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Abstract

Large scale systems, common in cloud computing, rely on redundancy for reliability and availability.

Modern clouds have become ever-increasingly complex and diverse creating large messes that experi-

ence long outages when failures occur. While there exist significant effort in resolving faults after they

occur, we propose a novel approach to untangling this mess before it occurs by auditing the underlying

structure of a cloud, which we call the cloud Structural Reliability Auditor (SRA). SRA achieves our

goal by auditing a cloud with the following steps: 1) collecting comprehensive component and its de-

pendency information, 2) using this data to construct a system-wide fault tree, 3) and leveraging fault

tree analysis algorithms to determine and rank sets of components based on the likelihood of causing a

cloud service outage. SRA enables a cloud administrator to be able to evaluate risks within the cloud

beforehand and improve the reliability of her service deployments before the occurrences of critical fail-

ure events. We have built a prototype implementation that performs all three tasks. Using this prototype,

our experimental evaluation shows that SRA is practical: auditing a cloud containing 13,824 servers and

3,000 switches spends about 6 hours.

1 Introduction

As companies increasingly move their computations and data onto third-party cloud resources, the debate

continues as to whether these services are as reliable as providers claim [13]. As more individuals depend

on cloud services for critical services, clouds have greater need to eliminate failures before they occur as to

avoid downtime and lost business for both them and their consumers. To support this effort, cloud providers

employ extensive redundancy for their services. Amazon S3, for example, stores each object at multiple

servers in a given Amazon S3 region [3]. Apple’s iCloud service, similarly, rents infrastructure from both

Amazon’s EC2 and Microsoft’s Azure [4].

Nevertheless, as increasingly common reports of cloud outages attest [5, 6, 8, 23], reliability remains

imperfect. The complex interdependent structure found within today’s clouds coupled with the fact that

these interdependencies often extend across multiple providers or administrative domains none of whom

has a “complete picture” of the entire system creates pitfalls that may compromise reliability [28–30, 38].

These complex dependencies may unintentionally introduce unknown common dependencies leading to

unexpected correlated failures, reducing the effectiveness of redundancy as a means to improve availability

and reliability. Suppose for example a cloud provider, A, replicates critical state in two data centers B and

C to ensure reliability. A, however, does not know both B and C depend on a common power supply P. If P

fails, both B and C fail simultaneously, resulting in a unexpected correlated failure causing A to fail despite

redundancy.

This preceding example has happened in reality. Despite Amazon EC2 having multiple data centers

located in Northern Virginia for reliability, a recent lightning storm in this region taking out both Amazon’s

main power supply and its backup generator, disabling all the data centers and EC2 service in the area [8].
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Figure 1: The relationships among cloud provider, its services and cloud reliability auditor.

Worse, the effect carried over to other services disabling Netflix, Instagram, Pinterest, Heroku and other

services that relied heavily on EC2 there.

If cloud providers could easily determine and account for all critical dependencies that may result in

failures ahead of time, then uptime would be nearly 100% except maybe in cases involving “acts of God.”

For instance, Google’s investigation efforts indicate that although they understand close to 37% of failure

correlations hidden in their global storage systems can truly cause failure burst disabling their service, they

do not know how to directly detect or identify them [29]. Leaving the discovery of unknown correlated

failures an important but unresolved challenge.

To address this problem, we propose a novel approach to auditing the structure of cloud services called

the structural reliability auditor (SRA). The SRA, shown in Figure 1, is a set of tools that a cloud provider

may employ in this process. To determine unknown dependencies resulting in correlated failures within a

cloud service, SRA first collects cloud component and component dependency information (e.g., network,

hardware and software dependencies). Then the SRA builds a fault tree [21, 45] using collected dependen-

cies. Finally, the SRA uses fault tree analysis algorithms to generate reliability auditing reports, which can

be used to determine high-risk events that will result in correlated failures causing service outages.

To the best of our knowledge, SRA is the first system for auditing common dependencies resulting in

potential correlated failures within clouds. In order to provide effective and practical approach, SRA makes

the following contributions:

• automated collection of dependencies including network, hardware and software dependencies from

a cloud for structural auditing;

• adapt fault trees for use in reasoning about common dependencies within clouds;
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Figure 2: The overview of SRA architecture.

• determine common dependencies resulting in correlated failures within a cloud and rank the depen-

dencies based on their likelihood of occurrence; and

• a privacy-preserving cloud auditing mechanism.

Road-map. The rest of this paper is organized as follows. The next section describes our target problem and

the challenges on building SRA. Section 3 presents SRA’s architecture and detailed design of our approach,

and Section 4 describes our implementation and evaluations. Some discussions are given in Section 5.

Section 6 presents related work and finally Section 7 concludes this paper.

2 Problem & challenges

2.1 Problem

Cloud providers often leverage redundancy techniques as a means to improve the structural reliability and

availability of their services by reducing the likelihood of occurrence of a failure set (FS), a set of compo-

nents whose simultaneous failure would cause a cloud service outage. The knee-jerk reaction of deploying

redundancies as a means to address FSs may overlook important issues and backfire, as these efforts might

inadvertently produce unexpected dependencies resulting in small FSs and increasing the likelihood of cor-

related failures causing service outages [28, 30].

Many existing service outage accidents result from unexpected FSs. Well-known individual cloud ser-

vices, e.g., EC2 [2] and Azure [9], make use of redundancy to ensure the structural reliability of their

services, e.g., introducing backup servers and switches into their data centers [17, 26, 31, 39, 55]. How-

ever, additional redundancies may not mitigate the likelihood of failure due to a failed FSs, derailing cloud

providers’ efforts for improving reliability. Amazon, for example, recently experienced a significant disrup-

tion in the Northern Virginia EC2 data center due to correlated failures resulting from incorrect configuration

within a few aggregation switches [5]. While Amazon may look at efforts to prevent a repeat of this issue,

the general problem, an unexpected compromised FS, likely will rear its ugly head again in the future.

As the cloud diversifies, application service providers no longer depend upon a single cloud service (e.g.,

IaaS) and have begun using multiple cloud service providers for enhanced reliability [22]. Netflix [10], for

instance, utilizes three independent Amazon EC2 availability regions [1], while Zynga [16], developer of

many Facebook games, uses both EC2 and an internal “cloud”. Despite these efforts, application service

providers may be unaware and unable to mitigate failures due to unknown FSs shared by distinct cloud
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providers. For instance, a recent ferocious lightning storm in Northern Virginia [8, 11] took out both Ama-

zon’s primary and backup power supplies resulting in unavailability of the three EC2 redundancies support-

ing Netflix, thus causing a Netflix service outage in this area.

Our goal. We begin by exploring the challenges associated with these problems. We then propose a solution

and share our initial prototype that can help cloud providers not only determine FSs within their clouds, but

also rank them in order of importance assisting cloud administrators in their efforts to improve the structural

reliability of their clouds as effectively as possible by fixing potential issues before they occur. Beyond that,

these efforts provide depth and understanding about the complexities within a cloud and can even be used

as a diagnosis tool to assist in isolating live errors within a cloud.

2.2 Challenges

Several technical challenges appear in detailed analysis of these problems. The following list focuses on

those we view as critical toward solving our goal.

Challenge 1: Acquiring dependencies. In order to discover FSs for a given cloud service, the components

information within the cloud and their associated dependencies must be acquired. Since infrastructures

underlying cloud services tend to be complex, asking an administrator to populate this data set may be an

infeasible task. Therefore, acquiring the dependencies efficiently becomes an important problem. Existing

approaches towards this effort found in monitoring and diagnosis systems have been limited to networking

ignoring hardware, software and other dependencies [19]. History has shown unsuitability of networking

alone, as failures resulting from software and hardware become rather commonplace [14].

Challenge 2: Determining and ranking FSs. Even with a set of components and their dependencies,

obtaining FSs and ranking them remains unresolved. Within this challenge, there exists the need to construct

an useful dependency graph and instrumenting it with potential failures. Determining FSs collected from

a service provides a difficult challenge due to potentially complex dependencies. Existing efforts [19, 37]

have tried to solve similar problems with diagnosis analysis; however, these approaches may fail to provide

accurate results when confronted with complex dependencies [50].

Challenge 3: Privacy Preservation. Auditing application cloud services that rent from different cloud ser-

vices introduces another complex challenge: preserving the privacy of the cloud providers while performing

auditing of the application service and its dependencies. The problem also relates to auditing a cloud ser-

vice and its external dependencies such as Internet and electricity providers. To the best of our knowledge,

there is no existing work done in this area. The obvious approach of using a third-party who signs a NDA

(non-disclosure agreement) with each cloud provider may not work in practice due to lack of motivation by

cloud providers [28, 41]. Ideally, cloud providers need trust no one with their internal secrets.

3 System Architecture

In this section, we describe a structural reliability auditor (SRA), a system capable of acquiring dependency

information and then discovers and ranks FSs within a cloud service.

3.1 Overview

The SRA performs an audit of a cloud service using the following three steps, diagrammed in Figure 2:
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Step 1: Dependency acquisition. As depicted in Figure 2, SRA’s dependency acquisition module pro-

cesses a cloud service collecting as much component and dependency information as possible storing the

results into a database for post processing. Components may include any resource and service that runs

within or outside of a cloud limited only by the ability to mine them for useful information. Section 3.2

presents the detailed design of this module.

Step 2: Building fault trees. Component and dependency information only presents a part of the story:

without a clear question or goal, processing this amount of information can be cumbersome and unhelpful.

The next component, the fault tree generator module, takes as input a target or goal, processes the data

acquired in the previous step in order to build a fault tree, a type of dependency graph. While traditionally

fault trees [45] have been used to evaluate the risks of automatic control systems, we adapt it for reasoning

about the reliability of cloud services. We present detailed descriptions on building fault trees in Section 3.3.

Step 3: Determining and ranking FSs. Using the fault tree, SRA begins the analysis phase of the

audit with the specific goal of finding high-risk FSs in the cloud service based on the likelihood of failure.

As shown in Figure 2, the auditing module uses the fault tree generated in the previous step and outputs

an auditing report that includes a ranked list for FSs. The process for analyzing the fault tree in order to

determine and rank FSs is given in Section 3.4.

Auditing services that span multiple providers. There still exists situations in which the auditing re-

quires sensitive information from an external party. In these scenarios, the external party or parties may be

unwilling to share this information. For example, Amazon may not be willing to share detailed information

about its data centers with Netflix, but nonetheless Netflix would like to audit the reliability of their cloud

structure. Thus, the auditor may need to use a privacy preserving mechanism for determining FSs. We

discuss one possible solution in Section 3.5.

3.2 Dependency acquisition

The dependency acquisition module, depicted in Figure 3, collects as much information as possible about

a cloud’s components and their dependencies, and then stores that data into a database for use later by

SRA’s other modules. We separate the dependency acquisition module into two parts: 1) various types

of dependency collectors that acquire component information and then report information upstream to a

2) Dependency Acquisition Manager (DAM). Dependency collectors target different hardware types, net-

work information, software, and other resources as well such as air conditioning, power, and geographical

location. A collector can exist for anything measurable. The DAM acquires all this information from the

various collectors and stores it within a database. While the DAM may discover many dependencies, explicit

definition of dependencies occurs later based upon the information collected.

In the rest of this section, we focus discussion on three dependency collectors, each of which have

been implemented: 1) network collector that discovers components and dependencies within data center

network, e.g., servers, routers, switches and connections between them; 2) hardware collector that acquires

various components and configurations from each server, e.g., CPU, disks, network cards of servers and

relationships between them; and a 3) software collector that analyzes cloud software stacks to determine

correlations between programs within the applications running on hosts, and the calls and libraries used by

these programs.

In practice, these dependency collectors may be inadequate and it may be necessary for cloud providers

to build their own. Customized collectors can take advantage of likely proprietary management infrastruc-

ture that might provide significantly more information than general purpose protocols and databases. Our

discussion of these three collectors is intended to illustrate the architecture and general functionality, not to
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Figure 3: The architecture of dependency acquisition module.

propose that these specific modules would be directly suitable for any particular real cloud environment.

Network dependency acquisition. The network collector obtains information on the hardware used to

support the network infrastructure within the cloud and connecting it to the Internet, but it also plays a key

role in understanding the cloud topology, locations and relationships of the various switches, servers, and

other networked resources. Using Figure 4 as a simple but illustrative example, the collector gathers network

information about aggregation switch 1-4, server 1-4 and all the communication paths between the compo-

nents. This data can be automatically acquired by leveraging existing network management protocols, e.g.,

SNMP, to collect network topology within data centers. In most of data centers, switches have LLDB (Link

Layer Discovery Protocol) enabled, SNMP can be used to obtain the set of directly connected neighbors for

each switch. Recursing through the switches using SNMP, the collector can determine the entire network

topology in real-time. SNMP also contains the routing tables, which can then be used to analyze the path(s)

between each pair of switches [51].

Hardware dependency acquisition. While the cloud provider may have detailed records of all purchases,

that information may not be consistent with reality and cannot include dynamic information present in

hardware. The hardware collector iterates across the entire set of servers inside a cloud obtaining detailed

information about each server. This information includes the various component types, such as CPUs,

PCIs, network cards, memory, disks and drivers; their product information such as vendors, machine life,

model numbers, and uptime; and even software installed and its versions. In the Figure 4, the hardware

dependency collector contacts each of the Servers (Server 1-4) and obtains this information using existing

hardware information acquisition tools (e.g., lshw and hwinfo). The hardware collector can be extended to

obtain additional information or additional collectors can be written that would collect unique information

about a server that does not fit into the framework for the default collector.

Software dependency acquisition. Cloud computing software stacks form another topology and un-

derstanding its relationship becomes critical to understanding potential failures as network and hardware
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Figure 4: An example on topology underlying a typical service.

failures could result in a software failure. The software collector obtains the following information: 1)

location of each application component, for example, in Figure 4, using Hadoop as an example, the mas-

ter, slaves, file system services, etc; 2) dependencies for application components, or rather the relationship

among the various moving pieces and how a failure in one may render the remaining into a failure state as

well; and 3) library dependencies of each program. The collector obtains these dependencies by utilizing

existing profiling tools (e.g., gprof and perf). We currently rely on the cloud operator to provide the remain-

ing information: location of each component and their dependencies. Ideally, the dependencies could be

obtained by analyzing the flow of RPC (remote procedure calls) through the system while introducing faults

in order to discover dependencies that the provider may be unaware of.

Failure probability acquisition. In order to achieve the goal of determining the likelihood of FSs’ fail-

ures, these and other dependency acquisition modules can be extended to obtain failure probability. Hard

drives, for instance, have mean time to failure and mean time between failures (MTTF) and many hardware

components have warranties during which the expected likelihood of failure is low. Using this information

combined with the use time of a device, which may be accessible via firmware, a collector could estimate

the likelihood of a failure. To further enhance these types of predictions, SRA could make use of an on-

line crowd-sourced database in which individuals post failure (or non-failure) information regarding various

hardware components. In that fashion, if a particular hard drive model has been found faulty, the likelihood

of failure would be far greater than computing some probability based upon the MTTF and the current use

time.

Failure probability measured in this context tends to be based upon purely mechanical objects. On the

other hand, the probability of stumbling across a software failures (bugs) or configuration problems can

not easily be computed. So for events for which we are unable to obtain failure probabilities from reliable

sources, we make use of logs to estimate historical reliability as a measure for future reliability. For each

component, a cloud provider can extract how much time the component was offline, τ over a given time

period T and obtain the failure probability by F = τ/T . The existing study [30] successfully obtained the

failure probability of each of component failure events in a Microsoft data center based on this approach.
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Figure 5: Fault tree which is constructed based on our example.

3.3 Building fault trees

Using the component and dependency information acquired earlier, a cloud provider can now use SRA to

examine dependencies within their services. This occurs in two steps: 1) defining the goal of the reliabil-

ity evaluation and 2) constructing a dependency graph using the acquired dependency data. Examples of

evaluation goals include ensuring that at least one server is online, some threshold of servers are online, or

a particular cloud application runs correctly, e.g., Hadoop. The goal assists in processing and filtering the

component and dependency data in order to produce the dependency graph. Since our eventual goal is to

determine reliability, we chose to model our dependency graphs as fault trees [45]

3.3.1 Building a dependency graph

To generate a dependency graph, the SRA must know the goal of the dependency graph or the components

of interest. Without this information, a dependency graph can still be generated, except that it may contain

potentially unimportant information and take an exceptionally long time to produce and process as the

dependency database contains a significant amount of information. To determine the useful components, the

SRA makes use of a templating mechanism, which predefines the relationships of various components and

queries the dependency database in order to construct a dependency graph that satisfies the SRA’s goal.

Figure 5 shows a completed dependency graph in the form of a fault tree based on the example shown in

Figure 4. For now, we focus on the components and their relationships saving the discussion on fault trees

to the proceding section, Section 3.3.2. The approach taken in constructing the dependency graph involves

determining the set of aggregation switches (AggS), core routers (Core), servers and top switches of racks

(ToR) that satisfy the goal in evaluation. Then the network topology information defines another dependency

relationship where servers rely on the various networking components. As the final high level component,

the SRA maps out the software components into the dependency graph. With the high level components

laid out, the SRA again queries the dependency database, but this time filling out details for each of the high

level components as the various templates define, these details include power, hardware components, and

network cables.
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Figure 6: A typical example for fault tree.

3.3.2 Using Fault Trees (FTs)

A fault tree is a type of dependency graph that focuses on the logical relationships between events causing

component failures within a given system. A typical fault tree has two types of building blocks: failure

events and logic gates. A failure event represents one possibile way a component may fail, due to an internal

failure or by loss of power, for example. Fault trees represent the occurrence of a failure event as a 1 and

normal behavior as a 0. Logic gates connect the failure events together and propagate the failure upwards

based upon the set of failure inputs. The selection of logic gate depends on the relationship shared by the

connected events. For example, if a failure should propagate upward due to any one failure occurring an

“OR” gate is used. While if all failure events must occur for the failure to propagate, an AND gate is used.

Leaf nodes or a fault event for individual components use the name basic failure events, while the root node,

or the service or goal of interest, is named top event or a system failure.

We illustrate the fault tree concept in Figure 6. The top event branches logically into equally contributing

events. Tracing through the fault tree reveals the various events whose occurrence could lead to the failure

of the top event. The figure shows that each failure event connects directly to an input gate, which connects

an event to its children.

Returning to our earlier example in Figure 5, the fault tree represents the dependency graph in terms of

failing components. This fault tree determines and analyzes the conditions under which the cloud service

will behave normally. This implies that at least one server running the front-end software and one server

running the back-end software remains online and properly working. Furthermore, the software itself must

not fail either, for example, due to bugs.

3.4 Determining and ranking FSs

As the final step in the SRA’s process, the auditing module, depicted in Figure 7, determines and ranks the

FSs from a given fault tree using the FSs determination algorithms container (FDC) and the FSs ranking

metrics container (FRC), respectively. The FDC currently supports two algorithms for obtaining the FSs

trading off speed and accuracy. The FRC then processes the list of resulting FSs and ranks them based upon

the chosen metric, thus producing the SRA’s output.

The remainder of this section presents algorithms for determining FSs within a fault tree: minimal cut

set algorithm and failure sampling algorithm, for determining FSs; and we conclude the section with an

overview of our ranking metrics.
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Figure 7: The architecture of the auditing module.

3.4.1 Minimal cut set algorithm

The minimal cut set algorithm is a deterministic approach for obtaining all the FSs within a given fault tree.

We first introduce two terms: cut set and minimal cut set.

Cut sets. A cut set consists of a collection of basic events with the property that if all these events occur

simultaneously, then top event occurs as well. For example, for the fault tree in Figure 6, if events A1 and

A3 occur simultaneously, the top event occurs. Thus, {A1,A3} is a cut set. Similarly, {A1,A2}, {A1,A2,A3},
{A2} and {A2,A3} are cut sets. In this sense, a cut set applied to a cloud service corresponds to a FS.

Minimal cut sets. A minimal cut set is the smallest combination of basic events with the property that if

all of these events occur simultaneously, then the top event of fault tree to occurs as well. In other words,

if any element were removed from a minimal cut set, it would no longer be a cut set. Using our example,

consider the following two cut sets: {A1,A2} and {A2,A3}. These are not minimal cut sets, because {A2}
alone is sufficient to cause top event to occur. The fault tree in Figure 6 has two minimal cut sets: {A2} and

{A1,A3}.

Minimal cut set algorithm. Our first approach to determining the minimal cut sets uses a reversed breadth-

first algorithm to traverse each of the events in the fault tree with pseudocode presented in Algorithm 1. The

algorithm produces cut sets for each of the visited events. Basic events generate cut sets containing only

themself, while non-basic events produce cut sets based on the cut sets of their children events and their gate

type. OR gates produces an aggregate of the children events’ cut sets to produce the visited event’s cut set,

while AND gate produces cut sets by using the Cartesian Product among the cut sets of its children events.

The last step reduces the top event’s cut sets to minimal cut sets.

3.4.2 Failure sampling algorithm

In practice, computing all the minimal cut sets tends to be very expensive as counting minimal cut sets is

NP-hard [44]. To address this issue, we also consider a randomized sampling algorithm that makes a tradeoff

between accuracy and run-time with pseudocode presented in in Algorithm 2.

The failure sampling algorithm uses a breadth-first traversal of the fault tree. At each leaf node, or basic

event, the algorithm flips a random coin assigning with equal probability either a 1 or a 0. Upon visiting non-

basic events, the algorithm evaluates the children inputs. In the same fashion, the root value is assigned a 1

or 0 based upon all its children. When the top event’s value is 1, the algorithm defines a cut set consisting
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Algorithm 1: Minimal cut set algorithm

Input: Fault tree T

Output: MinimalCutSet

1 foreach eventi ∈ T by reversed breadth-first traversal do

2 if eventi is basic event then

3 eventi.CutSet.append(eventi);

4 else

5 if eventi.InputGate is OR then

6 foreach ci ∈ eventi.ChildList do

7 foreach csi ∈ ci.CutSet do

8 eventi.CutSet.append(csi)

9 else /* Namely eventi.InputGate is AND */

10 foreach ci ∈ eventi.ChildList do

11 foreach c j ∈ eventi.ChildList and ci 6= c j do

/* list is the Cartesian product of ci.CutSet and c j.CutSet */

12 list← ci.CutSet× c j.CutSet;

13 eventi.CutSet.append(list);

/* reduce redundant items in root.CutSet and assign the result to minimalCutSet, and

then simplify minimalCutSet. */

14 minimalCutSet← reduce redundancy(root.CutSet);
15 minimalCutSet← simpli f y(minimalCutSet);

16 return minimalCutSet;
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Algorithm 2: Failure sampling algorithm

Input: Fault tree T and the number of samples N

Output: CutSet

1 for i← 1 to N do

2 foreach eventi ∈ T by reversed breadth-first traversal do

3 if eventi is basic event then

4 eventi.occurrence← 0 or 1 based on random flipping a fair coin

5 else

6 eventi.occurrence← 0;

7 if eventi.InputGate is OR then

8 foreach ci ∈ eventi.ChildList do

9 if ci.occurrence is 1 then

10 eventi.occurrence← 1;

11 break;

12 else /* Namely, eventi.InputGate is AND */

13 foreach ci ∈ eventi.ChildList do

14 if ci.occurrence is 0 then

15 break;

16 eventi.occurrence← 1;

17 if root.occurrence is 1 then

18 T mpSet← /0;

19 foreach eventi ∈ T do

20 if eventi.occurrence is 1 then

21 T mpSet.append(eventi);

22 CutSet.append(TmpSet);

23 return CutSet;

of basic events assigned 1. We define this entire process as a sampling round. Our algorithm executes a

large number of sampling rounds and aggregates the resulting cut sets (i.e., our FSs) in those rounds. While

the cut sets computed by this method may not be minimal, we have done proof (see Appendix) to provide

guarantees that we can find out most of the critical cut sets.

3.4.3 Ranking metrics for FSs

The cut sets give only minimal information about the likelihood of a failure, in this section, we introduce

ranking metrics that help cloud administrators focus their attentions on the important FSs.

Size based ranking approach. The first method assumes that FSs with fewer components are more likely

to be reliability bottlenecks, thus sorting occurs by using the number of components found in each of the

FSs.

Probability based ranking approach. The other approach we consider uses the probability of failure for a

given component. Precisely how to obtain the failure for components remains an open question, though we

discuss some options earlier at the end of Section 3.2. In this scenario, sorting uses the relative importance

of each FS in comparison to the top event in the fault tree:

12



Ic =
Pr(C)

Pr(T )
(1)

Where Ic is the relative importance of cut set C and T is the top event. The cut set C’s probability, Pr(C), is

the probability that all the events in C happen simultaneously. To compute the probability of the top event

T , i.e., Pr(T ), we use the inclusion-exclusion rule:

Pr(T ) =
n

∑
i=1

Pr(MCi)−
n

∑
i< j=2

Pr(MCi ·MC j)

+
n

∑
i< j<k=2

Pr(MCi ·MC j ·MCk)

+ · · ·+(−1)n−1 Pr(MC1 ·MC2 · · ·MCn)

(2)

Where MCi means minimal cut set i. The module ranks the FSs by Ic, their relative importance. For the

example shown in Figure 6, if we assume the probabilities of events A1, A2 and A3 are 0.2, i.e., Pr(A1) = 0.2,

Pr(A2) = 0.2 and Pr(A3) = 0.2, we have the probability of the top event (i.e., the failure probability of the

target service) is: 0.2 · 0.2+ 0.2− 0.2 · 0.2 · 0.2 = 0.232. The relative importance of minimal cut sets {A2}
and {A1,A3} is: 0.2

0.232
= 0.862 and 0.04

0.232
= 0.1724 respectively. Thus, the cut set {A2} should be located at

the top of ranking list.

3.5 Privacy-preserving SRA

In reality, not all clouds own all aspects of their environment. Most providers likely do not have their own

Internet backend or power generators, while application providers may own no hardware but only provide

a service using existing cloud infrastructures (e.g., EC2). We already have seen evidence that much like

cloud consumers taking advantage of various cloud services to produce content for their consumers, so too

have cloud services begun to build on other cloud services. While using different clouds gives the consumer

an opportunity to improve reliability by subscribing to multiple cloud providers, doing so blindly may cost

significantly more and not necessarily result in better reliability. While the SRA could help evaluate these

hierarchical clouds, cloud service providers may be hesitant to share their private information with third-

parties. All is not lost, a derivate SRA supporting privacy preservation, called Privacy-preserving SRA

(P-SRA), can avoid the leakage of cloud provider secrets.

The P-SRA provides the following privacy guarantees: 1) each of cloud providers cannot obtain the

dependency information from any of other providers, 2) only consumer will know the FSs of underlying the

cloud providers, and 3) the P-SRA provider is not able to obtain any information during the whole process

of auditing.

In order to achieve our goal, we use secure multi-party computation (MPC) [53] for privacy protec-

tion. Using MPC maintains privacy for all cloud providers involved so long as a majority of them honestly

execute their portion of the MPC. Specifically, all parties involved including the consumer (or application

service provider), infrastructure service providers, and the P-SRA provider perform multi-round commu-

nications and local computations interactively. Intermediary data remains encrypted with only the output

being decrypted by the consumer.

Because P-SRA reveals to the consumer the FSs shared by the different clouds, cloud service providers

must carefully select how to represent their components. If done injudiciously, common failure events may

be overlooked or worse it may reveal potentially private information to the P-SRA consumer. A consumer
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Figure 8: Auditing process of the P-SRA based on multi-party computations.

should be able to determine if two cloud providers share common internal or external resources but at the

granularity as to not reveal what those resources are. For example, iCloud, an application service provider,

uses Microsoft’s Azure and Amazon’s EC2 as backup for the reliability; however, the power for them is

supplied by the same provider [7]. If a lightning storm or some other event were to cause a power outage,

iCloud would be disabled due to lack of redundancies in power.

Figure 8 illustrates privacy preserving auditing process for iCloud’s deployment across Microsoft’s

Azure and Amazon’s EC2 with the P-SRA provider. As what we mentioned before, the privacy preserv-

ing mechanism the P-SRA uses is MPC. In this environment, each party hosts a P-SRA locally with each

of the cloud providers first establishing a Shamir secret share [43] for the purpose of securely encrypting

and sharing dependency information about the infrastructures provided by third parties. Then, the cloud

providers deliver encrypted the dependencies to other cloud providers and notifies the P-SRA provider upon

completing this process. Once all clouds have completed this process, the P-SRA provider broadcasts a

secure multi-party calculation script to each of cloud providers. Finally, the P-SRA running on each cloud

provider executes the script, generates a result, and sends that to the application service provider, in this case

iCloud revealing the auditing results, i.e., a ranking list on FSs across multiple cloud providers. The secure

multi-party calculation script of the P-SRA performs the following operations: 1) securely combining the

private dependencies from various providers, 2) from the combined results generating the shares of the fault

tree 3) performs either the minimum cut set or the failure sampling algorithm on the results to obtain shares

of FSs, and 4) ranks and opens the results of shares.
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3.6 Limitations

SRA depends on both the level of detail and accuracy of the input data in order to successfully find important

FS. A majority of failures occur due correlated failures involving software [14] and therefore an area of

particular interest is in more thorough collection of dependency information from distributed systems.

Important data might lie outside the provider’s control, such as, fibre-optic and power cables as well

network and power loads. Capturing this data is critical to discovering unknown FS, for example, the

Baltimore tunnel fire in 2001 [40] had a significant effect on Internet traffic due to wide-spread use of the

passage way for laying fibre-optic cables.

4 Implementation and evaluation

This section introduces our SRA and P-SRA prototypes and then uses the SRA prototype to evaluate the

following two challenges: can the SRA discover potential reliability issues before they occur and 2) the

SRA’s performance.

4.1 SRA prototype

Following from the discussion in Section 3, we constructed a proof-of-concept SRA implementation in order

to demonstrate the feasibility of our approach. We have implemented all three basic modules: dependency

acquisition, fault tree generator, and auditing/ranking. The source code can be found at: https://github.

com/ennanzhai/CRR.

The dependency acquisition modules were written in Python. The network dependency collector makes

use of the SNMPv2 library support from NetSNMP in order to collect network information. This method

has one caveat: all switches must have LLDP enabled. Our hardware collector uses lshw, a light weight tool

that extracts detailed hardware configuration from the local machine. The software collector made use of

ps to determine the location of deployment for the different services and gprof to acquire call-dependency

information.

The fault tree generator module was also written in Python using the NetworkX library [12] to operate

on tree/graph structures. We implemented the templates as XML files, which the graph generator uses to

query the dependency database to produce a fault tree.

Our auditing module implements both minimal cut set and failure sampling algorithms as well as the

two ranking metrics described in Section 3 into the prototype.

4.2 P-SRA prototype

Our initial version of the P-SRA uses SecreC [15], a C-like secure multi-party computation language. The

share of each cloud provider was split and stored in a secret XML file belonging to the P-SRA hosted by

that cloud provider. Each provider’s P-SRA only can perform secure, local computations and open its own

results. SecreC’s specifications guarantee security.

4.3 Using SRA

In this case study, Alice, an cloud service administrator has deployed MapReduce within her cloud as de-

picted as a topology map in Figure 9. For robustness, Alice deploys her MapReduce Master on S5 with
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Figure 9: A sample topology of a cloud for the case study illustrating the effectiveness of the SRA. Core,

Agg and ToR means core router, aggregation switch and top of rack switch respectively.

Table 1: Ranking list on FSs by size based ranking metric.

NO. Hidden FSs

1 Agg3, Agg4

2 Core1, Core2

3 ToR2, ToR3, ToR4

4 S4, S5, S8

backups on two independent servers, S4 and S8. She runs Workers on the remaining servers. During her de-

ployment, Alice only considers the need for independent servers for reliability, unfortunately her choices of

servers for the Master result in a weakness in her deployment as the entire service will become unavailable

if Agg3 and Agg4 fail concurrently. Alice may be completely unaware of this issue, because she thought it

was reasonable enough to assign her Masters to different racks. If she had realized the relationship between

the aggregation switches and the racks and that earlier measurement results [5, 30] revealed aggregation

switches’ failure probabilities tend to be higher than other network components, her deployment decisions

may have been improved.

SRA can rescue Alice by informing her of this situation before an issue ever occurred. Alice begins

by executing SRA’s dependency acquisition module accumulating the data present in the dependency graph

depicted in Figure 9. The SRA uses this information to produce a fault tree for Alice’s environment with the

goal to ensure that the MapReduce framework remains online. Finally, the SRA processes the fault tree using

the minimal cut set algorithm and sorts the results by using our size based ranking metric. Table 1 presents

the top 4 FSs. Agg3 and Agg4 produce a potentially high risk FS and Alice can view the dependency graph

in Figure 9 to determine that her software configuration could be improved by moving one of the Masters

to either S1 or S2 or alternatively she could improve network robustness by connecting ToR2 with Agg1
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Table 2: Configurations of our simulated data sets.

Case 1 Case 2 Case 3 Case 4 Case 5

# of switch ports 4 8 16 24 48

# of core routers 4 16 64 144 576

# of agg switches 8 32 128 288 1152

# of ToR switches 8 32 128 288 1152

# of servers 16 128 1024 3456 13824

Total # of components 40 216 1360 4200 16752

and Agg2. Future versions of the SRA could potentially incorporate a mechanism that would assist Alice in

determining reasonable software configurations based upon reliability versus performance trade-offs.

4.4 Large-scale simulations

In this evaluation, we explore the performance/accuracy trade-offs between the SRA’s two methods, minimal

cut set algorithm and the failure sampling algorithm, for determining FSs given a fault tree. The minimal cut

set algorithm produces a complete set of all FSs but does so within NP-hard complexity, while the failure

sampling algorithm generates various inputs for basic events to produce cut sets with cost in polynomial

time. We compare the run-time of the minimal cut set algorithm to the failure sampling algorithm and the

coverage of the failure sampling algorithm using different sampling rounds. The analysis consists of various

sized topologies and the number of samples performed (103 through 107) for the failure sampling algorithm.

Because we are unable to obtain real cloud data sets due to privacy concerns, we produce simulated data

sets at various scales up to as large as what we expect to find in real clouds using the widely accepted three-

stage fat tree model [39]. Our simulated data sets include servers, top of rack (ToR) switches, aggregation

switches, and core routers, and the specifics are listed in Table 2. All the simulations are run on a server

which is equipped with two 2.8GHz 4-Core Intel Xeon CPUs and 16GB of memory.

Our evaluation for total run-time of performing audits can be found in Figure 10. The second half of our

evaluation focuses on accuracy, Figure 11. Using the minimal cut set algorithm as a baseline, we were able

to obtain all the minimal cut sets for a given fault tree. We compare the effectiveness of the failure sampling

algorithm with different sampling rounds by computing the coverage of the failure sampling algorithm

against that of the result baseline provided by the minimal cut set algorithm.

During analysis of Case 4 and 5, the minimal cut set algorithm took a significantly long period of time

to complete, therefore, we exclude these results from our evaluation. While the minimal cut set algorithm

produces guaranteed results, we can see that given the right sampling rate, the failure sampling algorithm

produces nearly as useful results in one-fourth, Case 3 106 samples to minimal cut set algorithm.

In the current form, one may argue that the failure sampling approach may not be entirely useful if we

are going for complete coverage. One instance in which it would be more useful is if the cloud were to be

running the SRA frequently, for example, if clouds offered a service for customers that would help the cloud

determine the best layout for a user’s deployment in the cloud.

4.5 Initial evaluation on the P-SRA

In order to evaluate the initial version of P-SRA, we generated a data set simulating the iCloud scenario

mentioned in Section 3.5 where the P-SRA audits an application cloud service depending on multiple cloud

17



3 4 5 6 7 Min

1

2

4

8

16

32

64

128

256

512

R
u

n
-t

im
e

 (
m

in
u

te
s

)

Algorithms

 Case 1

 Case 2

 Case 3

 Case 4

 Case 5

Figure 10: Running time comparing different fault tree analysis algorithms. 3−7 located at X-axis are used

to denote failure sampling algorithm at various powers of 10. Min represents the minimal cut set algorithm.

3 4 5 6 7

70

80

90

100

%
 o

f 
c

u
t 

s
e

ts
 c

o
v

e
re

d
 b

y
 f

a
il

u
re

 s
a

m
p

li
n

g
 a

lg

Algorithms

 Case1

 Case2

 Case3

Figure 11: Comparison of the failure sampling algorithm with different sampling rounds. 3− 7 located at

X-axis are used to denote failure sampling algorithm at various powers of 10. Min represents the minimal

cut set algorithm.

18



providers. In this data set, the application service uses two different IaaS cloud providers with each IaaS

having 5 data centers and a total of 4 power supplies and 6 Internet routers. The IaaS share one power supply

and two Internet routers. Using P-SRA the minimal cut set algorithm completed in 14.6 minutes. Given that

this data set consists of only 20 nodes, we can see that the performance of the P-SRA prototype is far too

slow to be practical most likely due to the use of MPC.

5 More applications of SRA

In this section we discuss some potential applications of the SRA that fit outside the scope of what we have

discussed thus far.

Complementing diagnosis systems. Diagnosis systems attempt to determine the root-cause of a fault upon

detecting an error. Most of the current diagnosis systems infer and localize the root-cause of a fault through

traversing the entire dependency graph resulting in long delays in fault resolution. A cloud operator can use

the SRA’s auditing report ranked list as a road-map in isolating faults more quickly.

Recommending cloud services. If there exists a trusted third-party, the SRA can be used to provide

cloud service recommendations. In this model, a cloud consumer could post a job requirement and the

trusted third-party would analyze sample deployments in various clouds recommending to the consumer the

most reasonable deployment. Alternatively, the P-SRA should be able to perform the same operation but at

significant cost and perhaps less clarity about the final result.

Making the cloud insurable. While not necessarily an application of the SRA, the SRA makes under-

standing the risks associated with using a cloud more pronounced. An insurance provider could use the SRA

as a means to determine more effective rates for cloud insurance and potentially ignore clouds that have too

much associated risk.

6 Related Work

Providing audits for clouds has been suggested as a means to achieve reliability [41]; however, general and

efficient cloud auditing remains an open question.

As the earliest advocators, Shah et al. [41] present the definition and classification of cloud reliability

auditing and propose a general auditing scheme to ensure the reliability of cloud storage services. They

classify cloud auditing techniques into two groups: internal auditing and external auditing. The former

checks the internal structure and processes of a cloud provider to assess the likelihood the provider will fail

to meet its SLAs, while the latter makes use of samples from third-parties without internal knowledge. While

there exist much work on external cloud reliability efforts [42, 46–49, 52], to the best of our knowledge, the

SRA is the first effort at providing internal reliability audits for the cloud.

Diagnosis, unlike auditing, attempts to discover problems after they occur; however, often times the

techniques used in one can be applied to the other. Our work follows more similarly with inference-based

diagnosis [18–20,24,25,27,35,36,36,37] which obtain dependency graphs of a cloud when a problem occurs.

Different from existing diagnostic systems, NetPilot [50] aims to mitigate the failures rather localizing their

sources.

Accountability techniques differ from auditing approaches as accountability attempts to place blame

after a failure, while auditing can be used to prevent failures in the first place. Haeberlen et al. [32] pro-

pose using third-party verifiable evidence to determine whether the cloud consumer or provider should be

responsible if a problem occurs. Similarly the accountable virtual machines [33] (AVM) enables users to
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monitor software executing on a remote virtual machine. Upon detecting a fault, AVM produces produces

third-party verifiable evidence to determine whether or not the virtual machine is correct.

FTCloud [54] and FTM [34] focus on fault tolerance in clouds. The former proposes a ranking metric

for the components with a given cloud application, thus enhancing the fault tolerance capability of the cloud.

The later one introduces fault tree model for providing fault tolerance to the clouds. Compared with these

two efforts, SRA employs fault tree analysis in combination with a ranking metric and SRA has been shown

to be feasible through prototyping and evaluation.

7 Conclusion

In this paper, we have presented a cloud structural reliability auditing system named SRA that uniquely

targets the important problem of resolving failures before they occur by first discovering a clouds’ compo-

nents and their dependencies and then using fault tree analysis to determine and evaluate the impact of FSs.

Beyond this use, SRA’s techniques may be useful for improving diagnosis and recommendation systems

as well as making clouds more easily insurable. However, what we present is only the beginning of the

process in this area, there remains significant work to be done that would make system’s like this even more

useful, namely, improved methods for obtaining component information and ensuring that the detail covered

is sufficient as well as developing more efficient privacy-preserving mechanisms.
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A Failure sampling algorithm analysis

In this appendix, we present the analysis of our proposed failure sampling algorithm.

A.1 Preliminaries

Let f : {0,1}k→{0,1} be a k-ary Boolean function. An assignment is a vector~a ∈ {0,1}k. A target is a set

of assignments T ⊆ {0,1}k. Assignment ~a is a satisfying assignment for f if and only if f (~a) = 1. The size

of a satisfying assignment~a is the number of 1’s in~a. A satisfying assignment is minimal if it has minimum

size over all satisfying assignment.

For example, ma j5 is a Boolean function that maps any assignments with at least three 1’s to 1 and

others to 0, and minma j is a target that consists of all assignments with minimum number of 1’s that evaluate

to 1, i.e., those with exactly three 1’s. Then any assignment is the target minma j is a minimal satisfying

assignment.

A.2 Hardness of Finding A Minimal Satisfying Assignment

A Boolean function is simple if it consists of only AND and OR operators. We show that there is no efficient

algorithm that computes a minimal satisfying assignment for a simple Boolean function unless P = N P .

The idea is by reduction from the set cover problem.

An instance σ of the set cover problem (SCP) consists an universe U = {1,2, · · · ,m}, and n subsets

S = {s1, · · · ,sn}, such that si ⊆U for any 1 ≤ i ≤ n and
⋃

1≤i≤n si = U . A cover of U is a subset of S such

that their union equals U . The set cover problem requires to find a cover with minimum size, which is known

to be N P-hard.

Theorem 1. Finding a minimal satisfying assignment for a simple Boolean function is N P-hard.

Proof. Given an instance σ of SCP, we construct an instance φ of the minimal satisfying assignment prob-

lem (MSA). We first describe the construction of a simple Boolean function in the conjunctive normal form

(CNF). A Boolean function is CNF if it is a conjunction (AND) of clauses, where a clause is a disjunction

(OR) of literals. The Boolean function has m clauses, C1, · · · ,Cm, corresponding to the m elements in U , and

n variables, x1, · · · ,xn, corresponding to the n subsets in S. For each element j ∈ si, add variable xi to clause

C j. Apparently, this construction g(σ) = φ can be computed in polynomial time.

Now we show that there is one-to-one correspondence between covers in SCP and satisfying assignments

in MSA. In one direction, given a cover in SCP, setting TRUE all variables xi corresponding to subsets si in

the cover results in a satisfying assignment in MSA. In the other direction, given a satisfying assignment in

MSA, including all subsets si corresponding to TRUE variables xi in the satisfying assignment results in a

cover in SCP. In addition, the size of the cover equals the size of the satisfying assignment in both directions.

A direct consequence of this observation is that finding a cover with minimum size in σ is then equivalent

to finding a satisfying assignment with minimum size in φ . As SCP is N P-hard, the MSA problem is also

N P-hard.

A.3 Target Cover

A.3.1 Uniform Sampling

Consider the following random process. Given a k-ary Boolean function f and a target T , we randomly

sample assignments. For each trial of sampling, flip a sequence of k independent fair coins. Let random
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variable X be the number of samples when all assignments in T are covered by the random sampling process.

Then we want to bound the following two problems: (1) What is the expected number of samples in order

to cover the target? (2) What is the probability of covering the target if the number of samples is m?

Lemma 2. The expected number of uniform samples to cover the target is E[X ] = 2kHt = Θ(2k log t), where

t = |T | and Hn = ∑n
i=1(1/i) is the harmonic number.

Proof. The probability for a random sample to cover any assignment in T is t/2k. After i assignments in T

has been covered, a random sample to cover an additional assignment in T is (t− i)/2k. Let random variable

Xi be the number of samples used to hit the i-th assignment in T , then the subsequence of random sampling

process to cover the i-th assignment are Bernoulli trials with success probability (t− i+ 1)/2k. Therefore,

for any 1≤ i≤ d,

E[Xi] =
2k

t− i+1

Thus, by the linearity of expectation, we have

E[X ] = E

[

t

∑
i=1

Xi

]

=
t

∑
i=1

E[Xi]

=
t

∑
i=1

2k

t− i+1
= 2kHt

Then E[X ] = Θ(2k log t) follows from the fact that Ht = Θ(log t).

Remark: we can regard the target cover problem as a variant of the coupon collector’s problem, where t

specific coupons out of 2k possible ones need to be collected.

Then we bound the probability of covering the target with m samples.

Lemma 3. The probability to cover the target with m uniform samples is at least 1−m/(2kHt).

Proof. By Markov’s inequality, the probability that more than m uniform samples are need to cover the

target is

Pr(X ≥ m)≤
m

E[X ]

Therefore, following Lemma 2, the probability to cover the target with m samples is

Pr(X ≤ m) = 1−Pr(X ≥ m)≥ 1−
m

2kHt

Take the Boolean function Ma j5 and the target minma j as an example. The expected number of uniform

samples needed to cover all
(

5
3

)

= 10 target assignments is 25 ·H10 ≈ 94. The probability to cover the target

with 188 uniform samples is at least 0.5.
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A.3.2 Biased Sampling

Consider the following random process with biased sampling. For each trial of sampling, instead of flipping

fair coins, we flip a sequence of k independent biased coins, such that each assignment ~ai is cover with

probability pi and ∑i:~ai∈{0,1}k pi = 1.

Without loss of generality, let T = {a1,a2, · · · ,at} and p1 ≤ p2 · · · ≤ pt . Let (q1,q2, · · · ,qt) be the

sequence of prefix sums for the sequence (p1, p2, · · · , pt), i.e., for any 1≤ i≤ d,

qi =
i

∑
j=1

p j

Let (q′1,q
′
2, · · · ,q

′
t) be the sequence of prefix sums for the sequence (pt , pt−1, · · · , p1)

1, i.e., for any 1≤ i≤ t,

q′i =
t

∑
j=t−i+1

p j

Then by definition, it follows that qi ≤ q′i for any 1 ≤ i ≤ t. We will bound the expected number of biased

samples needed to cover the target with qi and q′i.

Lemma 4. The expected number of biased samples to cover the target is ∑t
i=1(1/q′i)≤ E[X ]≤ ∑t

i=1(1/qi),
where t = |T |.

Proof. The analysis is similar to that for Lemma 2, with the only distinction that the success probability for

each subsequence of Bernoulli trials depends on pi now. Let π be a permutation of the sequence {1,2, · · · , t},
representing the order in which assignments in target T are covered in the sampling process. Let the se-

quence (q̂1, · · · , q̂t) be the prefix sums of (pπ(1), pπ(2), · · · , pπ(t)), i.e., q̂i = ∑
π(i)
j=π(1) pi for all 1 ≤ i ≤ t. Let

p = ∑t
i=1 pi. It follows the definition that for any 1≤ i≤ t,

qi ≤ q̂i ≤ q′i (3)

Let random variable Xi be the number of samples used to cover assignment~aπ(i). Then the subsequence

of random sampling process to cover~aπ(i) are Bernoulli trials with success probability ∑
π(t)
j=π(i) p j = p− q̂i−1,

where q̂0 = 0 by convention. Therefore, for any 1≤ i≤ t,

E[Xi] =
1

p− q̂i−1

Thus, by the linearity of expectation, we have

E[X ] = E

[

t

∑
i=1

Xi

]

=
t

∑
i=1

E[Xi]

=
t

∑
i=1

1

p− q̂i−1

(4)

Define q0 = q′0 = 0 for convention. Combining (3) and (4) gives

t

∑
i=1

1

p−qi−1

≤ E[X ]≤
t

∑
i=1

1

p−q′i−1

(5)

1The sequence of q′i can also be regarded as suffix sums for the sequence (p1, p2, · · · , pt), although this definition is not standard.
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Note that by definition, for all 1≤ i≤ d,

p−qi−1 = q′t−i+1 (6)

Finally, combining (5) and (6) gives
t

∑
i=1

1

q′i
≤ E[X ]≤

t

∑
i=1

1

qi

Take the Boolean function Ma j5 and the target minma j as an example. Assume the ten target assignments

have probability p1 = · · · = p5 = 1/16 and p6 = · · · = p10 = 1/8. Then the expected number of biased

samples needed to cover all target assignments is bounded by 24.49≤ E[X ]≤ 44.35.

A.4 (d, t)-Target Cover

In some applications, covering the entire target is too expensive. In such cases, it might be desirable to cover

at least d out of all t target assignments. We call this problem the (d, t)-target cover problem.

Lemma 5. The expected number of uniform samples to cover at least d members in the target is E[X ] =
2k(Ht −H(t−d)) = Θ(2k log t

t−d
), where t = |T | and Hn = ∑n

i=1(1/i) is the harmonic number.

Proof. The proof is similar to that of Lemma 2, with the distinction that the counting stops when we cover

the d-th assignment in T . Let random variable Xi be the number of samples used to cover the i-th assignment

in T . For any 1≤ i≤ d,

E[Xi] =
2k

t− i+1

Therefore, we have

E[X ] = E

[

d

∑
i=1

Xi

]

=
d

∑
i=1

E[Xi]

=
d

∑
i=1

2k

t− i+1
=

t

∑
i=t−d+1

2k

i

= 2k

(

t

∑
i=1

1

i
−

t−d

∑
i=1

1

i

)

= 2k(Ht −Ht−d) = Θ

(

2k log
t

t−d

)

The result in Lemma 5 indicates that when t is a significant fraction of 2k or d is a small fraction of t, the

expected number of samples for (d, t)-target cover is not overwhelming. Take the Boolean function Ma j5
and the target minma j as an example. The expected number of uniform samples to cover at least 3 out of the

10 target assignments is 25 · (H10−H7)≈ 10.76.
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