which the patient was assigned a doctor, and the time the doctor
finished treating the patient.

The style of this solution is to create mutually recursive streams of time/event pairs, merging
them together at appropriate places while preserving the temporal order. The main streams of
events are patients (patientQ), doctors (doctorQ), and cured people (cured), as shown below.
insert and makeQ are utilities for handling queues of time-event pairs.

\

doctors n m initialWellDist WellDist CureDist = cured

where insert y 0 = [y] -- insert y into time-ordered queue
insert (p’,t’) ((p,t):xs) = t°<t -> (p’,t'):(p.t):xs,
(p,t):(insert (p’,t’) xs)

makeQ (x:xs) yys -- initial queue (in order),
-- subsequent entries (not in order)
= x : makeQ (insert y xs) ys where y:ys = yys

patientQ -- [(patient, sick-time)]
= makeQ (foldr insert [] (zip (1..n) initialWellDist))
[(p,c+x) | (p,s.,d,t,c),x <- cured,wellDist]

doctorQ -- [(doctor, time-available)]
= makeQ [(d,0) | d <- 1..m]
[(d,c) | (p,s,d,t,c) <- cured]
cured

= [(p,s,d,t,t+x) where t = max s a
| (p.s),(d,2a),x <- patientQ,doctorQ,cureDist]

5.2 Asynchronous Process Model

In the following solution the “world” is modelled as a 6-tuple:

[healthy_people, -- list of healthy people

sick_people, -- queue of sick people

being_cured, -- list of sick-people/doctor pairs
cured_people, -- queue of cured-people/doctor pairs
doctor_q, -- queue of available doctors

record] -- receptionist’s record of pertinent data

This representation is actually more detailed, and thus more realistic, than the previous one. In
particular, note the presence of a record book, as well as a queue to hold the doctor/patient
pairs reporting back to the receptionist after a curing session (this queue is not called for in the
specification, but seems more realistic). The initial state of the world should be obvious:

initial_world = (1..n, -- everybody’s healthy

0. -- nobody’s sick

0. -- nobody’s being cured

0, -- nobody’s just been cured
1..m, -~ every doctor is idle

8D -- no record of curing

The dynamics of this model are captured by three “processes” that operate non-deterministically
(i.e. asynchronously) and in parallel. Each process takes as input a world and outputs a “new”
world. Simulation of the doctors office proceeds by starting with the initial world and iteratively
choosing a process non-deterministically with which to generate a new world on each step of the
simulation. The result is an infinite stream of worlds.

doctors_office world = choose_loop world processes
processes = [sickening process, curing_process, receptionist]

sickening_process w = h=[] -> w, -- everybody's already sick!!
[hs,per:s,b,c,d,r]
where [h,s,b,c,d,r] = w
(per:hs) = sicken_one h

curing_process w = b=[] -> w, -- nobody’s being cured
[h,s,rest, [doc,per]:c,d,r]
vhere [h,s,b,c,d,r] = w
([doc,per]:rest) = cure_one b

receptionist w = choose [process_the_sick,process_the_cured] w
where process_the_sick w = s=[] -> w, -- nobody’s sick
d=[] -> w, -- no available doctors
[h,ss, [doc,per]:b,c,ds,r]
where [h,s,b,c,d,r] = w
per:ss,doc:ds = s,d
process_the_cured w = c=[] -> w, -- nobody’s just been cured
[per:h,s,b,rest,d:: [doc], [doc,per]:r]
where [h,s,b,c.d,r] = w
([doc,per]:rest) = ¢

cure_one = choose_and_remove -- random curing function
sicken_one = choose_and_remove -- random sickening function

choose_and_remove lst = el : remove el lst
where el = choose lst
remove x [] = []
remove x (y:xs) = x=y -> xs, remove X Xs

choose_loop obj fs = new_obj : choose_loop new_obj fs
where new_obj = (choose fs) obj

Note that the non-deterministic utility functions are built from a single non-deterministic primitive
called choose that non-deterministically selects an element from a list.

This non-deterministic process model, by the way, could be made deterministic by provid-
ing lists of sickness and wellness distributions as in the time/event simulation. Similarly, the
time/event simulation could be made non-deterministic by suitably merging the event streams
non-deterministically.

10

6 Skyline Matrix Solver

“Solve the system of linear equations:
Az=b

where A is an n by n skyline matrix. A skyline matrix has nonzero elements in column
7 in rows ¢ through j, 1 £ ¢ £ 7, and has nonzero elements in row ¢ in columns j
through 7, 1 < j < ¢. The first constraint defines the skyline above the diagonal, which
is towards the top, and the second constraint defines the skyline below the diagonal,
which is towards the left. For example, if

X 0 0 0 0 O
0 X 0 = 0 = O
0 z X z z zz O
A=|0 0 0 X z =z O
0 2 2z z X z O
0 0 0 z z X O
| 0 0 0 0 0 0 X |
then the 7 vector of the first constraint is:
(1,2,8,1,3,2,7)
and the j vector of the second constraint is:
(1,2,2,4,2,4,7)

You may assume any input form for A4 and b you wish, and you may assume the : and
7 vectors as input parameters. A rather obscure reference for the problem (available on
request) is:

Eisenstat, S.C., and Sherman, A.H. Subroutines for envelope solution of

sparse linear systems. Research Report 35, Yale University, New Haven CT,
October 1974.

The intention of this problem is to test each language’s ability to manipulate arrays,
to use the structure of arrays to avoid unnecessary computations, and to express array
operations.”

Our understanding of this problem was aided greatly not only by the above tech report, but
also a copy of some Fortran code written by Andy Sherman which implements an envelope method
for solving a linear system. That code, complete with documentation, is listed in the Appendix
(actually only the subrountines PLU and PLUB are listed, but they are the only two relevant to
the probelm as given).

Having Sherman’s code provided us with an opportunity to study Fortran-style incremental
array manipulations in a functional language, and to contrast that with the preferred monolithic
array approach. We think the results are quite interesting. To conduct the study we first converted,
as faithfully as possible, the Fortran code into pre-Haskell using incremental updates to purely
functional arrays. We then rewrote the program in a monolithic style, adhering more closely to the
matrix algebra, but using the same envelope representations used by Sherman.

11

6.1 Incremental Array Solution

Strict incrementally-updated arrays will probably not be part of the Haskell standard, but are
the closest thing to conventional arrays in imperative programming languages, and thus are the
easiest way to translate a Fortran program into a functional language. An incremental array a of
dimensionality d is created by new_array d, and is updated with value x at position i by upd a
i x. This updated array is conceptually an entirely new array, and in fact references to a will still
reveal a’s previous state. Fortunately, most uses of such arrays (especially in scientific computing)
are single-threaded, meaning that after the update no references to the old array will take place,
and thus an optimizing compiler if often able to implement the update destructively, thus achieving
the same efficiency as the equivalent imperative program.

To further aid in the translation of Sherman’s code it is convenient to have an idiom for simu-
lating DO loops, which we do by defining the following higher-order function:

do i j acc £ = j>i -> acc, do (i+1) j (f i acc) f;
Thus, for example:

do 1 n (new_array n)
(\ia. upd ai0)

initializes a new array to zero, and is equivalent to the Fortran code:

dimension a(n)
do 10 i=1,n
a(i) = 0

If (pl d,pu) is the original n by n skyline matrix A, whose structure is described by irl and
iru; b is the original B vector before reordering; and iord is the reordering matrix; then the result
can be computed using Sherman’s code as follows:

dimension x(n)
call plu(n,pl,d,pu,irl,iru)
call plub(n,pl,d,pu,irl,iru,x,b,iord)

which leaves the result in x. In the pre-Haskell version of the Fortran code presented below, the
solution is computed via:

plub n pl° 4’ pu’ irl iru x b iord
where X = new_array n
(d',pl’,pu’) = plun pl d pu irl iru

Here is the pre-Haskell program that simulates Andy Sherman’s Fortran program using strict

incremental arrays. It is written completely without comments, and should be compared directly
against Sherman’s code (which is commented) in the Appendix to see the correspondence.

12

plu n pl d pu irl iru = --n, irl, and iru are "pure input®
do 2n (upd 4 1 (1./d[1]),pl1,pu)
\i(d,pl,pu). (4’,p1’,pu’)
where irli = irl[i]
irui = iruf[i]

ifli = 4 - 1 + irl1[i-1] - irli
jminl = ifli + 1
ifui =1 - 1 + irufi-1] - irui
jminu = ifui + 1

jmax = i - 1
pl’ = do jminl jmax pl
\ j pl. upd pl (irli+j) (-plij) where
' iruj = irulj]
ifuj = § - 1 + irulj-1] - iruj
kmin = max0 ifli ifuj
kmax = j - 1
plij = do kmin kmax (-pllirli+j])
\ k plij. plij + pllirli+k]+*puliruj+k]
pu’ = do jminu jmax (upd pu (irui+jminu-1) (pulirui+jminu-1]*d[jminu-1]))
\ j pu. upd pu (irui+j) (-puji*d[j]) where
irlj = irl[j]
iflj = § - 1 + irl[§-1] - irlj
kmin = max0 ifui iflj
kmax = j - 1
puji = do kmin kmax (-pulirui+j])
\ k puji. puji + pl[irlj+k]*pulirui+k]
jmin = max0 ifli ifui
di = do jmin jmax (-d[i])
\ jdi. di + pl’[irli+jl*pu’[irui+j]
d* =upd d i (-1./di)

plub n pl d pu irl iru x b iord = (x3,iord2)
where x1 = do 2 n (upd x 1 (b[iord[1]]*d[1]))
\ j x. upd x j (-xj*d[j1)
where irlj = irl[j]
kmin = j - 1 + ir1[j-1] - irlj
kmax = j - 1
xj = do kmin kmax (-b[iord[jl])
\ k xj. xj + pllirlj+k]=x[k]
x2 = do 1 (n-1) x1
\ i x. do kmin kmax x
\ k x. upd x k (x[k] + xj*puliruj+k])
where j=n+1-1
iruj = irulj]
kmin = j - 1 + iru[j-1] - iruj

13

kmax = j - 1
xj = - x[j]
x3,iordl = do 1 n (x2,iord)
\ k (x,iord). iord[x]<0 -> (x,iord),
loop k iord x
where loop i jord x =
iordi=k -> (x’,iord’),
loop iordi iord’ x°
where iordi = iord[i]
x’' = upd (upd x iordi x[k])
k x[iordi]
iord’ = upd iord i (-iord[i])
iord2 = do 1 n iordl
\ i iord. upd iord i (-iord[i])

6.2 Monolithic Array Solution

The above solution is given primarily to illustrate how one could do incremental array operations
in a functional language that “have the feel” of side effects to arrays in an imperative language.
In fact, the above program, when run on our Alpha-Tau implementation of Alfl, achieves the same
space complexity of the Fortran program. That is, our optimizer is able to infer that every array
is “single-threaded” and thus updates can be done destructively rather than by copying.

On the other hand, this is not the preferred way to program with arrays in a functional lan-
guage. Pre-Haskell has a primitive data type for arrays together with special syntax that allows
the specification of an array instance monolithically rather than incrementally. That is, the entire
final array is specified in one monolithic declaration, yielding a declarative reading more in line
with the philosophy of functional programming. '

The skyline problem in fact illustrates well some of the special strengths of pre-Haskell arrays.
In particular, the array specifications can be derived from the original mathematical definition of
the problem in a clear and straightforward way. The essential data dependencies are clear, rather
than obscured by extraneous operational sequencing. The recursive definition of arrays, including
mutually recursive definitions of multiple arrays, permit elegant specifications as well as efficient
implementations. Pre-Haskell arrays permit separate definitions for elements in different regions
of an array, which permits optimizations similar to the lifting of computations from Fortran loops,
and which clearly correspond to the mathematical function domain specifications. .

In the last section we gave a solution which was essentially a transcribed version of Sherman’s
code, and thus we included no description of the data representations or the algorithm. In this
section we will instead start from the very basics, and develop the final program via step-wise
refinement of the specification. In particular, we derive all of the code optimizations that Sherman
implements, in an attempt to show how functional languages can be “fine-tuned” for performance
improvements in much the same way Fortran programs are.

14

6.2.1 Introduction to Sherman’s envelope format for sparse matrices

Sherman’s envelope format works best when the sparse linear system A*x = b has its equations
and variables ordered such that most of A’s nonzeros are close to the main diagonal. Each row i
of the lower triangle is stored as an envelope from the leftmost nonzero in the row up to the last
column j = i-1 before the diagonal. Likewise, each column j of the upper triangle is stored as
an envelope from the uppermost nonzero in the column down to the last row i = j-1 before the
diagonal. The main diagonal itself is stored as a 1-D vector of length n.

Sherman represents a sparse matrix as the tuple [n, pl, d, pu, irl, iru] where:

e n = the order of A.

e pl, d, pu=1-D floating point vectors representing respectively the lower triangle’s consecu-
tively stored row envelopes, the main diagonal elements, and the upper triangle’s consecutively
stored column envelopes.

e irl, iru = 1-D length n integer vectors of base addresses into pl and pu respectively.
The base address vectors require some explanation. For access into lower triangle pl, let:

e f1[i] = the column index of the first nonzero in row i;

e begin 1[i] = the index into pl of row i’s first nonzero.

Then we would access a[i, j] in the lower triangle by: p1 [begin1[i] + j - £f1[i]] = ali,j].
But the value begin.1[i] - £1[i] is the same for every j in row i. In a later section we will
see that computing an element [i,j] of either the lower or upper triangle factor requires an inner
product summation that runs along the lower triangle’s row i and the upper triangle’s column j.
For a sequential program it is simplest to make this summation the innermost loop, therefore we
would like to raise this loop-invariant computation out of the innermost loop, replacing the O(n?)
evaluations of the expression begin 1[i] - £1[i] by O(n) evaluations. We can also save space in
the representation by replacing the 2 length-n vectors with a single length-n vector.

irl [i] = begin_1[i] - f1[i]
pl [irl[il +j 1 = ali,j]

The value irl[i] can be thought of as the row i envelope’s base address into pl. The “first
nonzero” function f1 is useful as a limit for the summation over all j in row i, but can be easily
recovered from irl. The upper triangle’s column-oriented envelopes are stored in a similar fashion.

6.2.2 The “first nonzero” functions

We will derive the first nonzero function £1 for the row-oriented envelopes in the lower triangle. A
similar function fu can be derived for the column-oriented upper triangle envelopes.

The last column stored for row i is j = i-1, so if (pl-env_len i) is the row i envelope size,
the column index of row i’s first nonzero is

15

f1i = i - (pl_env_len i)

The indices ir1[i-1] + i-2 and irl[i] + i-1 into pl point to the end of the row i-1 and row
i envelopes respectively. Since the envelopes are stored consecutively in pl, we have pl-env_len i
= (irl[i] + i-1) - (irl[i-1] + i-2), therefore,

fl1i = i -1+ ir1[i-1] - irl[i]

Notice that £1 is only defined for i <- 2..n,since there isno ir1[0] entry. The row 1 envelope
is always empty in the lower triangle. For an empty row the first nonzero is in column (f1 i) =
i; so the envelope contains columns j <- (£f1 i)..(i-1) = ¢.

We could put a conditional in £1 to make it defined for row 1, but this imposes a run-time
test for every row. A better alternative is to define a bogus ir1[0] that causes (£1 1) to return
1. Entry irl[1] always has the value ir1[1] = (begin 1) - (f1 1) =1 - 1 = 0, therefore
irl[0] must satisfy:

1 = f11 = 1-1+1irl1[0] - irl[1] = irl[0]

However, we will discover later that we can always avoid any calls to £1 for row 1, or to fu for
column 1.

- 6.2.3 A functional derivation of L*U factorization

The problem is to solve the linear system A*x = b: given A and b, what isx? If A is invertible, there
exists a unique factorization A = L*U where L is lower triangular and U is unit upper triangular,
which reduces the original problem to the easier problem of solving the triangular linear systems
Lxy = b, Ux = y.

But this leaves the problem: given A, what are L and U? The usual derivation of L and U is
presented as a sequence of steps k <- 1..n, each step forming an intermediate matrix A(k); this
particular sequential approach to Gaussian elimination is very obscure, hiding the essential data
dependencies under non-essential operational details. Instead we will first write out the equation
A = LU as if we were finding A given L and U, then by algebraic manipulation, derive mutually
recursive equations for L and U given A. We will see that the pre-Haskell program mimics closely the
mathematical notation we use to derive the equations for L and U. Because of this close resemblance,
the program is easy to reason about, the essential data dependencies are clear, and it is easy to
justify and debug optimizations. Equally important, the inherent parallelism becomes immediately
apparent, since the only sequentiality in the program is that inherent in the data dependencies.

Each a[i,j] is the inner product of 1’s row i and w’s column j: afi,j] = p.I[i,k]*
ulk,j], i€ l.n, j € 1.n. But there is no contribution to a[i,j] for terms in which 1[i,k] =
0 (for columns k to the right of the diagonal: i < k) or in which ulk,j] = 0 (for rows k below
the diagonal: j < k). Therefore, instead of summing over k € 1..n, we only need to sum over
ke l.(minij).

16

Equivalently, we can separate the definitions for a[i,j] in the lower triangle and diagonal (i
>= j, and therefore use j as the summation limit) or in the upper triangle (i < j, and therefore
use i as the summation limit).

ali,] =i, Ui, k] ulk,5]
= U[, 7] * ulj, 4] + D) Ui k] * u[k, 5], i€ l.n, jel.d,

a[’s]] = Z';::l l[‘l,k] * u[ksJ]
= I[i,d] * uli, 5]+ T4y Ui, k] *ulk,j5], ielin,jei+l.n

But we can immediately rearrage these equations to define the elements of L and U (recall that
we require ulj,jl = 1.0 for all j):

l,5] = ali,5) = Tizy Ui, k] * wlk, 5], iel.n, jelud,
uli,j] = (ali,s] = Tith Uikl * ulk,5]) [Ulisi], delom, jeitlon
The L equations show us that whatever the operational sequencing, 1[i, j] depends on a[i, j]
and recursively depends on depends on other L elements in the same row i and to the left, and on

U elements in the same column j and above. The recursion terminates upon the leftmost column
of L and the topmost row of U. Similar reasoning holds for the U equation.

In the following we will replace 1[i,i] with the name d[i]. There are optimizations we can
perform on L’s diagonal elements that cause them to deserve special treatment. The d[i]’s are
not to be confused with the elements of diagonal matrix D in the L*DU factorization, where both
L and U are unit triangular.

6.2.4 LxU factorization in dense array format

From the equations above let us write a functional program to compute L and U. Let us define the
functional form of the mathematical summation sign:

sum i j accum £ = j<i -> accum, sum (i+1) j (accum + (f i)) £

We save one addition by letting a[i,j] be the accumulator’s initial value and subtracting each
term:

subtract_sum i j accum f
= j<i =-> accum, subtract_sum (i+1) j (accum - (£ 1)) £

Then our definition of an element in L is:

1[i,j] = subtract_sum 1 (j-1) a[i,j] l_exp)
where l_exp k = 1[i,k]*ulk,j]

17

This definition is exactly what we would write using the mathematical summation sign; it holds
fori <- 2..n, j <- 1..(i-1). Row 1 is skipped since 1[1,1] is on the diagonal and we wish to
define the diagonal elements separately.

The definition for L’s diagonal elements is a simplified version of the definition above (since i =
j), defined for i <- 1..n. The definition for U is nearly the same as for L except that summation
stops at k = i-1. Then the entire row is scaled by 1./d[i] to normalize U’s diagonal to 1.0.
U’s definition holds for i <- 1..(n-1), j <- (i+1)..n, or equivalently, for j <- 2..n, i <-
1..(j-1). See the complete program at the end of this section.

Each element d[i] appears as a divisor in the definition for every u[i,j] in the same row i
((n? —n)/2 divisions altogether), as well as in definition of x[i] in the same row for the L*Usx = b
backsolve stage (n divisions). Since division is expensive compared with multiplication, we instead
store the inverse of each d[i], replacing O(n?) divisions with n divisions and O(n?) multiplications.
This is a classic example of using an array to store expensive shared computations.

The definitions of L and U are mutually recursive, both in the mathematical definition and in
the pre-Haskell array definition. We do not need to store L’s upper or U’s lower triangle, which
are zero, or U’s unit diagonal, so we can store all the essential results in a single n2 array. We can
recursively define the matrix 1u = (L-D) + (1/D) + (U-I) in dense matrix format (where D =
L’s diagonal, 1/D = D’s inverse):

plua = 1lu
where
((1,n),(1,n)) = bounds a
lu = { 2D_array (1,n),(1,n)
| [1,j] =114 j I1i<-2..n, j < 1..(i-1)
| [1,i1 =4 1 Il i< 1..n
I [i,j] =uij I1'i<-1..(n-1), j <- (i+1)..n }

1ij=1etl expk = 1luli,k] * lulk,j]
in subtract_sum 1 (j-1) ali,j] 1l_exp
di =1let d_expk = 1luli,k] * lulk,i]
sum = subtract_sum 1 (i-1) ali,i] d_exp
in 1./sum

uigj=1let u.expk = 1luli,k] * lulk,j]
in (subtract_sum 1 (i-1) a[i,j] u_exp) * luli,i]

6.2.5 Strict vs. non-strict arrays

Some clarifying comments are in order concerning the semantics of pre-Haskell monolithic arrays.

Notice that the domain specifications in the the array comprehension correspond exactly to the
domain specifications given in the mathematical function definitions. These domain specifications
should not be thought of as looping constructs: they say nothing about the order in which elements
of the array should be evaluated — that order is dictated solely by data dependencies. In fact, pre-
Haskell monolithic arrays are non-strict, or lazy — each element in the array is in effect implemented
as a “thunk” which is evaluated only when demanded.

18

Thus domain specifications such as 1 <- 2..n, j <- 1..(i-1) specify where thunks for a
particular form of expression must be placed, but say nothing about the order in which the elements
are evaluated. Evaluation of an element in a lazy array is forced only when it is explicitly requested.
If a lazy array is recursively defined, evaluation of an element in turn forces the evaluation of other
elements on which it has a data dependency.

Of course, once an element has been evaluated its value is stored directly in the array in place of
the thunk. We can think of an array a as a function of d integer arguments (where d is the array’s
dimensionality), for which we know that any given function application a i_1 ... i.d (i.e., any
given array element a[i_1,...,i_d]), will be requested many times. In this view an array is a
caching function.

There are several essential differences between lazy arrays in pre-Haskell and arrays in a language
like Fortran, which we will discuss briefly here. One difference is that pre-Haskell specifies the result
array monolithically in terms of a definition for each element, whereas Fortran specifies the result
array in terms of incremental updates to the input array. For the example program presented so
far, pre-Haskell’s monolithic definition requires that the output array be computed in a separate
space from the input array.

For pre-Haskell to be able to reuse the input array a to store the output array lu, the compiler
must know that reuse is safe. There must be no other outstanding references to a outside the
definition of 1u. Furthermore, an element a[i, j] must be dead at the time that it is replaced by
element 1luli, j], which means that either the compiler must determine or the programmer must
specify a safe order of evaluation. This topic is an area of research, and will not be discussed further
here.

Another difference is that the Fortran programmer must be careful to arrange the order of his
computation so that whenever he evaluates an element 1u[i, jJ, the elements on which 1u[i, j] has
a direct data dependency will have already been computed. Both the pre-Haskell and the Fortran
arrays can be viewed as cached functions, so although they may differ in the order in which array
elements are evaluated, there is no difference in the total amount of computation time spent on
array indexing and floating point arithmetic. On the other hand, pre-Haskell’s thunks increase the
time by a small constant factor. In addition to computing the element values, we must also create
a thunk for each element when array storage is allocated; and whenever an element is demanded
we must test whether or not its thunk as been forced yet.

Notice that we could eliminate the need for creating and testing element thunks if, like the
Fortran programmer, we could guarantee a safe order of evaluation. Again, this is a research topic,
and will not be treated further here.

6.2.6 Refinement of L*U factorization using “first nonzero” information

Notice that in the summations, the k-th term 1[i,k]*u[k, j] makes no contribution if either factor
is zero. More specifically, if a sparse matrix is organized such that most nonzeros are close to the
main diagonal, then there is no contribution if either 1[i,k] falls to the left of row i’s first nonzero
(i-e., if k < (£1 1)) or if ulk, j] falls above column j’s first nonzero (if k < (fu j)).

Assume we are given the “first nonzero” functions £1 and fu. L is then defined by:

19

l_exp k = new_pl[irli + k] * new_pul k + iruj]
accum_init = old_pl[irli + j]
sum = gubtract_sum kmin_1 (j-1) accum_init 1_exp
new_pl = { vector (bounds old_pl) :
l [irli + j] =11 j irli £f1i
Il 1 <- 2..n,
irli <- [irl[i] 1,
fl1i <- [(f1 1)1,
j <= fli+1..i-1
| [irli + j] =o0ld_pl [irli + j]
Il i <- 2..n,
irli <- [irl[i]],
f1i <- [(£1 1) 1],
j <- fli, fli <i }

If we suppose that extra information has been supplied to the compiler directing it to treat i as
an outer loop index and j as an inner loop index, we can see that the common subexpression lifting
we have performed corresponds exactly to the Fortran idea of lifting loop-invariant computations.
There exist a few more opportunities for lifting common subexpressions in this program fragment,
but we have taken all opportunities that lift loop-invariant subexpressions.

6.2.8 Reorganizing the upper triangle from column- to row-oriented envelopes

For the LU = A factorization phase, it is desirable to store the lower triangle as row-oriented
envelopes and the upper triangle as column-oriented envelopes. But for the L¥Usx = b backsolve
phase, there are some advantages to reorganizing U into row-oriented envelopes. These advantanges
will be discussed in the next section; here we describe how to achieve the reorganization.

If we store the upper triangle in row-oriented envelopes, then the row i envelope contains
columns j <- (i+1)..(row_fu i) where row_fu returns the column index of row i’s last nonzero.
We want a real storage vector row.pu and a base address vector row_iru such that row pu [
row.irul[i] + j] = ali,j]. Let us suppose that row_iru was already computed by the same
program that prepared iru and irl. We can derive the function row_fu that given row index i
returns the column index of i’s last nonzero: rowfu i = i + 1 + rowirul[i+1] - row.iruf[i].
This function is defined for rows i <- 1..(n-1). Notice also that size of row_pu is contained in
row.iru[n]. So now we can reorganize pu into row_pu:

row_pu = { vector (1,row_iru(n])
| [row_irufi] + j] = fetch_col_pu i j
Il 1 <- 1..(n-1), j <= (i+1)..(row_fu i) }

Why do we not simply replace (fetch_colpu i j) withpu [i + irulj] 1? Because although
both the column- and row-oriented representations store all the upper triangle’s nonzeros (both
before and after fill-in), the row form may store some zeros not stored in the column form, and vice
versa. Our definition of row_pu demands every [i,j] pair stored in the row form, but fetch_col_pu
must decide whether that [i,j] falls within the column form, and return a zero if not:

22

fetch_ col pui j = i<(fu j) -> 0.0, col_pu [i + col_iruljl]

This function is defined only over the upper triangle j <- 2..n, i <- 1..(j-1). The complete
definition:

reorg_pu n col_pu col_iru row_iru = row_pu where
col_fu j = j -1+ col_iru [j-1] - col_iru [j]
row_fu i =i+ 1+ row_iru [i+1] - row_iru [i]
fetch_col_pu i j = i<= (fu j) -> 0.0, col_pu [i + col_iru [j]]
row_pu = { vector (1,n)
| [row_iru [i] + j] = fetch_col_pui j
I1i<-1..(n-1), j <= (i+1)..(row_fu i) }

The reorganization takes time proportional to the size of the upper triangle’s row-oriented envelope.

For matrices in which the maximum size of any row envelope is independent of matrix size n, this
time is O(n). '

6.2.9 The L*Uxx = b solution phase
We will discuss two versions of the backsolve phase, one version using the column-oriented U, the
other using the reorganized row-oriented U.

A*x = L*U*x = b is equivalent to solving the lower triangular system L*y = b , using the
intermediate solution y as the righthand side for solving the upper triangular system Ux = y.

1[1,1]*y[1] = b[1]
1[2,1]*y[1] + 1[2,2]1*y[2] = b[2]
i[x;,i]*y[l] + C e + 1[n,n]*y[n] - ';J[I.l.]

Recall that we are storing the inverse of diagonal elements under the name d[i] = 1./1[i,i] for
every i. For a typical row i, this system of equations can be recast as the function:

y[il = sum * d[i]

where
y-exp j = 1[i,jI*y[j]
sum = subtract_sum 1 (i-1) b[i] y_exp

We can interpret this as saying that the lefthand side unknown y[i] is contained in the righthand
side known b[i], but to find y[i] we must subtract out the contribution of the other elements y[11,

.» yli-1]. For j <- 1..(i-1) the coefficient u[i,j] gives the weight of y[j]’s contribution
to b[i].

Finally we solve the upper triangular system U*x = y, recalling again that U is unit diagonal.
The entire function, assuming the matrix 1u = (L-D) + (1/D) + (U-I) is in dense matrix format,
and doing the appropriate substitutions for 1[i,j], d[i], and u[i,jl:

23

plub lu b = x_vec where
yi = sum * luli,i]

where
y-exp j = 1luli,jl*y_vec[j]
sum = subtract_sum 1 (i-1) b[i] y_exp

x i = subtract_sum (i+1) n y_vec[i] x_exp

where x_exp j = 1uli,jl*x_vecl[j]
y.vec = { vector (1,n) | [i] =y i Il i<-1..n}
x_vec = { vector (1,n) | [i]l =x i Il i<-1..n}

Now let us stay with the dense format, but incorporate the “first nonzero” functions £1 and
fu to avoid multiplications and subtractions for terms in which the contribution weight 1[i,j]
or u[i,j] is outside the matrix envelope and therefore zero. The change is trivial for the lower
triangular system, since the summation is along a row. For i <- 2..n, (f1 i) tells us the first
nonzero column in row i:

yi = sum * lufi,i]

where
y-exp j = 1luli,jl*y_vec[j]
sum = subtract_sum (f1 i) (i-1) b[i] y_exp

Otherwisey 1 = b[1].

But for the upper triangle we have the problem that the summation is also running along a
row, but £1 tells us the first nonzero in a given column. We cannot use it to give a bound on the
summation for a row i the way we did for the lower triangular system. We could instead use £1 as
a predicate for each element of a row to see whether that element falls outside the upper triangle’s
column-oriented envelope. Unfortunately, although we avoid an expensive floating point multiply
and subtract for each zero u[i,j], we still incur a predicate test for every element. The upper
triangular envelope may be of size O(n), but testing every element for inclusion in the envelope
forces us to perform O(n?) work.

One solution is to imitate the Fortran solution, which walks through U column by column,
performing successive updates on the x vector as each x[i] becomes available. It is possible to
write functional programs in which a compiler can easily detect the opportunity for array updates,
but we will not pursue that avenue any further here.

The solution we will pursue instead is to switch at this stage from a column-oriented view of
U, which was convenient for the factorization phase, to a row-oriented view more appropriate to
the backsolve phase. Let us stay for the moment with a dense format matrix, but let us recall
the earlier section in which we discussed a row-oriented U: suppose we have available a function
(row_fu i) that returns the column number j of the last nonzero in upper triangle row i, so we
can limit how far the summation runs along row i:

x i = subtract_sum (i+1) (row_fu i) y_vec[i] x_exp
where x_exp j = 1luli,jl*x_vecl[j]

24

for i <- 1..(n-1), since row_fu is defined over that domain, otherwise x n = y_vec[n].

It is now a trivial matter to convert our program to use an envelope format version of 1u.
Assume the user has supplied both the column- and row-oriented base address vectors col_iru and
row_iru for the upper triangle, and we have the column-oriented reals vector col_pu computed by
plu; then call reorg_pu defined in the previous section:

row_pu = reorg_pu n col_pu col_iru row_iru

Recall this reorganization took time proportional to the size of U’s envelope. Now 1u is represented
as the tuple [n, pl, d, row.pu, irl, row.iru]:

plub [n, pl, d, row_pu, irl, row_iru] b = x_vec where
fli = i-1+irl [i-1] - irl [i]
row fui = i+ 1+ row_iruli+1] - row_irul[i]
yi = sum * d[i] where
irli = irl[i]
y-exp j = pl [irli + j] * y_vec[j]
sum = subtract_sum (f1 i) (i-1) b[i] y_exp
x i = sum where
row_iru i = row_iru[i]
x_exp j = row_pu [row_iru_i + j] * x_vec[j]

sum = subtract_sum (i+1) (row_fu i) y_vec[i] x_exp
y-vec = { vector (1,n) | [i] =y i Il i <-2..n
I [i] = ®[i] Il i <- [1]1 }
x.vec = { vector (1,n) | [i] = x i I1i<- 1..(n-1)
| [i] = y_vec[n] Il i <- [n] }

The linear system A*x = b may have been poorly organized for the envelope representation,
and the equivalent system P*A*(1/P)*P*x = P*b may require a smaller envelope to store A and
its factorization. The permutation matrix P reorganizes the rows (1/P the columns) using reverse
Cuthill-McKee numbering to heuristically minimize the envelope size. Sherman’s version of plub
assumes that the L*U envelope format matrix is in RCM order, whereas b and the result x are in
the orginal problem order. If we have a vector iord representing the permutation P mapping the
original number i to RCM number iord[i], then the change to plub is trivial, and is left as an
exercise.

7 Ackhowledgements

We wish to thank Joe Fasel at Los Alamos for comments on various parts of this document, as well
as for providing us with his solution to the doctors’ office problem. Also thanks to Los Alamos
and Lawrence Livermore National Laboratories for their sponsorship of the Salishan High-Speed
Computing Conference.

25

0O 0 0 00 00 0 0 0 0 00

0O 0 0 0 0 00

(¢}

Appendix: Andy Sherman’s Fortran Code for the Skyline Problem

subroutine plu(n,pl,d,pu,irl,iru)
dimension pl1(1),d(1),pu(1),irl(1),iru(1)

this subroutine performs an envelope lu decomposition on the
matrix ¢ which is stored in pl, d, and pu in envelope form
(see subroutine genenv). the rows (columns) of the lower
(upper) triangle of ¢ from the first nonzero up t

but not including the diagonal are stored sequentially

in pl (pu). the diagonal entries of a are stored in d.
irl(i) (iru(i)) points to the nonexistent c(i,0) (c(0,i))
element of the i-th row (column). on return, the strict lower
(upper) triangle of 1 (u) is stored in pl (pu), and the
inverses of the diagonal elements of 1 are stored in d.

(u is unit upper triangular.)

d(1) = 1. / 4(1)

do 100 i=2,n
irli = irl1(i)
irui = iru(i)

ifli (ifui) is the lowest off-diagonal index in the
i-th row (column). similar computations are used for other
rows and columns below. the first off-diagonal element in the

i-th row (column) never requires an inner product.

ifli =i -1 + ir1(i-1) - irli
jminl = ifli + 1

ifui =i -1 + iru(i-1) - irui
jminu = ifui + 1

jmax =i - 1

compute 1(i,j) for j in i-th row

if (jminl .ge. i) go to 30
do 20 j=jminl, jmax
iruj = iru(j)
ifuj = j - 1 + iru(j-1) - iruj
kmin = max0(ifli,ifuj)
if (kmin .ge. j) go to 20

plij = -pl(ij) to force good code in loop

26

Plij = - pl(irli+j)
kmax = j - 1

compute inner product for 1(i,j)

do 10 k=kmin,kmax
Plij = plij + pl(irli+k)+*pu(iruj+k)
10 continue
pl(irli+j) = -plij
20 continue

compute u(j,i) for j in i-th column
30 if (jminu .gt. i) go to 70
compute first off-diagonal element of column

pu(irui+jminu-1) = pu(irui+jminu-1) * d(jminu-1)
if (jminu .eq. i) go to 70
do 60 j=jminu, jmax

irlj = irl(j)

iflj = § - 1 + irl(j-1) - irlj

kmin = maxO(ifui,iflj)

puji = -pu(ji) to force good code in loop

puji = -pu(irui+j)
if (kmin .ge. j) go to 50
kmax = j - 1

compute inner product for u(j,i)

do 40 k=kmin,kmax
puji = puji + pl(irlj+k)*pu(irui+k)
40 continue
50 pu(irui+j) = -puji * d(j)
60 continue

compute 1(i,i)

70 jmin = max0(ifli,ifui)
di = -d(i)
- if (jmin .gt. jmax) go to 90
do 80 j=jmin, jmax
di = di + pl(irli+j)*pu(irui+j)

27

80 continue

c
¢ store 1/1(i,i) in d(i)
c
80 d(i) = -1./di
100 continue
c
return
end
c ...

cdate of version: 04/05/79
subroutine plub(n,pl,d,pu,irl,iru,x,b,iord)
dimension pl(1),d(1),pu(1),irl(1),iru(1)
dimension x(1),b(1),iord(1)

this subroutine performs the backsolves for the solution of
lupx=pb. 1land uare stored in pl, d, and pu as

described in subroutine plu.

solve 1 x=p b

o 0O 0 0 000

iordj = iord(1)
x(1) = b(iordj) * d(1)
do 30 j=2,n

iordj = iord(j)

xj = - b(iordj)

irlj = irl(j)

kmin is the lowest off-diagonal column index in the j-th row
of pl. similar computations are used for other rows and
columns below.

o 0 0 0o

kmin = j - 1 + irl(j-1) - irlj
if (kmin .ge. j) go to 20
kmax = j - 1
do 10 k=kmin,kmax
xj = xj + pl(irlj+k) * x(k)
10 continue
20 x(j) = - xj * 4(j)
30 continue

¢ solve ux = x

28

oo

0O 0 060 0 00

imax = n - 1
do 50 i=1,imax
j=n+1-14
iruj = iru(j)
kmin = j - 1 + iru(j-1) - iruj
if (kmin .ge. j) go to 50
kmax = j - 1
xj = - x(j)
do 40 k=kmin, kmax
x(k) = x(k) + xj * pu(iruj+k)
40 continue
50 continue

reorder x to solve p x = X
do 70 k=1i,n

iord(k) .1t. O means that x(k) is proper element already.
otherwise, interchange x(i) and x(iord(k)). the effect
of this is to rotate every cycle of the permutation one
position so that it is properly oriented.

if (iord(k) .1t. 0) go to 70
i=k
60 iordi = iord(i)
t = x(iordi)
x(iordi) = x(k)
x(k) =t
iord(i) = - iord(i)
i = iordi
if (i .ne. k) go to 60
70 continue

at this point all entries of iord are negative
do 80 i=1,n
iord(i) = - iord(i)

80 continue

return
end

29

