
Games Programs Play:
Analyzing Multiplayer Programs

[Extended Version]

Eric Koskinen?1, Hiroshi Unno2, and Moshe Vardi3

1 Yale University
2 University of Tsukuba

3 Rice University

Abstract. In this paper we present the first automatic technique for
symbolically proving alternation-free µ-calculus properties of infinite-
state, higher-order programs. In particular, we show how weak-recurrence
solvability can be lifted from finite-state programs to higher-order recur-
sive programs. Our strategy reduces the search for a proof of a winning
strategy to nontermination of higher-order programs for safety games,
termination for liveness games, and an iterated combination of the two—
along with winning preconditions—for weak recurrence games. We can
thus leverage existing reasoning techniques based on dependent refine-
ment types to automatically generate abstractions. From the resulting
types, one can construct the winning strategy. Our technique even allows
one to solve games in which the state space consists of higher-order ex-
pressions and algebraic data-structures. We have implemented our tech-
nique in a prototype tool PGS, and discovered winning strategies for a
variety of games, including safety games, liveness games, general recur-
rence games, and alternation-free µ-calculus verification games.

1 Introduction

Over the past 25 years the theory of games have become a fundamental tool in
reasoning about programs. An obvious application of game-theoretic reasoning is
in reactive-program synthesis, where the setting is naturally modeled as a game
between a system and its adversarial environment [33]. Another application is in
CTL model checking [9], where the truth of a formula can be modeled as a game
between the existential and universal quantifiers [22]. As a result, the theory of
games, and its connections with logic and automata is a major line of research
in formal methods, cf. [20].

A fundamental result in this area is an efficient (linear-time) algorithm for
solving infinite-duration games over two-player weak finite game graphs, or weak
recurrence games, for short. A game graph is a directed graph with a notation

? Supported in part by NSF CCF Award #1421126 and, previously, by CMACS NSF
Expeditions in Computing award #0926166 and the NYU Office of the Provost
(UCRF).

1. INTRODUCTION

showing which player moves at each node. The game is played by the two players,
say, Angel and Demon, taking turns moving a pebble from a graph node to its
neighbor along a directed edge. The winning condition for the infinite-duration
game is specified as a set of recurrence nodes, which Angel is required to visit
infinitely often during an infinite play, in which the players forever keep moving
the pebble. Without further structure, this game is called a recurrence or Büchi
game [27], which has numerous applications in formal methods [32]. Solving
the game, that is, computing the set of nodes from which Angel has a winning
strategy, is an algorithmic problem of continuing interest, cf. [32]. The best
algorithm [7] for this problem runs in time O(n2), where n is the number of nodes
in the graph. Whether a better algorithm exists, which runs in time O(n log n)
or even in time O(n) is a major open problem.

The weakness condition is an additional structure imposed on recurrence
games, in which there is a decomposition of the game graph into components
that are partially ordered, such that (1) each component is either recurring,
that is, consists only of recurrence nodes or nonrecurring, that is, consists only
of non-recurrence nodes, and (2) there is no edge from a node in a component to
a node in a higher component. The intuition here is that every play necessarily
descends down the component order until it stabilizes either in a recurring com-
ponent, in which case Angel wins, or a nonrecurring component, in which case
Demon wins. A key result in [27] is that, unlike recurrence games, weak recur-
rence games can be solved in linear time, i.e., O(n). Furthermore, it is shown in
[27] that this algorithm underlies many results in model checking, such as the
linear-time solvability of CTL model checking [8] and the linear-time solvability
of alternation-free µ-calculus model checking [17]. Currently, weak recurrence
games constitute the largest fragment of recurrence games that is known to have
linear-time solvability. Thus, the linear-time algorithm for solving weak recur-
rence games is one of the key result in the theory of model checking finite-state
programs.

An independent line of research in formal methods is the development of
semi-decision procedures for reasoning about general programs. A seminal re-
sult in this area was the development of SLAM [3], which lifted finite-state safety
checking to general programs. SLAM reduces program safety to finite-state safety
checking and quantifier-free theory reasoning via a process of iterative abstrac-
tion refinement. While the procedure may, in general, fail to converge, it works
impressively well in practice and has been implemented in a deployed indus-
trial tool [1, 2]. The existence of a practically effective tool for reasoning about
program safety, has in turned enabled more sophisticated reasoning capabilities,
including program termination [15], temporal reasoning [10, 12, 14, 13, 6, 11], and
many more.

Our main aim of this paper is to achieve a similar lifting of weak-recurrence
solvability from finite games to general infinite-state games. The motivation
for studying general games stems from the observation that nondeterminism
in programs often has two independent sources [23]. Angelic nondeterminism
is a tool to increase expressiveness of programs by avoiding the specification

2

1. INTRODUCTION

of some low-level details, enabling this nondeterminism to be resolved away at
implementation time [16]. In contrast, demonic nondeterminism reflects uncer-
tainty about the execution environment, for example, about the scheduling of
concurrent threads. Reasoning about programs with both angelic and demonic
nondeterminism requires regarding the program as a game between the program,
Angel, and its environment, Demon. Thus, such reasoning must be game theo-
retic! (For a discussion on the need to distinguish between angelic and demonic
nondeterminism in finite-state reasoning, cf. [28].)

As a motivating example, consider a Queue data-structure that is initially
empty and two players: player Demon may enqueue one or two elements at a
time, and player Angel may dequeue one or two elements. (Assume that de-
queuing two elements from a queue containing one element gives you an empty
queue with no error message). The property we are interested in here is for Angel
always to be able to force the Queue to be empty. There is an obvious winning
strategy for Angel: always dequeue two elements. The key observation is that
Angel’s nondeterminism has a different flavor than that of Demon. Angel uses
nondeterministic choice to make sure that empty is always in reach, while De-
mon uses nondeterministic choice to drive the queue away from empty. Specifying
this winning condition for Angel is outside of the realm of CTL, and requires
alternation-free µ-calculus [35]. We do not know of any tools that are able to
prove arbitrary alternation-free µ-calculus formulas for infinite-state programs.

The key technical result of the paper is showing how weak-recurrence solv-
ability can be lifted from finite-state programs to higher-order, infinite-state
programs. We work with two-player games described as procedures angel and
demon that mutually invoke each other ad infinitum, passing the game state as
arguments. We then describe a translation on these procedures to a new mutually
recursive program encoding, whose non-termination entails safety and whose ter-
mination entails liveness. In this way, we can adapt prior higher-order program
verification techniques based on dependent types to prove safety (via nontermi-
nation [21, 29]) and liveness (via termination [30]). Moreover, when there isn’t
a winning strategy for Angel from all initial states, we adapt these works to
synthesize sufficient winning preconditions.

Next, we use these two reductions as building blocks for an the first auto-
matic technique for solving weak recurrence games over infinite state spaces. Our
algorithm traverses the weak order in a bottom-up manner, synthesizing winning
preconditions of lower components and using them to find winning strategies in
higher components. If the winning precondition of the initial component holds
of the start state, then there is an overall winning strategy of the weak game.

There are numerous applications of this result. Well beyond safety and ter-
mination, our work is expressive enough to prove properties of programs from
alternation-free fragment of the µ-calculus [19]. We have developed a prototype
tool called PGS and applied our technique/tool to example safety games, live-
ness games, and weak recurrence games including some from AFMC verification.
These games may have higher-order state spaces, algebraic data-types, etc. Our

3

2. TECHNICAL BACKGROUND

result is the first tool for for alternation-free µ-calculus verification of programs
over infinite state spaces.

2 Technical Background

2.1 Modal Mu-Calculus

The modal µ-calculus is an expressive logic in which one can express proper-
ties of transition systems, including all properties expressible in branching-time
logics such as CTL∗ [24]. Formally, it is modal logic augmented with least and
greatest fixpoint operators; specifically, we consider a µ-calculus where formu-
las are constructed from atomic formula using Boolean connectives, modalities
� and ♦ indexed over the players set (e.g., �D or ♦A), and the least (µ) and
greatest (ν) fixpoint operators. We assume that µ-calculus formulas are written
in positive normal form (negation only applied to atomic propositions constants
and variables). Most treatment of the µ-calculus focuses on its propositional ver-
sion, but here we allow atomic formulas over program states. There is extensive
literature about the modal µ-calculus; for a survey, see [31]. Formulas where all
propositional variables are quantified with either µ or ν are called sentences.

Here we are interested in the alternation-free fragment of the µ-calculus
(AFMC) in which syntactic nesting of least and greatest fixpoint operators is
allowed, but semantic interaction is not allowed. For precise definitions see [18].
For example, the formula ReachEmpty = µx.(empty ∨�D♦Ax)) says that An-
gel can force its way to the empty queue. The formula AlwaysReachEmpty =
νy.(ReachEmpty ∧�D♦Ay)) says that Angel can always force staying in states
from which forcing reachability of is possible. Intuitively, AlwaysReachEmpty
is the modal version of the CTL formula AGEFempty, which takes into account
the adversarial interaction of Angel and Demon. Note that AlwaysReachEmpty
allows µ to be nested in the scope of ν, but there is no semantic interaction, which
makes the formula alternation free. In contrast, the formula νx.µy.((p∧x)∨♦Ay)
is not alternation free, since there is semantic interaction between the greatest
and least fixpoint operators.

We interpret AFMC sentences over two-player transition systems, which have
two transition relations, one for Angel and one for Demon, i.e., T = (S,RA, RD),
where S is a set of states and RA and RD are binary relations on S. The atomic
formulas are interpreted over S; that is, every atomic formula can be viewed as
a subset of S.

2.2 Weak Recurrence Games

A game graph is a directed graph G = (V,E), with a partition V = V0] V1 of
the node set, usually denoted as G = (V0, V1, E). We assume that the graph has
no sinks, so every node has some outgoing edges. An infinite-duration game is
played on G from a node v by first placing a pebble p on v, and then moving p
along edges in E. When p is placed on a node in V0, Angel is making the move,

4

2. TECHNICAL BACKGROUND

and when p is played on a node in V1, Demon is making the move. The game
continues forever; thus, a play is an infinite sequence π = v0, v1, . . . of nodes such
that ∀i ≥ 0. (vi, vi+1) ∈ E.

In a recurrence game, the winning condition for infinite plays is specified by
means of a recurrence set W ⊆ V . An infinite play π = v0, v1, . . . is winning for
Angel if the set {i | vi ∈W} is infinite; otherwise it is winning for Demon. That
is, Angel is required to visit W infinitely often, while Demon is trying to block
such a recurrence.

A player wins the game if it has a winning strategy. A strategy for An-
gel (resp, Demon) is a function σ : V ∗V0 → V (resp., σ : V ∗V1 → V) such
that σ(v0 . . . v) = v′ only if (v, v′) ∈ E. Intuitively, the strategy tells a player
which edge to select, based in the full history of the game so far. Thus, a
play π = v0, v1, . . . complies with strategies σ0, σ1 for Angel and Demon if
vi+1 = σk(v0 . . . vi), when vi ∈ Vk, for k ∈ [0, 1]. A strategy σ0 is a winning
strategy for Angel, if for every Demon strategy σ1, every play π that complies
with σ0 and σ1 is winning for Angel. For recurrence games it is known that
it suffices to consider memoryless strategies, which depend only on the current
state and not on the whole history.

Solving a game means deciding for a node v whether Angel has a winning
strategy from v. For finite game graphs, this is an algorithmic question. As men-
tioned above, the best algorithm for finite recurrence games has time complexity
of O(|V |2), and it is an open question whether there is an algorithm with better
complexity. By restricting, however, the structure of the game, we can obtain
better complexity.

In a weak game graph there is a partition of the node set into a finite partially
ordered set of disjoint components. Thus, V = P1] . . .]Pm, with a partial order
≤ defined on {P1, . . . , Pm}, such that if (u, v) ∈ E with u ∈ Pi and v ∈ Pj , then
Pj ≤ Pi. Intuitively, a move along an edge cannot ascend the component order.
Thus, if π = v0, v1, . . . is an infinite play, then there is a component Pk and an
index l ≥ 0 such that vr ∈ Pk whenever r ≥ l. Intuitively, every play weakly
descends the component order until it stabilizes in some component. Because the
partition is finite, this feature of weak games holds even when the game graph is
infinite. Note that the partition V = P1] . . .]Pm is orthogonal to the partition
V = V0] V1; that is, one can have that both V0 ∩ Pj 6= ∅ and V1 ∩ Pj 6= ∅ for
1 ≤ j ≤ m.

In a weak recurrence game the recurrence set W has to be compatible with
partition V = P1]. . .]Pm. That is, either Pj ⊆W or Pj∩W = ∅ for 1 ≤ j ≤ m.
Recall that every play in a weak game stabilizes in one of the components. Thus,
from the players point of view, every component is winning or losing.

A key result of [27] is that finite weak recurrence games can be solved in linear
time. The intuition is that the game can be solved one component at time, going
up the component order. For a bottom component P ⊆ W , Angel’s goal is to
avoid sink states. Thus, for that component the game reduces to a safety game,
which can be solved in a linear time using a careful fixpoint computation (e.g.,
as in [4]). For a bottom component P ∩W = ∅, Demon’s game becomes a safety

5

2. TECHNICAL BACKGROUND

game. Once the bottom components are solved, higher components can be solved
using the same ideas, avoiding moves into losing states, and taking moves when
possible into winning states.

Theorem 1. [27] Finite Weak recurrence games can be solved in linear time.

The rest of the paper deals with weak recurrence games over infinite game
graphs.

2.3 Alternating Automata

Alternating automata play a key role in algorithmic program verification [34].
We are interested here in symmetric alternating automata, which can be viewed
as a normal form for the µ-calculus [26]. A symmetric alternating automaton
A = (Q,Σ, q0, δ, α), where Σ is a finite set of atomic literals (atomic formulas
or their negation), Q is a finite state set, q0 ∈ Q is an initial state, δ is the
transition function, and α is the acceptance condition.

Let B+(X) be the set of positive Boolean formulas over a set X. A set Y ⊆ X
satisfies a formula θ in B+(X) if θ is true when variables in Y are assigned true,
and variables in X \ Y are assigned false. We call Y a satisfying subset.

To define the transition function, we first define the modal closure of a set
X denoted modal(X), which consists of X itself, and, in addition, for each
element x ∈ X and modality M (e.g, ♦A), also the expression Mx. The transition
function is now defined as δ : Q → B+(modal(Q ∪ Σ)); that is, it associates a
positive Boolean function over modal(Q ∪Σ) with each automaton state q. We
call δ(q) the transition formula for a state q ∈ Q.

Symmetric alternating automata run on a two-player transition system T =
(S,RA, RD). A run of A over T starting from t0 is a tree τ labeled by elements
of S ×Q, with the root labeled by (t0, q0). The rule for constructing the tree is
as follows. Let x be a node of τ labeled by (s, q). Let θ = δ(q) be the transition
formula. Then there is a satisfying subset P ⊆ modal(Q∪Σ) such that for each
element p ∈ P we have:

– if p is a state q′, then x has a child y labeled with (s, q′)
– if p is a literal `, then ` must be true in s, and x is a leaf.
– if p is the expression ♦Ao (resp., ♦Do), then there is a state s′ ∈ S such that

(s, s′) ∈ RA (resp., (s, a′) ∈ RD) and a child y of x labeled with (s′, o). If o
is a literal, then it must be satisfied by s′.

– If p is the expression �Ao (resp., �Do), then for each state s′ ∈ S such that
(s, s′) ∈ RA (resp., (s, s′) ∈ RD) there is a child y of x labeled with (s′, o).
If o is a literal, then it must be satisfied by s′.

It remains to define the acceptance condition α, which is defined as a con-
dition on the infinite branches of the run. Such an infinite branch is labeled by
an infinite word (s0, q0), (s1, q1), . . . over S × Q. We define here acceptance by
means of a recurrence set W ⊆ Q (this is called a Büchi condition [27]), and we

6

2. TECHNICAL BACKGROUND

say that the branch is accepting if W is visited infinitely often, and the run is
accepting if all branches are accepting.

We focus attention here on weak automata, where there is a partially-ordered
partition Q1] . . .] Qm of Q that is compatible with W (so each Qi is either
contained in or disjoint from W), and such that if q ∈ Pi and q′ occurs in δ(q)
with q′ ∈ Pj , then Pj ≤ Pi. We call the automata that meet this condition
symmetric weak alternating automata [27, 25].

The key result is a translation from AFMC to symmetric weak alternating
automata.

Theorem 2. [27, 25] For each AFMC sentence ϕ, we can construct a symmet-
ric weak alternating automaton Aϕ such that ϕ is true at a state t of a transition
system T iff Aϕ has an accepting run on T from t. Furthermore, the size of Aϕ

is linear in the size of ϕ.

2.4 Reduction to Games

In this section we remind the reader that the question of whether a state in two-
player transition system satisfies an AFMC sentence can be reduced to solving
weak recurrence games. We are given a transition system T = (S,RA, RD) and an
AFMC sentence Aϕ. By Theorem 2, we can assume that we have the symmetric
weak alternating automaton Aϕ = (Q,Σ, q0, δ,W).

We now define the product GT,ϕ = (V,E,WG), which is a weak recurrence
game, by taking the product of T and Aϕ. Let Form(Aϕ) be the set of all
subformulas of transition formulas in Aϕ. Take V = (S × (Q ∪ Form(Aϕ)) ∪
{win, lose}. That is, the nodes of GT,ϕ are states of T labeled by either states of
Q or subformulas of transition formulas. There are also two special states win
and lose. We now define the edges E of GT,ϕ, as well as the partition V = V0]V1.

– win and lose each have a single edge to itself. win ∈ WG and lose 6∈ WG.
Thus, if the play hits win then Angels wins, and if it hits lose Angel loses.

– If an edge from a node in V0 is required (below) to go to (s, `), where ` ∈ Σ,
then that edge goes instead to win if s satisfies ` and to lose, otherwise.

– V0 consists of all nodes of the form (s, q), with s ∈ S and q ∈ Q,
as well of nodes of the form (s, θ), where θ is a disjunction or a ♦ expression.

– V1 consists of all nodes of the form (s, q), with s ∈ S and q ∈ Q,
as well as nodes of the form (s, θ), where θ is a conjunction or a � expression.

– Consider a node (s, q) ∈ V0: there is a single edge from from that node to
(s, θ), where θ = δ(q).

– Consider a node (s, θ1 ∨ θ2) ∈ V0: there are edges from that node to the
nodes (s, θ1) and (s, θ2).

– Consider a node (s,♦Ao) ∈ V0 (resp., (s,♦Do) ∈ V0): there are edges to all
nodes of the form (s′, o) with (s, s′) ∈ RA (resp., (s, s′) ∈ RD).

– Consider a node (s, θ1 ∧ θ2) ∈ V1: there are edges from that node to the
nodes (s, θ1) and (s, θ2).

– Consider a node (s,�Ao) ∈ V1 (resp., (s,�Do) ∈ V1): there are edges to all
nodes of the form (s′, 0) with (s, s′) ∈ RA (resp., (s, s′) ∈ RD).

7

3. SYMBOLIC INFINITE-STATE GAMES

– WG = (S ×W) ∪ {win}.

It remains to define the weak structure of GT,ϕ. We first define a partial order
on Q ∪ Form(Aϕ) We start with the partial order defined on Q by its weak
structure, add to it the natural subformula order defined on Form(Aϕ), and
add to it the rule that δ(q) ≤ q. We now define a partial order on V = (S ×
(Q∪Form(Aϕ))∪{win, lose}. We put win and lose at the bottom of the order.
Then we say that (s, o) ≤ (s′, o′) iff o ≤ o′. Since Q ∪ Form(Aϕ) is finite, this
defines a weak structure on GT,ϕ.

Theorem 3. [27, 25] Consider a transition system T and an AFMC formula
ϕ. Then a state s of T satisfies ϕ iff Angel has a winning strategy in GT,ϕ from
the node (s, q0).

3 Symbolic infinite-state games

For the rest of this paper we will work with symbolic games. In particular,
we describe a representation of an infinite two-player game as two higher-order
procedures angel and demon that recursively invoke each other forever. When
combined with a predicate W that indicates whether a given state is in the
recurrence set, we will can then define the induced recurrence game.

The procedures angel and demon are given in continuation-passing style
(CPS) so they do not return values but, rather, invoke each other, passing the
state on the stack. We denote these procedures:

P = {angel x1 ... xn = eangel , demon x1 ... xn = edemon}

Expression eangel is the body of angel (resp. demon) and is given by

e ::= x | c | angel | demon | let x = e′ in e′′ | xx′
| x op x′ | if x then e′ el e′′ | λt.e′ | *

Expressions e are variables x, constants c, function names angel and demon,
let expressions let x= e′ in e′′, function applications x y, constant operations
x op y, conditional branches if x then e′ el e′′, lambda abstractions λt.e′,
and nondeterministic choice *. The constants include the boolean constants true
and false, the unit constant (), and integer constants. The operator op include
boolean and integer operators such as +, −, ≤. The expression * represents
nondeterministic choice from a bounded domain. If * is contained within eangel
then it is interpreted as angelic nondeterminism and if it is contained within
edemon then it is interpreted as demonic nondeterminism. The body eangel may
not call angel (resp. for edemon and demon).

We write fv(e) for the free variables of e. For simplicity, we restrict branch
conditions, operator arguments and the expressions in function applications to
variables. But note that a non-variable form can be encoded by using let. For
convenience, we use the non-variable forms when the encoding is clear from the
context. As usual, applications associate to the left so that e0 e1 e2 = (e0 e1) e2.

8

4. SOLVING SYMBOLIC GAMES

e1 e2
E[e1] E[e2]

E1
JopK(c1, c2) = c
c1 op c2 c Op (λx. e) v e[v/x]

App

F x̄ = e ∈ P
F v e[v/x]

Fun
let x= v in e e[v/x]

Let

if true then e1 el e2 e1
If1

if false then e1 el e2 e2
If2

Fig. 1: Reduction semantics of mutually recursive angel and demon.

We write e1; e2 for let x= e1 in e2 such that x /∈ fv(e2). Without loss of gener-
ality, we assume that bound variables are distinct. We say that an expression is
closed if it contains no free variables.

The small-step reduction semantics are given in Figure 1. The semantics is
fairly standard. Evaluation contexts and values are:

E ::= [] | v E | E e | if E then e1 el e2 | let x=E in e
v ::= F | c | λx. e

We assume that there are no terminating traces: angel will eventually call demon
(resp. for demon). The code angel and demon induce a recurrence game as
follows.

Definition 1 (Induced recurrence game). For a program P , initial condi-
tion I, and recurrence predicate W, the induced game has state space given by
evaluation contexts. Moreover, there is an edge from (F1 v1) to (F2 v2) if and only
if, for some v such that I(v), angel v ∗ E1[F1 v1] and E1[F1 v1] + E2[F2 v2]
without reaching an expression of the form E[F v]. The induced recurrence set
is {F v | W(v)}.

For symbolic weak games, we assume that each component is specified by a
corresponding predicate c1, ..., cn. Each induced components Ci is {F v | ci(v)}.

4 Solving symbolic games

In this section we first describe how to solve safety and liveness games. We use
these as building blocks to then give an algorithm for solving weak recurrence
games. Finally, we implement the translation from Section ?? in our symbolic
setting, reducing the question of whether a state in two-player transition system
satisfies an AFMC sentence can be reduced to solving weak recurrence games

4.1 Solving Safety & Liveness Games

We describe a simple transformation E for a given recurrence program P and
recurrence set W to reduce the search for a winning strategy to a program anal-
ysis problem. The key idea is to create a new recurrence between two methods

9

4. SOLVING SYMBOLIC GAMES

enc angel and enc demon that each first check whether recurrence set W has
been reached and, if not, return unit. In this way, since angel/demon never
return, the return of unit indicates an event of interest: reachability of W. We
first show how this can be used for safety games or liveness games.

Definition 2 (Encoding). For P = {angel x1 ... xn = eangel, demon x1 ... xn =
edemon}, initial condition I, and formula ϕ, let

E(P, I, ϕ) =

let rec enc angel x1 ... xn =

if ϕ(x1, ..., xn) then () else êangel
and enc demon x1 ... xn =

if ϕ(x1, ..., xn) then () else êdemon
and main() =

let (x1, ..., xn) = (*,...,*) in

assume I(x1, ..., xn); enc angel x1 ... xn

where ê is a transformation on e that replaces calls to angel with calls to
enc angel (resp. for demon).

Theorem 4 (Safety Games). For all P, I,W, if E(P, I,W) does not termi-
nate, then for all s ∈ I there exists a winning strategy for Angel to avoid W.

Proof. Assume not. Then E(P, I,W) always diverges and there is a s0 ∈ I from
which there is no winning strategy to avoid W. If E(P, I,W) always diverges
then E(P, {s0},W) always diverges. E(P, {s0},W) divergence must by via an
infinite mutual recurrence between enc angel and enc demon. Since êangel and
êdemon are in CPS, the only way for E(P, {s0},W) to terminate is when W holds
and () is returned. Therefore all choices for angelic nondeterminism avoid W.
Contradiction.

Implementation. Our implementation begins by transforming angel and demon

into enc angel and enc demon. The resulting encoding E(P, I,W) reduces safety
games to proving non-termination. We therefore can prove non-termination of
E(P, I,W) by leveraging a number of different existing techniques [21, 29, 30].
In our implementation, we use [21] which is able to infer refinement types au-
tomatically to prove that main : unit → false, that is, that main does not
terminate.

Example 1. Consider the following recurrence (given as safe int3 in Figure 3)
that involves angelic non-determinism. Here W ≡ x < 0 and I ≡ x = 0.

let rec angel x =

let n = rand int() in

if n >= x then demon (x + 1) else demon x

and demon x = angel (x - 1)

and main() =

let x = * in assume I(x); angel x
Our implementation infers invariants for enc angel and enc demon and treats
rand int as angelic nondeterminism as in [29, 21]. The refinement types inferred

10

4. SOLVING SYMBOLIC GAMES

for rand int provide the conditions on the angelic nondeterminism (i.e. which
choices) that are necessary to prove that E(P, I,W) does not terminate. In this
example, we infer the condition that rand int : unit→ {i : int | i ≥ x}.

Theorem 5 (Liveness Games). For all P, I,W, if E(P, I,W) always termi-
nates, then for all s ∈ I, there exists a winning strategy for Angel to reach
W.

Proof. Assume not. Then E always terminates and there exists some s0 ∈ I from
which there no winning strategy for Angel. However, E(P, I,W) always termi-
nates, so E(P, {s0},W) also always terminates. Pick a trace of E(P, {s0},W).
Since Since angel/demon are given in CPS, it must be via the return of () in
enc angel or enc demon. This case can only happen if W holds. Thus there is
a strategy for Angel to reach W. Contradiction.

Implementation. Our encoding E(P, I,W) reduces liveness games to proving
termination (total correctness). Proving non-termination of E(P, I,W) can be
done with a number of different existing techniques [21, 29, 30]. In our imple-
mentation, we use [30] which is able to the infer rank functions that witness the
termination of main.

We denote by PreCsafe[E(P, I,W)] the application of tools to solve safety
games and PreClive[E(P, I,W)] the application of tools to solve liveness games.
When Angel cannot win the game from all initial states, it still may be possible
for Angel to win from some states.

Definition 3 (Winning Precondition). For a given program P and formula
ϕ, a winning safety precondition is a ψ such that PreCsafe[E(P,ϕ,W)] is true,
and similar for winning liveness precondition.

Our implementation adapts prior work [21] to obtain winning preconditions.
PreCsafe will return the winning precondition for the safety game and PreClive will
return the winning precondition for the liveness game. The technique in [21] was
sufficient for the examples in the evaluation, but we believe a form of CEGAR
may improve efficiency. We leave this to future work.

4.2 Solving Weak Games

Figure 2 gives our algorithm for solving weak recurrence games. We will use the
techniques in the previous section as building blocks: PreCsafe and PreClive and
the winning safety/liveness preconditions that they generate. Recall that each
component in a weak game is either entirely fair or entirely unfair and that
there is a partial order � over these components.

The algorithm proceeds to compute the winning safety/liveness recondition
for each component of the game in a bottom-up fashion. This mapping from ith
component to its precondition ρi is represented as a function that is initially
defined by initial precond (Line 3) and then refined (Lines 13 and 16) each time
a new component is considered. Initially, the function initial precond maps base

11

4. SOLVING SYMBOLIC GAMES

1 type pcmap = int → option formula
2

3 let initial precond : pcmap = λ (i:int) .
4 if (base(Ci) && fair(Ci)) then Some(true);
5 elseif (base(Ci) && unfair(Ci)) then Some(false);
6 else None
7

8 let rec solve (precond : pcmap) : pcmap =
9 let i = choose({ i | ∀Cj . Cj � Ci ⇒ (precond j) 6= None }) in

10 if i = [] then pcmap else
11 let J = successors of Ci in
12 if Ci is fair then
13 solve (λ k. if k = i
14 then Some(PreCsafe[E(P, true,

∨
j∈J(¬(precond j) ∧ cj)]) else precond k)

15 else
16 solve (λ k. if k = i
17 then Some(PreClive[E(P, true,

∨
j∈J((precond j) ∧ cj)]) else precond k)

18

19 let main() =
20 match ((solve initial precond) 1) with
21 | Some(φ) ⇒ if s0 � φ then return “winning strategy for Angel”
22 | ⇒ return “unknown”

where base(Ci) ≡ @Cj .Cj � Ci.

Fig. 2: Bottom-up algorithm for solving weak recurrence games. The algorithm
iteratively computes the winning precondition (precond i) for each ith compo-
nent. If the precondition of the first component C1 holds of the initial state s0,
then there is a winning strategy for Angel.

components—those components that don’t have any successors—to the formula
true when the component is fair and false when it is unfair. The outer procedure
main begins by passing this initial precond to solve.

Each iteration of solve begins by choosing a component Ci such that all of
Ci’s successors have already been solved (Line 9). It then sets up a new game
for this component, which may be a safety game PreCsafe if Ci is fair, or else a
liveness game PreClive if Ci is unfair. In either case, this game is comprised of a
disjunction over all subcomponents J . Each disjunct has the jth subcomponent
predicate cj as well as its winning precondition precond j. This winning precon-
dition is negated if Ci is fair in order to find a winning strategy that avoids the
subcomponent. Notice that losing successor components (those components for
which there does not exist a winning strategy for Angel) will have preconditions
that are false. The result of PreC solving this game is a winning precondition
for component i (refinement of true) that is used in the partial definition of a
new function passed in the recursive call to solve (Lines 13 and 16).

12

5. EVALUATION

When there are no more components for which a precondition has not yet
been computed, solve terminates (Line 10) and main checks that s0 � (precond 0).

Theorem 6 (Soundness). If the algorithm in Figure 2 returns “winning strat-
egy,” then there is a winning strategy for Angel.

Proof. It suffices to show that solve computes winning preconditions for all com-
ponents. We do this by induction on solve precond and the partial order � of
the components. The base case is trivial. In the inductive case for component
i, we assume that precond maps each immediate successor component j to its
precondition ρj and show that solve will recur with a second argument that maps
i to its precondition ρi. By the inductive hypothesis we know that (precond j) is
the winning precondition for component j. There are now two cases:

1. Ci is fair. PreCsafe will return the condition for Angel to avoid reaching
a losing subcomponent:

∨
j∈J(¬(precond j) ∧ cj). That is, PreCsafe returns

the condition under which there is a winning strategy for Angel to avoid
satisfying any jth losing precondition ¬(precond j).

2. Ci is unfair. PreClive will return the condition for Angel reach a winning
subcomponent:

∨
j∈J((precond j)∧cj). That is, PreClive returns the condition

under which there is a winning strategy for Angel to satisfy some jth winning
precondition (precond j).

4.3 Solving Alternation-Free Mu-Calculus Games

In this symbolic setting, we have implemented the translation described in Sec-
tion 2.4 that reduces the question of whether a state in two-player transition
system satisfies an AFMC sentence can be reduced to solving weak recurrence
games. Our technique first takes a µ-calculus formula ϕ and transition system P
and creates a weak recurrence game described by component predicates c1, ..., cn.
In this game the state space is a pair consisting of (fst) the weak game state
and (snd) the state from the original two-player transition system. We use in-
tegers to represent the weak game state, assigning a distinct integer to each of
the (finitely many) weak game states. The two-player transition system state is
described as a single variable, but this is expressive enough because our imple-
mentation supports tuples, higher order functions and algebraic data types (in
addition to integers, booleans, unit).

5 Evaluation

Implementation. We have developed a prototype tool called PGS (Program-
Games Solver), capable of automatically discovering winning strategies for games
over infinite-state spaces. The tool takes safety, liveness, weak recurrence, and
AFMC verification games described as mutually recursive functions in the syntax
of the OCaml functional language. The tool supports integers, booleans, tuples,
higher order functions, and algebraic data types. As a backend termination and
non-termination checker, PGS uses a combination of previous techniques [30,
29, 21].

13

5. EVALUATION

Name Type LOC Result Time Precond.

safe int1 safety 4 X 0.775 No
safe int2 safety 5 X 1.418 No
safe int3 safety 9 X 9.050 No
safe list safety 11 X 2.384 No
safe fun safety 15 X 7.862 No
2bits safety 14 X 9.570 No
3bits safety 18 X 33.827 No
5game safety 20 X 82.526 No
live int1 liveness 4 X 0.794 No
live int2 liveness 8 X 0.915 No
live int3 liveness 16 X 5.231 No
live list liveness 14 X 8.839 No
live fun liveness 15 X 4.984 No
weak rec weak recurrence 18 X 6.411 No
afmc nu1 p⇒ νz.(q ∧ ♦A�Dz) 4 X 29.519 Yes
afmc nu2 p⇒ νz.(q ∧ ♦A�Dz) 4 X 36.298 Yes
afmc mu µz.(p ∨ ♦A�Dz) 4 ??? 28.223 Yes

Fig. 3: The results of applying our prototype tool PGS to a variety of games.

Evaluation. We have evaluated our tool with a variety of games over infinite
state spaces. We have conducted the experiments on a machine with Intel(R)
Xeon(R) CPU E5620 (2.40 GHz, 4 GB of memory). The experiment results
are summarized in Table 3. The first and the second columns show the name
and the type of each game. AFMC verification games are represented as the
shape of the AFMC formula where p and q are literals specific to the game.
We also give the lines of code “LOC”. We report the result “Result” and
the total time “Time” in seconds for each game. “X” indicates that our tool
automatically discovered a winning strategy and “???” indicates that our tool
reported unknown whether a winning strategy exists. The column “Precond.”
shows whether winning preconditions were used to solve the game.

The games with names * int*, * list, and * fun are respectively over inte-
gers, inductively defined lists, and functions. The OCaml codes of the games and
their verification log messages output by PGS are available as a supplementary
material. These games are small but tricky: game solving required PGS to auto-
matically synthesize non-trivial invariants, ranking functions, and strategies for
random number generation on not only integers but also algebraic data struc-
tures and higher-order functions (see the PGS log messages for details). PGS
successfully solved most of them within a minute. We here found that winning
precondition inference is essential for solving weak recurrence games reduced
from AFMC verification games. PGS failed to solve the game afmc mu because
the backend termination checker was not able to automatically find necessary
invariants for solving 1 out of 4 components. The other 3 components were suc-
cessfully solved. We here expect PGS can benefit from future improvements of
termination and non-termination verification techniques.

14

6. CONCLUSION

6 Conclusion

We have shown the first technique to automatically solve weak-recurrence games
over infinite state spaces. This encompasses the verification question for alternation-
free µ-calculus sentences over two-player transition systems. Our work reduces
the problem to safety and liveness over a finite set of components, using the
winning precondition of lower components in the search for winning conditions
of higher components. We have implemented our tool, applied it to a variety of
examples, and made it available at:

http://www-kb.is.s.u-tokyo.ac.jp/~uhiro/weakgame/

Other related work. In Section 1, we surveyed the related work on model check-
ing, alternation-free µ-calculus, and games. In recent years there have been
numerous techniques for proving safety, liveness, and temporal properties of
infinite-state programs. This includes LTL [12], ∀CTL [14], CTL [13, 6], and
CTL∗ [11]. Beyene et al. [5] proposed a constraint-based approach for solving
games on infinite graphs. To the best of our knowledge, none of these techniques
are able to verify general AFMC sentences.

15

6. CONCLUSION

References

1. Ball, T., Cook, B., Levin, V., and Rajamani, S. Slam and static driver
verifier: Technology transfer of formal methods inside microsoft. In Integrated
Formal Methods (2004), pp. 1–20.

2. Ball, T., Levin, V., and Rajamani, S. K. A decade of software model checking
with SLAM. Commun. ACM 54, 7 (2011), 68–76.

3. Ball, T., and Rajamani, S. The SLAM toolkit. In Proc. 13th Int. Conf. on Com-
puter Aided Verification (2001), vol. 2102 of Lecture Notes in Computer Science,
Springer, pp. 260–264.

4. Beeri, C., and Bernstein, P. Computational problems related to the design
of normal form relational schemas. ACM Trans. on Database Systems 4 (1979),
30–59.

5. Beyene, T. A., Chaudhuri, S., Popeea, C., and Rybalchenko, A. A
constraint-based approach to solving games on infinite graphs. In The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014 (2014), pp. 221–234.

6. Beyene, T. A., Popeea, C., and Rybalchenko, A. Solving existentially quan-
tified horn clauses. In Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (2013),
pp. 869–882.

7. Chatterjee, K., and Henzinger, M. Efficient and dynamic algorithms for al-
ternating büchi games and maximal end-component decomposition. J. ACM 61, 3
(2014), 15:1–15:40.

8. Clarke, E., Emerson, E., and Sistla, A. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languagues and Systems 8, 2 (1986), 244–263.

9. Clarke, E., Grumberg, O., and Peled, D. Model Checking. MIT Press, 1999.
10. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., and Vardi, M.

Proving that programs eventually do something good. In Proc. 34th ACM Symp.
on Principles of Programming Languages (2007), pp. 265–276.

11. Cook, B., Khlaaf, H., and Piterman, N. On automation of ctl* verification
for infinite-state systems. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I (2015), pp. 13–29.

12. Cook, B., and Koskinen, E. Making Prophecies with Decision Predicates. In
POPL’11 (2011).

13. Cook, B., and Koskinen, E. Reasoning about nondeterminism in programs. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’13) (2013), ACM.

14. Cook, B., Koskinen, E., and Vardi, M. Y. Temporal property verification
as a program analysis task. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (2011),
pp. 333–348.

15. Cook, B., Podelski, A., and Rybalchenko, A. Termination proofs for systems
code. In Proc. ACM Conf. on Programming Language Design and Implementation
(2006), pp. 415–426.

16. Dijkstra, E. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18, 8 (1975), 453–457.

17. Emerson, E., Jutla, C., and Sistla, A. On model-checking for fragments of
µ-calculus. In Proc. 5th Int. Conf. on Computer Aided Verification (1993), vol. 697
of Lecture Notes in Computer Science, Springer, pp. 385–396.

18. Emerson, E., and Lei, C.-L. Modalities for model checking: Branching time logic
strikes back. In Proc. 12th ACM Symp. on Principles of Programming Languages
(1985), pp. 84–96.

16

6. CONCLUSION

19. Emerson, E., and Lei, C.-L. Efficient model checking in fragments of the propo-
sitional µ-calculus. In Proc. 1st IEEE Symp. on Logic in Computer Science (1986),
pp. 267–278.

20. Grädel, E., Thomas, W., and Wilke, T. Automata, Logics, and Infinite Games:
A Guide to Current Research, vol. 2500 of Lecture Notes in Computer Science.
Springer, 2002.

21. Hashimoto, K., and Unno, H. Refinement type inference via horn constraint
optimization. In Static Analysis - 22nd International Symposium, SAS 2015, Saint-
Malo, France, September 9-11, 2015, Proceedings (2015), pp. 199–216.

22. Hintikka, J., and Sandu, G. Game-theoretical semantics. In Handbook of Logic
and Language, J. van Benthem and A. ter Meulen, Eds. Elsevier, 1997.

23. Jifeng, C. H. H. Unifying theories of programming, vol. 14. Prentice Hall, 1998.
24. Kozen, D. Results on the propositional µ-calculus. Theoretical Computer Science

27 (1983), 333–354.
25. Kupferman, O., and Vardi, M. An automata-theoretic approach to modular

model checking. 87–128.
26. Kupferman, O., and Vardi, M. µ-calculus synthesis. In 25th Int. Symp. on

Mathematical Foundations of Computer Science (2000), vol. 1893 of Lecture Notes
in Computer Science, Springer, pp. 497–507.

27. Kupferman, O., Vardi, M., and Wolper, P. An automata-theoretic approach
to branching-time model checking. Journal of the ACM 47, 2 (2000), 312–360.

28. Kupferman, O., Vardi, M., and Wolper, P. Module checking. Information
and Computation 164 (2001), 322–344.

29. Kuwahara, T., Sato, R., Unno, H., and Kobayashi, N. Predicate abstrac-
tion and CEGAR for disproving termination of higher-order functional programs.
In Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II (2015), pp. 287–303.

30. Kuwahara, T., Terauchi, T., Unno, H., and Kobayashi, N. Automatic
termination verification for higher-order functional programs. In Programming
Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (2014),
pp. 392–411.

31. Lenzi, G. The modal µ-calculus: a survey. TASK Quarterly 9, 3 (2005), 293–316.
32. Mazala, R. Infinite games. In Automata logics, and infinite games, Lecture Notes

in Computer Science 2500. Springer, 2002, pp. 23–38.
33. Pnueli, A., and Rosner, R. On the synthesis of a reactive module. In Proc.

16th ACM Symp. on Principles of Programming Languages (1989), pp. 179–190.
34. Vardi, M. Alternating automata and program verification. In Computer Science

Today –Recent Trends and Developments (1995), vol. 1000 of Lecture Notes in
Computer Science, Springer, pp. 471–485.

35. Vardi, M. Branching vs. linear time: Final showdown. In Proc. 7th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (2001),
vol. 2031 of Lecture Notes in Computer Science, Springer, pp. 1–22.

17

