A dissertation presented to the faculty of the Graduate School of Yale University in
candidacy for the degree of Doctor of Philosophy.
©Copyright by Diana C. Resasco, 1990. All rights reserved.

Domain Decomposition Algorithms for Elliptic
Partial Differential Equations

Diana Cristina Resasco

YALEU/DCS/RR-776
May 1990

Work supported in part by “ Consejo Nacional de Investigaciones Cientificas y Técnicas”,
from Argentina, by the Department of Energy under contract DE-AC02-81ER 0996, by
the Office of naval research under contract N00014-86-K-0310, and by IBM under grant

P00038437.

Contents

1 Introduction ' 1
1.1 Descriptionof the Method o i v i i e e e 1
1.2 Thesis Outline o 0 i i i i i it s e e e e e e e e e e e e e e e e e 3

2 Notation and Preliminary Definitions 7
2.1 Preliminary Notation 0 i i i i i it e e e e e e e e e e e e e e e e 7
2.2 Variational Iterative Methods 0 i i it i e e e e e e e e 7
2.3 Finite Difference Discretizations. L i o e 8
2.4 Notation Concerning the Domain Decomposition Method 10
2.5 Interaction Between Boundaries of a Subdomain, 10
2.6 About Schur Complements and Preconditioned Iterative Methods 15
2.7 Notation for Arithmetic Complexity 19

3 Preconditioners for the Interface System: Two Subdomain Case 21
3.1 Introduction v v i i i it e 21
3.2 Dryja’s Preconditioner e e e e e e 22
3.3 Golub and Mayers’ Preconditioner i i ittt e e e e e e e 22
3.4 Bjorstad and Widlund’s Preconditioner v v v v v vt it e 22
3.5 Chan’s Preconditioner @ . ¢ i i i i i i i i i e e e e e e e e 23

4 Some Exact Decompositions of the Schur Complement 25
4.1 Introduction o o i e e e e e e e e e e e e e e e e e e 25
4.2 Two-strip Decompositions o o v i i i e e e e e e e e e e e e e e e e e 25
4.3 Multi-Strip Decompositions Lo e P ... 28
4.4 A Special Case of Irregular Mesho i i i e 30
4.5 SUIMIMNATY « v v v v v v e v e b e v o o s e oo ot e s oo oot e e o e tn o s e e e e 31

5 Preconditioning the Interface System on Irregular Domains: L-shaped and C-shaped
Domains 35
5.1 Imtroduction o i i i i it i e e e e e e e e e e e e e e e e e e e 35
5.2 L-shaped Regions o o v i v it e e e e e e e e e e e e e 38
5.3 Bound on the Condition Number for L-shaped Regions 41
54 C-shaped Regions. o v i i v i it e e e e e e e e e 47

6 Parallel Domain-Decomposed Fast Poisson Solvers 51
6.1 Imtroduction v i i i i i e e e e e e e e e e e e e e e e 51
6.2 Domain-Decomposed Fast Poisson Solvers 52

6.2.1 Algorithm DDFAST o e e e e e e e e 53
6.2.2 Complexity of DDFAST o v i it e e e e 54
6.3 Subdomain Solvers using Fourier Analysis 55

iii

6.3.1 Algorithm DD1 ottt it e e e e e e e 55

6.3.2 Algorithm DD2 e e e .. 56
6.4 Other Approaches i e e 60
6.4.1 Subdomain Solvers using Block Cyclic Reduction 60
6.4.2 Algorithm FACR e e e e 62
6.4.3 Generalized Marching Algorithm 63
6.5 Parallel Implementations. 63
6.6 Numerical Experiments e e 65
6.7 Three Dimensional Problems unnn... 69
6.7.1 Parallel Three Dimensional Solver 'uu.n... 71
6.8 Discussion and Conclusions i P ¢
Parallel Preconditioners for Non-Separable Problems 73
7.1 Introduction i i i e e e e e e e e e e e e 73
7.2 Piece-wise Separable Approximations and Domain Decomposition. 74
7.3 Parallel Solution of Non-Separable Problemso, 78
7.4 A Brief History of Preconditioners v ittt mm .. 79
7.4.1 Block-Diagonal Preconditioners u.... 80
7.4.2 Preconditioners for Decompositions with Cross-Points 80
7.5 Strips Revisited e e e e e e 81
7.6 The Spectrum of M~TA i 82
7.7 Separable Approximations on the Subdomains. 83
7.8 Numerical Examples e e e 84
7.9 Concluding Remarks L e e e e e 88
79.1 A Noteon Granularity e e e e 88

iv

List of Figures

1.1 The domain € and its partition e e e 2
1.2 Decomposition of a T-shaped region 4
2.1 Interaction between interfaces: a rectangular subdomain.,.. 11
3.1 Condition number of M5'C and M5},C vs. aspect Tatio. o « . v v v v v v w v u it ot 24
4.1 Rectangular domain divided intotwostrips, 26
4.2 Rectangular domain divided intostrips 28
5.1 L-shaped domain i i i ittt e e e e e e e e e ..., 35
5.2 Condition number vs. F . . o o v ot i e e e e 36
5.3 Condition number vs. aspect ratioof 1. e e e e e 36
5.4 Condition number vs. aspect ratioof @2 e e 37
5.5 Eigenvalue clustering vs. aspect ratioof Q; 37
5.6 Decomposition of an L-shaped domain, 38
5.7 Example: an L shaped domain, 40
5.8 A plot of the function f(z,y) o i i i i e e e e e 43
5.9 C-shaped domain i i i it e e e e e e e e e e e e e e 47
6.1 Rectangular domain divided intostrips 52
6.2 Algorithm DDFAST e s e e e e e e e e e e 54
6.3 Algorithm DD1 e e e e e e e e 56
6.4 Algorithm DD2 (Black-box Implementation). 57
6.5 Algorithm DD2 (Efficient Implementation) 58
6.6 Block Cyclic Reduction Algorithm 61
6.7 Algorithm Par-DDFAST e e e 64
6.8 Algorithm Par-DD2 o e e e e e e e e e e e e 65
6.9 Runtime for DD2(p)and MD1 e e e e 67
6.10 Efficiency for Algorithm DD2 L e e 69
6.11 Relative speed-up and efficiency for Algorithm DD2 70
6.12 Runtime for DD2(k)and MD1in3-D 71
7.1 Residual reduction for Example 1 L e 85
7.2 Coefficients for Example2 S 86
7.3 Residual reduction for Example 2 e, 87

List of Tables

4.1
4.2

5.1

6.1
6.2
6.3
6.4
6.5

7.1
7.2

Eigenvalues of C for two-strip decompositions o . 32
Eigenvalues of C for multi-strip decompositions 33
Eigenvalues for an L-shaped region o o i v i i it e e e e e 41
Runtimes for Algorithms MD and DD2 i ittt i ittt ee e e 59
Runtimes for Fast Sine Transform routine, 60
Percentages of total time in Algorithm Par-DD2 66
Speed-up for Algorithm DD2 e e e e e 68
Speed-up and efficiency for three-dimensional Poissonsolver 72
Numerical Example 1 0 0 i i e e e e e e e e e e e e e e e e 85
Numerical Example 2 i 0 i i et i e e e e e e e e e e e e e e e e e e 87

vii

ABSTRACT

Domain Decomposition Algorithms for Elliptic Partial Differential
Equations

Diana Cristina Resasco
Yale University

1990 -

The technique of Domain Decomposition or Substructuring is applied to the
solution of elliptic partial differential equations when the domain is divided
into a number of subdomains. The decomposition may be motivated, for
example, by the differential operator taking different parameters on each
subdomain, or there might be a natural decomposition of the domain into
regular pieces such as rectangles. The idea also provides a very natural
approach to the solution of elliptic problems on multiprocessor systems. In
this thesis we are interested, in particular, in a class of domain decomposition
techniques whose unifying feature is the use of the preconditioned conjugate
gradient method in solving a system for the unknowns on the separator
set, given by the gridpoints at the interfaces between subdomains. In some
cases, preconditioners for the problem on the whole domain can be derived
from preconditioners for the interface system. Since each iteration involves
solving problems on the subdomains, it is essential to keep the number of
iterations low. For this reason, much effort has been devoted recently to the
construction of good preconditioners for the conjugate gradient method.
This thesis presents an algebraic framework in which many of the precondi-
tioners given in the literature can be analyzed and compared. In particular,
two issues will be addresed: the construction of preconditioners that take the
aspect ratios of the subdomains into account and the coupling between inter-
faces. For a few simple geometries, small numerical bounds on the condition
number of the preconditioned interface system are derived. These bounds
are independent of the subdomain aspect ratios. Some of the applications to
multiprocessor systems include a parallel domain decomposed fast Poisson
solver in two and three dimensions and parallel preconditioners for variable
coefficients problems. Experiments were carried out on an Intel Hypercube
multiprocessor system.

Chapter 1 ‘

Introduction

The terms Domain Decomposition and Substructuring refer to techniques for solving partial differential
equations (PDE’s) by first decomposing the domain into smaller regions or subdomains and then reducing
the solution of the original problem to solving problems on these subdomains. The decomposition is
sometimes motivated by the physics of the problem - e..g., when the equation takes different forms or it
depends on parameters which take different values on the various subdomains. In other cases, the domain
is decomposed in order to simplify the computation of the solution, for example, the domain is divided
into regular pieces such as rectangles, where more efficient numerical techniques can be applied, or an
out-of-core model of computation is used to solve large problems which do not fit in the main memory of a
given machine. Finally, the idea is well suited to the numerical solution of PDE’s in a parallel environment,
since the subproblems can be solved independently and communication is limited to the boundaries of the
. subdomains.

The general concept of domain decomposition is not new. It can be traced to Schwarz’s alternating
procedure, which proves the existence of a solution for a boundary value problem by an iteration which
involves overlapping subdomains [31]. The rate of convergence of this procedure depends on the amount
of overlapping: more overlapping implies faster convergence, but more work per iteration, since the work
is duplicated on the overlapping region.

The methods considered in this thesis apply to non-overlapping subdomains. The basic idea is to
reduce the differential operator on the whole domain to an operator on the interfaces. After solving for the
interface values, the solution at the interior of the subdomains can be computed by solving independent
problems with the computed interface values as boundary conditions.

1.1 Description of the Method

The domain is discretized and partitioned into several subregions; then, by applying block elimination to
the discretized equations, a system is derived for the unknowns on the interfaces between subregions. The
interface system is sometimes called the capacitance system. Once this system is solved and the solution is
known at the interfaces, the original problem is decoupled and the solution at the interior of the subdomains
can be found by solving independent problems on the subdomains. Forming the right hand side for the
interface system requires the solution of independent elliptic problems on the subdomains. For certain
constant coefficient problems on regular domains, fast direct methods can be applied to the solution of
this system. Such is not the case, however, for more general operators on irregular domains. For efficiency
reasons, the interface system must therefore be solved by iterative methods, such as the preconditioned
conjugate gradient method (PCG).

The method described above is particularly suited to problems for which the subproblems can be
solved efficiently, for example, when the operator has separable coefficients and the domain is a union of
rectangles. On the other hand, when the subdomain problems. cannot be solved efficiently but they can

1

Figure 1.1: The domain Q and its partition

be approximated by simpler operators, it is possible to derive block preconditioners for the original system
based on preconditioners for the capacitance matrix {7, 28].
In order to illustrate the domain decomposition method, consider the problem:

Lu = f in Q (1.1)
u o= u on 99 ,

where L is a linear elliptic operator and § is the domain in Fig. 1.1, which can be decomposed into two
subdomains ; and 2, separated by the interface T.
Let the linear system
Au=f (1.2)
represent a discretization of (1.1), where u now represents the discrete solution vector. If we order the
unknowns for the internal points of the subdomains first and then those on the interface T, then the linear
system (1.2) can be expressed in block form as:

An 0 A13 Uy fl
0 Azz A23 Ug = fz . (1.3)
A{? Aga Ass us fs
Using the following block decomposition of the matrix A,
Ay 0 0\ /I 0 A4
A=| 0 Ay O 0 I A3 Az , (1.4)
AL, 4L, ¢/ \o o I
where C is the Schur complement of A3 in A, i.e.,
C = A3z — AT AT A3 — AL A2 Ay (1.5)

system (1.3) can be solved by block-Gaussian elimination as follows:

ALGORITHM BGE:
Step 1: Compute g = f3 — ALAT! fi — AT;A3; fo.
Step 2: Compute u3 by solving Cusz = g.
Step 3: Compute u; and uz by solving
Anwu = f — Ajaua
Axuz = fo — Agaug

Note that, except for Step 2, the algorithm only requires the solution of problems with A;; and A,,,
which corresponds to solving independent problems on 2, and §2,. The Schur complement C is also called
the capacitance matriz.

Solution of the Interface System

In the continuous case, the interface equation corresponds to an equation for u on I' derived from the
. condition that the solutions of problems on the subdomains have the same traces and normal derivatives
on the interface (see [1}).

The computation of the right hand side g requires the solution of one problem on each subdomain and
a sparse matrix-vector product. In general, the explicit computation of the matrix C is expensive, since
it requires the solution of 2n subproblems on each subdomain §2;, where n is the number of gridpoints
on I'. Also, since C is a dense n by n matrix, the solution of Cuz = g by Gaussian elimination would
require O(n3) operations, which exceeds the complexity of solving the subdomain problems, when fast
direct solvers of complexity O(n?) or O(n?logn) are applicable.

Instead of using a direct method for solving the interface system, iterative methods such as precondi-
tioned conjugate gradients can be applied, for which only matrix-vector products of the form Cw for a given
vector w € R" are needed. From (1.5), we can see that the evaluation of Cw will take time comparable
to computing the right hand side g, since it also requires the solution of two subdomain problems with
boundary conditions on I given by w.

Since each iteration involves the solution of problems on the subdomains, keeping the number of iter-
ations small is very important for the efficiency of the method. This can be achieved by choosing a good
preconditioner for C. As is well known, a good preconditioner is an operator M that is a good approxi-
mation of C and can be easily inverted. In particular, if the condition number of M~1C is small, then M
is a good preconditioner, because a bound on the rate of convergence of the iterative method depends on
such condition number. Several preconditioners for C are given in the literature. Many have the desirable
property of being spectrally equivalent to C. In other words, the condition number of M~1C is bounded
independent of the mesh size h = 1/(n 4 1), which means that the rate of convergence will not be affected
when the mesh is refined. These preconditioners are described in Chapter 3.

In {12], Chan gives an exact eigenvalue decomposition of the capacitance matrix for the Laplacian
operator, when the domain Q is a rectangle divided into two strips. In this case, the capacitance matrix
has the form

wAwT | (1.6)

where A is diagonal and W is an orthogonal matrix such that Wu and W7, for u € R", can be computed
efficiently by using fast Fourier transforms. Chan [12] also noticed that the aspect ratios of the subdomains
play an important role in the performance of the various earlier preconditioners. In general, the convergence
properties of a preconditioner may deteriorate when the subdomains become narrow. This is not the case,
however, for the decomposition (1.6), which is always exact for a rectangular domain divided into two — not
necessarily equal — rectangular subdomains. For more general operators or domains, such decomposition
of C is not exact, but it can still be applied as a preconditioner for C. This preconditioner takes aspect
ratios into account and it does not deteriorate as one or both subdomains become narrow. For example,
when this preconditioner is applied to the Poisson equation on an L-shaped domain, the condition number
of the preconditioned capacitance system is bounded and the bound does not depend on the mesh size or
the aspect ratios of the subdomains (see Chapter 5).

1.2 Thesis Outline

Much of the work of this thesis is based on the decomposition (1.6). The domain is first approximated
by the union of simpler domains and the differential operator is approximated by simpler operators, for
which the interface system can be easily described and solved. Then, preconditioners for the original
problem are designed based on the solution of the interface and the subdomain systems for the simplified
problem. Consider, for example, the Poisson equation on the union of two rectangular regions, such as the
T-shaped region of Fig. 1.2a. A preconditioner M¢ for C is defined by first approximating 2 by a rectangle

3

(a) (%)

Figure 1.2: Decomposition of a T-shaped region

containing the interface I'. Then, Mc is the capacitance matrix for the discrete Laplacian operator on
the union of the two rectangles Q'l and Q; of Fig. 1.2b. M¢ has an exact eigenvalue decomposition of the
form (1.6). Fast direct methods can be applied to solve the subproblems on £, and 5. Since the rate of
convergence of the iterative method with preconditioner M¢ is bounded by a constant independent of A,
O(log 71;) iterations are sufficient to achieve an accuracy of O(h2), and therefore, the asymptotic complexity
of this domain decomposed solver for the Poisson equation on the union of two rectangles is the same as
the complexity of the subdomain solvers, multiplied by log 71;

It has been observed [13] that the method described is equivalent to the Schwarz’s alternating procedure
with maximum overlapping, when the iterative method is used to accelerate convergence, in the sense that
at each iteration, both methods compute the same interface values on I'. The non-overlapping method,
however, does not need to double the work at the region of overlap.

In Chapter 5, we analyze the behavior of operators of the form (1.6) as preconditioners for irregular
domains, in particular, L-shaped and C-shaped regions.

Variable coefficient operators can also be handled by approximating the coefficients by functions which
may take different constant values on each subdomain. A preconditioner for the entire matrix A is given
by an operator which has a decomposition of the form (1.4) with the constant coefficient approximations
replacing the blocks A;; and Mc replacing the Schur complement C. Exact decompositions in terms of
Fourier modes will be derived in Chapter 4 for the interface system for a number of simple operators and
domain splittings.

Multiple subdomains

The case of two subdomains and one interface is an interesting one, both from the theoretical and from the
practical point of view. But if one wants to apply the idea of domain decomposition to the implementation
of elliptic solvers on a parallel machine, one will often need to solve problems with many subdomains
and many interfaces. It will, therefore, be necessary to define preconditioners for the interface system for
the case of multiple subdomains and interfaces, without losing the good convergence properties that hold
for the case of one interface. As we will show in future chapters, the extension is non-trivial, because a
new ingredient is introduced with multiple interfaces: the coupling between the various interfaces becomes
stronger as more subdomains are added and the interfaces become closer together. Suppose, for example,
that we want to solve problem (1.1) on a rectangular domain Q using a parallel system with k processing
units, where k£ > 2. It is natural to consider the decomposition of the domain into £ subdomains and
map each subdomain into one processor, so that the subdomain problems can be solved in parallel. We can
consider two different ways of decomposing the domain: horizontal strips and boxes. Each type of splitting
has its advantages and disadvantages. These will be discussed later in this thesis. Here we just mention the
following: in the past, some authors have recommended against using stripwise decompositions, because
the preconditioners proposed for that type of splittings did not take the coupling between interfaces into
account (8, 28]. They therefore noticed that the preconditioners deteriorated as more subdomains were

4

added - obviously an undesirable property, when considering parallel implementations. Box-splitting, on
the other hand, introduces a new class of unknowns: the cross-points. Bramble, Pasciak and Schatz [8]
proposed a preconditioner for this kind of splitting. Although their preconditioner is quite efficient, it
does not inherit the property of spectral equivalence from the case of one interface. Also, the rate of
convergence improves when more subdomains are added, but at the cost of solving a coarse-grid problem
for the cross-points which approximates the complexity of the original problem. The coupling between
interfaces is only considered at these cross-points. In Chapter 4, we show that, for the case of constant
or stepwise-constant coefficient operators and multistrip decompositions, the capacitance matrix can be
described in terms of Fourier modes and it can be efficiently solved by fast direct methods. In other words,
for some simple problems, the coupling is solved exactly. All operators and domain splittings for which we
can derive exact decompositions are summarized in Chapter 4.

Parallel applications

As a direct consequence of the exact eigenvalue decomposition of the interface system, we present in
Chapter 6, domain decomposed fast Poisson solvers on regular regions in two and three dimensions which
can be easily implemented in parallel. Results on an Intel IPSC2 Hypercube multiprocessor system are
shown and discussed.

In Chapter 7, a spectrally equivalent domain decomposed preconditioner is presented for a general
self adjoint elliptic operator on a rectangular domain divided into strips. This preconditioner does not
deteriorate when the subdomains become smaller and it can be efficiently implemented in parallel.

Chapter 2

Notation and Preliminary Definitions

In this chapter, we introduce the notation and definitions that will be used in the following chapters.

2.1 Preliminary Notation

Given a square non-singular matrix A, the condition number of A is defined as
K(4) = [|AllllA~1|

If A is symmetric and the 2-norm is used, & is called the spectral condition number and then we have:

[Anaz|
"\minl ’
where Apaz and Ap, denote the eigenvalues of A with the largest and the smallest absolute values,

respectively. The spectral radius of A is defined to be p(A) = |Ajqz] and o(A) denotes the spectrum of A.
If A is symmetric and positive definite (SPD) of dimension n, the A-norm of a vector v € R" is defined

Hvlla = VoT Av

The matrix of sine modes of dimension n is the orthogonal matrix W whose elements are given by:

2 . iy
w"—‘/n+lsmn+1 . (2.1)

Given a vector v € R", the product W is called the discrete Sine Transform of v and it can be computed
- with O(nlogn) operations by the application of Fast Fourier Transforms (FFT). Since W~! = W7 = W,
a system of the form Wv = u can also be solved in O(nlogn) time.

k(A) =

as

2.2 Variational Iterative Methods

Next we describe the class of variational methods considered in this thesis. For every integer m > 0, define
Ppn, the set of polynomials P(z) of degree at most m such that P(0) = 1.

The iterative methods we will consider for the solution of a linear system Az = f, where A is a SPD
n X n matrix, are defined as follows (see, for example [11]): Given an initial guess zo, at the i-th step
compute z; such that the A#~2-norm of the residual r; = f — Az; is minimized over all vectors of the form
P(A)rg, with P € P;, where rg is the initial residual.

The integer parameter 4 characterizes the various methods in this family. For example, p = 1 gives
the conjugate gradient (CG) method and u = 2 gives the conjugate residual (CR) method.

The preconditioned versions of these iterative methods solve the problem
Az =f

where A = M~12AM-1/2 3 = M2, f = M-1/2f and the matrix M — called the preconditioner —
approximates A. At the i-th step, the preconditioned iterative method minimizes the A#*~2-norm of the
preconditioned residual 7#; = f — A%;.

Preconditioned Variational Algorithm:
Given an initial guess g, define the initial residual as

To = f -— A.’to
and let
: fo = M'—ITQ
Po = To
For i = 0,1,... until convergence, do:
. = {ru(M-taeE)
%4 = G AMTAR 1)

Tig1 = Ti+ a;p;

Tisl = Ti — i Ap;

fiy1 = Ffi —a; M~ Ap;

b = (g (MTIAM=IF,,)
T (r(METARETER)

Piv1 = Tiy1 + bip;
enddo
If K denotes the condition number of the preconditioned matrix M—1/24 M ~1/2 (assuming M symmetric
and positive definite), then the iterates z; satisfy (see e.g. [11]):

vE -1\
llzi — zllagrr-14)01 < 2 (m—l llzo = zllaas-14yu-1 - (2.2)

2.3 Finite Difference Discretizations

Consider the Dirichlet problem
Lu =f in @ (2.3)
u o= u on 9IN (2.4)

where L is the following linear self-adjoint elliptic differential operator:

d
0 0
= —;5;—' (a.-(:z:l,...,a:d)—a—z—) +e(z1,...,24)
and © will typically be a regular two-dimensional (d = 2) or three-dimensional (d = 3) domain or a union
of regular domains (rectangles or boxes). When a;(z) = 1 and ¢(z) = 0, L is the Laplacian operator.

In this thesis we will only consider five-point finite-difference discretizations on regular grids for two
dimensional problems and seven-point discretizations for three dimensional problems. For a given mesh

width h, the terms of L are approximated at a gridpoint (z,,...,24) by
9 9 1
3_:1:,- (ai(xls-..,zd)gx—iu> ~ -ﬁ(a.’-f- (UH.-—U)-G;_ (U—Ui-)) y (2'5)

where a;+ = ai(z1,...2; % -2’1, z4), u denotes u(z1,...z;,24) and u;+ denotes u(z1,...2; £ h,24).
By applying (2.5) and after multiplying by A2, the discretization of (2.4) on a finite grid leads to a

linear system of the form
Au=f | (2.6)

where u denotes now the vector of approximated values for the solution u(z,y) at the gridpoints and the
vector f is computed using the values of f(z,y) and the boundary conditions u;.

The discretization of the one dimensional Laplacian operator on the interval (0,1) leads to the matrix
~K, where

K= . o . (2.7)
T | ’)
-1 2
The eigenvalue decomposition of K is given by K = W7 diag(c;)W, where o; = 4sin2j Zh.
When d = 2 and Q is a rectangle, a five-point discretization of (2.4) on an n by m grid leads to a
block-tridiagonal system with m blocks of dimension n. For the constant coefficient case, where

5'“@"’5;5“ R (2.8)
we have T bl
-bI T —bI)
A= , (2.9)
-bI T bl
-y T

where T = (2b+ h?c)I + aK. The diagonal blocks and the off-diagonal blocks of A are diagonalizable by
the matrix W. In particular, the five-point discretization for the two-dimensional Laplacian operator on a
rectangular n by m grid has the following block tridiagonal form (m blocks):

-2 - K I

I ~2I-K

~2I-K I
I -2 - K

We will also use five-point discretization formulas for cases where the coefficients are piecewise con-
tinuous, with jumps along horizontal or vertical interfaces. Continuity conditions require that the solu-
tion u(z,y) be continuous in , that b(z,y)u,(z,y) be continuous along horizontal interfaces and that
a(z,y)uz(z,y) be continuous along vertical interfaces. Following Varga’s [35, pp. 190-191] description
of five-point approximations, we can see that the same formulas given for continuous coefficients can be
applied in this case, as long as the coefficients are redefined by arithmetic averages at the interfaces. If

(z,y) is a point on a horizontal interfa.cP, for instance, we redefine:
a(z,9) = 5(lim a(z,9) + lim a(z,y) | (2.10)

y—y y—y

similarly, on a vertical interface,

b(z,) = 2(lim_b(z,y)+ lim b(z,y)) (2.11)
2 pz- r—zt
and if (z,y) is the cross point between a horizontal and a vertical interface, we have:
c(z,y)= Z(lim ¢(z,y)+ lim c(z,y)+ lim+ c(z,y) + lim+ c(z,y)) . (2.12)
- - p— =3t

Suppose, for example, that Q is a rectangle partitioned into two strips Q; and Q; and the coefficients
of L take constant values a;, b; and ¢; inside each strip. The discretization matrix for this problem has the
form
(T b1 \
-hiI T,

with T} = (2b1 + h2c1)I +a1K, T, = (2b2 + h2c2)I + a2 K and

Ts = (bl b+ 2 *2'02)) 1+ *2'“2)1(

2.4 Notation Concerning the Domain Decomposition Method

Consider the system (2.6) which represents the discretization of an elliptic PDE on a domain £ divided
into k subdomains ;. ’

The number of gridpoints on a given interface will generally be denoted by n for one dimensional
interfaces and = by p or n by m for two dimensional interfaces, unless explicitly stated otherwise. The
mesh width will be denoted by h and usually, A = 1/(n + 1).

Let T' be the union of all separators between subdomains. If the vectors u and f are reordered such
that the points in the interior of the subdomains are numbered first, then (2.6) can be written in block

form as:
Aq P un) _ (fn) :
(# 2)()=(F) - (2.13)
For the discretizations considered in this thesis, there is no coupling between the interior points of two
different subdomains. Therefore, the submatrix Agq is block diagonal:

Ag,
Aq
AQ = : . 3
Aq,

where each block Agq, represents the discretization of the differential operator on the interior of the i-th
subdomain. Ar represents the restriction of the operator to the interfaces and P represents the coupling
between subdomains and interfaces. The capacitance matrix or interface matrix is the Schur complement
of Ar in A, i.e.:

C=Ar - PTAZ'P . (2.14)

By applying block elimination to (2.13), we have the following domain decomposition algorithm (note
that for the case of two subdomains with one interface, this algorithm is equivalent to Algorithm BGE of

page 2):

ALGORITHM DD:

Step 1: Compute g = fr — PTAalfQ.
Step 2: Solve Cur = g.

Step 3: Solve Aquq = fq — Pur.

2.5 Interaction Between Boundaries of a Subdomain

In this section we describe the operators which contribute to the term PTAG'P in (2.14). Generally
speaking, they represent the interaction between two interfaces of a given subdomain.

Consider the rectangular region R of Fig. 2.1, with edges 'y, I'g, I's and T'w. This region R represents
a generic rectangular subdomain in the domain Q. Let n; be the number of gridpoints in T'x (or T's) and
ny the number of gridpoints in T'g (or I'w). The corner points are not included in the edges, since they
may or may not be interior to .

10

I'n

Tw R I'e

Ts
Figure 2.1: Interaction between interfaces: a rectangular subdomain.

Let (2.6) be the linear system which represents a five-point discretization of the differential equation
in Q. Let Ag be the submatrix of A corresponding to the interior points of R, where the gridpoints are
numbered according to the natural ordering, i.e., row-wise. AR is the restriction of the discrete differential
operator to the region R. Suppose that the interface I'x, for k = N, S, F or W, is interior to and define
Py to be the submatrix of A that represents the coupling between gridpoints of R and gridpoints on T.
In Fig. 1.1, for example, if R was given by subdomain ©;, then I's would correspond to the interface I in
the picture, Ar would be the submatrix A4;; in (1.3) and Ps = A;a.

When block elimination is applied, the Schur complement for the interface contains non-zero blocks
corresponding to the interaction between edges. Define the operator @Qy; as:

Qu = PTAZ'P, (2.15)

In the case of the Poisson equation, for example, the operator @y takes boundary values on the edge I}
and computes the solution to the Poisson equation on the gridpoints adjacent to the edge I'x. For constant
coefficient operators of the form (2.8), it is possible to describe Q; in terms of Fourier modes.

Given p > 0, define

2
' 2
ywy =1+ E—[Eypu] . (2.16)
2 4
It is easy to show that the function 4 has the following properties, for all u > 0:
1 7 p?
—== = l4+-4+4{ =+ 2.17
V(1) 2 4 (@17)

1 ,
Vr(e) + 750 2+ (2.18)
Vr(e) = = -2\}£+u (2.19)
Vv (w) 4

The following lemma will be used in the proofs that follow:

Lemma 2.1 Let 8 > 2 and consider the following tridiagonal system of size n:

-8 1 T 0
1 -5 . r2{ |0
- » 1 M .
1 -p Zn 1
The solution z is given by x
- n+1—k1 -7 :
Tk = =7 Tt (2.20)

where v = v(8 - 2).

11

Proof: The elements of z satisfy the following difference equation

Tk-1 — BTk + Thy1 =0

with boundary conditions zo = 0 and Zn4+1 = —1. Therefore,

zp = o1tk feork |

where r; are the roots of the characteristic polynomial 22 — 3z + 1,i.e.

2
1‘:|:=§:|: %—1

and the constants ¢; and ¢, are determined by the boundary conditions, therefore ¢; + ¢; = 0 and ¢; =
r_i"'—il—l—rﬁ_*‘r' Since r_ = /7(F - 2) and r4 = 1/\/7(B ~ 2), we get (2.20). g

In order to simplify the notation, we will use direct (or tensor) products to define the various operators
and we will apply the following two properties: ‘

' i) (xXeY)=xTgyT (2.21)

i) (XK19N)(X20Y:) = (X1X2) ® (11Ya) (2.22)

Let I, for ¢ = 1,2 denote the identity matrix of dimension n; and ey), the j-th column of I,,,. Also,
given n define

oi(n) = 4sin25(nj7rT1) (2.23)

forj=1,...,n.
Suppose that A has the following block-tridiagonal form:

T —dl,,
Ap=|"Hm T h (2.24)
e =dl,
—dl,, T
with ng blocks of dimension n;, where Wy, TW,, = diag(ty,...,tn,). For example, for the case of the

operator (2.8), Ag is given by (2.9), i.e. T = (2b+ h%c)I + aK, d = b and the eigenvalues of T are
tj = 2b + h%c + aoj(ny). The expression (2.24) corresponds to a row-wise numbering of the gridpoints.
Suppose also that, for a column-wise numbering of the gridpoints, Ag has a block-tridiagonal form with n,
blocks of dimension ny, with T = W,,, diag({y, .. ., tny)Wh, on the diagonal and ~dIy,, on the off-diagonals.
For the case of the operator (2.8), we have d = a and #; = 2a + h2c + boi(ny).

Also, let the submatrices P; be given by

(2

Py = -dyeP oI, (2.25)
Ps = —ds e @I, (2.26)
Py = —dy I, ®e (2.27)
Pz = —dgl, 3 (2.28)

Interaction between parallel edges

When I’y and I'; are opposite edges or when k = , the operator Qy is diagonalizable by Fourier modes.

12

Lemma 2.2 Let Ar, Pn and Ps be given by (2.24), (2.25) and (2.26) respectively and let Qns represent
the coupling between interfaces Iy and I's, i.e. Qns = PﬁAElPS. Then the matriz

Wi, QnsWn, = Dns

of dimension n,, is diagonal with diagonal entries given by
dnd 1 - y(pj)
NS _ 9NGs . 2
di” = —7— V7 (m;)" (1 ()t (2.29)
where pu; = -j- 2. Similarly, W,,QewW,, = Dgw is diagonal, with

dzd - 1 - y(f)
EW _ ZEZW ng [TNV
A = S (T h)
where ji; = -;&' - 2.

Also, Wy, QNNWyy = DN, W, QSSWru = Dss, Wa,QegWyn, = Dgp and Wo,QwwWy, = Dww
are diagonal, with

aiV = I\ fr(my) (z?:%n:“) ; (2.30)
= G () o
dEE = G :Ezt)m“) ’ (2.32)

o b

Proof: These expressions were originally derived in [12] and [15] for the Poisson equation, with dy = ds =
de=dw=d=1,t; =2+ 0j(n;) and =2+ oi(na).
By using properties (2.21) and (2.22), we can prove that

Wm P]{I‘ = —dN(egz) ® In1)T(Inz ® Wm)
PgW"l = -dS(Inz ® Wﬂl)(65122) ® Im)
Then we can see that
D I, -1
I,

dnd
Wﬂl QNSWM = —%(CSZ) ® Iﬂl)T (65122) ® Im)

o Iy,
I, D
where D = diag(—1t;/d). If the equations in the last expression are rearranged according to a column-wise
ordering of the gridpoints in R, we get:
T -1
T,
—— (I, ®eg)) .. (In, ® estzz)))

Ty,

d d
WleNSWnl = - Lt

where T; = tridiag(1, —t;/d, 1). Therefore, W, QnsW,, is diagonal and its diagonal elements are given by

_9nds (2) -1 (2)
= T;

13

Since e&Z)TTJ.‘le%) corresponds to the first element z; of the solution to Tjz = e,(f,), by applying Lemma
2.1 we can prove that
Y s Sl ((12))
T = 7(”1) 1 - ‘7(/1_7')"'2'“
Therefore, we have (2.29).)

Similarly, we can prove that W, Q nyW,, is diagonal and its diagonal elements are given by

&% (3T
.—FNeslzz) 1} leslzz) R
and e,(fz)TTJT'lesf,) corresponds to the last element of z, thus proving (2.30).

The expressions involving I'g and 'y can be derived analogously, by using the block form for Ap
corresponding to a column-wise numbering of the nodes. g

Interactions between perpendicular edges

Operators like @ vw or QNE, on the other hand, which represent the interaction between perpendicular -
edges, are not diagonalizable by Fourier modes. Moreover, they are, in general not square, but n; by n,
rectangular matrices. It is possible, however, to describe the elements of the matrices Wi, @nwWiy, and
W, @QNEW,, for constant coefficient cases.

Lemma 2.3 If Ap, Py and Ps are given by (2.24), (2.25) and (2.26) respectively and Qnw, defined as
in (2.15), represents the coupling between interfaces I'y and T'w, then the elements of

QNW = an QNWan

are given by

qNW - 2dew sin n::—l Sin nQ:I ’ (234)
N V(ry+1)(n2 +1) d(2+05(n2)) +t;

Similarly, the elements of the matriz

QNE = Wy, QNEW,,

are given by

t . NI : T
2dydg sin L% sin 'L_n2+1

oiF =
Y V(ri + D)(n2 +1) d(2+ 0j(n2)) + t;

Proof: If u; is an eigenvector of T corresponding to the eigenvalue ¢; and v; is the j-th column of W,,,
then we can see that Ar(v; ® u;) = A(vj ® u;), with A = d(2 4 0;(n2)) + t;. Therefore, the eigenvalue
decomposition of Ap is given by]

Ap= (Wn, ® Wy,) A (W, ® Wy,) (2.35)

where A is the nyny X nyn, diagonal matrix:
A=1,Q dia'g(ti) + dia.g(d(2 + Ui(nZ))) ® In,

in other words, the eigenvalues of Ag are
Ar=d2+0;(n2))+ ¢,

14

with J = (j — 1)ny +i. It is easy to verify, for example, that the eigenvalues for the discret_:e Laplacian are
given by —oi(n1) ~ oj(ns).
By substituting (2.35) and (2.27) in (2.15) and then applying (2.21) and (2.22), we have
Onw = dydw ((egz)Tan) ® an) A1 (an ® (Wa, esl)))

and therefore,
Onw = dydw (7T Wp,) ® I,) A7 (I, ® (Wryef))

Then, the j-th column of QNW is given by

/ 2 . T . - 1
dydw] sin] (ddj(?lz) I,, + diag(t;/d)) 1 W, eg) ;

and the i-th element of this column is

/ 2 Td 1 / 2 in
NwW - . J .
% dwdw ny +1 sin ng + 1 d(2 + Uj(nz)) +\{n +1 sin np+1 °

from which (2.34) follows.
Similarly, ng can be derived by using (2.28) instead of (2.27). g

2.6 About Schur Complements and Preconditioned Iterative Meth-
ods

Consider the following symmetric positive definite system, written in block form:

(&) ()= (2) (239

where the blocks A and C are square SPD matrices, and the reduced systems:

(A-BC™'BTY: = f-BC 4 (2.37)
(C-BTA'B)y = g-BTA"lf . (2.38)

Suppose that efficient solvers exist for the blocks 4 and C. Then A can be used as preconditioner in the
solution of (2.37) and y can then be computed by solving Cy = g — BTz. Or we could instead use C
as preconditioner in the solution of (2.38) and then solve Az = f — By. Although in general the two
procedures involve the iterative solution of systems of different dimensions, we will see that they have
equivalent convergence properties. We will first show this result from the point of view of fixed point
iterations and then, for the case of PCG like methods.

Theorem 2.1 Consider the solution of (2.37) by the following fized-point iteration, with splitting matriz
A: given an initial guess z°, define the i-th iterate as the solution to:

Ar'= f - BC g+ BC™1BT-1 | (2.39)

Similarly, given y°, define the i-th iterate of a fized-point iteration for solving (2.38) with splitting matriz
C, as:
Cy' =g—BTA™'f + BTA™1By-1 . (2.40)

15

Then, the two iterations converge. Moreover, they are equivalent in the sense that for any given initial
guess z° for (2.39), there ezists an initial guess y° for (2.40), such that for all i we have:

y' = C(g - BTa%) ‘ (2.41)
and ‘ ' ‘
ez lla < lleyllc < lleklla (2.42)

where €, = z° — 1 andei:y"—y.
Completely analogous results hold for z* and €., given an initial guess y° for (2.38).

Proof: Given z°, define y° = C~1g — C~1B7z°. By induction, we can see that (2.41) satisfies (2.40) for
every ¢ 2 1. The blocks A and C are SPD, then so are their corresponding Schur complements. It follows
that [A=1BC-1BT||; < 1 and ||C-1BT A~1B||; < 1. Therefore, the two iterations converge. Also,

|A~Y2BC1?|, <1 . (2.43)
Moreover,
Ae! = BCTlBTe
e, = —C7!BTel
Therefore, we have
A2+t -(A'l/zBC“l/z)Cl/ze; (2.44)
and '
cl/? ; - _(C-l/zBTA—1/2)Al/2efc . (2.45)

(2.42) follows from (2.43), (2.44) and (2.45). g

Suppose that an iterative method such as PCG is applied to (2.37) with preconditioner 4 and to (2.38)
with preconditioner C. Then the last theorem suggests that we get the same convergence rate.
The preconditioned Schur complements can be written as
Sa AV A - BC'BTYA™ Y2 = [- x XT (2.46)
Sc cV¥c-BTA'B)C- 2 =1-XTx |, (2.47)

where X = A~1/2BC-1/2, By (2.43) we know that IX]lz < 1. Then, we can easily prove the following
lemmas:)

Lemma 2.4 The condition numbers of the preconditioned Schur complements S4 and S¢ are both bounded

by
1

1= x|

|
Furthermore, we will show that S4 and Sc are also equivalent in their eigenvalue structure. If X is

square, it is easy to see that X7X and XX7 have the same eigenvalues. If X is not square, X7X and
X XT have the same eigenvalues, except for A = 0, which may be an eigenvalue of one of them, but not of
the other. According to the next lemma, this implies that both iterations are equivalent.

16

Lemma 2.5 Consider the systems
Mz = f (2.48)
Ny = g , (2.49)

where the matrices M, of order m and N, of order n, are symmetric and positive definite.
i) Suppose that m = n and

M = UAUT
N = vavT |

where U and V are orthogonal matrices (i.e., M and N have the same eigenvalues). Then, given an initial
residual r}! for (2.48) there exists an initial residual rd’ for (2.49) such that, at each iteration,

¥ llagu—r = Pz - - (2.50)

In particular, initial guesses can always be found such that the same number of iterations will be requzred
for solying systems (2.48) and (2.49) to any specified accuracy.

ii) Suppose that p(M) < 2, m < n and o(N) = o(M)U{1}. Then, given an initial residual v} for (2.48),
there ezists an initial residual r} for (2.49) such that, at each iteration

e llagu—z = ¥ llvu—z (2.51)
And given rly, there ezists rM such that, for all i,
Nrfillvu-z < e liagams < ¥ llvu-e - (2.52)

Proof:
i) We ca.n write M as M = UVT NV UT and also, for every polynomial P we have P(M) = UVIP(N)VUT,
Given r}f € R™, define r) = VUTr}M. Then, for every P we have:

1P 3gu-z = (ng")T P(M)T M#=2 P(M)r}!
= (fHTuvT PN Ne-2P(N)WVUTM
(r§)TP(NYTN#=2P(N)rg = ||[P(N)rd|[3u-z

Therefore, we can say that a polynomial P; minimizes ||P(M)r}||? Musz over all P € P; if and only if it
minimizes ||P(N)r{’||%,-, and moreover, || P;(M)r} 137u-2 = l|Pi(N)2’ ||% -2, which proves (2.50).

ii) By i, two matrices with the same eigenvalues have equivalent convergence properties. Therefore,
without loss of generality we may assume that:

M 0
v=(% 1)
where I is the identity matrix of dimension n — m.
Given r}f € R", we define the initial residual r{ to be:

M
+=(3) -
where 0 represents a zero vector of dimension n — m. Then, for every polynomial P € P;, we have
M
P(N)Y = (P(M)rs)
and

17

IP(N)r Inu-2 = || P(M)rd || pgu—s

Therefore, P minimizes [|P(N)r{||yu-z if and only if it minimizes || P(M)r} || pru-z2, which proves equation
(2.51).
On the other hand, given an initial residual r)) € R™ for (2.49) such that

N
N _ Tm)
rt =
y=(%
with 7l € R™ and v}, € R"™, define the initial residual for (2.48) as r} = rf}. For all i there exists a
polynomial Q € P; such that
rif = Q(M)rgf
Define @(z) = (1 — 2)Q(z), then @ € P,y and
IRV IRz = IQM)rg 32 = QY |3gus — ¥ (21 = M)y

for y = MW-D/2Q(M)r}. Since all eigenvalues of M are bounded by two, 2] — M is positive definite.
Then,

IRV IR < NQM)TY [3gw = lrM 30 (2.53)

Since 7} ; minimizes the N#~2-norm of the residual over all vectors of the form R(N)r{l for R € Piyq, we
have

Irfallva—e < QN lInu-a (2.54)
Also, there exists a polynomial P € P; such that
rN = P(N)rd

Then,)
NP(N) [3u—z = PN |13
NPV) Ru=2 = P e (2.55)

(2.52) follows from (2.53), (2.54) and (2.55). g

This lemma proves that initial residuals always exist such that the number of iterations required to
solve (2.48) and (2.49) to a specified accuracy differ at most by one.

Since the preconditioned Schur complements (2.46) and (2.47) satisfy hypotheses i or ii of Lemma 2.5,
we can prove the following:

P g |13 gu-e

IN

Theorem 2.2 Consider the following symmetric positive definite system:

A B) (z) _(f\

BT ¢c)\y) \y ’
where A and C are square SPD matrices. Suppose that I, iterations of PCG are applied to the reduced
system

(A-BC'BT)z=f-BC g

with preconditioner A and initial residual r(()l). Then there ezists an initial residual r(()z) such that I PCG
iterations are required to solve the reduced system

(C-BTA™'B)yy = g— BT4~1¥

with preconditioner C and residual rg) no greater than rﬁ), with |I; — I} < 1.

18

Proof: Since the preconditioned Schur complements A‘1/2(A BC-1BT)A~1/2and C-1/2(C-BT A~1B)C-1/?
are SPD and they are of the form I — XX7T and I — XTX, all their eigenvalues are bounded by one. If

n = m, the eigenvalues of XTX and X X7 are the same. Otherwise assume, for example, that n > m.
Then the eigenvalues of X7X and X X7 are the same, except that A = 0 may be an eigenvalue of one of
them, but not of the other. Then, by Lemma 2.5 the residuals satisfy either (2.51)or (2.52). This means
that the number of iterations cannot differ by more than 1. g

2.7 Notation for Arithmetic Complexity

Let Cin represent the number of floating point operations (flops) for solving a tridiagonal system of
dimension n and Cy;n, the number of floating point operations for solving a tridiagonal system with ones
on the off-diagonal. Let C,(n) be the arithmetic complexity for applying the fast sine transform to a vector
of length n — 1 (asymptotically, Cs(n) = O(nlogn)).

19

20

Chapter 3

Preconditi'oners for the Interface
System: Two Subdomain Case

3.1 Introduction

We mentioned in Chapter 1 that the interface system
Cur=g - (3.1)

is solved by iterative methods such as preconditioned conjugate gradients. In this chapter we will describe
several preconditioners for the capacitance matrix C. Many have the desirable property of being spectrally
equivalent to C i.e., positive constants v4; and 42 exist such that for all z:

71:cTMz <zTCz < 'szM:c

where v; and +v; are independent of the mesh width h. In other words, the spectral condition number of
M~1C is bounded independent of h, which means that the rate of convergence will not be affected as the
mesh is refined.

Some of the preconditioners have a decomposition in terms of sine Fourier modes of the form:

M=wAwT | (3.2)

where A is a diagonal matrix. A linear system of the form Mu = v can be easily solved by fast Fourier
transforms (FFT) with O(nlog n) operations. Chan [12] derives an exact decomposition for C of the form
(3.2) for the case of the Poisson equation when the domain € is a rectangle divided into two strips. The
capacitance matrix can then be solved directly by using FFT’s instead of by iterative methods. Since fast
direct solvers exist to solve the Poisson equation on a rectangle, one would not find it necessary to apply
domain decomposition in this simple case. Nevertheless, this decomposition is important because it can be
used as preconditioner for more general operators or domains and because it gives a framework in which
other preconditioners can be analyzed.

In what follows, we will describe preconditioners for
C = Asz - AL AT A3 — AL AT Ags . (3.3)

The system (3.1) of dimension n, represents the equations for the gridpoints on the interface I', which
separates the subdomains 2; and 2, as in Fig. 1.1.

21

3.2 Dryja’s Preconditioner

Dryja [18] proposed
MD = \/E)

where I is the one-dimensional discrete Laplacian operator (2:7), and provea that there exist constants
Bo and B;, independent of the mesh width A, such that, for all y € R,

Boy" Mpy < yTCy < BryT Mpy

In other words, s(M BIC) — the spectral condition number of the preconditioned system — is bounded
independently of the mesh size h. Mp has the factorization:

Mp =W diag(AP,\D,... APy wT |

where

| AP = o (3.4)
and o; is given by (2.23).
3.3 Golub and Mayers’ Preconditioner

Golub and Mayers’ preconditioner [26] is a modification of Dryja’s:

K?
Mgy =1/ K + . (3.5)

which also has a decomposition of the form (3.2) with eigenvalues given by

2
o
AP =i+

For the case of the Poisson equation on a rectangular domain, Mgar approximates the capacitance matrix
when the boundaries which are parallel to the interface become infinitely apart and the Schur complement
C approaches a Toeplitz matrix. Experimental results show that Mgys performs better than M D-

3.4 Bjorstad and Widlund’s Preconditioner

Another preconditioner was given by Bjérstad and Widlund [4], based on an idea of Dryja’s. It takes one
of the following forms:

MG = Ay - AT AL Ars
or
2 2 -
Mév)v = A.gss) - A1T3A111A13
2)

where the matrices Agy and Ags represent the differential operator’s contributions to Ass from Q; and £,

respectively so that
Azz = Ag? + Ag?

When T' separates the domain € in two identical pieces 2, and 2, and the coefficients of the differential
operator are symmetric with respect to I', it is easy to see that

M) = mf) = Lo

N —

22

In other words, Mpw is exact. When L is the Laplacian operator and one of the subdomains — say Q; —
is a rectangle, it can be shown that M L(;%v also has a decomposition of the form (3.2). The eigenvalues are
given by :

1 mi+1 4

1+ mi+1 a’?
AW (_L__ o5+ 2

where 2\ 2

o; ., 9
7j=(1+?’— Uj+‘4‘7‘ (3.6)

and m; is the number of rows of interior grid points in the y-direction in subdomain ;.

To implement the method, Bjérstad and Widlund solve a mixed Neumann-Dirichlet problem in one
of the subdomains and a Dirichlet problem in the other. Their method has the advantage that it can be
applied to more general operators, domain shapes and discretizations, but in the particular case of the
five-point discretization of the Laplacian operator on a union of rectangles, such procedure is less efficient
than applying a single FFT computation on the interface grid points. :

3.5 Chan’s Preconditioner

Chan [12] gives an exact eigenvalue decomposition of C of the form (3.2) for the case when L is the
Laplacian operator and Q is a rectangle divided into two strips, namely

Wdiag(A{, A, -, A5)WT (3.7)
where 10 1+ 7;n1+1 1+ 7;nz+1 s o?
Y = fe 8 ———
7 \ 1 — 7;7114-1 1 — 7;7124—1 J 4

This expression for A; can be proved by applying lemma 2.2.

Although Mp, Mgy and Mpw were derived independently of the factorization (3.7), they can be
viewed as progressively better approximations to the capacitance matrix C. For the case of the Poisson
equation on a rectangular £, the factorization (3.7) is exact, while Mp and Mgy are not. It can be easily
observed that (3.4) is a first order approximation to (3.8), while (3.6) is a second order approximation.
Mpw, on the other hand, is exact only for the case of a rectangular domain divided symmetrically into
two strips. Anderson [1] gives an interpretation of the various discrete preconditioners as approximations
to a continuous operator on the interface.

Chan’s analysis in [12] shows that some preconditioners are quite sensitive to the shape of the domains.
In particular, their performance depends on the aspect ratios of the subdomains Q1 and Q,, defined by

m;+1
n+1

mo +1
n+1

and ap =

1:

By using the decomposition (3.7) for the case of the Poisson equation on a rectangular domain divided into
two strips, Chan shows that, as the mesh width % tends to zero, the condition number of the preconditioned
capacitance matrix with preconditioner Mgy is:

1 (1 + e—27ral 1 + e—27ra;)
’

. =1 _
}111—1»% M(MenC) = 2 \1—e2ma1 T T ¢g-2raz (3:8)

The expression (3.8) suggests that Mgas deteriorates as the aspect ratios of the subdomains decrease. He
also shows that

23

-

eondition number

Figure 3.1: Condition number of M;'C and M3},C vs. aspect ratio.

1 _ &(Mp'C)
— < L. <. 3.9
V2~ k(MGHC) T V2 (3.9)
and
- Jim, K(M5'C)=v2 . : (3.10)
ag=—+00
h—0

By (3.9) we can see that Mp also deteriorates as the aspect ratios of the subdomains decrease. On the
other hand, by comparing (3.8) and (3.10), we can see that for large values of ay and ay, Mgps becomes
exact, while Mp does not.

In Fig. 3.1 we plot the condition numbers x(Mp'C) and x(Mg},C) computed for large values of 7, as
a function of the aspect ratios. The domain § is a rectangle divided symmetrically into two strips (i.e.
my = mz and a1 = a; = a). For small values of @, both condition numbers practically coincide with the
function ¢(a) = -}—f—::—::—;— At a = 0.28, the curve for k(M5'C) switches to the constant value v/2, while
n(Mc';'}wC) continues to approach one as ¢(a). The abrupt change in slope can be explained by observing
the eigenvalues of M BIC : Ay approaches ¢(e) for large n, A, approaches v/2 and Apmin = 1. When o = 0.28,
#(a) = v/2 and at that point, the expression for K(MBIC) switches from Ttﬁ to ;"l:: ~ v/2. Numerical
experiments also show that the eigenvalues of M},C are more clustered than those of M EIC.

For the regular case of Poisson’s equation on a rectangle divided into two strips, the decomposition
(3.7) is always exact. This suggests that it can become a good preconditioner for more general operators
and regions. We will call this preconditioner M¢. A formal analysis of Mc when applied to L-shaped and
C-shaped domains is given in Chapter 5.

24

Chapter 4

Some Exact Decompositions of the
Schur Complement

4.1 Introduction

The purpose of this chapter is to describe the Schur complement
C=Ar-PTAz'P |

also called the interface matrix or capacitance matrix, for some regular problems for which fast solvers can
be applied to the solution of the interface system

Cur=g

In Chapter 3, an exact eigenvalue decomposition of C is given for the case of the Poisson equation on a
two-strip decomposition of a rectangle. The given representation of C is exact only for this case, but it
can be efficiently applied as a preconditioner for the interface matrix on other irregular domains, such as
L-shaped or T-shaped regions. It can also be used as preconditioner for the interface matrix when the
differential operator can be approximated by the Laplacian operator. However, the differential operator
can sometimes be better approximated by other constant coefficient operators. In this chapter we de-
rive eigenvalue decompositions for the interface matrix for more general constant and piecewise-constant
coefficient problems.

We also derive expressions for the interface matrix corresponding to a multistrip decomposition of a
rectangular domain. This decomposition will have an important application in the implementation of a
parallel preconditioner for variable coefficient problems in Chapter 7.

4.2 Two-strip Decompositions

In this section we consider a rectangular domain € and describe the interface matrix for the problem
Lu = f in
U = U on 9N
for a two-strip decomposition of Q as shown in Fig. 4.1. As usual, we assume that an n by m regular
mesh is imposed over Q, with n gridpoints located on the interface I'. Let m; be the number of interior
gridpoints in the y-direction in Q;, with m; + mo +1 = m.
The discrete equation Au = f is written in block form as

Ain 0 Ags Uy h
0 Ay Agx u =11
AL, AL Ass u3 f3

25

Figure 4.1: Rectangular domain divided into two strips

The case of the Poisson equation, i.e., when L = —A, was treated in Chapter 3. The Schur complement of

Azz in A: _ -
33 C = Asz — ALAT} A1 — AL A Ay

has an eigenvalue decomposition in terms of Fourier modes: C = WAW , with eigenvalues:

1+ mi+1 1+ ma+1 o2
A= (R i o+

2
= — 4.1
J 1 - 717_711+1 1~ 7;712+1 4 ()

2
2

where v; = 1+521-— aj+g4i-
For more general constant coefficient operators, the interface matrix C can be described in a similar
way.
Suppose that the matrix A has the form

v
(Tl @ \
g
' e @
Q
4 @ 1, g Q: 0
=) , 4.
0 T, . (4.2)
) Q2
Q T
\ of of Ts |
where T; are diagonalizable by Fourier modes with eigenvalues t;; and Q; = —d;I. Then the Schur

complement C is also diagonalizable by Fourier modes.

Lemma 4.1 If A is given by (4.2), the eigenvalues of the Schur complement C are given by

1+ 977 1+ 757
Aj = t3j — di/ e - i ——27 (4.3)
1~ 71] 1- ‘)’2]

where vi; = v(pi;) and Kij = -2+t£- (v(n) ts defined in page 11). If we further assume that 2T = T+ Ty,

then we have
2 mi+1 2 ma+1
Ky 1+ Y15 Ha; 1+ Y25
/\~_—d“/—+u-———+d\/—-+u'——— . 4.4

26

Proof: The operator AT, AT}! A3 corresponds to Qss of Lemma 2.2 (page 13) and AZ; A7} As3 corresponds
to Qnn. By replacing -5 %= = d; and —l = dy, we get (4.3).
If 275 = Ty + T, then (4.3) becomes

tl 71] t 1 72]
/\j = —d; (-1 4 VM m1+1) ds (2d2 + \/72_1"""1 '7;,,,2'_.,.1

j

g 2
By (2.18) and (2.19) we have . /7;; + = %‘:} and /755 — \/+.—, = =2 i;i + pij. Then we can see that

t i+1

b 1-97 1 1\ 1477

+ [— — = = [N —
2d i 8 1-— 7‘7?;+1 2 7” \/77 1-— 7:‘7;|+1
pZ; 144t

4 Hij 1- 7;7;1 +1

+1 m2+1
Mh +7m ”n 1+ 7g;
A = dl ml+1 e + 2J m2+1

In particular, consider the operator:

and therefore

Lu = —auzz — buyy +cu (4.5)

where the coefficients a, b and ¢ take constant values a;,b; and ¢; on subdomain ©; and ag,b2 and c; on
subdomain 2,. A ﬁve—pomt approximation of this problem was described in Chapter 2. The matrix A is
given by (2.13). The interface matrix has a decomposition of the form C = WAW, with eigenvalues given

by
1 + 7m1+1 #2 + 7m2+1
Aj=b V m1+1 + b —i*' Ty et (4.6)

+ for vi; = ¥(uij) and pi; = 51'-_(a,-aj + ¢;h?).
When the coefficients are constant through the whole domain, we have

”? 1+ 7m1+1 1+ 7m2+1
AJ = ~b T 1273 1— 7’."'1+1 1— 7m2+1 (4.7)
J J

for p; = %;(aaj + ch?). In particular, when ¢ = b= 1 and ¢ = 0, L is the Laplacian operator. It can be
easily verified that for this particular case, (4.7) reduces to (4.1).
For the case of the Helmholtz operator:

Upr + Uyy + au

we have

2 mi+1 ma+1
Ik 1+ 7] 1+7]
o) w

1 - 7;nl+1 1-— 7;712+1

for p; = —0; + ah?.

27

________ oo M
Q,

________ L

________ | P
Q

Figure 4.2: Rectangular domain divided into strips

4.3 Multi-Strip Decompositions

When considering parallel implementations of elliptic solvers, domain decomposition is a natural choice,
since the subdomain problems can be solved in parallel and the communication is reduced to the boundaries.
When the domain is divided into k strips as in Fig. 4.2, the interface matrix for the constant-coefficient
case can be described in terms of Fourier modes.

We assume that the size of the original grid on 2 is n by m and after the decomposition into strips, we
have n by m; grids inside each subdomain.

After reordering the unknowns, the discretized equations have the form (2.13), where Ar is a block
diagonal matrix, because there is no coupling between points on two different interfaces. The submatrix
P has the following bidiagonal form;: P,

.
P, P,
P = T, 3
Pro1k-2 Peoyp
Py

where P,] corresponds to the coupling between the unknowns in the subdomain Q; with those on the
interface I';. The Schur complement (2.14) has the following block-tridiagonal form:

H B,
c=|b H : (4.9)
. . By
Bi_1 He_,
where T -
H; = Ar, = Py iAg), Piri — PLAGIP; (4.10)
and
B; = -PL_ AZ'P;; . (4.11)

Similarly to the two-strip case, we can show that for piece-wise constant coefficient problems, the blocks
H; and B; are diagonalizable by Fourier modes.

Lemma 4.2 Assume that each block Aq; has the block tridiagonal form:
T; "diIn

AQ; = _diIn Ta

. —diIn
_diIn T;

28

with m; blocks, that T; as well as all diagonal blocks in Ap are diagonalizable by Fourier modes, i.e.

T, =W diag(t,'l, veey t,'n)WT

and
Ar\‘. =W diag(ﬂila'°-a/8in) WT ?

that P; = —d; e,(,';)‘ ® I and P;;_; = —d; e(') ® I, where I, is the identity matriz of dimension n and eg ,

i)

the j-th column of I,,. In other words, P“ corresponds to Ps of (2. 26) and P;;_, corresponds to Py of

(2.25). Then,
WITHW = A; = diag(Aa, ..., \in)

and
WTB,W = D; = diag(éy,...,6:;)

(4.12)

(4.13)

The eigenvalues A;; are given by an ezpression which is equivalent to (4.3) for the case of two strips:

1 —- mis1

-5 Yit1
Aij = Bi; — d; \/71 ',fhﬂ - dit1 7i+1j'_‘+.TJl:+_'T
1] 1- 7i+1j

where v;; = y(pi;) and pi; = -2 + %‘L The eigenvalues of B; are given by

- [omi | 2 = Yis
'J - —d :.;l (ml+1)
7;]
and they can also b.e.wrz'tten as

|
VF)™HN
bij = —2d; (P - T

If we further assume that 2Ar, = T; + Tiy1, then we have

+1
Aij =d; \/ by + p,, m w1 +dit i L+ i, T o 7;,'+§+1

i+1,7

(4.14)

(4.15)

(4.16)

(4.17)

Proof: Equations (4.14) and (4.17) can be proved analogously to Lemma 4.1. In order to prove (4.16) we

apply Lemma 2.2, with B; = —Qys. Then we have

bij = —din /7" (i—_—i,fm)

71]
Moreover, by (2.19), we have
1—7j #;
=24/ 4y

7 4 Hij

Therefore
6 (V 7‘)m,+1 ut]
7 — 1 — 7:-,;'4_1 T + /1/1_7

1

29

Using the expressions (4.9), (4.12) and (4.13), the interface system can be solved by matriz decom-
position [10] by applying fast sine transforms and solving n decoupled tridiagonal systems of dimension
k—-1.

The matrix C is described by Bank and Rose [2] for the particular case of the Poisson equation in terms
of Chebyshev polynomials, in the context of generalized marching algorithms. For this particular case, A;;

and §;; are given by
1+ mi+1 14 mit1+1 o2
A R (7-7 7.7 0'] + J

L 1 - 7}m+1 1—~ ,7}1&.'+1+1 z-
and
mi+1 2
v, * o2
§is = —9—2J o + L
i 1-— 7}1;"-}-1 J + 4

Consider the operator (4.5), where the coefficients a,b and ¢ take constant values a;,b; and ¢; on each
subdomain Q;, for i = 1,...,k. The matrix A satisfies the hypothesis of Lemma 4.2, with

ti; = 2b;+ h%; + a;oj(n) ,
ci+ ¢ a; + a;
Bij = bit+biy+ = 3 2 4 3 *10;(n)
and d; = b;. The interface matrix can be described by expressions (4.9), (4.12) and (4.13), with eigenvalues
given by
1 +717}¢+1 #g. 1 +7Tl+l'+1 “g+1'
A = by g \/i+#“+b' 2, e N TICT 4.18
ij (1 _ 7:;,‘4.1) 1 ij T Oit1 1 73_?’;4.1 4 Hit1j (4.18)
and

(VT \/#2‘
6.1 = —2b; (—1—_—75'7_1—- T + w5 (4.19)

a;o; + C,‘h2
Kij = o

for vi; = v(pi;) and

The operator (4.5) is analyzed in Chapter 7 as a preconditioner for more general variable coefficient
problems.

4.4 A Special Case of Irregular Mesh

In all the cases mentioned above, we assumed that a regular mesh of size A was imposed over the whole
domain Q. Similar decompositions of the interface matrix can be also found when the mesh width in the
horizontal direction is different from the mesh width in the vertical direction. Moreover, consider the region
{1 of Fig. 4.2 decomposed into k strips £2; and suppose that an n by m; grid is imposed on each strip, where
the mesh widths h; = 1/(m; + 1) are not necessarily the same. Such discretization is useful, for example,
when the solution to the differential equation is known to behave in a wavefront fashion and a fine grid is
needed only in a narrow subregion. Let A be the mesh width in the horizontal direction, h = 1/ (n+1)
and define ¢{; = h;/h.

The matrix A for the operator (4.5) with the discretization just described satisfies the hypothesis of
Lemma 4.2, with

Ly = Ciaiaj(n)+2% +h%Ge;
(G + Gi1) (@i +a"+1)aj(n)+b—':+ bitr | p2(Gt Gian) (6t civa)

2 2 Cz Ct' +1 2 2

Bi;

30

and d; él The interface matrix can then be described by expressions (4.9), (4.12) and (4.13), with
exgenvalues given by (4.14) and (4.15), for v;; = y(u:;) and
¢ a;o; + ¢;h?

Hi; = b:

For general piece-wise constant coefficient cases, 2Ar; # T; + T;41, but we can prove that

20Bi; = tij + tiy1,5 — (C'+12 &) ((a +1 - @)oj(n) + R3(cip1 — C:)))
then, we have o o
N = bi I + 1 +7m' biv1 (M b ise 1+ 7475
- - t4+1,0 T me 1
Y GVTa TR T mE T gV T 71— it
1
—7(G+1 = G) ((ai+1 = a;)o;(n) + h*(cip1 - Ci)) . (4.20)
In particular, if a; = a and ¢; = ¢, we have
i+1 i+1+1
B 1475 4 bin Py o THRT
:J = Ct 2 + l‘:J m.+1 Cirt 4 + Hit1,j 1— 73-;1_,_;+1

Also, we can easily verify that when h; = h, (4.20) becomes (4.18)

4.5 Summary

In this chapter, we derived decompositions of the interface matrix in terms of Fourier modes for several
operators on rectangular domains subdivided into two or more strips. For two-strip decompositions, the
interface matrix has an eigenvalue decomposition Th terms of Fourier modes, of the form:

C =WAW

Table 4.1 shows the eigenvalues of C for two-strip decompositions, for the various operators described in
this chapter.
When a rectangular domain is decomposed into k strips as in Fig. 4.2, the interface matrix takes the
form
H, B,
B, H
C = 2 . 2 . ’
: By,
By Hi,

where WTH;W = A; and WTB;W = D;. The elements of the diagonal matrices A; and D; for the various
operators given in this chapter are given in Table 4.2. All operators in the table represent particular cases
of the general operator of Lemma 4.2.

31

Table 4.1: Two-Strip Decompositions

The Schur complement has the form C = WT diag (A;)W .

Aj

Operator

Equation (4.2)

t3; — d:\/“/(#u)

1+y(p)™ + 1+ y(p2)™

g~ VT, S
1(u) = (1+§-V%+l‘)) Mg = =24 b/ ds

Piecewise-constant

by /”11 + 1+ y(p)m+)ml"'1 ‘/”21 +u 1+ v(p2)m2+1
MIT S gyt * TP

coefficients
1
Kij = ;(aidj + ¢;h?)
. 14 9(o)™* 14 9(gj)mH! af
Laplacian (1 “x(o;ym T T (o)™t o; + Y
o; = 4sin zﬂﬂ_—ﬂ
1+ 7m1+1 1+ 7m2+1) #2
Helmholtz - (2+
mi+1 ma+1 J
1- 7’]' 3 1- 7_7' 2 4

ki = —0oj + ah?

32

Table 4.2: Multi-Strip Decompositions

Operator

FEigenvalues of H; and B;

Lemma 4.2

Aij (4.14)
8;; (4.15) or (4.16)

Piecewise-constant

14 ” me+1 “3A
Aij = Lgmiji41 bs (T:%(ﬁj%?nm) J—j— + Hsj

coefficients
—Yymi+1 2,
5i; = —2b; ((1_1&.;_)))," ._) VE 4
pij = §(aio; + ¢ih?)
m;+1 i+1+1 o2
Poisson (_'L'Tr + ——‘Zm‘.;‘{'-l-'r) \/a_, +3
—5+—1 o2
1] = 2—1_.!:]" UJ + _'L »
mi+1 2
Helmholtz Aij =~ (%) ﬁf + B

Yy mi+1 2
6 =2 (St) Vi + 1

b = 0j + ah?

Piece-wise constant
coefficients on

irregular mesh

ba L4v(ug)mett fusl; _
Aij = Zs.-t,z+l Co T=v(msg)™e =i+ Hsj

-3 — &) ((aig1 — ai)oi(n) + A2 (cip1 —)

it 2
bij = 2—L (311—1_1(&:’1)),",) \ ”—;‘- + pij

2
i = $(aij + ch?)

33

34

Chapter 5

Preconditioning the Interface System on
Irregular Domains: L-shaped and
C-shaped Domains

5.1 Introduction

In this chapter we analyze the preconditioner M¢ for the interface matrix on irregular domains. In
particular, we want to study the dependence of the convergence rate on the meshsize and the shape of
the domain. Many preconditioners, when applied to an L-shaped region, have convergence rates that are
bounded independently of the meshsize. The bound, however, depends on the relative aspect ratios of the
subdomains.

Consider for example, a five-point discretization of the Poisson equation on the region € of Fig. 5.1. In
Fig. 5.2 we show how the condition number of ¢ = M~1/2CM~1/? grows as k approaches zero, for each
of the preconditioners described in Chapter 3, when the aspect ratios are fixed. For this example we chose
01 = az = a3 = 1. As we can see, the condition number of C' (no preconditioner) grows linearly with ;1;
For all the other preconditioners, including M¢, the condition number of € is bounded independently of
the meshsize. ‘

In Fig. 5.3 we show the condition number as a function of ey, the aspect ratio of subdomain ©;, fixing
a2 = 1 and o3 = 1. In Fig. 5.4 we show the dependency of the condition number on a; when oy = a3 = 1.
For these examples we used a mesh width A = 0.02. We can see that for all preconditioners except for
Mc, the condition number deteriorates as the aspect ratios decrease. Moreover, in Fig. 5.5 we can see, for
example, how the distribution of the eigenvalues of C' changes as a; decreases. We show the case where
o1 = a3 =1 fora; =1, az = 0.5 and a2 = 0.05. The eigenvalues of MC'IC remain clustered around one
for all three values of a3, while for the other preconditioners, the eigenvalues begin to spread appart as o,
decreases.

23]

T Qa3

Q2o Q2

Figure 5.1: L-shaped domain

35

In this chapter we prove that, in fact, when the M¢ preconditioner is used, we have x(C) < 2.16 for
all L-shaped regions, independently of meshsize and aspect ratios !.

Another interesting property of the preconditioner M¢c on L-shaped domains is also proved in this
chapter: there are two ways of decomposing an L-shaped region into two rectangular subregions, but the
convergence rate is not affected by the way we choose to subdivide the domain.

Although these results only apply to L-shaped regions, the same ideas can be applied to obtain similar
results for other regions which are unions of rectangles. We derive some results for C-shaped regions.

v v T Y T T 1T
10* o J ’l";-
P oS - 1
- ? ’4" d
o’
g 1ot - _,"‘ .
* :]
_____________ | S
) B, OM, C
T 1 1 1 . i 3 ! 4
o7 :
n
Figure 5.2: Condition number vs.ﬁi
& v 1 t T 4 T T
-]
1
)
41
- _
B
Y
E‘\
3 & _
=1 3
,\\
-3 \:}.‘\ —
Y
~S» D
.‘\,__ -
\\..:\ au
o] e .
l I~ —
L L L 1 L i L 1
0.0 0.2 0.4 0.6 0.8

1.0

Figure 5.3: Condition number vs. aspect ratio of 0

!This bound has been recently improved. Chan, Hou and Lions [14] proved that in fact, & < 2.

36

BW

oM

s . T T T T T T v
4 ru‘ —
¥
3 e
=
2 -
1 _
.] A 1 : 1 1 A
0.0 6.2 04 5.6 0.8 1.0
Qg
Figure 5.4: Condition number vs. aspect ratio of
i xg = 1
1} ay = 0.5 °
mirt ag = 0.06
i xg = 1
“l ag = 0.5
Wit o, = 0.05
| A o = 1
| NI og = 0.5
[I @, = 0.05
I xg = 1
11 ay = 0.5
I az = 0.05
) { i i i
z ry B

Figure 5.5: Eigenvalue clustering vs. aspect ratio of {3

37

aq 21

ag Q2

oH
<

Figure 5.6: Decomposition of an L-shaped domain

5.2 L-shaped Regions

In this section, we describe the interface operator and its preconditioners for an L-shaped domain, the
simplest irregular shape that can be decomposed in rectangular subregions. Consider the Poisson equation
on the region Q of Fig. 5.6. It is clear that either interface, I'y or I's, will divide the domain into two .
rectangles. We might ask ourselves two questions:

¢ Is one decomposition better than the other?
e How does the convergence rate depend on the mesh size and the aspect ratios of the subdomains?

We will show that, when preconditioner M¢ is used, the rate of convergence is the same for the two
decompositions. We also give a bound for the condition number that holds for all meshsizes and all
L-shaped regions.

Let the linear system

Au=f (5.1)

represent a standard five-point discretization of the differential equation on a regular grid of size h =
1/(n + 1) imposed on the domain . Assume that the size of the grid is » by m; in ©;, n by m; in Q,
and n3 by m; in Q3. If we consider the domain Q as the union of two rectangles divided by Ty, then an
interface system of the form

C4 Uy = g4 (52)

can be derived for the variables on T'y by the process of block elimination. Similarly, if we consider the
domain € as the union of two rectangles divided by I's, then an interface system of the form

C'5u5 =4gs (53)
can be derived for the variables on T';.

On the other hand, by reordering the gridpoints on Q;, Q, and 3 first and then those on the interfaces
I'y and I's, (5.1) can be written in block form as:

(2 o)) =(r) G4

An Aut
Ag = Ao , Ar= (Ass)
A3z

38

where

and
P=1 Ay Azs
0 Ass

The matrix A of (5.4) can be decomposed as follows:

Ao (AQ) (I Aglp)
PT Cys I ’

where Cys is the Schur complement of Ar in 4, i.e.,

M. -AT ATl A
Cis=A —PTA-1P=(1 2422 25) , 5.5
45 r f “AszAzzl Azq Ms 5:5)
with
My = Ag— AT AT Avs — AT AZ) Asy
and

Ms = Ass — AL A} Ags — AT AS) Ass.

The matrix M4 would be the capacitance matrix for Iy if the domain Q3 were absent. Similarly, My
would be the capacitance matrix for I's if the domain ; were absent. They are, in fact, nothing but the
preconditioner M¢ described in Chapter 3.

" Let

2
_ B (6
*/(u)—(1+2 T tH

and given integers n,m and p, define

_ (1+(oi(r))™* 1+ 79(gi(n))P*! , o;(n)?
/\j(n,m,P)" (1 —‘7(aj(n))"‘+1 1—‘7(Uj(n))3’+1) O'J(n) +—4—

for 1 < j < n, where o;(n) = 4sin2ﬂ;}1—1;.
Both M4 and M;s have eigenvalue decompositions in terms of Fourier modes, namely

M4 = WnA4Wn
Ms = ngASsz ’

with eigenvalues given by A;(n,m;,m3) and Aj(mg, n,n3) respectively.

The matrix Cy4 of (5.2) is the Schur complement of A44 in A, but it can also be written as the Schur
complement of My in Cys (see (5.5)). Similarly, Cs is the Schur complement of Ass in A, but it can also
be written as the Schur complement of Ms in Cys. We can therefore derive the following expressions for
Cy4 and Cs:

Lemma 5.1 The interface matriz for Ty in Q can be written as
Cy= My~ BTM;'B (5.6)
where B = A%'SAZ'ZIA“ and analogously, the interface matriz for T's in Q can be written as

Cs = Ms — BM;'BT . (5.7)

39

-

1.25

025 [~—7==Z-===---
Qs ITs Q3

- -

Figure 5.7: Example: an L shaped domain

If we choose I'y as the interface, subdomain problems will be solved on Q; and Q, UTs U Q3 at each
iteration. Similarly, if we choose I's as the interface, subdomain problems will be solved on QuT4UQ, and
{13 at each iteration. The work per iteration is therefore comparable. We will next show that, by solving
(5.2) with preconditioner My and (5.3) with preconditioner Ms, both systems are also equivalent from the
convergence point of view. Therefore, there is no a priori reason to prefer one way of decomposing the
domain over the other. :

Since Mc is positive definite, we can choose /Mg as a symmetric preconditioner and define the
preconditioned matrices

Co= MO MM and Gy = MJVPC MV
By (5.6), we have
Co=I,-B"B and C(s5=1I,,-BBT | (5.8)

where B = MS_I/ZAZSAEZIANM:I/Z.

If n = m,, then both interface systems have the same order and it is easy to see that C; = Cs. It
is therefore not surprising that both systems have equivalent convergence properties. It is not obvious,
however, whether one way of decomposing the domain should be prefered when = # my. As it turns out,
even in this case the asymptotic convergence rate is the same for both systems, because C; and Cs satisfy
the hypotheses of Theorem 2.2.

When a preconditioned variational iterative method such as preconditioned conjugate gradients (PCG)
is used, the rate of convergence depends on the distribution of the eigenvalues of the corresponding precon-
ditioned matrix. In particular, the bound (2.2) on the convergence rate depends on the condition number
of C. By applying Theorem 2.2 to Cys and by using (5.8), we can conclude the following:

Theorem 5.1 Solving systems (5.2) and (5.8) with preconditioners of the form M¢c produce equivalent
asymptotic convergence rates. Moreover,

1
1-1Bl1Z

1

K,é4 < ———r
(Co < T

and H(és) < (5.9)

| . . .
By (5.8), the eigenvalues of C4 and Cs are given by 1 — (3%, where 3; are the singular values of B. The

value 1 is also an eigenvalue of the matrix with the higher dimension. Numerical computations show that
the B;’s decrease very quickly with the index i. Therefore, in practice, only a few eigenvalues of C4 and

40

Table 5.1: Singular Values and Eigenvalues
of the Preconditioned Interface System for an

L-shaped region.

h=2"° h=2"°
B; Aj B; Aj

0.18204 0.96686 | 2.165E-01 0.95312
0.03868 0.99850 | 6.816E-02 0.99535
0.00514 "0.99997 | 1.578E-02 0.99975
0.00045 0.99999 | 2.971E-03 0.99999
0.00002 1.00000 | 4.607E-04 0.99999
0.00000 1.00000 | 5.863E-05 1.00000
0.00000 1.00000 | 6.082E-06 1.00000
5.093E-07 1.00000

Cs are different from 1, which leads to rapid convergence of the iterative method when applied to either
matrix. For example, for the L-shaped region of Fig. 5.7 we computed the singular values of B and the
eigenvalues of Cy (and Cy) in single precision. In the first column of Table 5.1 we show the values of 3;

and /\gs) when h = 2~% and m; = 7. In the second column, k = 2-6 and m,; = 15. Since all but a few of

the singular values of B are very small, only a few eigenvalues of the preconditioned system are different
from one (to working precision). Therefore, the algorithm PCG will converge rapidly.

It is interesting to note the connection between this method and the Schwarz alternating procedure
with overlapping region £;. Chan and Goovaerts [13] proved that the Schwarz procedure corresponds to
applying the block Gauss-Seidel iteration to the reduced system obtained by eliminating ug in (5.4). If the
PCG method is then applied in order to accelerate the convergence of the Schwarz method (two Schwarz
steps, in order to make the preconditioner symmetric), the computed values on T at each iteration will be
the same values computed by our non-overlapping domain decomposition method (see also [5] for further
discussion).

5.3 Bound on the Condition Number for L-shaped Regions

Our conclusion from Theorem 5.1 is that, when preconditioner M¢ is used, either way of decomposing
an L-shaped region into two rectangles produces the same convergence rate. Moreover, we will be able to
give an analytical bound on the condition number of the preconditioned capacitance matrix. This bound
is derived from a bound on the norm of the operator BT B.

But fust, the following lemma will give us a useful expression for the elements of a unitary transforma-
tion of B.

Lemma 5.2 Let V = W,,, BW,.. Then, ||V]lz = ||Bll2. The elements of the matriz V are given by

2 sin =& sin 127
mptl ntl (5.10)

vi; =
T VI D(mg + 1) s§4)s§5) (aJ(") + afmz))

41

with 8§ = \/1A;(n, m1, my)| and s& = \/[X(mg, m, ma)].

Proof: Since AZ A7} Ag4 corresponds to the operator @ng of Lemma 2.3, we have

V = A7 (W, QueW,)ATY?

Then,
vis = 2 1 sin 2% sin res
T W+ D) (me +1) (oi(n) + o;(ma))
1

By (5.9) we can see that by finding a bound for ||B|| (or equivalently for [IV]l), we can bound the
condition number of the preconditioned interface system. Since we have an expression for the elements of
V, we can bound ||V||; and ||V|| and then use the property:

VIl < VIVIlIViieo

The results are summarized in the next theorem.
Theorem 5.2 Define the aspect ratio for the domain Q; in Fig. 5.6 as o = mnz-nﬂ Then
a) [Vl < va 0.733 and ||Vl < J= 0.733.

b) 1BTBll2 < 181 = VI3 < IVII1lIVIleo < 0.537.

c) For all meshsizes and all L-shaped regions,

k(Cy) <216 and k(Cs) < 2.18

Proof: (b) follows from (a). (c) follows from (b) and from (5.9). In order to prove (a), we prove bounds
for the column and row sums of the absolute values of (5.10), by applying two lemmas that are proved at
the end of this section. ~

The eigenvalues of My and M5 can be bounded by

. T
Aj(n, my, my) 2 4sin 2(—n—-+_-_1_)
and .
Ai(ma,n,ng) > dsin ——t
1 2,14, 113) Z 2(m2 + 1)

respectively. It is easy to show that

1 1 f(ziy) _ Vo f(ziy) (5.11)

- b

sl < 2y/(n + 1)(m2 +1)f(zi’yj) T2/a k1l 2 mp+l

where z; = -52'? and y; = -4+ and the function f is defined by

FI
\/sinzg coszf \fsinyd cosyl (5.12)

sin?z% +sin?y%

flz,y) =

42

-0 ',,

Plot . 0. b Sun Is bounded by the
a) ol of f(x,y) for y = 1) Sumn oundea.>

Figure 5.8:

The column sums and the row sums of V' can then be bounded by expressions that involve the integrals
of f with respect to z or with respect to y. In Lemma 5.3 (appendix at the end of this section), we prove
the following expression for the integral of f with respect to z, for a fixed y:

2
Var

cos y-75 (7r — ¢(sin b-72£, sin yg) + g(sin a%, sin y%)) (5.13)

b
/ f(z,y) dz = :

where

(z,w) 110 z4+V2zw 4w + arct nv2zw
= - _— a
& 2 gz—\/2zw+w z-w

Since f(z,y) = f(y,z), an analogous result holds for the integral of f with respect to y, for a fixed z.

We also need to describe the behavior of f(z,y) for a fixed y, in the interval z € (0,1). We can easily
see that f(z,y) > 0 for all z,y € (0,1). In Lemma 5.4 we prove that, given y € (0,1), there exists a
unique z*(y) € (0, 1) such that maxe<z<1 f(z,y) = f(z*,y), that f(.,y) is monotonically increasing on the
interval (0, z*), and monotonically decreasing on (z*,1). Moreover, we prove that f(z*,y) is bounded by

3 T
z*,y) < —=coty— . 5.14
f(@*y) < 295 Y2 (5.14)

We can now prove (a) in theorem 5.2. We will only prove the inequality ||V||; < /a 0.733. The proof of

IVlleo < \/%_ 0.733 is completely analogous.
By (5.11), we have

: max
1<j<n mg +1 1<5¢n

V] = max Z|v;j| < _\é_‘__’_ 1 Zf(z.-,yj) . (5.15)
=1 t=1

Let h = ml 7 = 7. We know that f(z,y) > 0 for z,y € (0,1) and by Lemma 5.4 f is monotonic in the
intervals (0,z"(y;)) and (z*(y;),1). In Fig. 5.8a we show a plot of f(z,y) for y = 0.1. The }_hf(z;,y;)
can be bounded in terms of the area under f(z,y) (as illustrated in Fig. 5.8b). Suppose that A < z*(y;)

and let 1 < k < m; be such that kh < 2*(y;) < (k+ 1)h. Then

43

Th41

k
R f(zi,y;) < / f(z,y;)dz

=1 h
and . 1
h‘zz f(ziyy;) < /f(z,yj)d-’b‘
i=k+2 Thp1
Therefore,
A3 Sai) < / £(@3)dz + hf(2ie,35) < / f@v)de + h(=" (1),) - (5.16)

i=1

On the other hand, when A > z*(y;), all z; fall on the interval where f is monotonically decreasing. Then
we have

hZf(zny:) = hf(h, y;)+hZf(mny,) < /f(a: y;)dz + hf(h,y;) . (5.17)

i=1 =2

Let us first assume that A < z*(y;). By (5.29) and (5.30), we can prove that z*(y) < y forall y € (0,1).
Then, by (5.13), we have:

1
/ f(z,9;) dz < —‘;{3 (w +g(sinh§,siny,§)) (5.18)
h

because g(z,w) > 0 for w < z.
Define the function G(k,B) = g(sinh%,sinBh%). Then, the right hand side of 5.18 can be written as
\—/a— (7 + G(h,8)) with 8 = ¥ > 1. By differentiating G with respect to B we can see that 2 7; < 0 for all

h € (0,1) and 8 € [1,400). Therefore G decreases with 8 and then

G(h8) S G(h,1) = lim g(z,w)= -1ogm —g , (5.19)

for all » € (0,1) and B € [1,+00). We can then bound (5.18) by

1 :
1 2+v2
. < —_ LI S . .
h/f(:c,y_,) dz < o (7r + log 5T \/5) (5.20)
On the other hand, by (5.14), we have

hf(z*(y;),y;) < \/_h cotﬂh . (5.21)

We can prove, moreover, that the right hand side of (5.21) decreases with 8 and A and therefore we have

hf(z*(y;),9;) < \/_hcoth2 < 2\/_7r . (5.22)
By replacing (5.20) and (5.22) in (5.16), we have
242 3 '
09) < — 1 = 1.4666 5.23
h;ﬂz vj) < \/— (W+ 0g2_\/§)+2\,/§7r (5.23)

44

and therefore, by (5.15), we have [|V]|; < /a 0.7333 when h < z*(y;).
On the other hand, when A > z*(y;), by (5.17) we have

m2 1 .
By f@u) S [feu)de +hithy) (5.24)
t=1 a:‘(y,')

By (5.13), |
/ f(z,y;)dz < %cos ng (7r + g(sin z‘g,sin ng)) < -\7_25; (7r + G(z*, :—i))
z*(yy
and by (5.19) we have

1 2+ V2
,Y;)dz < —— log ——— . 5.25
f(zyg)z_\@r(fw 0g2_\/§) (5.25)
z*(v5)
Since f(h,y;) < f(z*(y;),y;) and by 5.22 we have
3
Rf(h,y;) £ = (5.26)

2¥3n

By replacing (5.25) and (5.26 in (5.24), we have

m3
R f(zi,y;) < 1.4666
=1
and then by (5.15), we have [|[V||; < +/@0.7333 also when A > z*(y;). Therefore, ||V||; < +/@0.7333 holds
forall A < 1. 1

The result of Theorem 5.2 is important, first because it shows that the preconditioner M¢ does not
deteriorate when one or both subdomains become flat, second because it gives a small, numerical bound
which guarantees fast convergence.

In experiments on L-shaped domains with many different aspect ratios, condition numbers larger than
1.2 were not observed, which indicates that the 2-norm of BT B could perhaps be bounded by a number
smaller than 0.537. However, this bound is fairly tight for ||[V||1]]V]|c, since numerical experiments with
large values of n and m; show that ||V||1||V|le approaches the value 0.5 (we can show, for example, that
forn+1=m; +1=mg+1= 108 we have ||[V[|;]|V]lec = 0.495). Therefore, if a tighter bound is desired
for the condition number, one would need to bound the 2-norm of BT B directly.

We next briefly discuss how the parameter n3 (or, respectively, m;) affects the performance of precon-
ditioner My (respectively Ms). Clearly, as ng tends to zero for large mg, the domain § approaches the
shape of a perfect rectangle. The preconditioner My should reflect this by becoming the exact boundary
operator. In other words, K(é4) should approach one. We can verify that this is the case as follows: v;;
in (5.10) depends on n3 only through A;(mg3,n,n3) (defined in (3.8)). When the aspect ratio ﬁ% tends
to zero (i.e. 23 becomes thinner), A;(mz,n,n3) tends to infinity and therefore v;; tends to zero. However,
we can see that this dependency is very weak, because A;(m2,n,n3) tends rapidly to an asymptotic value
independent of n3 as such aspect ratio grows. Only the fact that

Aj(ma,n,n3) > 2,/6; (5.27)

is used in the proof of Theorem 5.2, which is true for all n3. The discussion above implies that the
performance of My as a preconditioner for Cy is fairly independent of how irregular the region is.

Incidentally, whereas only (5.27) was used in the proof of Theorem 5.2, for other preconditioners such
as the ones given in [18, 4] and [26] the preconditioned capacitance matrix always has the form X + BT B,
for some operator B to which the bounds (a) and (b) of Theorem 5.2 can also be applied, as long as (5.27)
holds. The bound given in (c), however, does not hold for other preconditioners, for which the norm of X
may grow when the aspect ratio a of the domain {2, decreases.

45

Appendix
Lemma 5.3 Let

(2.) \/sinzg coszf (/siny% cosy%
f(z,y) =

in2p% in2yZ
sin “z3 + sin ys,

Given a,b € (0,1), let y € (0,1) such that a < y < b. Then,

b
2
/f(a:, y) dz = Tar cos yg (71' - g(sinbg-,sin y%) + g(sin az,siny

where

(2 w)—llo ztvazw +w+actan 22w
gHwI=3 g:a--\/2z +w z—w

Proof: By replacing z = sinz§ and w = siny% in f(z,y) and defining

F(z,w)= V/Z0

T 224wt
we get
b sinb%
/ (z,y) dz = —cos yg / F(z,w)dz
a sinag
V2 T 1 z4+V2zw+4w V2zw\ i
= — cosy— | —= log ———===—— + arctan
T 2 2 z—-2zw w-2z sinaf
=2 cos y— (71' (sinb’r sin 7l.) + (sina’r sin 7l.))
|

2

Lemma 5.4 Given y‘E (0,1), there exists a unique z*(y) € (0,1) such that:

Juax f(z,9) = f(=",9) ;

)

(5.28)

f(., y) is monotonically increasing on the interval (0,z*) and f(.,y) is monotonically decreasing on (z*,1).

Moreover, f(z*,y) is bounded by

3
<
JE"9) S s cotvy

Proof: The partial derivative of f with respect to z is given by:

os = E(z,y)(sinzzg- - z_)(sinzzg- -2:)

dz
where £(z,y) > 0 for all z,y € (0,1) and

i:g—(1+sm Y=):i:\/ (1+sin2y—)2-sm y

46

Q]_ E rB 94
e Te . '
Q2
Tz ____
i
I
i
Qs ! T Qs
|
i

Figure 5.9: C-shaped domain

It can be shown that
sinzyg

0<z <
-2

<1 (5.29)

and z, > 1. Therefore, gﬁ > 0 for z < z* and gﬁ < 0 for z > z*, where z* is the unique solution in (0,1)
to

sinzz"g =z . (5.30)

Therefore, f has a unique maximum in (0, 1) at z*. Moreover, since for all z € (0,1), we have
f(z,y) £ F(sin :cg, sin yg-)
where F is defined by (5.28), then

. ' omy 3 T
f(=z ,y)solggglF(z,sm%)— coty

3
43 2

5.4 C-shaped Regions

Some of the expressions and results of the previous section are more general than they appear and can
be used as basic components for more complicated regions that are unions of rectangles. For example, a
C-shaped region can be subdivided as indicated in Fig. 5.9.

Similar to L-shaped domains, this region can be separated in three rectangles by either I's and I'7, or
I's and I'y. By ordering the variables in §; before those on T';, the matrix A that represents the discrete
differential operator on § can be written in block form as follows:

(# &)= () @21

where

47

and

Aie 0 Az O
A Ar O 0

P= 0 A3z 0 Ag
0 0 Ag 0

0 0 0 Asg

Us _
Ce7 (u-,) = gs7

can be derived by block elimination for the interfaces I'g and T'7, where Cg7 is the Schur complement in A

of the blocks Ags and A77. A multistrip interface operator Mgz is described in [15] for the problem of a

rectangle divided into three strips (2, Q; and £3). We will analyze Mgz as a preconditioner for Cg7.
The operator Mgz has the following block structure:

_(Hs S
M67_ (S H7) ’

The system

where

He = Ags~ AfeAL A — AT5A7] Ase
Hr = Am— AL AG Ast— AL AZ] Axr
S = —AjgA7 Agr

By using Lemma 2.2, we see that the blocks He, H7 and S have eigenvalue decompositions of the form
(3.2). The eigenvalues of He and H7 are given by Aj(n,m;,mz2) and Aj(n, my, m3) respectively and the

eigenvalues of S are:
mo+1
o v’
6J~(n,m2) = -2 o; + T :;,Tnz—+1_ . (5,32)
J

ug\ _
Cso (ug) = gso (5.33)

Similarly, a system

can be derived for the interfaces I's and I'g, where Cgg is the Schur complement in A of the blocks Agg
and Agg. The system (5.33) can be preconditioned by a block diagonal preconditioner Mgy, with diagonal
blocks Mg and My. Mg is the exact interface system for I's with respect to the subdomains Q; and €y,
and My is the exact interface system for I'g with respect to the subdomains Q3 and 5. Both Mg and M,
have decompositions of the form (1.6).

It can be easily shown that Cr, the Schur complement of the blocks Ar in A, can be written in block
form as:

Qsg O
Cr = Mer 0 QnE
=1 0%, o Mg 0 ’

0 Q% 0 M,

where Qsg and Qng are the operators that describe the interaction between perpendicular interfaces,
defined in Chapter 2. Again, by applying Theorem 2.1, we can prove that both ways of dividing the
domain are equivalent, in the sense that the asymptotic convergence rate of an iterative method is the

48

same when applied to Cg7 with preconditioner Mgy as when applied to Cgg with preconditioner Mgg. The
preconditioned interface system for I's and I'7 can be written in the form

6'67 = M&1/2CG7M6—71/2 =1- BTB

and similarly,

. M 0 \~-V? M 0 \~1/2 .
0895(08 Mg) cgg(8) =I-BBT |

where B € R(mi+ma)x2n 554

The condition numbers of Cg7 and C'sg are bounded by

A 1 A 1
K(Cs7) S — and K(ng) S —_—
1-||BT B 1 - ||BT Bl
Define V as the following unitary tranformation of B:
AL 0 ~ (Wﬂ 0)
V= (0 Wp,) B 0o W,
Then ||V|| = || B||. The matrix V can be written as a block two by two matrix
Vee V67>
V= , 5.35
(V76 Vaz (5:35)

whose block elements have expressions similar to the matrix V for L-shaped regions, namely,

Ves = W, Mz 2QL W, Re ' (5.36)
Ver = W, M7Y?QT.W,R_ (5.37)
Vie = WMy 2QR g W, R_ (5.38)
Vir = W, M5Y2Q% ;W Ry (5.39)

where Q;; are defined by (2.15) and Rg, R7 and R_ are diagonal matrices such that:

Rs R.. _ Wn 0 -1/2 Wn 0)

R_. R,)T\0 W,/ o0 W,
For the case when m; = m3 < mg, a simple expression can be found for Rg, R7 and R.., namely Rg =
R; = R4, with the diagonal elements of Ry given by

* _
rj —

=

1 1
+ y 5.40
(\/Aj — 181 i+ léjl) (5:40)

where A; is Aj(n, my, my), given by (3.8) and §; is §;(n, mz2), given by (5.32). Arguments similar to those
in Theorem 5.2 can be applied to the following:

Theorem 5.3 Consider a C-shaped region like Fig.5.9, where m; = mz < mq and o is the aspect ratio

for the domain Q, or Q3 in the picture, i.e. a = ﬂnﬁl Then,

49

a) ||V]h € V@ 0.7877 and ||V]|eo < 71; 0.7877 .
b) 1BT B2 < 1Bl = VI3 < IVI1lVleo < 0.62.
¢) k(Cer) < 2.63 and k(Csg) < 2.63 for all meshsizes and all C-shaped regions such that my = mz < m,.

Proof: Define the function

_l+z-4Z
We can easily prove that f(z) > 0.866 for all z € [0,1). By (5.32) and (3.8), we have
T e o
[Aj(n, m1, ma)| = 6;(n, m2) = P matl z a1 o + -
1-— 7,7' 1 1-—- 7J 2 1 - 7J 2 4
Since v; < 1 and m; < mg, we have
14y 7-22211— o?
j
[Aj(r, m1, ma)| = §5(n,m2) 2 1— 7gnz+1 - 1-— 7{ng+1 o5 + TJ
j 13

[2
gs
24/o; + f('y""“) > 1730 + z"— . (5.41)

Lemma 2.3 gives expressions for the elements of WmsQ%EWn and WmngEWn. We can see that they
have the same absolute values. Also, both Mg and My have eigenvalues that are bounded from below by
4sin -21—;17%5 These facts can be used to prove a bound on the 1-norm of (5.36) to (5.39).

By (5.35), (5.40) and (5.41), we can see that ||V||; is bounded by

1 (\/E : “smz'z coszig \/Smwz COS!/:'%)
H

Vih <
” ”1 - \/0.866 2 m;+1 1<J<n sm2z‘, + sin y_, 2

=1

where z; = i/(m; + 1) and y; = j/(n+ 1), for i = 1,...m; and j = 1,...n. The proof of Theorem 5.2
applies now to the expression in parentheses. (]

50

Chapter 6

Parallel Domain-Decomposed Fast
Poisson Solvers

6.1 Introduction

In this chapter, we are concerned with the parallel solution of constant-coefficient problems on regular
domains. We are primarily interested in coarse granularity. More specifically, we consider the case p << m,
where p is the number of processors and m is the number of meshpoints in one spatial dimension.

Domain decomposition methods are a natural choice, because the domain can be divided into as many
subdomains as processors and the computation corresponding to each subdomain can be assigned to a
different processor. In the case of regular domains, the domain is divided into strips in the two-dimensional
case and horizontal slices in the three-dimensional case. Then, block elimination is applied to the discretized
equations in order to form a system for the separator variables.

In Chapter 4 we derived expressions for the capacitance matrix C for constant-coefficient problems on
rectangular domains divided into strips. We showed that the interface system can be solved by fast direct
methods using FFT’s. Since the subdomain problems can also be solved by fast direct methods, we thus -
have a domain-decomposed fast direct Poisson solver which is easily parallelizable. Algorithm DDFAST is
presented in Section 6.2.

Unless the strips are extremely thin — i.e. p & m — most of the computing time is spent in the solution
of the independent subdomain problems. The solution of the interface system only involves communication
of boundary values.

One desirable property of this method is its black box modularity. Any sequential fast direct solver can
be applied to solve the subdomain problems. The only part of the algorithm which requires specialized code
for a particular parallel machine is the solution of the interface system. A second, more important property
is that it provides a framework for the implementation of efficient parallel preconditioners for variable-
coefficient problems for which fast direct methods are not available. We discuss these preconditioners in
Chapter 7.

The arithmetic complexity of the algorithm depends mostly on the particular method chosen as a
subdomain solver. A naive implementation requires solving two problems on each subdomain — one with
zero boundary conditions on the interface, one with the exact solution on the interface — thus increasing
the work asymptotically by a factor of 2. We show, however, that the particular structure of these two
systems can be exploited for each particular choice of subdomain solver, thus saving a factor of two in the
leading term of the asymptotic complexity. Efficient implementations of the algorithm corresponding to
some standard choices of fast direct solvers for the subdomain problems are discussed in Sections 6.3 and
6.4. In Section 6.5 we discuss details of the implementation on hypercube architectures and in Section 6.6
we show some experimental results obtained on an Intel iPSC/2 multiprocessor system.

51

________ o M
Q2

________ L]

________ l:p_—l__..-__..___-__
Qp

Figure 6.1: Rectangular domain divided into strips

6.2 Domain-Decomposed Fast Poisson Solvers

Consider a five-point discretization of the problem
Lu=f inQ with wu=u on I , (6.1)

on an n by m grid. We divide the rectangular domain € into p strips as shown in Fig. 6.1 and assume that
m + 1 is a multiple of p with -"lp*l > 4.

Let the system
(3 &) ()= (%) 62)

represent the déscretization of (6.1) in Q, where ug corresponds to values on the interior of the strips and
ur corresponds to values on the interfaces and assume the natural row-wise ordering of the gridpoints
inside each subdomain. When block elimination is applied to (6.2), the problem is reduced to independent
problems on the subdomains and the linear system

Cur=g (6.3)
for the interface unknowns, where C is the Schur complement
C = Ar - PTAZ'P (6.4)

and T
g=fr-P Ag fa . (6.5)

In order to compute the right-hand side g, we need to solve Aqz = fa. The matrix Aq is block
diagonal. The p components z of the corresponding partition of z are the solutions of independent
subdomain problems, given by the restrictions of (6.1) to §; with zero Dirichlet boundary conditions at
the interfaces T;:

Aiizi = fa, . (6.6)

Once the interface system is solved, the problem is decoupled and the solution ug on the subdomains can
be computed by solving

Aquq = fo — Pur . (6.7)

Again, since Agq is block diagonal, this equation represents p independent subproblems of the form
. AiiuQ(= fQ.' - Pi,i—lur“_, - })ﬁur,‘ (608)

52

where P;; are the blocks of the submatrix P, with

Py
Py P

Poc1p-2 Pp-1,-1
Pyp-1

Each block P;; corresponds to the coupling between the unknowns in the subdomain €; and those on the
interface I';. Solving (6.8) means solving for u on each subdomain with the computed values of ur; as
boundary conditions on the interfaces.

In Chapter 4 we showed that the Schur complement (6.4) is given by

H, B,

c=| B {f? (6.9)

B,y H,,
The eigenvalues of H; and B; can be derived for some particular cases such as constant or piece-wise
constant-coefficients and are summarized in Tables 4.1 and 4.2.

Although the algorithm can be applied to all operators mentioned in Chapter 4 and to strips of different
sizes, we will assume for simplicity in this chapter that the operator L has constant coefficients and that all
subdomains are of the same size, each subdomain containing n x mq gridpoints of the original grid, where
m + 1 = p(mg + 1). In this case, the blocks of C do not depend on i, so we have H; = H, B; = B, and

WTHW = A = diag(\y, ..., \n) (6.10)

WTBW = D = diag(6y,...,6,) (6.11)

For example, when L is the Laplacian operator, A; and §; are given by:

1 + 7}_’"0"-1 0,‘72
and
mg-H
7 o}
6j = _2:W g; + T . (6.13)

The interface system is solved by matriz decomposition, a fast direct method that combines fast sine
transforms and tridiagonal solvers [10].
The resulting algorithm is a fast direct Poisson solver derived from domain decomposition.

6.2.1 Algorithm DDFAST

In order to compute g using (6.5), the systems (6.6) must be solved first. A fast direct solver can be used
to solve independent problems on each rectangular subdomain.

The interface system (6.3) is solved by matrix decomposition as follows: by substituting (6.10) and
(6.11) in (6.9), the system Cur = g is transformed into:

A D

D .
A ar=g , (6.14)

Figure 6.2: Algorithm DDFAST
Step 1: Fori = 1,...,p, solve
Az = fa,.
Step 2: Form the right-hand side for the interface system:
fori=1,...,p—-1
' gri = fry — Pz - Pg;-l,izi+l-
Step 3: Solve the interface system:
i) Use fast sine transforms to compute
fori=1,...,p—-1,
gF.‘ = WTgF.' .
i1) Solve the transformed system (6.14) by reordering
the unknowns and solving n tridiagonal systems
of size p— 1.
i7i) Use fast sine transforms to compute
fori=1,...,p—1, :
ur, = Wiar,.
Step 4: For i = 1,...,p, solve:
Aiiug; = fq, — Piiur,_, — Pyur;,
with ur, = ur, = 0.

where the components of 4r and § are given by
ir, = WTup.. and gr; = WTgp..
Each component of the new right-hand side _i; can be computed with a fast Fourier sine transform.

By reordering the unknowns and rearranging the equations accordingly, (6.14) can be written as n
decoupled tridiagonal systems of size p — 1, given by the matrices

A 6
T, = | % j\f (6.15)
g

The solution at the interfaces is then computed by applying inverse sine transforms to each ir,, i.e.,
upr; = Wir,. Finally, we can solve the decoupled problem (6.8) by fast direct solvers on the rectangular
subdomains.

The domain-decomposed fast Poisson solver DDFAST is summarized in Fig. 6.2. The algorithm is
naturally suited for parallel implementation. Steps 1 and 4, which are the most computationally intensive,
are completely parallelizable because each involves the solution of p independent Poisson problems. Steps
2 and 3 have lower order computational complexity because they only involve the interface values. The
fast sine transform computations in Step 3 can be done locally. Steps 2 and 4 only require communication
of boundary values. Finally, the right-hand sides for the n tridiagonal systems of size p—1of Step 3 are
distributed among the processors. The most efficient method for solving these systems will depend on
the particular parallel machine. In Section 6.5 we will discuss details of the parallel implementation of
DDFAST, for the case where the processors are connected in a hypercube configuartion.

6.2.2 Complexity of DDFAST
The arithmetic complexity of algorithm DDFAST is

54

Cpp(m,n,p) = 2kCp(= +1

y n) + Cintcrf(na p) + O(pn) ’ (6°16)

where Cp(m, n) represents the complexity of a Poisson solver on an m by n rectangular grid and Cipters(n, p)
denotes the complexity for solving the interface system, with

Cintcrf(nvp) = 2(1"’ I)Ca(n + 1) + nCt(p - 1)

Since the complexity of any Poisson solver applied to the subdomain problems is at least linear in mg
(e.g. O(monlogn) or O(nmelogmo)) and the other terms in (6.16) have lower complexity, the asymptotic
complexity of algorithm DDFAST is at most twice the complexity of the same subdomain solver applied to
the entire domain Q. In other words, asymptotically, for any p, Cpp(m, n, p) < 2Cp(m,n). Moreover, when
the m-dependency is stronger than linear, we can take advantage of this fact in a divide and conquer fashion,
For example, consider a Poisson solver such that Cp(m,n) = O(mnlogm). Then, Cpp = O(mnlog &;}i),
and for the optimal p = O(5%;), Cpp becomes O(mnloglogm).

Algorithm DDFAST also has the advantage that the Poisson problems in Steps 1 and 4 can be solved
by any sequential fast direct solver in a black box fashion. The price to be paid is the factor 2 in the
leading term of (6.16). That is, if we view the subdomain solver as a black box, we must independently
solve two problems on each subdomain, namely Steps 1 and 4. Note, however, the following facts about
these two subdomain solves: first, only the values of z; at the gridpoints near the interfaces are needed for
the computation of g in Step 2; second, the right-hand sides for the equations in Step 4 differ from the right
hand sides of Step 1 only at the mentioned gridpoints. Thus, given a particular subdomain solver, the two
solves can be tailored (sacrificing modularity), to save the leading factor of two. In the next two sections
we will discuss efficient implementations of DDFAST based on Fourier analysis and odd-even block-cyclic
reduction. -

6.3 Subdomain Solvers using Fourier Analysis

We first consider the fast direct solver from FISHPACK [34, 10], which we will call MD and which is based
on the technique of matrix decomposition, described earlier in this chapter. Algorithms DD1 and DD2
are particular instances of algorithm DDFAST, when the subdomain problems of Steps 1 and 4 are solved
by MD with row-wise and column-wise numbering of the subdomain interior gridponts. In DD1, sine
transforms are computed in the direction parallel to the strips (size n) and tridiagonal systems are solved
in the other direction (size mo). In DD2, sine transforms are computed in the direction perpendicular to
the strips (size mo) and tridiagonal systems are solved in the other direction (size n). While DD1 is a
natural choice from the point of view of data storage since we assume that the gridpoints were originally
numbered row-wise, the solver that performs fast sine transform computations on shorter vectors has lower
complexity. Therefore DD2 is asymptotically faster than DD1. In particular, as we mentioned earlier in
this chapter, DD2 can be made O(mnloglogm) for a particular choice of p.

6.3.1 Algorithm DD1

In a naive version of Algorithm DD1, the subproblems of Steps 1 and 4 of DDFAST are solved by the MD
algorithm, requiring 2(2m — (p — 1)) sine transforms of vectors of dimension n. However, by solving the
interface system in Fourier space, we can save two intermediate Fourier transform phases and reduce this
to 2m transforms.

We outline the algorithm in Fig. 6.3. The equations in Step 3 are reordered, so this corresponds to
solving n tridiagonal systems of dimension p — 1 with matrices (6.15), where A; and §; are given by (6.12)
and (6.13).

55

Figure 6.3: Algorithm DD1
Step 1: First Solve
a) Compute the sine transforms of the right hand side:
f = diag (WT)f. '
b) Solve Ay ; = fq,, where
: Ay = diag(WT)A;; diag(W).
Step 2: Form the transformed right-hand side for the interface
system, i.e. gr; = fr; — Piy1,i%i41 — Pi%
Step 3: Solve (6.14), the interface system in Fourier space.
Step 4: Second solve
a) Compute g, by solving
Agtg, = fo, — Pyir, - Pii_1ir,_, .
b) Compute the solution at the interior of the subdomains
and at the interfaces, by applying the inverse sine
transforms to g, and dr,.

Complexity of Algorithm DD1

Since Cp = 2moC,(n + 1) + Cyynmy, the arithmetic complexity of the naive sequential implementation of
DD1is
Chlack—boz-DD1(Rymyp) = 4mCy(n+1)—2(p+ 1)Cy(n + 1)

+2Cpn(mn) + O(pn)

The complexity for the efficient implementation can be computed as follows: Steps 1 and 4 involve 2m fast
sine transforms of dimension n and the solution of 2pn tridiagonal systems of dimension mg. In Step 3, n
tridiagonal systems of dimension p — 1 must be solved. The rest of the computation is also O(pn). Thus,
for the more efficient implementation of DD1 we have:

1
Com(n,m,p) = 2mCy(n+1)+ 2pnCa ("22) + O(pr)
= 2mCy(n+ 1) + 2Cyynm + O(pn)

Asymptotically, this version of DD1 has the same complexity as the algorithm MD applied to the whole
domain, namely Cpp(n,m) = 2mC,(n + 1) + Cynm, but for small values of n, the contribution of the
second term may still be significant, so DD1 is a slower sequential solver than MD.

6.3.2 Algorithm DD2

Algorithm DD2 corresponds to computing fast sine transforms in the direction perpendicular to the strips
(shorter vectors). Even in the sequential case, this algorithm has lower overall complexity than the sub-
domain solver when it is applied to the whole domain.

In order to set the notation, we first describe the black-box version of this algorithm. Let the interior
gridpoints on each subdomain be numbered by columns instead of by rows. Then, each subproblem can
be solved by matrix decomposition with 2n Fourier transforms of dimension mq and the solution of mg
tridiagonal systems of dimension n. After reordering the unpnowns and applying fast sine transforms in
the y-direction, the equation A;;z; = fa, is transformed into A;Z; = 79'.. This new equation is reordered
to get mo tridiagonal systems of dimension n. The black-box version of DD2 is outlined in Fig. 6.4.

56

Figure 6.4: Algorithm DD2

Black-box Implementation
Step 1: First Solve
Fori=1,...,p
a) compute fo. (n sine transforms of dimension mo)
b) solve A;Z; = TQ.. (mg tridiagonal systems of dimension n)
¢) compute 2; by applying inverse fast sine transforms to z;.
Step 2: Form the right-hand side for the interface system:
fori=1,...,p-1
gr. = fr, = PYzi = PLy iz
Step 3: Solve the interface system:
- Use fast sine transforms to compute gr; = WZgr,.
- Solve the transformed system (6.14) by reordering the
unknowns and solving n tridiagonal systems of size p — 1.
- Use fast sine transforms to compute ur; = Wir,.
Step 4: Second solve
a) Compute kg, , the sine transform of:
Let hg, = fo, — Bi—1ur;_, — Piur;. _
b) Solve the mg tridiagonal systems A;;uq; = hg;.
¢) Compute uq, by fast sine transforms.

Efficient Implementation of DD2
?

The complexity of Step 1-c is O(nmglogme) to compute all entries of z; by fast sine transforms. Since
only the values of z on the first and last rows of gridpoints in Q; are needed to compute PZz; and
1’3:'_12:', they can be computed from Z; in O(nmg) time by direct calculation. Denote the values of z;

on the first row of gridpoints by (z};,24;,...,25,)7 and the values of z; on the last row of gridpoints by
(zimoa zémoa crey z:lmo)T- Then,

; 2 X sw ;
A = ' 7., 6.17
7 mo+1§m(mo+1)z” (6.17)

; 2 moST \
Zime = > s Z, - .18
™o me+12"" <mo T 1)z” (6.18)

We can also save some operations in Step 4 by taking advantage of the fact that, since the vector p; =
=P, i-1ur,_, — Bur, is sparse, its sine transform 7; can be computed in O(nmy) time. The elements of 7;

are given by: 2 sT
H . — 3 . . R .
Vmo+1 o0 (mo + 1) (uris +(=1)"uris) (619)

Then hq, can be computed by hq, = Tﬂ; + D;- We summarize the efficient implementation of Algorithm
DD2 in Fig. 6.5.

Complexity of DD2

The efficient version of algorithm DD2 only requires 2n fast sine transforms of dimension mg, as opposed
to 4n for the naive implementation, and the complexity of Steps 1-(c) and 4-(a) is O(nmg) instead of
O(nmg log my).

57

Figure 6.5: Algorithm DD2

Efficient Implementation
Step 1: First Solve
Fori=1,...,p,
a) compute the sine transforms of fq,
(n transforms of dimension mg)
b) solve A;;%; = fn.
(myg tridiagonal systems of dimension n),
¢) compute (only) P72 = (2ipqs- - +) 2hm,) for i < p
by (6.17) and PF, ,_lz. = (2}4,...,2%;) for i > 1 by (6.18).
Step 2: Form the nght-hand side for the interface system:
= fri — P;?%' - P{T-;.l,.‘zH-l yi=1,...,p— 1L
Step 3: Solve the interface system:
- Use fast sine transforms to compute jr, = W7 gr,
- Solve the transformed system (6.14) by reordering
the unknowns and solving n tridiagonal systems
of size p — 1.
- Use fast sine transforms to compute ur, = Wiar,.
Step 4: Second solve
a) update the sine transforms of the right-hand side by
computing only the sine transforms of
¢ = —F;;1ur,_, — Pi;jur,, which is a sparse vector
(direct calculation, i.e., no fast sine transforms)
b) solve the myq tridiagonal systems A;uq, = hq,.
¢) compute ug, by fast sine transforms (dimension my).

The complexity of the black-box version of DD2 can be obtained from (6.16) by using
Cp(mo, n) = 2nCy(mo) + Crymon
Then

m+1
Cblack-—boz—DD2(m, n’p) = 4pnC3() + 2Ctlmn + 2(17 - l)C,(n + 1)

+O(pn)

For the efficient implementation of DD2, the complex1ty of Steps 1-a and 4-c is pnC,(mo), and the com-
plexity of Steps 1-b and 4-b is pmgCy n.
Finally, half of the operations can be saved in (6.17) and (6.18) by taking advantage of the fact that

sin (Hg?T) = (=1)**lsin (m 77)- Then, Step 1-c requires 2pmon operations. In Step 4-a, hq, is computed

as hq, = fn + P;, where P; is given by (6.19), requiring 3pnmg flops.

Then, the complexity of the first solve is:
pnCs(mo + 1) + Capmon + 2pmon + O(pn)

and the complexity of the second solve:
3pmon + Cupmon + pnCs(mo + 1) + O(pn)

Thus
1
Copa(m,n, p) = 2pnCS(m—;—:——) +(2Cu + 8)mn +2(p — 1)Cs(n + 1) + O(pr)

58

Numerical Results (sequential case)

In Table 6.1 we compare DD2 with two different implementations of matrix decomposition (MD) using
Fourier analysis. The model problem solved was Poisson’s equation on the unit square.- For reference,
we also include times for routine POIS from FISHPACK. In order to be consistent with the para.llel
experiments, we used one node of an Intel Hypercube IPSC/2 to run these sequential experiments.

Table 6.1:

Sequential runtime (in seconds) for Algorithms MD1
(row-wise fast sine transforms), MD2(column-wise fast
sine transforms), routine POIS and DD2(p) with m+1 =

n+1=
SOLVER |Ah=2""|h=28]h=2"
MD1 3.37 15.58 63.72
MD2 3.61 16.61 68.09
POIS 5.29 24.45 110.44
DD2(4) 3.66 17.16 69.66
DD2(8) 3.77 14.90 69.61

DD2(16) | 3.47 15.33 | 60.11
DD2(32) | 3.91 14.21 | 61.67
DD2(64) 16.27 | 57.23
DD?2(128) 65.56

?

The fast sine transforms are applied to the gridpoints row-wise in MD1 and column-wise in MD2.
Although these two solvers have the same operation count, their runtimes are different because the data is
stored row-wise. The domain-decomposed solver on p strips is DD2(p), with DD2(1) (one domain) defined
to be MD2.

The times in Table 6.1 do not have a unique minimum at p = O(b—g(%:—:_%) as predicted, because as p

approaches n, the complexity for the sine transforms of a vector of length mq = -—+— is not well represented
by a function of the form Cmglogmg. This is shown by the runtimes given in Table 6.2 for subroutine
SINT of FFTPack [33] (times do not include the initialization routine SINTI). As a result, we see more
than one relative minimum on runtimes, but we can see, however, that in all cases DD2(p) is fastest when
PR i

In order to illustrate how the FFT package overhead affects runtimes when the subdomains are narrow
and sine transforms are applied to short vectors, we replaced the call to the FFT package with a direct
sine transform calculation when mg = 3, given by a loop of the form:

Direct Sine Transform for mg = 3
do i=1, n

templ = (£(i) + £(i+2*n)) / 2.
temp2 = (£(i) - £(i+2*n)) * sq2
temp3 = f(i+n) * sq2
£(1) = templ + temp3
f(i+2*n) = templ - temp3
f(i+n) = temp2

enddo

59

Table 6.2: Fast Sine Transform
Time (msec) for routine SINT

n 3 7 15 31 63 127 255 511 1023
Time | 0.19 { 0.39 | 1.04 | 2.11 | 5.50 | 11.28 | 26.50 | 54.48 | 130.84

For n = 127 and 32 subdomains, for example, we have mg = 3 and by replacing the call to FFTpack
with the above loop, runtime is reduced from 3.91 seconds to 1.88 seconds. Similarly, for n = 255 and 64
subdomains, runtime decreases from 16.27 secs. to 8.09 secs. and for » = 511 and 128 subdomains, runtime
decreases from 65.56 secs. to 32.76 secs.

6.4 Other Approaches

6.4.1 Subdomain Solvers using Block Cyclic Reduction

Another important class of fast direct solvers is based on odd-even block cyclic reduction (CR). Consider
the block tridiagonal system

T Q T3 h
Q T . :6’2 - sz ’ (6.20)
. Q : .
Q T Tm Tm

where T and @ are n by n symmetric matrices and zj, f; € R (note that on a subdomain, we would
replace m with mg). Assume, moreover, that T and Q commute and m = 2° — 1. Briefly, the method
consists of s — 1 elimination steps and a backsubstitution phase. By multplying the odd rows by @ and
the even rows by —T and adding the (j — 1)-th and the (j + 1)-th rows to the j-th row for all even j, we
get

Q%2+ (2Q* - T?)z; + Q%240 = Qfi-1—=Tfi +Qfin1

where 2o = Z,,41 = 0. All the unknowns with odd indexes are thus eliminated and (6.20) is reduced to
two decoupled systems, namely a block tridiagonal system for the even unknowns:

TW QO 5 fzﬁ;
Q) 7y - Z4)
= s 6.21
QW : ()
Q) 1) _z'"'l 1(71111

where T(Y) = 202 — T2, Q) = Q? and f}l) = Qfj-1 = Tf; + Qf;+1, and a block diagonal for the odd
unknowns.

T T fi—Qz,
T § 1:3 _ fa- Ql‘:z - Qz4 (6.22)
T Tm fm - ézm—l

60

Figure 6.6: Block Cyclic Reduction Algorithm

Let T =T and f{¥ = f; forj = 1,...,m.
Reduction Phase:
Forr=1,...,8—1, define
T() = 927 — (T(r-1))?
-and for 7 multiples of 27, let
f(") f(" 1) + f(" 1) T(r—l)f} 1)

_2!‘—1

with f(’) = f(’) = 0 for a.ll r.
Back—Substztutzon Phase:
The component z,.-1 of the solution is computed first
by solving T(~Vzg,—; = fls=1),
Then, compute z5.-2 and z3 5.-2 and so on.
At the r-th step (r = 8- 2,...,0), the components z; for
j=27,32",... are computed by solving:

T("):tj = fJ(r) (r_)r - z(fgr

with zg = 241 = 0.

The same elimination procedure can be applied recursively to the reduced system (6.21). At the r-th
reduction step we have a system of the form

TC) Q) 2qr (1)
Q) T .. nr || A, (6.23)
.QM : :
Q" 1) Zm41-2r f('_)H or

By induction it can be shown that T(") is a polynomial of degree 27 in the matrices T and @ and moreover,

2"
70 = - [I(T + 5:;Q)

i=1
with B,; = 2 cos %21 After s — 1 reduction steps, a one block system is left to solve, namely
T(’_l)zza—l — f(a—l)

This system can be solved as a sequence of systems of the form (T + £,;Q)u = v or by Fourier analysis if
T and Q are diagonalizable by Fourier modes. In the backsubstitution phase, block-diagonal systems are
solved for indexes which are multiples of 2°=%, 2°~3 and so forth, solving (6.22) in the final step.

The block cyclic reduction algorithm is outlined in Fig. 6.6 for the case Q = I. For the case of the
Laplacian operator, the matrix T is tridiagonal and T = —2I — K, where P is given by (2.7). T is also
diagonalizable by Fourier modes, with eigenvalues given by —2 — ;. A system of the form T(Mu = v can
be solved as a sequence of tridiagonal systems or by Fourier analysis, with the eigenvalues of T(") given by
Ai=[li(-2-0; +2cos§1’—}1,)1)

As presented in Fig. 6.6, the algorithm can become very unstable. By computing the right hand sides
in a different way, Buneman [9] derived a stable version of the block cyclic reduction algorithm.

The arithmetic complexity of CR is O(nmlogm). As with the other fast solvers mentioned before, CR
can also be used as the subdomain solver in algorithm DDFAST and, as in the previous sections, a factor

61

of two can be saved in the leading term of (6.16) by exploiting the particular structure of the subdomain
problems. First, instead of solving the subproblems in Step 1 completely, the solution z could be computed
only at those gridpoints near the interfaces. In the context of the CR algorithm, this corresponds to solving
for z; and z,, only. Second, the right-hand side for the second solve differs from that of the first solve only
at the mentioned gridpoints. This fact can be exploited during the elimination phase of Algorithm CR.
The following two lemmas can be easily proved from the description of the algorithm. Similar results hold
for Buneman’s stable variation.

Lemma 6.1 If only z, and z,, are needed, they can be obtained by computing only zor and Z,,iq1_or at
each step of the back-substitution phase.

- 3
Proof: By induction: ;.-1 is computed first and suppose that at the (r+1)-th step of the back-substitution
phase (r = s — 2,...,0), only the components Ty(r4y) and Tm41-2(r41) aTe computed. Then, since z¢ =
Tm+1 =0, Tor and Z,,41-2r can be computed by

-1, ¢ r
Tor = (T(r)) (fz(r) - zgrll
-1 ¢ r
Tmpl-2r = (T(r)) (fr(n-)q.l-zf - zSn?Q-l—T‘“)

N
Lemma 6.2 If f =0 forall2< j < m—1, then fi0 = f1, f), o = frn and f) =0 for 27 < j <
m+1-2. .

Proof: Suppose that f; = 0 for all 2 < j < m — 1. Then, since
= fim+ fim =TS

we have fzm = fi, f(l_)_1 = f,n and ;l) = 0 for j = 4,6,...,m — 3. Similarly, by induction, suppose that

m

1 = fuo S5y = fm and £V = 0 for 2771 < j < m+1- 271, Since

2 m

fJ(r) = f_,(:;lx + f;:.;}lx + —T(T-l)f}r-l) ,
then we have f{0) = f;, f&),_» = fmand SV =0for 2 <j<m+1-2. g

Lemma 6.1 can be applied to the first subdomain solve (Step 1 of DDFAST). By Lemma 6.2, if only
the first and last components of the right hand side are modified, then at each step of the reduction phase,
only the first and last components of f() need to be updated. This result can be applied to the second
subdomain solve (Step 4).

6.4.2 Algorithm FACR

Instead of applying the reduction technique until only one block is left, the process can be stoped at any
step and the reduced system (6.23) can be solved by another method. A combination of cyclic reduction
and matrix decomposition using Fourier analysis is called FACR(!), which consists of / steps of block cyclic
reduction followed by the MD method using Fourier Analysis applied to the reduced equations [27]. The
arithmetic complexity of this fast solver can be minimized with respect to I, so that ‘when it is applied to
the subdomain problems, its complexity is O(nmg loglog my).

In order to save the leading factor of two in the complexity analysis, the algorithm is considered in
two separate parts: first, for the CR part, Lemmas 6.1 and 6.2 can be applied to the ! reduction steps
and the [back-substitution steps. The second part is the solution of the reduced equations by Fourier
analysis. This part is similar to the subdomain solver in DD1. As in DD1, one application of Fourier
transforms can be saved in Step 1 and in Step 4, by solving the interface system in Fourier space. During
the back-substitution phase for the first solver and the elimination phase of the second solver, the matrices
T{) become diagonal matrices.

62

6.4.3 Generalized Marching Algorithm

Bank and Rose’s Generalized Marching Algorithm (GMA) [2] can be viewed as a particular implementation
of the algorithm DDFAST, where the marching method is applied to the subdomain problems. While in
the above implementations of DDFAST the number of strips p can be chosen arbitrarily, in the case of
GMA, the value of p is chosen in order to preserve stability. The marching method, as a subdomain solver,
has optimal order O(nmyg), but it becomes unstable for large values of my.

6.5 Paraliel Implementations

Consider a distributed memory multiprocessor with p processors and a decomposition of the rectangular
domain) into p equal strips. Suppose that the strip f; and its corresponding lower interface I'; are mapped
into processor P(i) in such a way that adjacent subdomains are assigned to nearest neighbor processors.
We also assume that an n by m grid is imposed over the domain, such that m + 1 is a multiple of p and
mo+1 =2t >4,

The parallel implementation of algorithm DDFAST is quite straightforward. Step 1 can be done
completely in parallel: each processor solves an independent problem on each strip. In Step 2, each
processor needs to send and receive a vector of size n» in order to compute the right-hand side g for
the interface system. In Step 3, the interface system is solved by matrix decomposition. The fast sine
transforms are applied to vectors that are local to each processor. The right-hand sides for the resulting n
tridiagonal systems are distributed in such a way that each processor contains one element of each right-
hand side. Therefore, global data movement is required at this step. This is the part of the algorithm that
will be most strongly dependent on the particular machine.

The two best known ways for solving the distributed tridiagonal systems are by balanced cyclic reduc-
tion and by data transposition. Which of these is faster will depend upon the architecture, the size of the
problem and implementation details (see for example [29, 30]). In our experiments, we used data transpo-
sition, i.e., data is moved in such a way that the entire right-hand sides for n/p of the n tridiagonal systemss
end up in each processor, where the systems are solved locally and then the solutions are transposed back
into the original distribution.

Finally, nearest neighbor communication is required in order to update the right-hand side for the
second solve (Step 4). The subdomain problems are then solved locally in each processor. The algorithm
is outlined in Fig. 6.7.

All versions of DDFAST corresponding to different fast subdomain solvers mentioned in this chapter
and the corresponding versions saving a factor of two in the high order term have parallel implementations
analogous to Par-DDFAST (Par-DD1, Par-DD2, etc.) Algorithm DD1 is almost equivalent to a parallel
implementation of the MD method, in which the sine transforms are computed locally and the tridiagonal
systems are solved by substructuring, where Gaussian elimination is applied locally to obtain a reduced
system that is distributed among the processors, one equation per processor. For the constant-coefficient
case, the reduced system is in fact the transformed interface system (6.14). The elimination phase is
simplified in Algorithm DD1, where the coefficients for the reduced system are not computed by Gaussian
elimination, but given by the eigenvalues A; and §;.

We next analyze in detail the complexity and numerical properties of a hypercube implementation of
Par-DD2, which is outlined in Fig. 6.8. In order to analyze the complexity of algorithm Par-DD2, we
consider it in five parts:

Tprepr : Preprocessing. Compute A;’s and §;’s, initialize sine transform routines (routine SINTI), etc.

Trirst : First solve, i.e. Step 1.

TInters : Computation of g, i.e. Step 2, and solution of the interface system, i.e. Step 3.

Trhs2 : Exchange interface values and update the sine transform of the right hand side for second
solve, i.e. Step 4-a.

Tsecond © Second solve, i.e. Steps 4-b and 4-c.

63

Figure 6.7: Algorithm Par-DDFAST
Program for processor F;.
Step 1: (First Solve) Solve A;iz; = fq, locally.
Step 2: Form the right-hand side for the interface system:
a) if i > 1, send PT_, 2 to processor P(i — 1),
b) if i < p, receive P}, ;zi41 from processor P(i + 1)
¢) compute gr; = fr; — P}z — PLzis1-
Step 3: Solve the interface system (6.3):
compute gr, = W7 gr, locally.
Solve the transformed system (6.14):
transpose distributed right-hand sides,
solve (n + 1)/p tridiagonal systems of size p — 1 locally,
back-transpose the solution.
Finally, compute ur; = Wir, locally using fast sine
transforms.
Step 4: (Second Solve)
a) if i < p, send ur; to processor P(i + 1),
if i > 1, receive ur,_, from P(i — 1) and update
right-hand side:
ha, = fa; — Pii-1ur,_, — Pjur;.
b) solve Ajiuq, = hq,.

The complexity for the preprocessing is Tprepr = O(n). The first and second solves are completely
parallel. All the communication operations are performed in parts 3 and 4.
The arithmetic complexity for the first solve is:
m+1
p

In order to form g, each processor sends and receives a vector of length n to and from nearest neighbor
processors. The arithmetic complexity for forming g and solving the interface system is:

1 1
mr1 L om)+ O(m—:—)

)+ {(Cu+2)n

CFirst(n, m, p) = nCy(

1
C[ntcrf(n,p) = 2Ca(n + 1) + Ct(p - 1)2'3— + 2n

In our hypercube implementation, this routine also requires transpose and back-transpose operations, where
2log p exchanges of vectors of length "2—ﬂ involving nearest neighbor processors are necessary. The rest of
the transpose routine does not involve floating-point arithmetic, but it requires some data reshuffling.
After solving the interface system, the interface values are sent to and received from nearest neighbors.
The sine transform of the right-hand side for the second solve can be updated with Crpe2(n, m,p) = 411%l
flops.
The arithmetic complexity for the rest of the second solve is

mtl m+1+0(n)+O(———m;1)

Caecond(nv m, P) = nC,() + Cyn

In summary, the arithmetic complexity of algorithm Par-DD2 is
CPar-DD2 (n, m, P) = Cp‘rep‘r + Cfs'rst + Cintcrf + Crhs2 + Coecond

- 2nCs(m: L)+ (2Cu + 6)nm: 1

+2C,(n + 1)+ O(n) + O()

64

Figure 6.8: Algorithm Par-DD2

Program for node P(i).
Step 1: (First Solve) Solve A;2; = fa, locally:
a) compute column-wise sine transforms of the right hand
side (dimension my).
b) solve Aj;3; = fn'. (mo tridiagonal systems of dimension n),
¢) compute (only) ' = (2imgs - > Zom,) (last row) by
(6.17) and P, ‘_1zl = (zu, ,znl) (first row) by (6.18).
Step 2: Form the right- hand side for the interface system:
a)ifi>1,send P ,_1z, to processor P(i — 1),
b) if ¢ < p, receive PL; ;ziyy from processor P(i + 1),
¢) compute gr, = fr, — P¥z - PE,izigr.
Step 3: Solve the interface system (6.3):
compute gr; = W7 gr, locally.
Solve the transformed system (6.14):
transpose distributed right-hand sides,
solve (n + 1)/p tridiagonal systems of size p — 1 locally,
back-transpose the solution.
Finally, compute ur; = Wir, locally using fast sine
transforms.
Step 4: (Second solve)
a) If i < p, send ur; to P(i + 1),
if £ > 1, receive ur;_, from P(i — 1),
update the sine transforms of fq, by transformmg only
= P;i—1ur,_, ~ Pyur,, which is a sparse vector (direct
calculation, i.e. no fast sine transforms)
b) Solve the mg tridiagonal systems A;i; = hn locally.
c) Compute uq, locally by fast sine transforms.

The communication cost is
n+1
2 logp Tsend—recv(T) + 2Tsend—recv(n) ’

where Tyend—recy(n) is the time for sending and receiving vectors of length 7 to and from a nearest neighbor
Processor.
6.6 Numerical Experiments

The black-box and the efficient versions of algorithm DD2 were implemented on an Intel Hypercube IPSC/2
multiprocessor system, for the solution of Poisson’s equation on the unit square. The number of processors
used ranged from one to 64.

Runtime split. In Table 6.3 we show how the total runtime is split among the different steps of the
algorithm. Tp represents preprocessing time, i.e. compute A’s and 6’s, initialize the sine transform routines,

65

Table 6.3: Percentage of total time
for each step of Algorithm Par-DD2

Tp = preprocessing T1 = interface system.
Ty = first solve (Step 1). T; = second solve (Step 4).

p | Total Time (sec) Perc. of Total Time
Tp Ty Tr T,
h=2""1] 4 0.93 0.6 46.6 11.1 41.7
8 049 . 0.8 44.2 15.8 39.1
16 0.24 1.3 38.6 27.5 32.6
32 0.15 2.7 30.4 41.2 25.0
h=2"%1 4 4.30 0.3 48.0 7.8 439
8 1.87 0.4 46.5 11.5 41.6
16 0.97 0.6 44.2 16.0 39.1
32 0.47 1.1 38.2 28.1 325
64 0.29 1.7 31.0 41.8 25.2
h=2"%14 17.42 0.1 48.5 6.8 44.5
8 8.66 0.2 480 7.9 439
16 3.74] 0.3 46.5 11.6 41.6
32 1.96 0.5 44.0 16.4 39.0
64 0.94 1.1 38.5 27.8 326
h=2"1014 78.15 0.1 488 5.8 454
8 35.06 0.1 48.4 7.0 44.5
16 17.46 0.1 479 8.2 438
32 7.63 0.3 46.1 124 41.2
64 3.97 0.5 43.6 17.3 38.6

etc. Ty corresponds to the first solve, i.e. Step 1. Ty is the time for computing the right-hand side g,
solving the interface system and exchanging interface values to form the right hand side for the second
solve (Steps 2, 3 and 4-a). T is the time for the second solve (Step 4-b and c).

A least squares fit of the times was computed for each part of the algorithm. Since the times for
the sine transform do not follow a well defined function of n and mo, especially when mg takes small
values, we used the tabulated times of Table 6.2. If, for example, T¥;,s is the time taken by any node
for the first subdomain solve, we computed a least square fit of the form aynmo + asn + agmg + a4 for
Ttirst — nCs(mg + 1), with mg = -’-‘pil- — 1. We then have (times given in milliseconds):

' Tfirst ~ nCs(mg+ 1)+ 0.0333nmg — 0.0014n — 0.4243m + 4.4235
Tsecond = nCs(mg+ 1)+ 0.0232nmg — 0.0502n — 0.5362mq + 6.3744

and

Trnters = 2Cs(n+ 1)+ (2.8689 + 0.0162n) logp + 0.0248n + 0.9585
Tihsz ~ 0.0160nmg — 0.00297 + 0.0034mq + 1.2077

Therefore, for a square domain (m = n) and excluding preprocessing time, we have

66

10°

T YT"U'

LERRAALLL |

?
T

TV

107 by

-8
10] 600

Figure 6.9: Runtime for M D1 (one processor times) and Par— D D2(p)
for p = 4, 8, 16, 32 and 64 vs. n. The dotted lines join the
least-squares fit for the given values of n.

z + (2.8689 + 0.0162n) log p

TPar-—DDZ(n’ p) i 2nCJ(

2
t1y 400725t
))

~0.07257n — 1.0592(—7}-—;—2 + 13.95 (6.24)

In Fig. 6.9 we plot runtime vs. problem size for 4, 8, 16, 32 and 64 processors, and for the standard fast
solver MD1 running in one processor. The dotted lines join the least-squares fit (6.24) for the given values
of n.

Speed-up

The parallel algorithm was compared against the solver MD1 to compute speed-up.

In analyzing a parallel algorithm, the concept of speed-up is loosely defined as the relative savings in
run-time achieved by solving a given problem in p processors, compared to the time for solving the same
problem in one processor, i.e.

5(0) = 70

This definition is ambiguous, because it does not specify what method is used to solve the problem in one
processor. Usually, T(1) is defined as the time taken by the fastest sequential algorithm known for solving
the particular given problem. Given this definition — which may be specified as absolute speed-up — it is
clear that S(p) is always bounded by p. When S(p) = p, the algorithm is said to have “perfect” or “linear”
speed-up.

When T'(1) and T'(p) refer to the same algorithm, S(p) alone is not a good measure of the efficiency
of the algorithm, but it does measure how well it parallelizes. In other words, it shows how the overhead
grows when more processors are added. We call this relative speed-up.

67

Table 6.4: Speed-up for Algorithm DD2

Speed-up is computed with respect to sequential fast
solver MD1.

Black-box implementation

h=2"° 1 h=2""|h=2%[h=2"°
p=4 2.22 2.31 2.21 2.22
p=28 4.78 4.49 5.33 4.49
p=16 7.81 9.86 10.32 10.85
p=32 16.29 22.68 20.99
p =64 37.82 | 46.30

Efficient version of algorithm DD2

h=2"°|h=2""]h=2"8h=2"9
p=4 3.41 3.63 3.62 3.66
p=2_8 6.85 6.94 8.34 7.35
p=16 10.72 14.29 15.98 17.01
p=32 22.78 32.88 32.54
p=64 53.00 | 67.35

In the context of domain decomposition, T'(p) corresponds to a decomposition of the domain into p
subdomains, i.e the p-processor version of DD(p). The choice of the method to be used as the one-processor
solver is not obvious, because it is not always known which sequential algorithm is the fastest for a given
problem size, due to the many factors involved, such as the machine characteristics and implementation
details. As long as a reasonably efficient fast solver is applied to the subdomain problems, it makes sense
to compare the resulting domain-decomposed algorithm with the same subdomain solver applied to the
whole domain, namely

T (DD(1))

S(p) = T(PT—DI_)—@ (6.25)

As we showed before, Algorithm DDFAST can have lower complexity than the solver used on the subdo-
mains. For example, in Table 6.1 we showed that for certain values of p Algorithm DD2(p) may be faster
than the original fast solver MD1 or MD2 applied to the subdomain problems. It is therefore possible, for
this last definition of speed-up, to have super-linear speed-up, or S(p) > p.

Table 6.4 shows speed-ups for the black-box version and the more efficient version of DD2 for various
problem sizes (h ranging from 27¢ to 279) and cube dimensions 2 to 6. In both cases, the one-processor
solver was MD1, i.e. matrix decomposition using Fourier analysis. In other words, for this table we used
the definition of speed-up given by (6.25), except that in our one processor solver the sine transforms were
computed in the direction of the natural ordering while in the p-processor solver the sine transforms were
computed in the shorter direction i.e. column-wise. The times for MD1 were given in Table 6.1. Efficiency
is defined as E = 1005(p)/p and is plotted in Fig. 6.10 for the efficient version of DD2, for three different
problem sizes.

We point out that for each value of p, we can view DD2(p) as a different algorithm. Therefore, we
cannot expect speed-up to increase monotonically with problem size because an algorithm of different
complexity was used on one processor for comparison. We can verify, however, that when the same domain

68

Efficiency
L)

q.—-
Q—
hl
vbz-n
8

Figure 6.10: Efficiency for Algorithm DD2

decomposition algorithm is considered on one processor, the values of speed-up thus computed (i.e. relative
speed-up) do increase monotonically with problem size for a given p.

Relative speed-up. According to the definition, the relative speed-up of a domain-decomposed solver
is given by the ratio between the sequential time for DD(p) and the p-processor parallel version of the
same algorithm. Relative speed-up and efficiencies are plotted in Fig. 6.11. When the subdomains are
not extremely narrow, we can see almost perfect relative speed-up values, with efficiencies approaching
100%. The efficiency decreases as the number of processors p approaches m and the subdomain solvers
become less dominating, but it remains high for larger problems (e.g. E > 82% for a 127 x 127 problem
and E > 86% for a 255 x 255 problem). This indicates that the algorithm is highly parallelizable.

6.7 Three Dimensional Problems
Given a regular three dimensional domain 2, consider a seven-point discretization of the problem

Lu = f in Q (6.26)
u = u on 91 |,

on an n; by n, by m grid. We divide Q into k “slices” and assume that m + 1 is a multiple of k with
mil >4,
Let the system

(7 &) ()= (%) o2

represent the discretization of (6.26) in 2, where uq corresponds to values on the interior of the slices and
ur corresponds to values on the interfaces and we assume the natural ordering of the gridpoints inside each

69

60 100 |
3 g |
° b
‘§ E 6 |-
n.40 -
o [
v = :
> o 90 [
oy > S
-d -t
220 @
v - !
- S 86|
L 1 1
° 60 et 2 o -

Figure 6.11: Relative speed-up and efficiency for Algorithm DD2

subdomain. When block elimination is applied to (6.27), the problem is reduced to independent problems
on the subdomains and the linear system

Cur=g

for the interface unknowns, where C = A ~ PTAalP and g = fr - PTAE;1 fa. The interface operator has
the following block-tridiagonal form:

H{ B,

C= B; .Hz
By
Biy Hp

In the constant-coefficient case, the blocks B; and H; are diagonalizable by two-dimensional Fourier modes,
i.e. the matrix W, ® W,,,. Let L be given by the operator:

d, Ou d Ou 0,6 Ou
Lu= —'a—z(aa —a—y(ba—y)—-a—;(c-a—;)-l-du

where the coefficients a, b, ¢ and d take constant values a;, b;,c; and d; on each subdomain ;. For this
case, the eigenvalues of H; are given by

i+l i+1+1
e (LEPETY R L (L pha o
ij =G 1 mi+1 4 +i+ C,+1. 1 7mi+1+1 4 + Hig1;

= %; = Tiv1,5

and the eigenvalues of B; are given by

)

(/—7..)m.'+1 ﬂ?.
bij = =2 | Ty |\
1- ’7"1" 4

70

10* Y

T Yy
b d A L2 ALL

10*

LSRR ALY
A i lllllll

LA R AALL
i aassd

10°

T rTTTTY
oo treand

10t ‘ i 1 1 L i 1 i 'l 1 ul)o I Il I L

g

Figure 6.12: Runtime for M D1 and ParDD2(p) for the solution
of Poisson’s equation in three dimensions.

where

P)
y(wis) = | 1+ 5 =\ F + i

and pi; = L(aioj, + bioj, + dik?), with j = 1 + (j2 = 1)y, for jy = 1,...,my and jo = 1,...,7a.

6.7.1 Parallel Three Dimensional Solver

The implementation of Algorithm DD2 for the three dimensional case is analogous to the two-dimensional
case. Since the subdomains are thin three-dimensional slices with short vectors in the z-direction, the
subdomain problems are solved by applying fast Fourier sine tranforms in the y and z directions and
solving tridiagonal systems in the z direction. The algorithm was implemented on an Intel Hypercube
IPSC/2 multiprocessor system, for the solution of Poisson’s equation on the unit cube. The number of
processors used ranged from one to 32.

Fig. 6.12 shows runtimes for problem sizes ranging from 15 x 15 x 15 to 127 x 127 x 127. The speed-up
values in Table 6.5 were computed with respect to the one-processor time given by the matrix decomposition
algorithm, with fast sine tranforms applied in the z and y directions and tridiagonal systems in the z
direction. The corresponding efficiency values are also given in the same table. The largest problem solved
in one processor was on a 95 x 95 x 95 grid. For A = 27, we can see that these values are similar to the
speed-ups reported in Table 6.4 for the two-dimensional case for the same mesh spacing (efficient version
of DD2).

6.8 Discussion and Conclusions

We showed that domain decomposition techniques can be used successfully in the implementation of parallel
fast Poisson solvers. They provide fast solvers that are not only naturally parallelizable, but also faster
than conventional fast solvers even in the sequential case.

71

Table 6.5: Speed-up and efficiency for three-dimensional Poisson solver

Speed-up is computed with respect to sequential fast solver MD1.

h=2"% h=2 | h=2"8 h=2-°3-1

S E] S E S E S E
p=4 |260|65%|3.15|787% | 3.57|89.2% | 3.70 | 92.5%
p=38 5.41 | 67.6% | 7.02 | 87.7% | 6.97 | 87.1%
p=16 , 11.93 | 74.6% | 12.91 | 80.7%

As the number of processors increases and the strips or slices become narrow, the solution of the
interface system dominates. In the 2-D case, for instance, instead of subdividing into more strips, we can
consider subdividing each strip into boxes and replace the subdomain solvers by a multistrip DD solver
inside each strip. One problem with this approach is that there is no obvious way to save the factor of
two due to the two solvers. A better alternative is to assign one subdomain to more than one processor.
For example, for a DD2 solver, we can consider a decomposition into p/q strips and divide the work for
each subdomain solve among g processors, for example the short fast sine transforms can be performed in
parallel and the tridiagonal systems can be solved by transposing the right-hand sides and solving mo/q
systems locally.

72

Chapter 7

Parallel Preconditioners for
Non-Separable Problems

7.1 Introduction

Consider the Dirichlet problem

Lu = f in Q=(0,1)x(0,4)
u o= u on 9N

where L is the linear self-adjoint elliptic differential operator:

L= —565 (a(:c,y)%) - Biy (b(:c,y)(%) +c(z,y) . - (7.1)

Assume that the coefficients satisfy c(z,y) > 0 and a(z,y),b(z,y) > 6 for all (z,y) € Q and some positive
constant 6. The five-point finite difference approximation on a regular n x m grid of mesh size h = ;_1*_—1-,
where h(m 4 1) = B, leads to a linear system of equations of the form :

Au=f | (7.2)

where the matrix A is block tridiagonal.

If the coefficients are such that a(z,y) = a(z), b(z,y) = b(y) and ¢(z,y) = c1(z) + c2(y), then L
is separable and fast direct solvers such as block cyclic reduction or matrix decomposition with Fourier
analysis [10, 27, 32] can be applied.

In the non-separable case, the discretized equations are often solved by iterative methods such as
preconditioned conjugate gradients. Standard preconditioners include incomplete factorizations such as
the Dupont, Kendall and Rachford (DKR) factorization [23].

Separable approximations of L — which can be solved by fast direct methods and are spectrally equiva-
lent to L — can be used as preconditioners. Concus and Golub [17] use constant coefficient approximations
in conjunction with Chebyshev acceleration. Bank [3] combines the generalized marching method with the
D’Yakanov-Gunn iteration. Elman-and Schultz [25] investigate extensions to the non-selfadjoint case.

Let the operator Ls be defined as

Ls= -5 (0)5) - 3 ((0)g) + @@ +aw) (1.9

where the coefficients &(z), b(y), & (z) and &(y) are chosen so that
<

. 2oy < |
yg}g}j}a(z,y) 4(z) _yrg[gf[g]a(z,y)

73

.

mln]b(x,y) < b(y) Szrg[gfg]b(w,y)

z€[o,1

i (1) z < 1
iy Y S8 < @)
min (1) <&@) < max) ,

with ¢(1),¢(2) > 0 such that ¢((z,y) + ¢ (z,y) = c(z,y). Let M represent a five point discretization of
Ls. Then, it can be shown [3] that A and M are spectrally equivalent, i.e., there exist positive constants
{1 and po such that, for all v € R™™,v # 0,

T
vt Av
M1 < < M2

< Tife <
The constants u; and u2 are independent of the mesh size h and depend on how closely the separable coef-
ficients in Ls approximate the non-separable coefficients in L. The bound (2.2) on the rate of convergence

of PCG with preconditioner M depends on the spectral condition number of M ~! A, which is bounded by
82

H Since the rate of convergence is independent of the problem size, the number of iterations required for
solving a non-separable elliptic PDE to an accuracy of O(h?) with a spectrally equivalent preconditioner
is O(logn). Thus, the asymptotic complexity is, for example, O(n?log?n) for an n x n grid on a square
domain. The constant in front of the leading term depends on the coefficients in (7.1) and on the choice
of the separable approximation, as well as on the fast method used to apply the preconditioner.

On the other hand, when the DKR preconditioner is used on an n X n grid, the number of PCG itera-
tions increases with \/nlogn, giving an overall complexity of O(n?®logn) [11]. Asymptotically, separable
spectrally equivalent preconditioners are faster than incomplete factorizations. The cross over value of n
depends on the particular problem and it might be impractically large for problems that cannot be well
approximated by a separable operator.

7.2 Piece-wise Separable Approximations and Domain Decomposi-
tion
Consider a partition of the domain Q into k subregions ;. We will define a domain decomposed spec-

trally equivalent preconditioner by the five point discretization of an operator of the form Lg, where the
coefficients @, b and ¢ are defined by different locally separable approximations in each subregion. Let

Q,(I) = inf a(xa y) ’ E{(I) = sup a(xv y)
vi(z,y)€Q: vi(z,y)EQ;

-b.z(y) = inf b(zv y) s Ei(y) = sup b(x’ y)
z:(z,y) € z:(z,y)€Q

and

_ggl)(:c)= inf c(l)(z,y) , ESI)(I)= sup c(l)(z,y)

y:(z,y)e y:(z,y) €
A= inf Pzy) , @Py)= sup P (z,y)
z:(z,y) €N z:(z,y) €
Define the operator Lpp as .
a8 /.0 8 (-0 -
Lpp = —-a (a-az) - '6—1-/' (b-a—y) +c (7.4)

such that d(z,y) = ai(z), b(z,y) = bi(y) and &(z,y) = E,(l)(a:v) + E,(-2)(y) for (z,y) € Q; (i.e., the coefficients
are separable inside each subregion), with

a(z) < ai(z) <a@(z) , bi(y) <bi(y) <bi(y) (7.5)
)< i@ <eP(=z) and Py) <) <Py . (7.6)

Let the matrix Mpp be defined as the five-point discretization of the operator Lpp on an n x m grid (see
page 9). Although the coefficients &, 5,&(!) and &2 are not defined at the interior boundaries, we define
extensions of the form (2.10-12), i.e., if (z,y) is a point on a horizontal interface between subdomains £;
and Q;, for example, then (z,y) is redefined as a(z,y) = 1(a@;(z) + &;(z)).

The proof of spectral equivalence in [3] could be easily applied to this case, where the coefficients are not
necessarily separable but piece-wise separable. However, their upper and lower bounds for (vT Av)/(vT Mppv)

are not general, because they depend on the ratios %8-); and g%— and they do not apply to the case when

either &V or &2) take the value zero. The bounds derived here are independent of & and the subdomain
decomposition and they hold even when & = 0. We also need the bounds to express the fact that, as the
partition is refined, the condition number may approach one.

In what follows, given grid points (z;,y;), where ; = ih and y; = jh, we will use the notation &i+!2-,j
to denote @(z; + £,y;). The elements of a vector of grid values v € R™" are denoted by vij. Asin 3], by
applying the summation by parts identity:

n n
Z“i (—ai—%ui—l + (a,-_% + 0',-+.12.)zi - ai+%u;+1) = Zai+%(u;+1 — u,-)2
i=1 =0

with 2o = 2,41 = 0, we can write

T — Clg s ..)2)2 2, .2
viAv = Z Tyl (Vig1,j — vij) +bi’j+% (vij+1 = vi5)° + RPciivf;
0<i<n
0%5<m
with v;0 = 0 for all ¢ and vg; = 0 for all 7 and
T = 3 Sy s .2 4) . ..}2 25,2
v Mppv = Z ;11 (vig1,5 — i) + b,.,j+% (vij+1 — vi;)° + h%E;; vj;
0<i<n
0Z;3m

where &, b and ¢ are defined by average values at discontinuities.
For simplicity, assume that the domain is square and m = n.

Lemma 7.1 Forallv#0,v€ R™ and all n,
n
vI Mppv > h? Z (88 + &:;5) v,-zj
=1
Proof: Since a(z,y),b(z,y) > 6, we also have a(z,y),b(z,y) > 6. Then,
1 T 1 - 2 2 - ~ 2
72V Mbpuv 2 336 D (Wip1j = i) + (vijp1 — vi)2 + Y &; of
i,j=1 . =1
Let L represent the discrete Laplacian operator on an n x n grid. Then
n
oTLo = 37 (virr; = vi5)? + (vije1 = 05)2 2 Ay 07w
i,j=1

75

A .
where Ap,i; is the smallest eigenvalue of L and it is given by Ap i, = 8sin?Zh. Since ~I3R > 8 for all
h > 1, then we have:

1 n - n . -

ﬁvTMDDv'Z 86vTv + E éij v?j = Z (86 + ¢i;) v?j
i,j=1 i,5=1

=

Lemma 7.2 For all v # 0,v € R* and all n,

n
h? Y (eij = &;) v§
i0j=l
vIMppv

~(1-1) < <v-1, (7.7)

where

Cigf{[SELEDY g g, o gy [L)
z*‘-‘“r‘zf{85+e(z,y) and Ve = SUP | 35 7z,)

Proof: Since

. c(z,y)—é(a:,y)} = 1 {c(z,y)—é(z,y)}
1+'—’¢‘“&f{ 86 + &z, 9) G A e i

we have

14y < Shgm (G5 = &)
T D= (884 &) o]

Then, by applying Lemma 7.1, and since —1 + ¢, < 0, we have (7.7). g

Define
V.r =in E_(z’_y) b(z,y) and T = su a(z,y) b(z,y)
= nf{&(%y)’z(z,y)} d o np{&(z,y)’i,(z,y)}

Lr.-1

Theorem 7.1
a) Mpp is spectrally equivalent to A: for allv# 0,v € R"z,

vl Av

— < . 7.
vIMppv = H2 (7.8)

1 <

where py = vy . v, and puz =Tap . Ve.
The constants py and pz depend on the particular decomposition of the domain, but they are inde-
pendent of h, as long as the coefficients of Lpp are defined independently of h.

b) u1 and pz are bounded independently of the domain decomposition and the number of subdomains k.
Moreover, py and o approach one as the subdomains become smaller.

Proof:
a) Given v # 0, we have

n
T T 2 < Y2
v Av 2> v, v Mppv+ Z h* (cij ~ Vab€ij) v5;
i7j=1 .

n
- T 2 = =.y.2
Uay v Mppv + E h (cij_Vabcij)vij
1,5=1

<
~
=
<
A

76

Since v,, < 1 and T, > 1, we have

o7 Av > Vg (vTMDDv + E hz(c,‘j - Egj)v?j)
i,j=1
vTAv < Ty (UTMDDU+ E‘hz(c;j - E,-j)v?j)
,j=1
Then, by Lemma 7.2,
vT Av
—_— <Dy T.=
B1 = Ve ¥ S 'UTMDDU S Vgh Ve = H2
b) Define pgp = Jnax {Pa;» pb;}, where
ai(z) bi(y)
a; = SU and Py, = sup ——=
p x:(z,y?&ﬂ; Qt(z) y:{(z,y)€Q; b.i(y)
and also p, = ~§llaxk{pc(’)’pc(’)}’ for
45 + ez 45+
Py = su -—(T(—-)- and Py = sup ___#}{_)_
' x(z,y)Eﬂ. 46 +¢; () ' vz v)E 46 + ¢;7(y)
By (7.5) and (7.6), we have:
1 -
p—' a(z,y) < a(z,y) < pas d(z,y) (7.9)
'p_ b(l’ y) < b(z, y) < Pab E(Ia y) (7'10)
and also
1 - -
o (86 + &(z,y)) < 86 + c(z,y) < pc(86 + &z, 9)) (7.11)

for all (z,y) € 2;. We must prove that these inequations also hold for points on the interior boundaries.
Suppose, for example, that at a point (z, y) on a horizontal interface between subdomains §2; and Q;,a(z,y)
is redefined as @(z,y) = 1(&:(z) + @;(z)) and, without loss of generality, suppose also that a;(z) 2 aj(z).
Thus

g;(z) < &;(z) < a(z,y) < di(z) < ai(z)

Also, since g;(z) < a(z,y) < T;(z), we have

——b&(z,y) < p—é(z,y) < a(z,9) < pa,a(2,y) < pasi(z,y)
a

as
Similarly, we can prove that (7.10) and (7.11) also hold for points on the interior boundaries. Therefore,

1 1
Yqp 2 — and Uy < pgp and also, v, > P and 7, < p..
ab c
The constants pgs and p, depend on the partition of . They reach their maximum value when the
partition contains only one subdomain, namely 2. We denote these maximum values by pab(2) and p(2)
and we have
1

(@) 2 S pa(Dpd) (1.12)

g1 2

77

for all partitions and all values of k.
Conversely, as the partition is refined and the subdomains become smaller, Pais Pb;y P D and p o tend

to one 1. Thus, p,p and p. decrease, approaching the value one as the partition is reﬁned Therefore, 1
and p, a.lso approach one as the partition is refined. g

By (7.8) and (7.12), the spectral condition number of M5}, 4 is bounded by p?, where p = pa3(2). p(£2).
This bound represents the worst case, but for particular ways of choosing the approximate coefficients, we
can prove better bounds. Suppose, for example, that the separable coefficients are defined by:

-

By = 5 (b-(y) +5(v)
&) = 5 (P +57w)

a(2) = 5 (@:(2) + T(2))
{(2) = 2 (@) +30a))

-

then
2 2
Vo 2 Uap < .
Yab = 1+ pap ’ ab = 1+P:b1
(7.13)
> 2 and v. < 2
1+p. 1+P

Therefore, the spectral condition number of M5}, 4 is bounded by p instead of p?. When the minimums
and maximums are taken only over grid values, the bounds depend slightly on the meshsize, but it is easy
to show that they are always bounded by the continuous case.

Theorem 7.1 gives us the flexibility of defining different approximations on each subdomain. The
advantage of this approach is that L can be more closely approximated on the smaller regions, without
losing the efficiency of fast solvers for the subdomain problems. The disadvantage is that, in general, fast
solvers do not apply to piece-wise separable coefficient problems, and only for some special cases can the
solution at the interfaces be computed exactly.

7.3 Parallel Solution of Non-Separable Problems

As in the sequential case, when we consider the parallel solution of non-separable problems by PCG, it is
important to analyze the trade-off between convergence rate and cost per iteration. But a new issue appears
in the parallel context— some preconditioners are better suited for parallel implementation than others.
Incomplete factorizations, for example, are known to perform poorly on distributed memory systems, due
to the sequential nature of the forward and back-substitution phases and the communication cost (see, e.g.
[16]). The overhead increases as more processors are added and is multiplied by the number of iterations.

A common approach to this problem is to look for preconditioners which minimize or reduce overhead
(at the possible cost of loweringing the convergence rate). Extreme examples of this approach are no
preconditioning and block diagonal preconditioning. Also, red-black and multicolor orderings are designed
to reduce the amount of overhead. Another alternative is preconditioners with reasonably low overhead
that keep the iteration count small. In this class we find preconditioners which are spectrally equivalent
or nearly spectrally equivalent to A and can be efficiently solved in parallel by domain decomposition
techniques.

In Chapter 6 we showed that the Poisson equation on a rectangle can be efficiently solved in parallel
by subdividing the domain into strips. Similarly, piece-wise constant coefficient problems can also be
efficiently solved by using the results in Chapter 4. Given the problem (7.1) on a rectangular domain, a

IThis result is true only if we assume that the coefficients a, b and ¢ are continuous or they have jump discontinuities which
can be eventually confined to subdomain interfaces, i.e, it is posible to subdivide 2 in such a way that, inside each subdomain,
the coefficients are continuous.

78

piece-wise constant operator can be defined which is spectrally equivalent to L. The communication cost of
one application of this preconditioner is comparable to that of the conjugate gradient part of the algorithm.
Since the ratio of communication to computation is reasonably small, the cross over value of n for which a
spectrally equivalent domain decomposed preconditioner will perform better than incomplete factorizations
in parallel, should be considerably smaller than the cross over value for sequential implementations.

7.4 A Brief History of Preconditioners for Multi-domain Decomposi-
tion

Keyes and Gropp [28] classify domain decomposition preconditioners in two groups. In the first group, the
so called Schur complement methods (SCM), block elimination is applied to the partitioned system

Ag P\ [ug) _ (fn) '
(PT Ar) (ur “\fr) (7.14)
The subdomain problems — i.e. systems with matrix Ag — are solved exactly and the interface system

Cur=g |, (7.18)

where C is the Schur complement C = Ap — PTAEIP, is solved iteratively by PCG. A preconditioner M
is given by an easily invertible approximation of C.

In the second group, the so called partitioned matrix methods (PMM), (7.14) is solved by PCG. Based
on a block LU-decomposition of A:

_ I 0\ [Aa 0\ /I A;,‘P)
A‘(PTA,;‘ I)(O c)(o I (7.16)

and an approximation M of the Schur complement C (M can be any member of the first group), a block
preconditioner for A is defined by:

- I 0\ (Aq o0\ /I AZ'P
M= (PTA;,‘ I) (0 M) (o I : (7.17)
For example, Aq and P may correspond to a discrete separable approximation of the operator (7.1). These
block-preconditioners are used when the subdomain problems cannot be solved by fast direct methods. At
each iteration, a system of the form Mv = u can be solved efficiently by block elimination, assuming that
efficient solvers exist for AQ (subdomains) and for M (interfaces).

When Aq = Ag and P = P, the methods SCM and PMM are equivalent, as shown by the following
theorem, which is proved in [28].

Theorem 7.2 If Aq = Ag and P = P, then algorithm PCG applied to (7.15) with preconditioner M and
initial guess yo is equivalent to algorithm PCG applied to (7.14) with preconditioner M and initial guess

o = (Aﬁl(f‘;lo‘ Py°)) (7.18)

in the sense that, at all iterations,

ui = (Aal(fr;i- Pyi))

and u; minimizes the A-norm of the error for all iterates generated from initial guesses of the form (zq, yo).

This theorem indicates that, without loss of generality, we can consider only preconditioners for 4 —
i.e., PMM — SCM being just a particular case for which the subdomain problems are solved exactly.

79

7.4.1 Block-Diagonal Preconditioners for Strip-wise Decompositions

The interface matrix C for a multistrip decomposition. of a rectangle was described in Chapter 4 as a block
tridiagonal matrix of the form
H, B,
c=|f H : (7.19)
: By
By Hp

Dryja and Proskurowski [20, 21) proposed a block diagonal preconditioner Mpp for C. The diagonal blocks
correspond to approximations of the blocks H;. In [20], they use vK (see (3.4)) and vVK? + 4K (see (3.5))
on the diagonal. In [21], they use alternating Neumann-Dirichlet conditions. The idea can be extended to
any other approximation of H; on the diagonal. The bound on the condition number of the preconditioned
interface system grows like k2.

The preconditioner deteriorates as k increases and the strips become narrow, an undesirable property
in the context of parallel computation because the number of iterations increases as more processors are
added. - There are two intuitive reasons for this limitation: first, when the strips become narrow, their
aspect ratios decrease, making approximations such as v X and v/ K2 + 4K less accurate, as discussed in
Chapter 3. Second and more important, the blocks B;, which are ignored in the construction of Mpp,
represent the coupling between interfaces. This coupling will obviously become stronger as the interfaces
get closer to each other.

One way of overcoming these limitations is by the construction of preconditioners that take into account
the aspect ratios of the subdomains and the coupling between interfaces.

Another way is by decomposing the domain in such a way that the aspect ratios are kept small and
the coupling is considered in a coarser level.

7.4.2 Preconditioners for Decompositions with Cross-Points

Bramble et al. [8] addressed both the aspect ratio and the interface coupling problems by allowing the
interfaces to cross at the interior of the domain, thus allowing the subdomains to have good aspect ratios
and only considering the coupling at the cross-points, where a coarse-grid approximation of the original
problem is solved. With their preconditioner Mppgs, the condition number of the preconditioned system

is bounded by O(1 + log (hl k)z), where k is the number of subdomains (boxes).

We briefly describe their method as follows. A system of the form Mppsu = g is solved by first
decomposing u into up + ug. The component up satisfies the PDE on each subdomain with zero boundary
conditions on the interfaces and it can be computed by solving independent Dirichlet problems on the
subdomains. The component uy, called the discrete harmonic component, equals u« on the interfaces
(edges and cross-points) and it satisfies the PDE with zero right-hand side. This component is further
decomposed into uy = ug + uy, where uy is linear along the edges and agrees with u at the cross points,
and ug vanishes at the vertices (or cross-points).

In order to compute uy on the interfaces, a small sparse system is solved first for uy at the cross-points,
by using a finite element basis defined for the coarse grid formed by these points. Then, in order to find ug
on each edge, independent systems with matrices of the form vX (cf. Dryja’s preconditioner on Chapter 3)
must be solved.

Once uy is known on the interfaces, it can be extended to the interior of the subdomains by solving
another set of independent Dirichlet problems.

For a fixed k, this preconditioner is not spectrally equivalent to the operator A, because the condition
number grows as h tends to zero, although the growth is very slow. The convergence rate improves as
more subdomains are added. This is a desirable property, although it is not surprising, since the system
for the cross-points approaches the original problem Au = f.

80

Dryja et al. [22] proposed a preconditioner that solves alternate Dirichlet and Neumann problems on
the subdomains in a checker-board fashion. Its convergence properties are similar to Mgpg’s.

These preconditioners have the advantage that they can be applied to a range of domain shapes and
operators and they are nearly optimal in the sense that the convergence rate is practically independent of
the mesh size. If we, however, restrict ourselves to separable problems on rectangular domains, they cannot
compete with fast direct solvers, because they do not compute the exact solution to the original problem
at the crosspoints or at the interfaces. For example, seven iterations are necessary to reduce the initial
residual by a factor of 10~4, when the preconditioner Mgpg is used on the Poisson equation on a rectangle
divided into boxes. Since at each iteration, two Poisson problems must be solved on each subdomain, this
is clearly not the most efficient way to solve Poisson’s equation, neither sequentially nor in parallel. This
indicates that, whenever a fast direct method exists to find the exact solution at the interfaces, it should
be preferred over an iterative method with a preconditioner which only approximates the solution at the
interfaces. But no fast method is known for computing the solution at the interfaces when they include
cross-points.

7.5 Strips Revisited

Instead of improving the aspect ratio of the subdomains, we propose to take them into account, as well as
the coupling between interfaces. We again consider multistrip decompositions of Q.

As we mentioned before, the block-diagonal preconditioners proposed for strip-wise decompositions of
rectangular domains are not suited for parallel applications, because they ignore the issues of aspect ratios
and interface coupling, thus obtaining convergence rates which deteriorate as the strips become narrow.
In Chapter 4 we have shown, however, that for constant coefficient and piece-wise constant coefficient
problems, the coupling can be treated exactly.

Let the operator Lpp be defined as in (7.4), where the coefficients &, band &é = &1) 4+ &) take constant
values a;, b; and ¢; on each strip ;. The constants a;,b; and ¢; are chosen so that they represent average
values of the coefficients a(z, y), b(z, y) and ¢(z,y) of (7.1) on the subdomains. For example, we can use:

- 1y,
& = 3(iafa@v)+sua(z,y)) (7.20)
- 1,
b = E(lgfb(z,y)+sg}>b(z,y)) (7.21)
. Y2
é& = 2(1gifc(z,y)+s‘121ipc(z,y)) . (7.22)

Let Mpp (or MDD(k)) be defined as the discretization of Lpp on the same n by m grid.

Since this represents a special case of the operator given by (7.4), the results of Theorem 7.1 hold for
Mbpp, i.e. n(MBbA) is bounded by a constant independent of h. Also, by taking the coupling between
interfaces into account, the preconditioner does not deteriorate as k increases. In fact, s(MphA) is also
bounded independent of k. Moreover, in some cases the condition number decreases as k& increases. The
bounds (7.12) hold in this case with

sup a(z, y)
Pas infa(z,y)

sup b(z, y)
Py, -

- infb(z,9)

81

86 + sup ¢(z, y)
Qi

SRS FyEe)

Also, (7.13) holds when the approximate coefficients are defined by (7.20-22).

Since the subdomains can only become smaller in one dimension, the ultimate bound depends on the
variability of the coefficients in the direction parallel to the strips. In the particular case for which the
coefficients a, b and c are constant with respect to z (for horizontal strips) or y (vertical strips), the bound p
tends to one as the strips become narrow. The reason for choosing piece-wise constant as opposed to piece-
wise separable coefficients is that the operator Mpp can be solved efficiently by domain decomposition
techniques.

In Chapter 4 we showed that Mpp has a block decomposition of the form (7. 17) with a Schur comple-
ment M given by (7.19). Even though Mpp can be defined mdependently as the discretization of a global
operator on {2, a block decomposition shows that a system of the form Mppv = r can be easily solved by
block elimination. Fast Poisson solvers can be applied to the solution of the constant coefficient subdomain
problems (with matrix Aq) and the reduced system (with matrix M) can be solved by Fourier analysis.

The details of the parallel implementation are similar to those described in Chapter 6 for the Poisson
equation. The subdomain problems are solved in parallel. The solution of the reduced system involves two
FFT computations per interface, which can be done in parallel and the solution of n tridiagonal systems
distributed among the processors.

If a block diagonal matrix such as the preconditioner Mpp of subsection 7.4.1 was replaced by the
exact Schur complement M in (7.17), the work per iteration might be reduced, because it would not be
necessary to solve a coupled system for the interfaces, but the savings would be immediately overcome by
a deterioration of the convergence rate.

7.6 The Spectrum of M~14

When looking for block preconditioners of the form (7.17), one would like to treat the approximation of
the Schur complement C by the operator M and the approximation of the subdomain blocks Ag and P as
two independent problems. Theorem 7.2 shows that if Aqg = Ag and P = P, then algorithm PCG applied
to (7.15) with preconditioner M is equivalent to algorithm PCG applied to (7.14) with preconditioner M.

When the subdomain problems are not solved exactly, the preconditioner may loose the spectral equiv-
alence property. Borgers [6) shows that, even when Aq is spectrally equivalent to Aq and M is spectrally
equivalent to C, the condition number of M~14 may grow linearly with 1/A. In his example, this is a
consequence of not scaling the off-diagonal block P accordingly.

We shall show now that when AQIP AQ P, the approximation of the Schur complement C by M and
the approximation of the subdomain blocks Ag and P can in fact be treated as two independent problems,
because the spectrum of M~1A4 is the union of the spectra of Al Ag and M~1C. In general, M~'A can

be written in terms of Ag 172 4 A—l/2 M~1/2CM~=1/? and the operator A;'P — AZ'P.
Theorem 7.3

1) By a similarity transformation, the preconditioned matriz M~1A becomes:

(1)(A_1/2A aAg'? 0 Iy
YT I 0 M-Y2epM-Y2) \0 T ’

where Y = AY*XM~1/2 and
X = Ag'P - Ag'P

82

ii) If Ag'P = AG'P, then o(M~1A) = o(A5' Ag) Uo(M™1C).

Proof:)
i) By (7.17), we have M = QT Q, where

A"l/2 0 I A'--IP
(' 2 7).

Consider the following similarity transformation of M~1A:
A=QMTAQ7 =Q(QTQ) 4@ = @TT4Q™

Then we have:

i< (&7 o I o (Ag 0 (I X) (,&51/’-’ 0)
0 M-1/2)\ XT 0 Cc/\o I 0 M-1/2

I 0) (Ag‘/’-’AnAg‘/’-’ 0)(1 Y)

YT I 0 M—1/2CM-1/2 0o I

i) When X = 0, we have

: A~51/2A0A"51/2 0
A (0 M—1/2CM—1/2

It is easy to see that Theorem 7.2 can be derived as a particular case of Theorem 7.3, because if Ag = Ag
and P = P, then o(M~14) = {1} U o(M~1C). Thus, the convergence properties of algorithm PCG
applied to (7.15) with preconditioner M are the same as for PCG applied to (7.14) with preconditioner M
(cf. Lemma 2.5).

It is clear from Theorem 7.3 that if Ag'P = A5'P and the condition numbers of Ag'Aq and M-1C
are small, then we get rapid convergence, even when the condition number of M~ A may be large. Borgers
[6] uses the example Ag = aAg! for @ > 1 and P = P with M spectrally equivalent to C, to show that
the condition number of M~ 1A may grow linearly with 1/h, However, if we allow for the off-diagonal block
P to be scaled accordingly, i.e., P = aP, then by Theorem 7.3-ii we have o(M~14) = a|Jo(M~1C) and
therefore M is spectrally eqmva.lent to A and the convergence rate does not depend on a (even though the
condition number of M~1A does).

7.7 Separable Approximations on the Subdomains

Since a variable coefficient operator can be usually better approximated by a separable coefficient oper-
ator than by constant coefficients, and since the amount of work required to solve separable problems is
comparable to the amount of work required to solve constant coefficient problems [32], one can consider
replacing the subdomain blocks with separable coefficient approximations instead of constant coefficients.
More specifically, if Mpp is decomposed as in (7.17), the new preconditioner would be given by

— I 0\(Aq 0\ /(I AP
M‘(ﬁ""zgl 1)(0 M)(O I) ’

where Aq and P represent separable approximations of Aq and P, respectively, but M is still the Schur
complement for the piece-wise constant approximation.

83

7.8 Numerical Examples

Example 1 In our experiments, we first considered the problem

0 . azyOu 0 _azyOu
- e - Ty 7Y — 7.
52 e Tl e =1 (7.24)

on the unit square, for @ = 1 and for @ = 3. The right hand side f was chosen so that u(z,y) =
ze™ sin(rz)sin(ry) is the solution to (7.24). The problem was solved by the PCG method with the strip
preconditioners Mpp(k) and M (k). The piece-wise constant coefficients for Mpp(k) were defined by
the arithmetic average of the variable coefficients at all interior gridpoints on each subdomain. Similar
results were obtained when the constant coefficients were defined according to the minimax criterion. The
preconditioner M (k) was descnbed in Section 7.7. The separa.ble coefficients on each subdomain were

chosen so that &;(z) = k f e**¥dy, where y; = & and b;(y) = f e~ %z,
Vi1

. The larger the value of «, the larger the variation of the coeflicients inside the subdomains. When
a = 1, for example, the partial derivatives of the coefficients with respect to z are bounded by |a.| < 2.72
and |b;| < 1. For a = 3, we have |az| < 60.26 and |b;| < 3. While the variation of the coefficients
with respect to y can be better represented by using more horizontal strips, the variation with respect to
z cannot. For that reason, we expect the convergence rate to be worse for larger values of a and to not
improve dramatically as the strips become thin. We will also see that the rate of convergence is significantly
improved when the subdomain solvers are replaced by separable approximations.

In Table 7.1 we show the number of iterations needed to reduce the 2-norm of the initial residual
by a factor of 1074, for the cases @ = 1 and a = 3 and for mesh widths h = 274, h = 25 h = 26
and A = 2-7. The numbers in parentheses are the average residual reduction per 1tera.t10n defined as
(lIrzll2/lroll2)*/?. For comparison, the table also shows the number of iterations and the average residual
reduction per iteration when the Laplacian operator is used as preconditioner. Both the Laplacian operator
and Mpp(k) are spectrally equivalent to the matrix A. Although for the problem sizes shown the average
residual reduction per iteration still grows with problem size, this growth slows down more rapidly for
preconditioners Mpp(k) and M (k) than it does for the Laplacian operator. For a given problem size, the
reduction rate is not only bounded but in fact, it improves slightly with increasing number of strips when
preconditioner Mpp(k) is used. On the other hand, with M (k) we can see that a two-strip solver represents
a significant improvement over a separable approximation on the whole domain, but the reduction rate gets
worse as more strips are added. This fact gives an indication of the two approximations that are taking
place: first, the approximation of the operator inside the subdomains, which improves as the subdomains
get smaller; and second, the approximation of the interface operator, which takes greater significance as
it gets larger. In general, for preconditioner M (k) we can expect one particular value of & to produce the
optimal reduction rate.

In Fig. 7.1 we plot the 2-norm of the residual vs. iteration number, for the case & = 3 when h = 1/32
and for four different preconditioners: L is the Laplacian operator, M (1) is a separable approximation on
the whole domain, Mpp(4) is the domain-decomposed four-strip preconditioner with piece-wise constant
coefficients and M(4), the domain-decomposed four-strip preconditioner with separable approximations on
the subdomains.

84

Table 7.1: Numerical Example 1

du 4, ., 0u
B%(eazya)'*'a—y(e ””55 =f
a=1 a=3
h| k| Mpp(k) | M(k) L Mpp(k) M(k) L
1/16 | 1] 6 (0.208) | 6 (0.167) | 8 (0.298) || 15 (0.519) | 14 (0.492) | 18 (0.589)
2 | 6 (0.194) | 5 (0.107) 14 (0.506) | 8 (0.297)
4| 6 (0.180) | 5 (0.128) 13 (0.483) | 9 (0.325)
1732 | 1] 7(0.255) | 6 (0.190) | 9 (0.351) || 18 (0.597) | 16 (0.549) | 26 (0.696)
2 | 7(0.227) | 5 (0.119) 18 (0.589) | 9 (0.343)
4| 6 (0.210) | 5 (0.144) 16 (0.559) | 10 (0.367)
8 | 6 (0.204) | 6 (0.161) 15 (0.537) | 11 (0.410)
1764 | 1] 8(0.303) | 6 (0.203) | 10 (0.387) || 21 (0.639) | 17 (0.578) | 33 (0.753)
2 | 7 (0.248) | 5 (0.128) 20 (0.627) | 10 (0.382)
4| 7(0.231) | 5(0.157) 19 (0.603) | 11 (0.416)
8| 7(0.222) | 6 (0.176) 17 (0.580) | 12 (0.463)
16 | 7 (0.221) | 6 (0.187) 17 (0.571) | 13 (0.483)
17128 | 1] 8(0.303) | 6 (0.211) | 11 (0.411) || 23 (0.666) | 18 (0.595) | 40 (0.793)
2| 7 (0.261) | 5 (0.135) 22 (0.652) | 10 (0.398)
4| 7(0.242) | 6 (0.169) 20 (0.631) | 12 (0.452)
8| 7 (0.232) | 6 (0.193) 19 (0.610) | 14 (0.505)
16 | 7 (0.230) | 6 (0.200) 18 (0.599) | 15 (0.530)
32 | 7 (0.230) | 6 (0.207) 18 (0.596) | 16 (0.541)
100
10~
10~
10°*

10°*

10*

10™

10°*

0

20
Iteration number

Figure 7.1: Residual reduction for Example 1, with @ = 3, h = 275,

85

4 = J.E+02

4 = 1.E-04

u = 3.14B+4

= 5.E-02

u=8

u = 7.8-02

u = 2.78+03

= 1 E+08

4 = 1.E-01

u = 28+02

4 = 8.E+03

B = 1.48+6

Figure 7.2: Coefficients for Example 2

Example 2 The second example was given in [7] and it is a problem for which the coefficients are piece-
wise constant. The operator L has the form 7.1, with a(z,y) = b(z,y) = u(z,y) and ¢(z,y) = 0, where
i is a piecewise constant function which takes different values on the sixteen regions pictured in Fig. 7.2.
The right hand side f was chosen so that the solution to Lu = f is

u(z,9) = (1-42) (1= 32001~ 49)* (1 - S0)°

The problem was solved by the PCG method with the strip preconditioners Mpp(4) and M(4). The
piece-wise constant coefficients for Mpp(4) were chosen to be the average of i inside each strip, i.e.

i = b =36501.25
d; = by =250052.275
i3 = b3=677.03

iy, = by =7926.250025

and & = 0. In M(4), the subdomain problems are solved exactly by a strip solver after reordering the
gridpoints. In fact, given the block LU-decomposition 7.16 for the matrix A, the preconditioner M(4) is
I 0\ (Aq 0\ /I AZ'P

given by:
m“)z(PTAgl I)(O M)(O I) ’

where M is the Schur complement corresponding to the interface points for a piece-wise constant coefficient
approximation on four horizontal strips. N

According to Theorem 7.2, applying M(4) is equivalent to applying the preconditioner M to the solution
of the interface system.

In Table 7.2 we show the number of iterations needed to reduce the 2-norm of the initial residual by
a factor of 104 and the average residual reduction per iteration for mesh widths A = 2~5, A = 276 and
h = 2-7 and for preconditioners Mpp(4), M(4) and the Laplacian operator. As we can see, the number
of iterations remains bounded for increasing problem size. The rate of convergence improves significantly
when the preconditioner M(4) is used. In Fig. 7.3 the 2-norm of the residual is plotted vs. the iteration
number for the case h = 1/32.

86

Table 7.2: Numerical Example 2

h

L

Mpp(4)

M(4)

1/32

57 (0.844)

24 (0.673)

11 (0.429)

1/64

57 (0.849)

24 (0.673)

12 (0.448)

17128

61 (0.859)

32 (0.644)

12 (0.441)

10*

100 B

10*

Residual

10*

10!

10*

Iteration number

Figure 7.3: Residual reduction for Example 2

87

7.9 Concluding Remarks

Preconditioners for domain decomposition that have the property of spectral equivalence are often called
optimal, because they provide the same complexity as a fast solver, except for a constant factor which
depends on the problem and the particular preconditioner. The term optimal can be misleading. First, it
might create the impression that these preconditioners are always faster than other so called non-optimal
preconditioners, when this is only an asymptotic result. Second, because it might appear that, given
two domain decomposition preconditioners which are both “optimal”, they are basically equivalent. But
considerations such as arithmetic cost, parallelizability, etc., should not be ignored. Finally, we should
not ignore the problem of choosing a good separable approximation. In the sense just described, the
discrete Laplacian is also optimal, because it is spectrally equivalent to any regular second order self-
adjoint operator. If we treated all separable aproximations as equivalent, then the Laplacian is the simplest
choice, and then we would only be concerned with the problem of solving Poisson’s equation efficiently,
either sequentially or in parallel. But in fact, the choice of a separable approximation does matter, because
it afects the iteration count directly, and each iteration is expensive.

We conclude this section with some comparisons between preconditioners for decompositions with cross-
points, such as Mpps, and the strip preconditioners presented in this chapter. Cross-point decompositions
apply to more general domains, while strip decompositions only apply to rectangular domains. Cross-point
decompositions give the possibility of approximating the operator more closely on boxes than we could on
strips, but this must be balanced against the fact that the cross-point system cannot be solved exactly,
even for piece-wise constant problems.

Another feature of strip decompositions is that, as we showed in Chapter 6, the computation for the
subdomain solves can be organized in such a way that the complexity for solving two problems on each
strip does not introduce a factor of two. It would be less trivial to save such factor of two for box domains.

As long as the subdomains are not trivially small, the subdomain solves dominate the computation.
In this case, we can say that all domain decomposition preconditioners have similar cost per iteration
_ (except for, possibly, the factor of two). Then, the convergence rate is a reasonably good comparison
criterion. For problems that can be well approximated by piece-wise constant coefficients on strips, our
strip preconditioner will perform better than box preconditioners.

7.9.1 A Note on Granularity

An important issue in the study of domain decomposition is granularity. The whole reason why the idea of
domain decomposition is appealing for parallel computation is based on the assumption that the amount
of work required to solve the subdomain problems is large compared to the rest of the computation,
which involves most of the overhead. In other words, we usually assume coarse granularity. All domain
decomposition algorithms can of course be applied to cases where the subdomains are very small (or thin,
in the case of strip-wise decompositions), i.e. fine granularity, but the analysis of the method should be
approached from a different point of view.

For example, when we say that it is important to choose a good separable approximation, it is because
we assume that the subdomain solves will dominate the computation, and then we want to replace the
subdomain problems by operators that can be solved by fast methods. At the same time, for preconditioners
which solve a cross-point system, it is not so crucial to specify the method for solving this cross-point system,
because it represents a lower order in the complexity analysis.

. On the other hand, when the subdomains are small enough, it is no longer necessary to approximate
the subdomain operators, because the smaller size problems can be solved exactly. But more emphasis
should be put on the description of how to handle the interfaces or the cross points.

88

Bibliography

(1] C. R. ANDERSON, On Domain Decomposition, Manuscript CLaSSiC-85-09, Center for Large Scale
Scientific Computation, Stanford University, Stanford, CA, 1985.

(2] R. BaNK and D. ROSE, Marching Algorithms for Elliptic Boundary Value Problems. I: The Constant
Coefficient Case, SIAM J. Numer. Anal., 14 (1977), pp. 792-828.

[3] R. BANK, Marching Algorithms for Elliptic Boundary Value Problems. II: The Variable Coefficient
Case, SIAM J. Numer. Anal., 14 (1977), pp. 950-970.

[4] P. E. BiorsTaD and O. B. WIDLUND, lterative Methods for the Solution of Elliptic Problems on
Regions Partitioned into Substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1097-1120.

(5] P. E. BiorRsTAD and O. B. WIDLUND, To Querlap or not to Overlap: A Note on a Domain De-
composition Method for Elliptic Problems, Tech. Rep., Institute of Informatics, University of Bergen,
Bergen, Norway, 1988. To appear in SIAM J. Sci. Stat. Comput.

(6] C. BORGERS, The Neumann-Dirichlet Domain Decomposition Method with Inezact Solvers on the
Subdomains, Numer. Math. 55 (1989), pp. 123-136.

(7] J. H. BrRaMBLE, J. E. Pasciak and A. H. SCHATZ, An [terative Method for Elliptic Problems on
Regions Partitioned into Substructures, Math. Comp. 46 (1986), pp. 361-369.

(8] J. H. BRaMBLE, J. E. PasciaK and A. H. SCHATZ, The Construction of Preconditioners for Elliptic
Problems by Substructuring I, Math. Comp. 47 (1986), p. 103.

[9] O. BuNEMAN, A Compact non-Iterative Poisson Solver, Rep. 294, Stanford University Institute for
Plasma Research, Stanford, CA, 1969.

[10] B. L. BuzBkE, G. H. GoLuB and C. W. NIELSON, On Direct Methods for Solving Poisson’s Equation,
SIAM J. Numer. Anal. 7 (1970), pp. 627-656.

(11} R. CHANDRA, Conjugate Gradient Methods for Partial Differential Equations, PhD Thesis, Dept. of
Computer Science, Yale Univ., 1978.

(12} T. F. CRAN, Analysis of Preconditioners for Domain Decomposition, SIAM J. of Numer. Anal. 24
(1987), pp. 382-390. .

(13] T. F. CHAN and D. GOOVAERTS, Schwarz=Schur: Overlapping Versus Nonoverlapping Domain
Decomposition, CAM Report 88-21, UCLA, Los Angeles, CA, 1988.

(14] T. F. Cuan, T. Y. Hou and P. L. LioNs, Geometry-Independent Convergence Results for Domain
Decomposition Algorithms, CAM Report 89-11, UCLA, Los Angeles, CA, 1989.

(15] T. F. CHaN and D. C. REsasco, A Domain-Decomposed Fast Poisson Solver on a Rectangle, SIAM
J. Sc. Stat. Comp. 8 (1987), pp. s14-526.

89

[16] D. BAXTER, J. Sarrz, M. ScruLTZ, S. EISENSTAT and K. CROWLEY, An Ezperimental Study
of Methods for Parallel Preconditioned Krylov Methods, Research Report 629, Yale University, New
Haven, CT, 1988.

[17] P. CoNcus and G. GoLUB, Use of Fast Direct Methods for the Efficient Numerical Solution of
Nonseparable Elliptic Equations, SIAM J. Num. Anal. 10 (1973), pp. 309-332.

(18] M. DRryia, A Capacitance Matriz Method for Dirichlet Problem on Polygonal Region, Numer. Math.
39 (1982), pp. 51-64.

[19] M. DRry1A, A Finite Element-Capacitance Method for Elliptic Problems on Regions Partitioned into
Subregions, Numer. Math. 44 (1984), pp. 153-168

[20] M. DryJA and W. PROSKUROWSKI, Fast Elliptic Solvers on Rectangular Regions Subdivided into
Strips, Advances in Computer Methods for Partial Differential Equations. V, R. Vichnevetsky and R.
Stepleman (Eds.), Publ. IMACS, 1984.

[21] M. DRryJa and W. PROSKUROWSKI, Capacitance Matriz Method using Strips with Alternating Neu-
mann and Dirichlet Boundary Conditions, Appl. Numer. Math., 1 (1985), pp. 285-298.

[22] M. DRryJja, W. ProskurowsKI and O. WIDLUND, Numerical Ezperiments and Implementation of a
Domain Decomposition Method with Cross Points for the Model Problem, Technical Report CRI-86-37,
Univ. of South. Cal., Los Angeles, CA, 1986.

[23] T. DuronT, R. P. KENDALL and H. H. RACHFORD, An Approzimate Factorization Procedure for
Solving Self-Adjoint Elliptic Difference Equations, SIAM J. on Num. Anal., 6 (1968), pp. 753-782.

[24] H. C. ELMAN, Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations , PhD
Thesis, Dept. of Computer Science, Yale University, New Haven, CT, 1982.

[25] H. ELMAN and M. SCHULTZ, Preconditioning by Fast Direct Methods for Nonself-adjoint Nonseparable
Elliptic Equations, SIAM J. on Num. Anal., 23 (1986), pp. 44-57.

[26] G. H. GoruB and D. MAYERs, The Use of Pre-Conditioning over Irregular Regions, R. Glowinski
and J.L. Lions, ed., Computing Methods in Applied Sciences and Engineering VI, North-Holland, 1984,
pp. 3-14. :

[27] R. W. HOCKNEY, A Fast Direct Solution of Poisson’s Equation using Fourier Analysis, J. ACM, 12
(1965) pp. 95-113.

[28] D. KEves and W. GropP, A Comparison of Domain Decomposition Techniques for Elliptic Partial
Differential Equations, SIAM J. Sc. Stat. Comp. 8 (1987), pp. s166-s202.

(29] F. Satep, C.-T. Ho, S. L. JounssoN and M. H. ScrULTZ, Solving Schrédinger’s equation on the
Intel iPSC by the Alternating Direction Method, in Hypercube Multiprocessors 1987, M. T. Heath
(Ed.), SIAM, Philadelphia, 1987.

[30] F. SA1ED, Numerical Technigues for the Solution of Schrédinger’s Equation and their Parallel Imple-
mentation, PhD Thesis, Dept. of Computer Science, Yale Univ., 1990.

[31] H. A. SCHWARZ, Gesammelte Mathematische Abhandlungen Berlin, Springer, 2 (1890), pp. 133-134.

[32] P. N. SWARZTRAUBER, A Direct Method for the Discrete Solution of Separable Elliptic Equations,
SIAM J. Numer. Anal., 11 (1974), pp. 1136-1150.

90

[33] P. N. SWARZTRAUBER, A Package of Fortran Subprograms for the Fast Fourier Transform of Periodic
and other Symmetric Sequences, National Center for Atmospheric Research, Boulder, Colorado.

[34] P. N. SWARZTRAUBER and R. SWEET, Efficient Fortran Subprograms for the Solution of Elliptic
Partial Differential Equations, Technical Note TN /IA-109, July 1975, National Center for Atmospheric

Research, Boulder, Colorado.

[35] R. S. VARGA, Matriz Iterative Analysis (1962) Prentice-Hall, Inc.

91

