We study domain decomposition techniques for the solution of partial differential equations
on a domain divided into several subdomains. These techniques have special applications in the
solution of elliptic problems on irregular domains and parallel computation. A unifying feature of
these techniques is the use of preconditioned conjugate gradient method in solving for the unknowns
on the interfaces of the subdomains, or in some cases,-on the whole domain. Since each iteration
involves solving problems on each subdomain, it is essential to keep the number of iterations low.
For this reason, much effort has been devoted recently to the construction of good preconditioners
for the conjugate gradient methods. In this paper, we survey the most common preconditioners
that have appeared in the literature, including a new class that we have developed recently. One
of our objectives is to illuminate the relationships among these preconditioners.
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1. Introduction

We consider the problem of solving an elliptic partial differential equation on a domain  that
is broken up into subregions ;. By using domain decomposition or substructuring techniques, the
problem reduces to separately solving approximate problems in the subdomains and updating the
solution at the interfaces between two or more subregions. There are several reasons why these
techniques might be attractive:

1. Special solution techniques, like fast direct solvers, might exist to solve the problems on the
subdomains that cannot be applied efficiently to the entire domain. This is often the case, for
example, when the subdomains ; have very regular geometry, but £ does not.

2. The equations in the different subdomains might have different parameters or even be of dif-
ferent nature, in which case the idea of substructuring comes very naturally.

3. The idea is attractive for parallel processing, since the problem can be decoupled into in-
dependent subproblems and the communication needed is limited to the boundaries of the
subdomains.

For the class of domain decomposition methods considered in this paper, the basic idea consist
of the following: the domain is discretized and partitioned into several subregions, then, by ap-
plying block elimination to the discretized equations, a system is derived for the unknowns on the
interfaces between subregions. This system is sometimes called the capacitance system. Forming
the right hand side for the interface system and solving it requires the solution of independent
elliptic problems on the subdomains. For certain constant coefficient problems, fast direct methods
can be applied to the solution of the interface system. Such is not the case, however, for more
general operators on irregular domains. For efficiency reasons the system must then be solved by
iterative methods, such as the preconditioned conjugate gradient method (PCG). Once the solution
is known on the interfaces, one more elliptic problem must be solved on each subdomain with the
computed values as boundary conditions. The method is particularly suited to problems for which
the subproblems can be solved efficiently, for example, when the operator has separable coefficients
and the domain is a union of rectangles. On the other hand, when the subdomain problems cannot
be solved efficiently but they can be approximated by simpler operators, it is possible to derive
block preconditioners for the original system based on preconditioners for the capacitance matrix.

In section 2, we illustrate the method for the case of a domain that is the union of two
rectangles. In section 3, we consider the Poisson and Helmholtz equations on a rectangular domain
divided into parallel strips and derive the capacitance system for the interface variables. For these
simple and regular cases, the capacitance system can be solved by fast direct methods. Such is not
the case for irregular domains. In section 4, we summarize the various preconditioners that were
proposed in the literature for use with the CG method. For the case of variable coefficient problems,
when fast direct methods are not applicable to the solution of the problems on the subdomains,
the system for the whole domain must be solved by iterative methods. Using the results of the
previous sections, preconditioners for the large system can be derived from preconditioners for the
capacitance matrix. We discuss this case in section 5. Finally, in section 6, we propose a new family
of row-sum preserving banded preconditioners for the capacitance matrix. These preconditioners
have the advantage that they can be applied to a more general class of problems, since as opposed
to most of the other preconditioners, they do not depend on special properties of the differential
operator.

2. Domain Decomposition
We will first consider the problem:

Lu=f on Q (2.1)
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Figure 1: The domain (2 and its partition.

with boundary conditions
U= up on 9N

where L is a linear elliptic operator and the domain (2 is as illustrated in Fig. 1. We will call the
interface between (27 and Q9, T,

If we order the unknowns for the internal points of the subdomains first and then those in the
interface I', then the discrete solution vector u = (u1, ug,us) satisfies the linear system

Au=b (2.2)
that can be expressed in block form as:
An A1s U1 b1
Ay Ags ug | = | be (2.3)
AT, AL Ass ) \ws bs

The system (2.3) can be solved by Block-Gaussian Elimination as follows:

Step 1: Compute

C = Ass — AL AT Az — AT AS  Ags, (2.4)
wy = A[lby (2.5)
wy = Ay by (2.6)

and solve
Cus = by — Al,w; — ALw, (2.7)

Step 2: Compute
Uy = wy — AI11A13U3 (2.8)

and

Uy = Wy — A2_21A23U3 (2.9)
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Note that, except for (2.7), the algorithm only requires the solution of problems with A;; and
Agg, which corresponds to solving independent problems on the subdomains. This technique of
reducing the problem on €2 to the solution of decoupled problems on the subdomains and a smaller
system for the interface is usually called domain decomposition or substructuring. The matrix C
(2.4) is the Schur complement of Ag3 in A and it is sometimes called the capacitance matriz in this
context.

3. Poisson and Helmholtz Equations on a rectangle

We now consider the case where L is the Laplacian operator and Q is a rectangle divided into
two or more strips like is shown in Fig. 2. For this case, the exact eigenvectors and eigenvalues of
C are known [2, 6, 7].
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Figure 2: Rectangular domain divided into strips.

For the case of two strips, C has the following eigenvalue decomposition:
A
% A 5 wT | (3.1)
. N

where W is the matrix whose columns are

wj = v/ ni 1(sin Jrhysin 257h, - - sin ngrh)T (3.2)

and
Aj = 1+7’7'm+1+ Lo +U? 3.3)
I N T I Ty (3.
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fory=1,...,n, where

0j = 4sin? (]_;rlg) , (3.4)

2
o) o]
el R s (3.5)

h is the grid size, and m; and mg are the number of rows of grid points in the y-direction in {; and
{15 respectively. By using the decomposition (3.1), the capacitance system (2.7) can be solved by
fast Fourier transforms. Once the solution uz on the interface is computed, we can compute u; and
ug by (2.8) and (2.9), which correspond to solving two independent problems on the subdomains
with boundary condition uz on T'.

In the multistrip case, the matrix C has the block-tridiagonal structure:

C1 B
c=| B ; (3.6)
) ‘. By
By Ck
all blocks C; and B; have the same matrix of eigenvectors W, i.e. for i =1, ... ,k, we have
WICW = A; = diag(Mi1, .- ., Ain) (3.7)
and for : = 2,...,k, we have
WTB,W = D; = diag(6;1,...,6m) (3.8)
where
A Gt/ RN keSS N IR 3.9
oA 1—7}"‘+1+1~’7}""+‘+1 it (3:9)
and
- 11—~
Ly J (1 - ,7;.”",""1

The capacitance system can then be solved by fast Fourier transforms and the solution of n decou-
pled tridiagonal systems of dimension k, where k + 1 is the number of subdomains [7].

Although it first appears that the algorithm requires the solution of two problems on each
subdomain, one for computing the right hand side and one for computing the solution on each
subdomain, some computations can be saved. We refer the interested reader to [8], where a detailed
operation count is derived for the sequential and parallel implementations.

Formulas (3.6) to (3.10) can be generalized to two particular operators other than the Lapla-
cian: the linear elliptic operator

Uge + Py (3.11)
where the coefficient 3 takes constant values 8; on each subdomain ; and the Helmholtz operator
Au+oau . (3.12)
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The capacitance matrix for the operator (3.11) has the same form as (3.6). The eigenvalues of C;
and B; are given by

; 41+l
Lot [0 Lt [
Aij = — (1_7"‘“_'_1 z‘+ﬂi0'j - r———,ym Z+,Bi+10'j (3.13)

ij i+1,5

8ij = Bir/i} (l—z-fyT:ﬁ'T) )

4

2
1 oj o?
i = g3 5 tBhi—\ B | (3.14)

The operator (3.11) can be used as a preconditioner for more general variable coefficient problems.

The Helmholtz operator (3.12) has important applications in the solution of time dependent
problems. The capacitance matrix for this operator also has the form (3.6), where the eigenvalues
of C; and Bj; are

and

where

m;+1 m;41+1 2
Aij = = 1+’7,'~n.+1 1+7{n~ =) 4y (3.15)
1- ,7] g 1-— ,7] 41 4
and
, 1—n;
_— my J
bij =\ (‘1—_—7]%3—1;{) ’ (3.16)
where
p=—0a; —2+ ah? (3.17)
and )
1 w2
N = __2!__. .;11_1 . (3.18)

4. Poisson Equation on Irregular Domains

In general, when  has irregular shape like in Fig. 1, the eigenvalues and eigenvectors of the
capacitance matrix are not known. The computation of the capacitance matrix is expensive, since
it requires the solution of m + 1 systems with 4;; and Ags, and it is also expensive to invert for m
large, because it is dense.

Instead of solving the system (2.7) directly, preconditioned conjugate gradient methods (PCG)
can be applied, where only matrix vector products Cy for arbitrary y € R™ are required. This
product can be computed by solving one Poisson problem on each subdomain with boundary
condition on T given by y.

Since each iteration involves the solution of problems on the subdomains, keeping the number
of iterations small is very important for the efficiency of the method. This can be achieved by
choosing a good preconditioner for C, several of which are given in the literature [3, 10, 13, 5]. We
summarize these here:

1. In [10], Dryja proposes
Mp = \/E s
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as a preconditioner for (2.4), where K is the one-dimensional Laplacian. He proved that the
condition number of the preconditioned system, K(MBIC) is bounded independently of the
mesh size h. Since Mp has the following factorization
Mp = Wdiag(’\f)’Ag,"',)‘rl?)WT ’ (4'1)
where the columns of W are given by (3.2) and
AP = -2 /5; (4.2)

with o; given by (3.4), Mp can be inverted by FFT’s.
2. Golub and Mayers [13] propose a preconditioner given by

Mg =VK?2+4K

which has the following decomposition:

Mg = Wdiag(\§, A, A§)WT (4.3)

o2
A = —21/o; + Z] : (4.4)

Empirical results in [13] show that Mg performs better than Mp.

where

3. Another interesting preconditioner was given by Bjérstad and Widlund [3] and has the following
form:
Mp = Ass — 2A{3A;11A13

It is easy to show that the eigenvalue decomposition of Mp is

Mp =Wdiag(\B,AB,... ABywT | (4.5)

1+ 7_nl+1 0_2_
W =2 (——‘“7] %Gt

where

1— ,Y;nl-l'l 4
for j=1,...,n. When ; and Q3 are identical, Mp is an exact preconditioner. To implement
the method, Bjorstad and Widlund solve a mixed Neumann-Dirichlet problem in one of the
subdomains and a Dirichlet problem in the other one. Their method has the advantage that
it can be applied to more general operators and domain shapes, but in the particular case of
the Laplacian operator on a union of rectangles, it is less efficient than applying a single FFT
computation on the interface grid points, as the factorization (4.5) sugests.

4. Although Mp, Mg and Mp were derived independently of the factorization (3.1), they can be
viewed as progressively better approximations to the capacitance matrix C L. The factorization
(8.1) is exact for the case of a rectangular €2, while Mp and Mg are not. It can be easily observed
that (4.2) is a first order approximation to (3.3), while (4.4) is a second order approximation.
On the other hand, Mp is exact only for the case of a rectangular domain divided into two

1 Anderson [1] gives an interpretation of the various discrete preconditioners as approximations to a continuous operator on
the interface




identical subregions. All this sugests that (3.1) might be a better preconditoner for the case of
an irregular domain [6].. We will call this preconditioner M.

In Fig. 3 we compare the preconditioners Mp, Mg and Mg for the Poisson equation on a
T-shaped region Q2 as given in Fig. 1, where we vary the aspect ratio of the subdomain ;. We
consider a uniform grid on Q with 15 grid points on the interface I'. By varying m;, the number
of interior grid points in the y direction on the subdomain ;, we computed the condition number
of the /preconditioned capacitance system for different aspect ratios 21l As we can see, Mg
performs very well, even when Q; becomes very narrow, while the others deteriorate. All Mg, Mg

and My are indistinguishable for aspect ratios larger than one and they are all better than M. p. In

[6], Chan analyzes and compares these preconditioners on rectangular regions. By his analysis, we
can see that Mg is always better than Mp on a rectangle and both preconditoners perform poorly
when the aspect ratio for the dimension of the rectangles is small. See [14] for a careful numerical
comparison of these and other preconditioners for constant and variable coefficients operators.
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Figure 3: T-shaped region. Condition number of the pre-
conditioned capacitance matrix with Chan’s (C), Dryja’s(D),

Bjorstad and Widlund’s (W) and Golub and Mayers’ (G) pre-
conditoners.
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5. Variable Coefficient Problems

In the case of non-constant coefficient problems, there usually are no fast solvers available for
Aj1 and Agg and therefore the solutions to systems with these matrices are to be avoided. In that
case, a Krylov subspace method can be applied to solve the system (2.3) on the whole domain
instead of just the capacitance system on the interface. Therefore, we must now be concerned with
the problem of finding preconditioners for (2.3) that make use of the regularity of the subdomains.
We will show that preconditioners for (2.3) can be derived from preconditioners for the capacitance
matrix. Assume that the variable coefficient operator can be approximated by operators with
constant coefficients on each subdomain. In particular, let By; and Byy be approximations to A;;
and Ajgg, corresponding to the discretization of linear elliptic operators with constant coefficients
on (2; and (2 respectively. Based on the following decomposition of the matrix A in (2.3):

Ay I ATlAs
A= Ago I A5} Ags , (5.1)
Az Asy C I

where C' is the Schur complement (2.4), we can derive a preconditoner for A given by:

5 B I Bi'Az
M = Bo, I BytAxs | (5.2)
Az; Az M I

where M is a good preconditioner for the matrix C. We can see that M is easily invertible by
block-elimination, since fast solvers can be applied to solve systems with B;; and Bss.

Preconditioners of the form (5.2) were first used by Bramble, Pasciak and Schatz’s [4, 5]. In
[4], Dryja’s preconditioner is used as the matrix M in (5.2). The second preconditioner in [5]
corresponds to chosing the matrix M given by Bjérstad and Widlund [3]. As a generalization of
their idea, any of the preconditioners given for the constant coefficients case can be applied here as
M. In fact, a theorem by Eisenstat in [14] shows that, when B;; = A;;, the PCG algorithm applied
to (2.7) with preconditioner M and initial guess uJ is equivalent to the PCG algorithm applied to
(2.3) with preconditioner given by (5.2) and initial guess (Aj} (b1 — A13ul), A5 (bg — Agzul), ud).
In [14], numerical experiments were performed with these and other preconditioners.

6. A new class of banded, row-sum preserving preconditioners

We now present a new family of preconditioners for the capacitance matrix C. These pre-
conditioners are motivated by the empirical observation that the elements of the matrix C' decay
away from the main diagonal. It is, therefore, reasonable to consider k-diagonal approximations
to C. It would not, however, be efficient to compute the elements of C' in order to do this. We
now present a method for computing a k-diagonal approximation to C' without requiring the com-
putation of C' explicitly. The idea is motivated by sparse Jacobian evaluation techniques [9]. For
example, for the case k = 3, the approximant M to C can be computed in compact form by eval-
uating the three products Cu;,¢ = 1,2,3, where ug = (1,0,0,1,0,...)T, u3 = (0,1,0,0,1,...)7 and
ug = (0,0,1,0,0,...)T. The motivation is clear, for if C' were indeed tridiagonal, (k = 3), then all of
its nonzero elements can be found in the three vectors Cu;,¢ = 1,2,3. Note that the computation of
each product C'u; involves solving one problem on each subdomain with u; as boundary condition
on the interface.

The generalization to other values of k is obvious. Moreover, it can be easily verified that the
matrix M computed this way preserves the row-sums of C. The case k = 1, however, deserves
special mention. The method described above would compute a diagonal approximation to C, with
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diagonal entries given by Ce, where e = (1,1,... ,l)T. However, since the first term Ass in the
definition of C in (2.4) is already known explicitly (and it is tridiagonal), it is only necessary to
apply the above approximation procedure to the last two terms in (2.4). The resulting matrix M is
thus tridiagonal, namely, Ass with the diagonal entries modified in such a way that the row sums
of C are preserved. Viewed this way, the case k = 1 is similar in spirit to the Dupont-Kendall-
Rachford procedure [11] for obtaining an easily invertible banded approximant for C. This special
procedure for the case k = 1 was sugested independently by Eisenstat [12]. See [14] for numerical
experiments with this class of preconditioners.

In general, for a k-diagonal approximation to C, k problems on each subdomain must be
solved, which may seem prohibitively expensive except for small values of k. However, the main
advantage of this family of preconditioners is that they are less dependent on special properties
(e.g. eigenstructures) of the differential operator underlying A. Moreover, for nonlinear problems
where a Newton type outer iteration may be involved, one preconditioner can be reused several
times and the cost of computing it can be amortized over the overall iteration. Further details will
be reported elsewhere.
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