We describe an algorithm for the direct solution of systems of linear algebraic equations
associated with the discretization of boundary integral equations with non-oscillatory ker-
nels in two dimensions. The algorithm is “fast” in the sense that its asymptotic complexity
is O(Nlog" N), where N is the number of nodes in the discretization, and x depends on
the kernel and the geometry of the contour (k = 1 or 2). Unlike previous fast techniques
based on iterative solvers, the present algorithm directly constructs a sparse factorization of
the inverse of the matrix; thus it is suitable for problems involving relatively ill-conditioned
matrices, and is particularly efficient in situations involving multiple right hand sides. The
performance of the scheme is illustrated with several numerical examples.

A fast direct solver for boundary
integral equations in two dimensions

P.G. Martinsson’, V. Rokhlint
Research Report YALEU/DCS/RR-1264
Dec 13, 2003

This research was supported in part by the Office of Naval Research under contract
#N00014-01-0364.

t Dept. of Mathematics, Yale University, New Haven CT 06511

Approved for public release: distribution is unlimited.
Keywords: Direct solvers, integral equations, matriz compression, fast algorithms.
1

A fast direct solver for boundary
integral equations in two dimensions

P.G. Martinsson and V. Rokhlin
Dept. of Mathematics, Yale University, New Haven CT 06511

Dec 13, 2003

Abstract: We describe an algorithm for the direct solution of sys-
tems of linear algebraic equations associated with the discretiza-
tion of boundary integral equations with non-oscillatory kernels
in two dimensions. The algorithm is “fast” in the sense that its
asymptotic complexity is O(N log® N), where N is the number of
nodes in the discretization, and k depends on the kernel and the
geometry of the contour (k = 1 or 2). Unlike previous fast tech-
niques based on iterative solvers, the present algorithm directly
constructs a sparse factorization of the inverse of the matrix; thus
it is suitable for problems involving relatively ill-conditioned ma-
trices, and is particularly efficient in situations involving multiple
right hand sides. The performance of the scheme is illustrated
with several numerical examples.

1. INTRODUCTION

Boundary value problems of classical potential theory are ubiquitous in engineer-
ing and physics. Most such problems can be reduced to boundary integral equations
which are, from a mathematically point of view, more tractable than the original
differential equations. Although the mathematical benefits of such reformulations
were realized and exploited in the 19th century, until recently boundary integral
equations were rarely used as a numerical tool, since most integral equations upon
discretization turn into dense matrices. In the 1980’s, the cost of applying dense
matrices resulting from potential theory to arbitrary vectors was greatly reduced
by the development of “fast” algorithms (Fast Multipole Methods, panel clustering,
wavelets, etc.). Combining fast matrix-vector multiplication techniques with itera-
tive schemes for the solution of large-scale systems of linear algebraic equations, it
became possible to solve well-conditioned boundary integral equations of potential
theory in O(n) operations. Today, such combinations are in many environments the
fastest and most accurate numerical solution techniques available. Iterative linear
solvers have certain drawbacks though; we briefly discuss these below.

(1) The number of iterations required by an iterative solver is sensitive to the
spectral properties of the matrix of the system to be solved; for sufficiently
ill-conditioned problems, the number of iterations is proportional to n. Since
each iteration (with FMM acceleration) requires O(n) operations, the total
operation count is proportional to n2. While this is still better than the
O(n?) estimate associated with direct solvers, in many situations O(n?) is
not acceptable.

2

(2) When one needs to solve a collection of problems involving a single matrix
and multiple right-hand sides, the CPU time requirements of most iterative
algorithms are close to the time required to solve one problem multiplied by
the number of problems to be solved. With most direct solvers, the situation
is different; once the matrix has been factored, applying its inverse to each
additional right-hand side costs very little.

(3) When a collection of linear systems have to be solved whose matrices are in
some sense “close” to each other, iterative algorithms derive very little (if
any) advantage from the closeness of the matrices.

(4) Most direct schemes for the solution of linear systems are closely related to
efficient algorithms for the construction of their Singular Value Decomposi-
tions and certain other matrix factorizations (L-R, Q-R, etc.). The simplest
such scheme is probably the inverse power method with shifts (see, for ex-
ample, [5]), which converts any algorithm for the solution of a linear system
into an algorithm for the determination of a prescribed singular value. It-
erative techniques do not provide such a capability, except via the so-called
Lanczos schemes, which tend to be quite inefficient (see, for example, [12]).

The subject of this paper is a numerical technique that is intended to overcome
these shortcomings by directly producing a sparse factorization of the inverse of
the matrix. When applied to contour integral equations of potential theory whose
kernels are non-oscillatory, the asymptotic complexity of the solver is O(nlog" n),
where k depends on the geometry and the kernel (x = 1 or 2). When applied
to problems involving oscillatory kernels, the asymptotic complexity deteriorates
as the wave-number increases but the scheme remains viable up to objects about a
thousand wavelengths in size. The factorization technique described in this paper is a
multilevel extension of the compression technique described in [10]. The machinery
underlying these techniques applies generally to matrices with rank-deficient off-
diagonal submatrices; contour integral equations have been chosen by the authors
simply as the most straightforward application.

It is not the purpose of this paper to provide an exhaustive survey of the literature
on the subject we are addressing. A number of researchers have observed that
matrices with rank-deficient off-diagonal blocks admit “fast” factorizations (see [7],
[8]); others have constructed “fast” algorithms in various environments (see [1], [2],
[3], [4]) where the operators in question posses rank-deficient off-diagonal blocks,
without using this property explicitly. However, we observe that the algorithm of this
paper is closely related to the scheme described in [11]. In fact, our algorithm could
be viewed as a modification of the algorithm of [11] that replaces “elongated” objects
in two or three dimensions with “curves”, extends the class of kernels addressed by
[11], and introduces modifications in the scheme of [11] that are necessary for this
extension to work.

The paper is organized as follows: In Section 2 we introduce our notation and list
certain facts about compression of rank-deficient matrices. In Section 3 we demon-
strate that the inverse of a matrix with rank-deficient off-diagonal blocks possesses

3

a sparse hierarchical factorization. In Section 4 we present a generic numerical tech-
nique for constructing the factorization described in Section 3. In Section 5 we show
how the generic numerical technique presented in Section 4 can be improved fur-
ther when applied to contour integral equations. In Section 6 we illustrate through
numerical examples the efficiency of the technique presented in Section 5 when ap-
plied to a number of different kernels and contours. In Section 7 we summarize our
findings and discuss possible extensions and generalizations.

2. PRELIMINARIES

2.1. Notation. Throughout the paper, we use upper case letters for matrices and
lower case letters for vectors and scalars. The canonical unit vectors in C" are
denoted by e;. Given a matrix X € C™*", we let

X* denote its adjoint (the complex conjugate transpose),
ok(X) denote its k-th singular value,

[X]]2 denote its [operator norm,

1 X||r denote its Frobenius norm,

z} € C1*™ denote its i-th row and
z; € C™*1 denote its j-th column.
Given matrices A, B, C and D we let

(2.1) 4B, [é} and [ég],

denote larger matrices obtained by stringing the blocks A, B, C and D together.
Definition 1 (Permutations vectors). Given a positive integer n, we define
(2.2) J,, = the set of permutations of the integers {1,...,n}.

Given two integers k and n such that 1 < k < n, we define

(2.3) JE = the set of subsets of size k of elements of J,,.

In other words, if J € J&, then J is a vector of integers

(2.4) J =it 8],

where 1 < j; < n and all j;’s are different.

Definition 2 (Submatrix). When we use the term “submatrix” we do not insist that
the submatrix must form a contiguous block. To be precise, we say that B € Ck*!

is a submatrix of A € C™ ", if there exist permutations I = [iy,...,ix] € J¥, and
J = [j1,-..,51] € I}, such that
(2.5) bpg = @i, p=1,...,k, ¢=1,...,L

Definition 3 (Neutered rows and columns). Let A be a matrix consisting of p x p
blocks,

ALY . ALp)
(2.6) A=| :
AL ... Alep)

We refer to the submatrix formed by all blocks on the i-th row except the diagonal
one, i.e.

(2.7) [A@,l) co AGE=1) gGiD) A(i,m] ,

as the i-th neutered row of blocks. A neutered column of blocks is defined analo-
gously.

2.2. Compression of matrices. In this section we state a theorem on matrix com-
pression that forms the foundation of the matrix factorization technique presented
later in this paper. Roughly speaking, the theorem asserts that given a matrix A4 of
rank k, it is possible to pick k of its columns that form a well-conditioned basis for
the remaining columns. It was first reported in slightly different form in [6].

Theorem 1. Given an arbitrary matric A € C™*" and an integer k such that
1 < k < min(m,n), there ezists a (not necessarily unique) matriz T € CF*(=*) gnd
a permutation J = [j1,...,jn] € Jn such that

(2.8) Ay=AT+E.
Here, Ay and ;12 are matrices formed by the columns of A,
/11 = [ajl, cey ajk] (S Cka,

2.9 -
29 Ap = [a’jk+l7‘ . 7a’jn] € me(n—k)a

the elements of the matriz T € CF*("=k) satisfy
(2.10) |Ti;| <1, for1<i<k, 1<j<n-k,

and the matriz E € C™*("k) satisfies the inequality

(2.11) IE]l2 < ok41(A)V1+ k(n - k),

where 041(A) is the (k + 1)-th singular value of A.

Remark 4 (Computational complexity.). While Theorem 1 asserts the theoretical
existence of a matrix T' and a permutation J with certain properties, it does not
address the question of how to determine these numerically. In fact, the authors are
not aware of any algorithm that finds these objects in polynomial time. However, in
[6] an algorithm is presented that finds a matrix T’ and a permutation J such that
all statements of Theorem 1 still hold, except that (2.10) and (2.11) are replaced by
the weaker inequalities

(2.12) Tl <vn, for1<i<k, 1<j<n-—k,

and

(2.13) IIEll2 < ors1(A)V/I + nk(n — K).

When m > n, the computational complexity of this algorithm is typically O(mnk),
the same as for the pivoted QR-factorization. In rare cases, the computational
complexity may be somewhat larger but it never exceeds O(mn?).

5

Observation 5 (Column compression). When applied to a matrix A € C™*" of
rank k, Theorem 1 asserts that there exists a well-conditioned column operation
that leaves k of the columns of A unchanged while mapping the remaining n — k
columns to zero. More specifically, let us define

— I -T nxn
(2.14) R——PJ[O I]EC ,
where T and J are defined in Theorem 1 and the permutation matrix P; is defined
by

(2.15) P;=lej, ... ,e;,] € C™*™,

Then

(2.16) AR =[Acs0] € C™*™,

where the “column skeleton” Acg, is formed by k of the columns of A;
(2.17) Acs = [ajy,- . ,a;,] € C™<k,

Moreover, by virtue of (2.10) and the identity

(2.18) Rl= [0] "

it is clear that
(2.19) |R|lr < vV +k(n—k), and ||R7Y|r < Vn+k(n—k).

Observation 6 (Row compression). The argument of Observation 5 can equally
well be applied to the rows of a matrix A € C™*" of rank k. Thus, there exists a
matrix L € R™*™ such that

(2.20) LA= [Ags] e C™,

where the “row skeleton” Agg € C**" is formed by k of the rows of A and
(2.21) IIL|lF € Vm+k(m—k), and ||L7Y||r < V/m+k(m —k).
3. ANALYTICAL APPARATUS

Consider a p x p block matrix
AQD) o A(p)

(3.1) A=

?

A(;vl) e A(.pp)

such that any neutered row or column of blocks is rank-deficient. In this section
we derive compressed factorizations of the inverse of such a matrix. Lemmas 2 and
3 provide factorizations for the case p = 2. Observation 8 extends the results of
Lemma 3 to a general p. Observation 9 introduces hierarchical factorizations that
further improve the efficiency.

Lemma 2 below asserts that for a given 2 x 2 block matrix with rank-deficient

off-diagonal blocks, there exist well-conditioned row- and column-operations that (i)
6

introduce zeros in the off-diagonal blocks and (ii) leave the remaining elements in
the off-diagonal blocks untouched.

Lemma 2. Let A be a non-singular matriz

A1) 4(2)
(3:2) = [ACD 4(22)]

where A € €™ A22) € C™*™ and the offdiagonal blocks A(1?) € Cr*m A(21) ¢
C™ ™ have rank k < min(m,n). Then there exist matrices R, L € C™*™ such that

Xu X ARD
L 0][AM AGD TR 0 112 SRs

X 0
21) 4(22) 22
0 I A A 0 I A(C%) 0 A@)
Here, the matriz Agg) € Ck*™ consists of k of the rows of A1 and the matriz

Agsl) € C™** consists of k of the columns of AV Moreover, X1; € Ck*k X5 €
REX(=k) - Xp, € R=F)xk X,0 € R=F)IX(n=k) gnd the matrices R and L satisfy
(2.19) and (2.21), respectively.

Proof: Due to Observations 5 and 6, there exist matrices R, L € C™*" such that

12)
12)_| A 21)p _ [4(21)
(3.4) LAC L[RS] and APR=[48D0],

where Agg) and Agsl) are submatrices of A(12) and A®D | regpectively. The identity
(3.3) now follows by partitioning

L= [é’; } , where L; € CF*™, L[, € C(n=Fk)xn

R=[R: Ry, where R, € C™** R, € (C"X("—k),

(3.5)

and setting

X1 = LiAOYR, € CF*k,

X1g = LAUDR, € CHx(nh),
Xo1 = Ly ARy € Cim-k)xk,
Xy = LyAAY Ry € Cn—k)x(n—k)

(3.6)

O

The following lemma uses the results of Lemma 3 to reduce the problem of fac-

toring the inverse of the matrix A in (3.2) to the problem of factoring the inverse of
the smaller matrix A in (3.8).

Lemma 3. Let A, X1, X192, Xo21, Xo9, Agsz) and Agsl) be as in Lemma 2. Provided
that the matriz X0 in (3.3) is non-singular, there ezist matrices B € C"k C ¢
Ck*™ and D € C**" such that

N B!

7

where

z AaD 40D (k-£m) x (k-+m)
and
(3.9) AN = X) — X190 X5 Xop € CEXF,

Proof: We let Ly, Lo, Ry and Rs be defined by (3.5). Inverting both sides of
equation (3.3), we obtain the identity

-1
TR R 01| X Xo Ag2 Ly 0

(3.10) A” =[0 0 I] Xo1 Xoo 0 Ly 0 }|.
A(C231) 0 A2 0 I

Since Xa9 is non-singular,

X1 X2 ASS” -
(3.11) Xo1 X2 O
AGY 0 Ae2

I 0 _ -1 _ 0 0 0

—X;f‘le 0 [X‘1~X?§§ 2 Ko Aggi] [Ik XXy 0 J+ 0 Xzt 0
22

0 Inm Acs A 0 0 Im 0 0 0

Now we obtain (3.7) by combining (3.10) and (3.11) and setting
B = R; — Ry X5,' X1 € C™¥¥,
(3.12) C = L1 — X12X5,' Ly € TP,
D = Ry X3, Ly € C™*™,
O

Remark 7 (Symmetric factorizations). It is possible to force the factorization (3.7)
to be symmetric in the sense that R = L* (which does not imply that C = B* unless
A itself is Hermitian). To this end, we define L and Jr as the matrix and index
vector that compress the rows of the matrix [A(m) A(m)*] € R™2™ (rather than
the rows of A(12) alone), and set R = L* and Jg = Jr. This modification typically
results in a poorer compression ratio but may dramatically improve the conditioning
of the transformation matrices, as discussed in Section 4.4.

Observation 8 (One-level compression of a block matrix). Consider a matrix

AL o 4Qp)
(3.13) A=)
AlPY) ... Alep)
where A(9) € C**" for i,j =1,...,p. We assume that any neutered row or column

of blocks has rank at most k. Lemma 3 can be used to reduce the problem of
8

=
... Step 1 l'. Step 2 MENEE Step3 EHE
HEEE IEE IR ::f

FIGURE 1. A 3 x 3 matrix [A()]},_, is compressed in three steps,
cf. Observation 8. In step j = 1,2, 3, the single-block compression of
Lemma 3 is applied to compress the interaction between AU7) and
the rest of the matrix. Black blocks represents entries that have
not been changed beyond row and column permutations and grey
represents entries that have been updated but are not (necessarily)
Zero.

inverting A to the problem of inverting the smaller matrix

0D ... Zaw)
(3.14) A=) Fo

A6 ... e
where A(9) € CF*F for 4,5 = 1,...,p, and AG) is a submatrix of A®) whenever
i .

More specifically, applying Lemma 3 to each of the p diagonal blocks of A, we
obtain the factorization

B 0 -~ 0 i 0 ... 0 Dy 0 - 0

0 B o | . 0 C; 0 0 D 0
(315) A™' = At +

0 0 - B 0 0 - G 6 0 .- D

where B; € C**¥ C; € Ck*" and D; € C™ ™, for i =1,...,p.
The single-level matrix compression is illustrated graphically in Fig. 1.

Observation 9 (Hierarchical compression of a block matrix). Observation 8 re-
duces the problem of inversion of a block matrix with rank-deficient neutered rows
and columns to the problem of inversion of a block matrix with smaller blocks. If
by clustering these smaller blocks, we can create a matrix with off-diagonal rank-
deficiencies, then the process can be repeated recursively to further improve the
compression.

More specifically, let us change notation so that the objects labelled A, Aand k
in Observation 8 are now labelled A, A and ki, respectively. Equation (3.15)
then reads

(3.16) (AM)~! = BO(AMY e 4 pO),
where B(), ¢, D() are block diagonal matrices whose p diagonal blocks are of

sizes n x k1, k1 X n, n X n, respectively. We then cluster the blocks of the matrix
9

! Compress / | Compress / { Compress
Cluster Cluster

lllllll&

FIGURE 2. An 8 x 8 block matrix is compressed through a three-
level compression scheme in the vein of Observation 9. The grey
scale coding is the same as in Fig. 1.

A® to form a matrix A® with (p/2) x (p/2) blocks of size 2k; x 2k; and apply the
factorization (3.16) to it, thus obtaining a telescoped factorization

(3.17) (AW)~! = BO) [B(z) (AM)c® 4 D(2>] cW 4 p®.

Here, A®, B@ €@ D®) are all block matrices with (p/2) x (p/2) blocks. Letting
ko denote the rank of the neutered rows and columns of A, the blocks of A(® have
size kg X kg, while B, €, D@ are diagonal block matrices with diagonal blocks
of sizes 2k; X ko, ko X 2k; and 2k; x 2k;, respectively. This process can be continued
until no further clustering is advantageous.

The multi-level matrix compression is illustrated graphically in Fig. 2.

Remark 10 (Adjoint of the inverse). Obviously, the factorizations (3.15) and (3.17)
provide a mechanism for the accelerated application of both A~! and [A™1]*.

Remark 11 (Block sizes). In Observations 8 and 9, it was assumed that all blocks
within one of the matrices 4, 4, A, A® .. have the same size. This assumption
was made for notational convenience only and is in no way essential to the results.

4. A GENERAL ALGORITHM FOR THE COMPUTING A SPARSE INVERSE

In Section 3 we demonstrate the existence of a compact factorization of the inverse
of any block matrix whose neutered rows and columns of blocks are rank-deficient.
In this section, we describe a numerical scheme for the construction of such factor-
izations, and estimate its efficiency.

10

Remark 12. The inversion scheme presented in this section is fairly generic, de-
pending only on the ranks of off-diagonal blocks of the matrix to be inverted. In
situations where the structure of the matrix is known, further improvements are
possible. For instance, when applied to a dense n x n matrix resulting from the
discretization of a contour integral operator, the generic algorithm of this section
requires O(n?) arithmetic operations to construct its inverse, while the customized
technique presented in Section 5 requires O(n log? n) operations or less, depending
on the integral operator.

4.1. Single block compression. Lemmas 2 and 3 assert that the inverse of a 2 x 2
block matrix of the form (3.2) can be factored in the compressed form (3.7). The
quantities A R, L, Agsz) and Agé) that appear in (3.7) can be determined by
taking the following steps:

1) Determine a matrix L € C**" and a permutation Jr € J& such that
n

LA1) = [A%lg) J ,

where Agsz) is formed by the k rows of A(12) specified by Jr, as described

in Observation 6.
(2) Determine a matrix R € C**™ and a permutation Jg € J£ such that

21
AR =48 0],

where A(C251) is formed by the columns of A(?1) specified by Jg, as described

in Observation 5.
(3) Partition R and L as specified in (3.5) and form the blocks X; as in (3.6).
(4) Compute A1), B, C and D using the formulas (3.9) and (3.12).

Steps (1) and (2) require O(mnk) floating point operations while steps (3) and (4)
require O(n®) operations. The total cost is thus O(mnk + n3).

4.2. Single-level compression. Let A denote a matrix consisting of p x p blocks,
each of size n xn, in which every neutered row or column has rank k such that k < n.
Observation 8 states that such a matrix can be factored in the sparse form (3.15).
This factorization contains the entities B;, C;, D;, A®) for 4,5 = 1,...,p, which
can be computed through p applications of the single-block compression technique
of Section 4.1 — one application for each diagonal block. Each one of the p steps
requires O(pkn? + n3) floating point operations resulting in a total computational
cost of O(p?kn? + pn3).

Remark 13. The off-diagonal blocks of the compressed matrix A are never explicitly
computed. Instead, the block AG) ¢ Ck*k js specified by giving the index vectors
Jg), Jg)e JE that define the rows and columns of A) € Ck*k_ whose intersections
form A, (Here JI({) is the index vector obtained when compressing the i-th row

of blocks and Jg) is the index vector obtained when compressing the j-th column

of blocks.)
11

4.3. Multi-level compression. The single-level technique compresses a block ma-
trix A to form another block matrix A with smaller blocks. Now, if by clustering
blocks, we can create rank-deficiencies in the neutered rows and columns of A, then
the single-level technique can be applied recursively. The algorithmic implementa-
tion entirely follows the description in Observation 9.

When estimating the computational cost for the multi-level technique we use
r=1,...,R as an index for the levels (with » = 1 being the finest level), we let p,
denote the number of blocks on level r, n, the average block size and k, the average
rank. The cost for step r is then

(4.1) ty ~ kyp2n2 + ppnd.

We assume that p.k,. > n, so that the second term is dominated by the first. Using
that prk, = pr4+1nr+1, we then find that the total cost for all R steps is

R R
(4.2) T~ Ztr ~ EPT+1Prnr+1n3-
r=1 r=1
At each level, the number of blocks is cut in half, so
(43) Pr= o
We let 4, = n,41/2n, denote the compression ratio so that
(4.4) ne = (2v,-1) -+ (2m)na.
Assuming that there exists a constant 7 such that +. < =y, we obtain the bound
(4.5) ny < (29)" " Ing.
Combining (4.2), (4.3) and (4.5), we find that the total cost is
R R
(4.6) T~ 1 o o (29) m (207 2 nf ~ pin z; 2",
r= r=

We assume that v < V4 = 0.7937--- so that the sum is bounded by (1 — 29%)~1.
Letting N denote the size of the matrix we find that N = p1n; and thus

(4.7) T ~ Nn,.

The assumption that (4.5) holds for some v < 0.7939- .- is valid in many environ-
ments relating to discretization of contour integral equations. We will return to this
point in Section 6.

4.4. Conditioning. All factorizations computed in this section are variations of
(3.15). For this formula to be of practical use, the matrices B;, C; and D; must not
be excessively large (in say the /2 operator norm) and the condition number of A has
to be similar to that of A. The formulas (3.12) imply that this is true if || X5;}||2 is
of moderate size (since (2.19) and (2.21) assert that R and L are well-conditioned).
Under the assumptions of this section (that the global matrix be non-singular and
the off-diagonal blocks have low rank) it is not possible to prove any such bound.
12

However, in the context of contour integral equations, the problem can largely be
avoided by enforcing that the compression be symmetric in the sense of Remark 7.
The reason is that the diagonal blocks of the original matrix tend to have the form

(4.8) AW =D+ E,

where D is a positive definite Hermitian matrix and F is “small” compared to D in
operator norm. Since Ry = Lj when symmetry is enforced, we find that, cf. (3.6),

(4.9) Xoy = Ly(D + E)L} = (LyD?) (LyDY?)* + L,EL3.

Here, the first term is well-conditioned, and the second has at most a few non-small
singular values. Thus, it is very unlikely that the sum of the two matrices should
have any small singular values. Furthermore, should such a coincidence happen, the
algorithm detects it and avoids the problem by locally re-partitioning the matrix.

4.5. Error estimation. Given a prescribed accuracy &, the numerical scheme pre-
sented in this section solves the equation

(4.10) Au=f
by constructing an approximation A, that satisfies
(4.11) A= Acllz <e

and is such that the approximate solution uc = AZ!f can be computed fast. The
error in u satisfies

(4.12) U— U = (A"1 - A;l) f= A;'l (Ae — A) A7lf = A;l (A — A) u.
The relative error is therefore bounded as follows:

uU—u _ -

(413) el < g (- o < ez

While the algorithm cannot possibly control ||AZ!||2, this quantatity can be com-
puted cheaply using power iteration, see Remark 10. Thus, an assured bound for
the relative error can be computed & posteriori.

5. AN ACCELERATED ALGORITHM APPLICABLE TO CONTOUR INTEGRAL
EQUATIONS

The bulk of the computational cost of the matrix compression technique presented
in Section 4 consists of the cost of determining index vectors and transformation
matrices that compress the neutered rows and columns. When the matrix is a
discrete approximation of a contour integral operator, it is possible to determine
these quantities through an entirely local operation whose cost only depends on
the size of the diagonal block to be compressed (i.e., not on the size of the rest of
the matrix). This is possible since the column and row operations employed in the
present matrix compression technique do not update the elements of the off-diagonal
blocks, as discussed in Remark 13.

This section is structured as follows: In Section 5.1 we describe a single-block
compression technique for the boundary integral equations associated with Laplace’s
equation in two dimensions that is faster than the generic single-block technique of

13

/ ~ ’
’ /, A
4 \
ll !
\Fl_ ' \
')
N [l
' I-‘ext !
i)
~ 1
.
I’y \ /
\\ ’ N 7
\ B ~ /
\\ Pie \\~ ,//
(a) (b)

FIGURE 3. The contour I'. In Fig. (a), the partitioning I' = I'; + I'y
is shown with I'; drawn with a bold line. In Fig. (b) the contour I's
is drawn with a thin solid line and T'ext With a dashed line.

Section 4.1. In Section 5.2 we describe single and multi-level techniques for contour
integral equations obtained by repeated application of the single-block compression
technique of Section 5.1. Section 5.3 discusses generalizations of the technique to
other equations of potential theory.

Remark 14 (Rank-deficient matrices). In this section, we say that a matrix has
rank k provided that it has only & singular values that are larger than some preset
accuracy. In other words, we do not distinguish between what is sometimes called
“numerical rank” and actual rank.

5.1. Single-block compression. The following observation summarizes the prin-
ciple finding of this section:

Observation 15. Let the matrix A in (3.2) represent the discretization of the
integral operator

(5.1) /F K(z,y)uly)ds(y), forzeT,

where I' = I'; 4+ I'; is a contour (Fig. 3 shows one example), the block structure of A
corresponds to the partitioning of I' (so that, e.g., A(1?) represents evaluation on I';
of the potential generated by a charge distribution on I'y), and K is the kernel of a
single and/or double layer potential for the Laplace operator. Then the factorization
(3.3) can be computed using O(n?) floating point operations, where n is the number
of points used in the discretization of I'y.

The idea behind the construction alluded to in Observation 15 is simple: Instead
of compressing the interaction between I'; and I's, it is sufficient to compress the
interaction between I'; and a small contour I'y, formed by the union of an artificial
circular contour enclosing I'y and the part of I'y that is inside this circle (as shown
in Fig. 3(b)). The reason is that by virtue of Green’s theorem, any potential field
generated by charges on I'; can equally well be generated by charges on I's. Finally
we note that if I'; is discretized using n nodes, then I can be discretized using O(n)
nodes, yielding a total cost for the procedure of O(n3).

14

The remainder of this subsection is devoted to substantiating Observation 15.
We start by introducing some notation; let I'ci;c denote the circle in Fig. 3(b) and
let T'ext denote the part of I'y outside of I'cjrc. Furthermore, let Sr,_.r, denote the
integral operator that evaluates a potential on I'y caused by a charge distribution
on I'y. In other words, Sr,_,r, acts on a charge distribution u as follows:

(5.2) [Sr,—ryul(z) = /1“ K(z,y)u(y) ds(y), for z € I'y.

Observation 15 rests on the following claim:

Lemma 4. Let H € C™" denote the matriz discretizing Sr.,.—r;, and let the
index vector Jg € Jﬁ and the transformation matriz L be such that they compress H
in the sense of Observation 6. Then Jr and L also compress the matriz B € C"*™
that approrimates the operator Sr,,,_r, -

Sketch of proof: It is sufficient to prove that there exists a matrix W ¢ C™'xm
with moderate 2 operator norm such that

(5.3) B=HW.

(The matrix W is the matrix that maps a charge distribution on ey to an equivalent
charge distribution on I'cic.) Now, equation (5.3) is the discrete approximation of
the operator relation

-1
(54) Srexe"’rl = SFcirc""I‘l [(Srcirc—’rcirc) Srext"rcirc] °

The matrix W in (5.3) corresponds to the operator in square brackets in (5.4). That
this operator is bounded is a consequence of Green’s theorem. g

5.2. Single- and multi-level compression. The generic single- and multi-level
compression techniques of Sections 4.2 and 4.3 were obtained by repeated applica-
tion of the single-block technique described in Section 4.1. Single- and multi-level
techniques for contour integral equations are analogously obtained by repeated ap-
plication of the single-block technique of Section 5.1.

The remainder of this subsection is devoted to estimating the computational cost
of the accelerated compression technique. The cost for a single level compression at
level 7 =1,..., R is now, cf. (4.1),

(5.5) t, ~ prnd,

where p. denotes the number of clusters on level r and n, is the (average) cluster
size. Under the assumptions (4.3) and (4.5), we find that

(5.6) tr ~ 527 (27) *nd.
The total cost for all R steps is then
R R
(5.7) T ~ Zprnf < pin} Z (4')(3)r_1 .
r=1 r=1

15

We assume that v < 471/3 = 0.630- - - so that the sum is bounded by (1 — 47%)~1.
Letting N denote the size of the original matrix, we find that N = n;p; and thus

(5.8) T ~ Nn?.

When the kernel of the equation is associated with the fundamental solution of
Laplace’s equation, it is possible to prove that the assumption (4.5) holds with
v = 1/2 when n; > log N, which gives an upper bound on the computational cost
of O(Nlog? N). However, further acceleration is achieved by choosing a smaller n;,
even though the cluster size then grows slightly in the first couple of compressions.
This explains why the log? N factor is not visible in the experiments in Section 6.

Remark 16. The single-block compression technique described in Observation 15
requires the algorithm to determine which of the nodes of I'; lie inside the artificial
circle I'gire. If this search would be done by brute force, the computational cost for
a single level solve would include a term p?n2, cf. (5.5). Even though the constant
in front of this term is small, it would dominate the computation for large problems
(in our implementation, this would happen for N > 25000). One solution to this
problem is to perform the search via a hierarchical search tree; the estimate (5.5)

then remains valid.

5.3. Generalizations. The technique presented in Section 5.1 for Laplace’s equa-
tion is readily applicable to other equations of classical potential theory; Helmholtz,
Yukawa, Shrodinger, Maxwell, Stokes, elasticity, et c¢. The only complication occurs
when working with equations that may have resonances. In such cases, it is possible
that the operator of self-interaction for the artificial circle (the operator Sr_ _.r,.
in (5.4)) has a non-trivial nullspace. This complication can be rectified by letting
the artificial charges on T consist of both monopoles and dipoles. Alternatively,
it is possible to consider only one type of charges but placing them on two concentric
circles instead of a single one.

When applied to oscillatory problems such as Helmholtz’ and Maxwell’s equations,
the efficiency of the technique deteriorates when the wave number increases since
then the compression rate deteriorates as the blocks grow larger (in other words,
the assumption (4.5) no longer holds). In practise, it appears that the method ex-
periences very few problems for objects smaller than about 50 wavelengths. After
that, the computational complexity increases superlinearly with the problem size
although the technique remains viable for equations set on contours about a thou-
sand wavelengths in size. This effect will be illustrated in the numerical examples
in Section 6.1.

Finally we remark that the scheme has O(nlog”n) complexity when applied to
integral equations defined on one-dimensional curves in any dimension. The fact
that we have so far only discussed equations embedded in two space dimensions is
simply that contour integral equations associated with boundary value problems in
two dimensions is the most common source of such equations.

16

6. NUMERICAL EXAMPLES

In this section we present the results of a number of numerical experiments per-
formed to assess the efficiency of the numerical scheme presented in Sections 4 and
5. In every experiment, we compute a sparse factorization of the inverse of the
matrix resulting from Nystrém discretization of one of the following three integral
equations:

2T
(6.2) /F log|z — y[]uy) ds(y) =f(z), sz €T,

(6.1 t3u(e) + o= [[0lo) - Vylogle — ylJuly) ds(w) =f(@), weT,
r

(63) F2iul)+ /F [(n() - V, +ik) Ho(klz — y)]u(y) ds(y) =f(z), sz €T,

where n(y) is the outward pointing unit normal of I" at y and Hy(z) = Jo(z)+iYo(z)
is the Hankel function of zeroth order. The equations (6.1) and (6.2) are the double
and single layer equations associated with Laplace Dirichlet problems, and (6.3) is
an equation associated with the Helmholtz Dirichlet problem with wave number k.
In equations (6.1) and (6.3), the top sign in front of the first term refers to exterior
problems and the lower sign refers to interior problems.

The kernel in (6.1) is smooth and the equation was discretized using the trape-
zoidal rule (which is exponentially convergent on a smooth contour). The equations
(6.2) and (6.3) involve log-singular kernels that were discretized using the modified
trapezoidal quadrature rules of [9] of orders 6 and 10, respectively. The algorithm
was implemented in Matlab and the experiments were run on a 2.8 GHz Pentium 4
desktop with 512Mb of memory.

When presenting the numerical results, we use the following notation:

R the number of levels in the multi-level solver,

Nstart the size of the discrete problem at the start,

Ntinal the size of the compressed problem,

tiot the total CPU time (in seconds),

tsolve the CPU time required to apply the factorized inverse (in seconds),
Ctop the condition number of the compressed matrix,

Omin the smallest singular value of the original matrix,

M the amount of memory used (in kB),

Eqctual the relative error in u, Eactual = ||ue — ul|/||ul|,

Eres the relative residual error, Eres = ||Aus — f|/||f]l,

In each experiment, the right hand side f was the Dirichlet data corresponding to
a potential field generated by a few randomly placed point charges. Since the exact
potential field was known, we were able to compare the potential field generated by
the numerical solution to the exact one. We did this at J random points on a circle
separated from I' by half its radius. Letting {v(/) }JJ___I denote the exact potential

and {vf;j)}3]=1 denote the potential generated by u., we define the relative error in

the potential as Epor = [|v — vel|/|[v]]-
17

FIGURE 4. A smooth contour. The length of the contour is roughly
5.1 and its horizontal width is 2.

6.1. Example: A smooth contour. In this subsection we present results per-
taining to the smooth contour shown in Fig. 4. The contour was discretized using
between 800 and 102400 points and the integral equations associated with exterior
Dirichlet problems were solved. Tables 1, 2 and 3 present the results for the kernels
(6.1), (6.2) and (6.3), respectively.

For the two Laplace problems considered, we see that both the computational
cost and the memory requirement scale more or less linearly with the problem size,
as expected. We recall that this expectation was based on the postulate that for
Laplace problems, the interaction rank between adjacent clusters depend only very
weakly (logarithmically) on their size. Fig. 5 illustrates this point; it shows that
after two rounds of compression, almost the only nodes that have survived are the
ones near the border to the neighboring clusters. The figure also illustrates that the
algorithm detects the need to keep more nodes in the interior of those clusters that
run close to other clusters. We note however that these experiments are somewhat
artificial in that they use an excessive number of discretization points (for instance,
the quadrature error associated with the N = 102400 experiment for the Laplace
double layer potential corresponds to a quadrature error of roughly 10~1000),

Since the scheme presented in this paper relies on rank-considerations only, it
works for oscillatory problems with low wave numbers but it eventually fails as
the wavenumber is increased. Table 4 illustrates this point by showing how the
compression ratios deteriorate as the wavenumber & in the kernel (6.3) is increased
from 1 to 500. However, the authors were surprised to find that the method remains
viably up to objects about 1000 wavelengths across, as indicated in Table 3.

Remark 17 (Comparison with the Fast Multipole Method). When the Fast Multi-
pole Method is applied to solve the Laplace Dirichlet problem on the contour shown
in Fig. 4, the CPU time required for a single matrix-vector multiply is roughly 30
times smaller than the CPU time required to construct the inverse of the matrix.
Thus, if less than 30 iterations are required in an iterative solver (which is the case
for well-conditioned problems), the FMM is faster for a single solve. However, the
cost of a single FMM matrix-vector multiply is about 3 times larger than the cost to
apply the inverse to a vector, ensuring that for problems involving several right-hand
sides, the direct solver will outperform the FMM.

18

R Nstart Nfnal teot tsolve Factual Eres Epot Ctop Omin M

3 800 335 1.2e+0 1.2e-2 4.0e-09 3.4e-9 5.6e-10 1.9e+2 1.5e-2 4250

4 1600 368 4.2e+0 2.4e-2 1.1e-09 2.4e9 4.4e-10 3.6e+2 1.4e-2 6627

5 3200 369 8.4e+0 5.1e-2 — 2.7e-9 6.4e-10 3.6e+2 1.4e-2 8987

6 6400 369 9.0e+0 6.5e-2 — 3.3e-9 1.6e-10 8.1e+2 1.4e-2 13301

7 12800 369 1.3e+1 1.2e-1 — 2.6e-9 6.6e-10 1.6e+3 1.4e-2 21991

8 25600 370 1.6e+1 2.4e-1 — 3.8e-9 2.7e-10 1.6e+3 1.4e-2 39970

9 51200 371 3.5e+1 4.9e-1 — 2.9e-9 4.9e-10 2.0e+3 — 76346
10 102400 375 9.0e+1 9.8e-1 — 1.3e9 — 1.2e+4 — 151571

TABLE 1. Computational results for the double layer potential (6.1)
associated with an exterior Laplace Dirichlet problem on the contour
shown in Fig. 4.
R Nstart Neinal tiot tsolve Eactua] Eres Epot Ctop Omin M
3 800 251 1.9e+00 1.1e-02 1.8e-07 1.8¢-09 6.4e-07 8.9e+04 8.9e-05 3043
4 1600 265 3.4e+00 1.9e-02 1.7e-07 2.2e-09 9.8¢-10 2.1e+04 2.2e-05 5085
5 3200 279 3.8e+00 3.4e-02 — 1.6e-09 2.1e-10 2.2e+04 8.6e-06 8426
6 6400 287 1l.1e+01 1.9e-01 — 2.1e-09 1.2e-10 1.6e+05 2.2e-07 14483
7 12800 295 1.2e+01 1.3e-01 — 1.5e-09 3.5e-10 1.2e+04 4.9e-07 26327
8 25600 305 1.4e+01 2.5e-01 — 2.7e-09 3.1e-10 4.0e+04 1.0e-07 49703
9 51200 317 2.8e+01 4.9e-01 — 2.2e-09 2.3e-10 8.0e+03 — 96228
10 102400 322 8.2e+01 9.8e-01 — 2.0e-09 — 1.9e+04 — 189065
TABLE 2. Computational results for the single layer potential (6.2)
associated with an exterior Laplace Dirichlet problem on the contour
shown in Fig. 4.

k N, start N; final tiot tsolve Eact ual Eres E pot Ctop Omin M
21 800 435 1.5e+01 3.3e-02 2.7e-07 9.7e-08 7.1e-07 4.1e+03 6.5e-01 12758
40 1600 550 3.0e+01 6.7e-02 1.6e-07 6.2e-08 4.0e-08 6.1e+03 8.0e-01 25372
79 3200 683 5.3e+01 1.2e-01 — 5.3e-08 3.8e-08 2.1e+04 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 — 3.9e-08 2.9e-08 4.0e+04 3.4e-01 81679
316 12800 1179 1.8e+02 3.9e-01 — 2.3e-08 2.0e-08 4.2e+04 3.4e-01 160493
632 25600 1753 4.3e+02 7.5e+00 — 1.7e-08 1.4e-08 9.0e+04 3.3e-01 350984
1264 51200 2864 (1.5e+03) (2.3e+02) — 9.5e-09 — — — 835847

TABLE 3. Computational results for the kernel (6.3) associated with
an exterior Helmholtz Dirichlet problem on the contour shown in
Fig. 4. The Helmholtz parameter was chosen to keep the number of
discretization points per wavelength constant at roughly 45 points
per wavelength (resulting in a quadrature error about 10712). The
times in parenthesis refer to experiments that did not fit in RAM.

19

D AU VR S s

FIGURE 5. The points left after two rounds of compression of the
contour shown in Fig. 4. The crosses mark the boundary points
between adjacent clusters.

k|l m v v v v Y% v 8 N M

110.68 058 0.54 0.55 0.58 0.64 0.64 0.72 512 166908
100 | 0.72 0.56 0.55 0.56 0.60 0.68 0.72 0.82 777 195882
50010.72 0.58 0.58 0.62 0.68 0.76 0.84 0.91 1522 303452

TABLE 4. This table shows to which extent the assumption (4.5)
of constant compression ratios fails for the Helmholtz problem with
large wave-numbers. It displays the compression ratios v; at each of
the levels j = 1,...,8 for the Helmholtz kernel (6.3) on the smooth
contour in Fig. 4, discretized with N = 25600 points. The three
rows correspond to wave numbers k£ = 1,100, 500. The second to last
column shows the number of degrees of freedom left on the finest
level and the last column shows the total memory requirement (in

kB).

20

FIGURE 6. (a) A rippled contour. (b) A close-up of the area marked
by a dashed rectangle in (a). The horizontal axis of the contour
has length 1 and the number of ripples change between the different
experiments to keep a constant ratio of 80 discretization nodes per
wavelength.

6.2. A rippled contour that almost self-intersects. In this subsection we present
results pertaining to the rippled contour shown in Fig. 6. The contour was discretized
using between 800 and 102 400 points and integral equations associated with exterior
Dirichlet problems were solved. The number of ripples in the experiments increase
with the number of discretization nodes in such a fashion that there are roughly
80 nodes for each wavelength. Tables 5, 6 and 7 present the results for the kernels
(6.1), (6.2) and (6.3), respectively.

We see that the asymptotic complexity of the algorithm remains essentially the
same as for the smooth contour shown in Fig. 4. However, the constants involved
are larger since more degrees of freedom are required to resolve the contour at the
finest levels.

21

R Nstart Nﬁna] tiot tsolve Eactua] Eres Epot Ctop Omin M
2 400 160 2.4e-01 4.6e-03 2.3e-09 2.0e-09 1.2e-09 7.1e+01 4.0e-02 954
3 800 214 4.7e-01 8.9e-03 2.3e-09 2.5e-09 2.8e-10 1.3e+02 3.1e-02 2110
4 1600 286 7.5e+00 2.6e-02 1.9e-09 2.1e-09 9.8e-11 2.6e+02 2.2e-02 4710
5 3200 361 1.1e+01 3.7e-02 — 1.4e-09 1.8e-10 5.3e+02 1.8e-02 9781
6 6400 437 1.5e+01 7.2e-02 — 2.0e-09 1.3e-10 1.1e+03 1.5e-02 20484
7 12800 508 2.1e4+01 1.5e-01 — 1.6e-09 9.2e-11 2.3e+03 1.4e-02 42307
8 25600 559 3.7e+01 2.9e-01 — 2.0e-09 1.3e-10 5.4e+03 1.3e-02 86481
9 51200 599 8.0e+01 6.1e-01 — 1.8e-09 2.8e-10 1.5e+04 — 177442
10 102400 634 1.9e+02 1.2e+00 — 1.4e-09 — 2.2e+04 — 365495
TABLE 5. Computational results for the double layer potential (6.1)
associated with an exterior Laplace Dirichlet problem on the rippled
contour shown in Fig. 6.
R N, start N, final teot tsolve Eactual Eres Epot Ctop Omin M
2 400 152 1.8e-01 4.5e-03 2.0e-07 3.6e-09 1.4e-06 3.4e+03 5.5e-04 953
3 800 188 4.2e-01 8.7e-03 4.3e-06 2.9e-09 5.0e-07 7.9e+04 1.0e-05 2050
4 1600 216 4.1e+00 2.3e-02 6.9e-07 2.3e-09 1.2e-08 5.1e+03 1.6e-05 4086
5 3200 240 5.7e+00 3.4e-02 — 2.8e-09 1.0e-08 3.5e+05 1.2e-05 7943
6 6400 268 1.1e+01 6.6e-02 — 2.2e-09 2.3e-09 7.3e+04 2.1e-06 15592
7 12800 284 1.1e+01 1.3e-01 — 3.3e-09 2.0e-09 1.9e+04 1.7e-07 30607
8 25600 300 1.6e+01 2.6e-01 — 2.4e-09 8.1e-10 9.5e+05 9.7e-08 60443
9 51200 310 3.3e+01 5.2e-01 — 2.8e-09 3.1e-10 2.0e+05 — 120089
10 102400 323 9.0e+01 1.0e+00 — 1.8e-09 — 7.9e+04 — 239012
TABLE 6. Computational results for the single layer potential (6.2)
associated with an exterior Laplace Dirichlet problem on the rippled
contour shown in Fig. 6.
k N, start N; final ttot tsolve Eactual Eres Epot Ctop Omin M
7 400 224 2.9e+00 9.0e-03 1.4e-07 6.9e-08 9.4e-07 1.2e4+04 7.9e-01 3241
15 800 320 7.7e+00 1.9e-02 1.6e-07 7.4e-08 1.2e-07 3.9e+03 7.9e-01 8233
29 1600 470 2.1e+01 4.6e-02 — 6.7e-08 8.1e-08 7.4e+03 7.8e-01 20469
58 3200 704 6.1e+01 1.1e-01 — 5.2e-08 6.4e-08 1.2e+04 8.0e-01 49854
115 6400 1122 1.4e+02 2.9e-01 — 4.8¢-08 7.5e-08 1.4e+04 8.0e-01 126576
230 12800 1900 (4.7e+02) (2.5e+01) — 5.5e-08 7.5e-08 8.8e+04 8.0e-01 341054

461 25600 3398

TABLE 7. Computational results for the kernel (6.3) associated with
an exterior Helmholtz Dirichlet problem on the rippled contour shown
in Fig. 6. The Helmholtz parameter k& was chosen to keep the number
of discretization points per wavelength constant at roughly 55 points
per wavelength (resulting in a quadrature error about 10~12). The
times in parenthesis refer to experiments that did not fit in RAM.

22

— 983061

FIGURE 7. A contour the shape of a smooth pentagram. Its diameter
is 2.5 and its length is roughly 8.3.

6.3. An interior problem close to a resonance. In this section we present
results pertaining to interior Dirichlet problem on the contour shown in Fig. 7.
While interior and exterior Laplace Dirichlet problems are quite similar in nature, the
corresponding Helmholtz Dirichlet problems are fundamentally different in that the
interior problem possesses resonances while the exterior does not. We will therefore
focus exclusively on interior Helmholtz problems

We present the results of two computational experiments, both relating to the
Helmholtz kernel (6.3). In the first experiment, we scan a range of wave numbers
k between 99.9 and 100.1. For each wave number, we computed the smallest sin-
gular value omi, of the integral operator using the iteration technique described in
Section 4.5. The resulting graph of oy, versus k, shown in Fig. 8, clearly indicates
the location of each resonance in this interval. The second experiment consists of
factoring the inverse of the matrix corresponding to k = 100.0110276 - -- for which
Omin = 0.00001366---. The results, shown in Table 8, illustrate that the method
does not experience any difficulty in factoring the inverse of an ill-conditioned ma-
trix. In particular, the table shows that the factorization matrices BY), C() and
DU), see (3.17), are well-conditioned.

23

0.12
01
008}

006} °

eagte

0.02

: i H H PN S I

i f 2, s 2 .3 3 1
99.9 99.92 9994 9996 99.98 100 100.02 100.04 10006 10008 100.1

FIGURE 8. Plot of o, versus k for an interior Helmholtz problem
on the contour shown in Fig. 7. The values shown were computed
using the iteration technique of Section 4.5 applied to a matrix of
size N = 6400. Each point in the graph required about 60 seconds
of CPU time.

j__pj ng %t [Bl |IDY]|o
1 128 50.00 0.76 1550 1.12e+00 1.12e+00 4.20e-02
2 64 76.00 0.59 14.32 3.27e+01 3.27e+01 1.75e+00
3 32 80.72 0.60 894 1.63e+01 1.62e+01 9.28¢-01
4
5
6

16 107.00 0.64 6.27 9.09e4+00 9.17e+00 2.41e+00
8 138.00 0.72 597 7.32e4+00 7.31e+00 3.64e+400
4 199.50 0.80 7.76 3.22e+00 3.23e4-00 3.86e4-00

TABLE 8. Details of the computation for the Helmholtz kernel
(6.3) associated with an interior Dirichlet problem on the smooth
pentagram shown in Fig. 7 for the case N = 6400 and k& =
100.011027569 ---. For each level j, the table shows the number
of clusters p; on that level, the average size of a cluster n;, the com-
pression ratio v;, the time required for the factorization ¢; and the
size of the matrices BY), C) and DU (see (3.17)) in the maximum
norm. For this computation, Eres = 2.8-10710, E oy = 3.3-1075 and
Omin = 1.4-1075.

24

¥$¥%
2
sy 2E sy oy
o208 5 B 0 s
P
S
-
g g
2
ey
A
TRy

53
P
P
&
53
53
P
&

-1

i 1

9 10

e
g
o
o
4
;o
;o
| g

@

FIGURE 9. The star-fish lattice contour; the physical distance be-
tween two random points on the contour is not well predicted by
their distance along the contour.

6.4. A contour resembling an area integral. The final numerical experiment
that we present is included to demonstrate that the efficiency of the factorization
scheme deteriorates when it is applied to a curve for which the physical distance
between two random points on the contour is not well predicted by their physical
separation. One example of such a curve is the star-fish lattice illustrated in Fig. 9.
Focussing on the double layer Laplace problem (6.1), we apply the factorization
scheme to a matrix of size N = 25600 and compare the performance to that for
the rippled dumb-bell shown in Fig. 6. Table 9 shows that the factorization of the
matrix related to the starfish lattice took almost five times as long and resulted in
a compressed matrix of over twice the size.

To understand the difference in performance between the different contours, we
need to consider how the interaction rank of a cluster depends on its size. For the
contours shown in Figures 4, 6 and 7, we have seen that the rank of the interaction
between a cluster of size m and the rest of the contour is effectively bounded by
logm. However, for the contour shown in Fig. 9 the corresponding bound is y/m.
Figures 5 and 10 illustrate the difference. Thus, the asymptotic complexity of the
scheme when applied to a contour similar to the star-fish lattice is O(n3/2) rather
than O(nlogn).

25

Contour: | tiot Netart Nena M
Rippled dumb-bell | 37s 25600 559 86Mb
Star-fish lattice 172s 25600 1202 210Mb

TABLE 9. Test results for two experiments concerning the matrix
obtained by discretizing the double layer Laplace problem (6.1). One
involved the rippled dumb-bell shown in Fig. 6 and the other the star-
fish lattice shown in Fig. 9.

NN

N

-
o

©
3

©

55 6 as 4 45 5 55 6

(a) (b)

FIGURE 10. Fig. (a) shows a close-up of the star-fish lattice of Fig. 9.
Fig. (b) shows the nodes remaining after the interaction between
the cluster formed by the points inside the parallelogram and the
remainder of the contour has been compressed, cf. Fig. 5.

26

7. GENERALIZATIONS AND CONCLUSIONS

We have presented a numerical scheme that constructs a data-sparse factorization
of the inverse of a matrix. The scheme is applicable to generic matrices whose off-
diagonal blocks have rank-deficiencies but is most efficient when applied to matrices
arising from the discretization of integral equations defined on one-dimensional con-
tours (although such integral equations frequently arise in the analysis of boundary
value problems in two dimensions, the dimension of the underlying space is of no
relevance to the algorithm). For equations with non-oscillatory kernels the compu-
tational complexity of the algorithm is O(nlog® n) for most contours, where x = 1
or 2, and n is the number of nodes in the discretization of the contour.

Comparing our implementations of the direct factorization scheme on the one
hand and the FMM matrix-vector multiplication scheme on the other, we observed
(i) that in a typical environment, the cost of constructing a factorization of the
inverse is 30 times larger than the cost of a single FMM matrix-vector multiply,
and (ii) that once the factorization of the inverse has been computed, the cost to
apply it to a vector is 3 times smaller than the cost of a single FMM matrix-vector
multiply. Thus, if an iterative solver requires less than 30 steps to converge, the
iterative solver outperforms the direct solver for a single solve. However, if multiple
right-hand sides are involved, the direct solver has a clear advantage.

Since the scheme is based on rank considerations only, it cannot work for bounday
integral equations involving highly oscillatory kernels. However, since the interaction
ranks are determined dynamically, the oscillation must be quite significant before the
scheme becomes impracticable. Empirically, it was found that the scheme remains
efficient for contours about 1000 wavelengths in size.

Another limitation of the scheme is that it does not achieve optimal efficiency
when applied to a boundary integral equation set on either a contour similar to the
one shown in Fig. 9, or on a two-dimensional surface. In either case, its computa-
tional complexity is O(n3/ 2). Overcoming this limitation is a subject of on-going
research.

Finally, we mention that the matrix factorization scheme presented in this paper
can be modified to construct certain standard matrix factorizations (such as the
singular value decomposition). This modification will be reported at a later date.

Acknowledgements: Support for this paper was provided in part by ONR under
the contract #N00014-01-1-0364.

REFERENCES

[1] F.X. Canning and K. Rogivin, Fast direct solution of standard moment-method matrices, IEEE
Antennas and Propagation Magazine 40 (1998), 15-26.

(2] Yu Chen, 4 fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimen-
sions, Adv. Comput. Math. 16 (2002), no. 2-3, 175-190, Modeling and computation in optics
and electromagnetics.

[3] W.C. Chew, An n? algorithm for for the multiple scattering problem of n scatterers, Micro.
Optical Tech Letter 2 (1989), 380-383.

[4] D. Gines, G. Beylkin, and J. Dunn, LU factorization of non-standard forms and direct mul-
tiresolution solvers, Appl. Comput. Harmon. Anal. 5 (1998), no. 2, 156-201.

27

[5] Gene H. Golub and Charles F. Van Loan, Matriz computations, third ed., Johns Hopkins
Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.
[6] Ming Gu and Stanley C. Eisenstat, Efficient algorithms for computing a strong rank-revealing
QR factorization, SIAM J. Sci. Comput. 17 (1996), no. 4, 848-869.
[7] W. Hackbusch, A sparse matriz arithmetic based on H-matrices. I. Introduction to H-matrices,
Computing 62 (1999), no. 2, 89-108.
[8] W. Hackbusch and S. Bérm, Data-sparse approzimation by adaptive H 2_matrices, Computing
69 (2002), no. 1, 1-35. MR 1 954 142
[9] S. Kapur and V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular func-
tions, SIAM J. Numer. Anal. 34 (1997), no. 4, 1331-1356.
[10] P.G. Martinsson and V. Rokhlin, On the compression of low rank matrices, Tech. report, Yale
University, Dept. of Computer Science, 2003.
[11] E. Michielssen, A. Boag, and Chew W. C., Scattering from elongated objects: direct solution
in o(nlog?n) operations, IEEE Proc. H 143 (1996), 277-283.
[12] D. Scott, Analysis of the symmetric lanczos process, Tech. report, University of California at
Berkeley, 1978.

28

