Parameterized Partial Evaluation:
Semantic Specifications and Correctness Proofs

Charles Consel and Siau Cheng Khoo
Research Report YALEU/DCS/RR-896
March, 1991

This work is supported by NSF grant CCR-8809919 and DARPA
N000014-91-J-4043

Parameterized Partial Evaluation :
Semantic Specifications and Correctness Proofs *

Charles Consel Siau Cheng Khoo

Yale University
Department of Computer Science
New Haven, CT 06520
{consel, khoo}@cs.yale.edu

December 11, 91

Abstract

Parameterized partial evaluation is a uniform approach for specializing programs not only
with respect to concrete values, but also with respect to abstract values such as signs, ranges
and types. This paper presents semantic specifications and correctness proofs for both on-line
and off-line parameterized partial evaluation of strict functional programs.

Our strategy consists of defining a core semantics as a basis for the specification of three
non-standard evaluations: instrumented evaluation, on-line and off-line parameterized partial
evaluation. We then use the technique of logical relation to prove the correctness of both on-
line and off-line parameterized partial evaluation semantics. The correctness of conventional
partial evaluation follows as a corollary because it is a particular case of parameterized partial
evaluation.

The main contributions of this work can be summarized as follows.

1. We provideb a uniform approach to defining and proving correct both on-line and off-line
partial evaluation.

2. This work required a formal specification of on-line partial evaluation (which had never
been done). We define criteria for its correctness with respect to the standard semantics.
As a byproduct, on-line partial evaluation appears to be based on a fixpoint iteration
process, just like binding-time analysis.

3. We show that facet analysis, the preprocessing phase of off-line partial evaluation, is an
abstraction of on-line partial evaluation. Therefore, its correctness can be proven with
respect to on-line partial evaluation, instead of with respect to the standard semantics, as
is customarily done. '

4. Based on the static semantics of partial evaluation defined by the facet analysis, we for-
mally derive the specialization semantics for off-line parameterized partial evaluation. This
strategy ensures the correctness of the resulting semantics.

*This research was supported in part by NSF and DARPA grants CCR-8809919 and N00014-91-J-4043, respec-
tively. The second author was also supported by a National University of Singapore Overseas Graduate Scholarship.

1

1 Introduction

Partial Evaluation

Partial evaluation is the process of constructing a new program given some original program and
a part of its input [Fut71]. It is considered a realization of the s7' theorem in recursive function
theory [Kle52]. Therefore, a faithful partial evaluator must satisfy the following criterion:

Suppose that P(z,y) is a program with two arguments, whose first argument has a
known value ¢, but whose second argument is unknown. Partial evaluation of P(e,y) -
with an unknown value for y should result in a specialized residual program F(y) such
that:

Vy € Y, P(c,y) = FPe(y) (1

In essence, a partial evaluator is a program specializer and is expected to produce more efficient
programs [Jon90]. In practice, there are two different strategies of partial evaluation: on-line and
off-line. An on-line partial evaluator processes a program in one single phase. This process can be
viewed as a derivation from the standard evaluation [HM89]. An off-line partial evaluator performs
some analyses before specializing the program; the main analysis performed is binding-time analysis
- [Jon88a). Prior to specialization, this analysis determines the static and dynamic expressions of
a program given a known/unknown division of its input. The static expressions are evaluated at
partial-evaluation time, and the dynamic expressions are evaluated at run-time. As such, binding-
time analysis can naturally be viewed as an abstraction of the on-line partial-evaluation process,
but this has not been proven, not even stated formally.

Parameterized partial evaluation

Parameterized partial evaluation [CK91a, CK91b] aims at specializing programs with respect to
concrete values as well as abstract values. We develop an algebraic framework to enable modular
definition of static properties. More specifically, from a concrete algebra, an abstract algebra called
a facet is defined; it is composed of an abstract domain — capturing the properties of interest —
and a set of abstract primitives that operate on this domain. The safety criteria of this abstraction
are captured by the notion of facet mapping (see Section 2).

A facet allows one to introduce static properties at the on-line partial evaluation level. By
considering an algebra whose domain is syntactic terms and operations are primitive functions, it
is possible to capture the partial-evaluation behavior of primitive functions as a facet.

Facet mapping is also general enough to capture off-line partial evaluation. Just as a binding-
time analysis is used to compute the static/dynamic property, we introduce a facet analysis to
statically compute user-defined static properties (including the binding-time property itself). A
specializer can then use the result of a facet analysis in the same way as it used the result of
binding-time analysis previously to perform the static computations of a given program.

In summary, not only does the facet mapping extend traditional partial evaluation to include
specialization of programs with respect to user-defined static properties, it also provides a uniform
framework for relating three levels of evaluation: standard evaluation, on-line and off-line partial
evaluation. Examples of facets are given in [CK91a, CK91b].

9 -

Correctness of Partial Evaluation — An Overview

Regardless of the strategy used, partial evaluation is a non-trivial process, it involves numerous
program transformations. Therefore, proving the correctness of this process must go beyond the
extensional criterion given by Equation 1 (Section 1); it must be based on the semantics of partial
evaluation. This approach should provide the user with a better understanding of the process.

Several works on proving the correctness of conventional partial evaluation have appeared in the
literature recently, all dedicated to off-line partial evaluation. In particular, Gomard in [Gom89)
defines a denotational semantics of a specializer for lambda calculus,! together with its correctness
proof. However, the specializer is limited to monovariant specialization (that is, every function
in a program can have at most one specialized version created during specialization). In [Lau90],
Launchbury defines in a denotational style a binding-time analysis and proves its correctness with
respect to the standard semantics. He also shows that his result corresponds to the notion of uni-
form congruence, a restrictive version of the congruence criterion for binding-time analysis defined
by Jones [Jon88b]. However, since the correctness proofs are done with respect to the standard
semantics, they do not provide any insight as to how binding-time properties are related to the
partial-evaluation process, and more specifically to that of on-line partial evaluation.

. In this paper, we provide the semantic specifications and the correctness proofs for parame-
terized partial evaluation of first-order strict functional programs (an extension to higher-order
programs is discussed in Section 7). This work is distinct from the existing ones in that it adopts
a uniform approach for both defining and proving the on-line and off-line parameterized partial
evaluation. More specifically, V

1. We define a core semantics [JM76, JN90] which consists of semantic rules, and uses some un-
interpreted domain names and combinator names (Section 3). This semantics forms the basis
for all the semantic specifications defined in the paper. In particular, we define an instru-
mented semantics that extends the standard semantics to capture all function applications
performed during the program execution (Section 4). In essence, this semantics corresponds
to a minimal function graph semantics [JM86]. Using other interpretations for domains and
combinators, we define the on-line parameterized partial evaluation semantics (Section 5),
the facet analysis and the specialization semantics (Section 6). The advantage of a factorized
semantics is that different instances can be related at the level of domain definitions and
combinator definitions.

9. We use the technique of logical relations [Abr90, JN9O, MS90] to prove the correctness of
parameterized partial evaluation semantics. Logical relations are defined (1) to relate the
on-line parameterized partial evaluation semantics to the instrumented semantics, and (2)
to relate the facet analysis to the on-line semantics. Since all these semantic specifications
are just different interpretations of the core semantics, their relations can be defined locally
by relating their domains and combinators. To do so, we use facet mapping to define the
logical relation between the basic domains of two specifications. We then extend the definition
to specify the relationship between the interpreted combinators. The resulting proofs thus
conform closely to our intuition about the relations between these semantics.

1The binding-time information are provided by the user, and therefore its derivation is mot included in the
semantics. ’

3. We show how the specializer for off-line parameterized partial evaluation can be systematically
and correctly derived from its on-line counterpart, using the information collected by the facet
analysis.

Lastly, we note that since conventional, on-line and off-line partial evaluation is subsumed by
parameterized partial evaluation, its correctness directly follows from our results.

Notation

Most of our notation is that of standard denotational semantics. A domain D is a pointed cpo — a
chain-complete partial order with a least element Lp (called “bottom”). As is customary, during
a computation Lp means “not yet calculated” [JN90]. A domain has a binary ordering relation
denoted by Cp. The infix least upper bound (lub) operator for the domain D is written Up; its
prefix form, which computes the lub of a set of elements, is denoted | Jp. Thus we have that for all
deD, LpCpdand LpUpd=d. Domain subscripts are often omitted, as in L U d, when they
are clear from context.

A domain D is a lattice if for all z, y € D, z Uy and z My exists, where M is the infix greatest
“lower bound (glb) operator for D. Any lattice D has a maximum element T (called “top”) such
that for all d € D,d Cp Tp and Tp Nd = d. A lattice D is complete if | | X and X exist for
every subset X C D. A domain is flat if all its elements apart from L are incomparable with each
other. Analogously, a lattice is flat if all its elements apart from L and T are incomparable with
each other.

The notation “d € D = --” defines the domain (or set) D with “typical element” d, where ---
provides the domain specification usually via some combination of the following domain construc-
tions: D, denotes the domain D lifted with a new least element L. P(D) denotes the powerset
domain whose least element is the empty set, and whose partial-order relation is the subset inclu-
sion. D; — D, denotes the domain of all continuous functions from Dy to Dz. . D; + D2 and
D; x D, denote the separated sum and product, respectively, of the domains D; and D;. D1 ® D2
denotes the smashed product of the domains D; and D,; its elements are defined by the function,
smashed, such that: '

smashed : D; x D - D;®D,
smashed(d,e) = (d1,d3) if (di# Lp,)and(d2# 1p,)
1lp,ep, otherwise

All domain/sub-domain coercions are omitted when clear from context.

The ordering on functions f, f' € Dy — D is defined in the standard way: f C fle
(Vd € Dy) f(d) C f/(d).. A function f € D; — D, is monotonic iff it satisfies (Vd,d' € D1)
dC d' = f(d) C f(d"); it is continuousif in addition it satisfies f([1{d;}) = LI{f(d:)} for any chain
{d;} C D;. A function f € D; — D, is said to be strict if f(Lp,) = Lp,. An element d € D is
a fizpoint of f € D — D iff f(d) = d; it is the least fizpoint if for every other fixpoint d', we have
that d C d’. The composition of function f € D; — D, with f' € D, — D3 is denoted by flof.

Aﬁgle brackets are used for tupling. If d = (dy,...,dn} € D1 X -+ X Dy, then for all i €
{1,...,n}, d|i denotes the i-th element (that is, d;) of d. For convenience, in the context of a

4

smashed product, that is,d € D1 ® ---® Dq, d* denotes the i-th element of d. Syntactic objects
are consistently enclosed in double brackets, as in [e]. Square brackets are used for environment
update, as in env[d/[z]], which is equivalent to the function Av . if v = [z] then d else env(v).
The notation env[d;/[z;]] is shorthand for env[d;/[z1],...,dn/[2x]], Where the subscript bounds
are inferred form context. “New” environments are created by .L[d;/[z;]]. Similar notations are
also used to denote cache, cache update and new cache respectively.

The paper describes three levels of evaluations: standard evaluation, on-line partial evaluation
and off-line partial evaluation. A symbol s is noted § if it is used in on-line partial evaluation and
5 in off-line partial evaluation. Symbols that refer to standard semantics are unannotated. For
generality, any symbol used in either on-line or off-line partial evaluation is noted 3. Finally, an
algebra is noted [A; O] where A is the carrier of the algebra and O a set of functions operating on '
this domain. All operations of an algebra are assumed to be continuous.

2 The Abstraction Methodology

As mentioned in the introduction, parameterized partial evaluation aims at specializing programs
with respect to both concrete values and abstract values. Abstract values denote static properties
" of actual values occurring at run-time. Computations over these abstract values are defined by
abstract versions of primitive functions operating on abstract domains.

To ensure the correctness of the abstract computations, it is necessary to relate an abstract
algebra to the one from which it is abstracted. Because we address both on-line and off-line
partial evaluation, we need to relate algebras defined at three different levels — listed in increasing
abstractness: standard semantics, on-line partial evaluation and off-line partial evaluation. Algebras
defined at these levels are respectively called semantic (or concrete) algebras, facets and abstract
facets. In this section, we describe the abstraction methodology used to relate these algebras. Then,
in Section 5.1 and Section 6.1, we instantiate this methodology to define algebras used in on-line
and off-line partial evaluation, respectively.

Relating an algebra and its abstraction consists of relating their domains and relating their
operators. Using abstract interpretation [AH87, J N90], 2 domain and its abstraction can be related
by an abstraction function. This function is both strict, monotonic and L-reflecting. (A function
f: A — Bis L-reflecting if fa = 1p = a = L,). Relating two operators consists of relating
their respective domains and codomains. To do so, it is convenient to classify the operators as
follows: An operator is closed if its codomain is the carrier of the algebra. It is open otherwise.
Intuitively, an abstraction of a closed operator is passed abstract values and computes new ones,
whereas an abstraction of an open operator uses the abstract values to yield a constant.

In standard semantics, actual computations are performed in the domain Values containing
the basic values. In on-line partial evaluation, actual computations are performed using constants,
i.e., textual representation of the basic values. The domain of constants is noted Values. It is
constructed by adding elements L —~ and T == to the set of constants denoted by Const;

LT and T.—~ are respectively weaker and stronger than all the elements of Const. In off-
alues Values

line partial evaluation, actual computations are performed over the binding-time domain Values,

which is composed of the binding-time values Siatic and Dynamic, lifted with a least element?

Ly, This domain forms a chain, with ordering L —— C Static & Dynamic.
alues Values

Domains Values, Values and Values are related by the abstraction functions 7 and 7 defined
as follows:

-~ —— ~ —— ——
T : Values — Values T : Values — Values
T(z) = 'LValue: 2f = vaah‘” : T(z) = Values ’f z= 'LValues

Static if z € Const

-1 therwi
K=H(z) otherwise Dynamic otherwise

where -1 is a monotonic semantics function that converts a basic value to its textual represen-
tation. Because both the domains of 7 and 7 are sum of some basic domains, these abstraction
functions are actually families of abstraction functions indexed by their summands.

Let o = {ap : B; — B';} be a family of abstraction functions, [A; O] and [A’; O'] be two
algebras and a4/ * A — A’ be an abstraction function. Then, ayr : [A;0] — [A’; O] is called a
facet mapping, and is defined as follows:

Definition 1 (Facet Mapping) au : [A; 0] — [A’;0'] is a facet mapping with respect to o’ = {ap: :
B; — B';} if and only if

1. A’ is a complete lattice of finite height.

2. Vp' € O/, p’ is monotonic.

8. Ifp € O is a closed operator, then p’ : A’ — A’ is ils corresponding abstract version.
4

Ifp € O is an open operator with functionality A — B;, where B; is some domain different from A,
then p’ : A’ — B/; is ils corresponding abstract version.

5. Vp € O and its corresponding abstract version p’ € O’
agrop C poaar if pis aclosed operator
o’op C poaa if pis an open operator with
functionality A — B;

Note that for simplicity, abstraction function o' will not be indexed by a codomain when the
context is clear.

A facet mapping g : [A; O] — [A’; O] induces a logical relation ([Nie89, IN90]) Cao,, defined
as follows: :

1.Ya €A, Yd €EA": a Ca, ¢ © aga) Ca d.

2. Letp € O and p’ € O’ be closed operators. Then,
PpCa, P © VYa€ A, Vd'e A’ : a Co, a = p(a) Co, P(d)

3. Letp € O and p’ € O’ be open operators and p : A — B; for some domain B;. Then,
pPCo, P & VYae A, Vd e A : a Co, a = p(a) Co p'(a’)
whereVb €B;, VY €EB): b Cu V & agg(b) Ca b

2Note that this three-point domain refines the usual two-point domain {Static, Dynamic} in that it allows to
detect functions in a program that are never invoked, and simple cases of non-terminating computations. Without
the value L —~ , these cases would be considered as Static.

6

Const Constants

c €
z € Var Variables
p € Po Primitive Operators
f € Fn Function Names
e € Exp Expressions
e = CIIlp(el,'“,en)lf(cl,"-,e,.)lif31 ez €3
Prog == {fi(z1,+-,2n) = &} (f1 is the main function)

Figure 1: Syntactic Domains of the Subject Language

3 Core Semantics

We begin the discussion of semantic specification of parameterized partial evaluation by presenting
a core semantics. The subject language is a first-order functional language. Figure 1 defines its
syntactic domains. The meaning of a program is the meaning of function f;. We assume all
functions (and primitive operations) have the same arity.

The core semantics is defined in Figure 2. It is used as a basis for all the other semantic
" specifications defined later, and it factors out the common components of those semantic spec-
ifications. This semantics is composed of two valuation functions: £ and A. Briefly, € defines
the standard/abstract semantics (called the local semantics) for the language constructs, while A
defines a process which collects information globally (called the global semantics). The structure of
the core semantics is similar to that defined by Sestoft for binding-time analysis [Ses85]. A similar
structure is also used in [HY88] for defining collecting interpretation.

The core semantics is defined by semantic rules. It uses some uninterpreted domain names
and combinator names. A particular semantics is thus defined by interpreting these domains and
combinators appropriately, as we shall see in the remainder of this paper.

4 Standard and Instrumented Semantics

4.1 The Semantics Specifications

In Figure 3 the core semantics is instantiated to define the standard semantics of the language.
As is customary, we will omit summand projections and injections. Only interpretation of the
valuation function € is provided since the definition of standard semantics does not require collecting
information globally. For a function f, “strict f” is a function just like f except that it is strict in
all its arguments. '

In order to investigate the relationship between the standard semantics and the partial evalua-
tion semantics, the standard semantics is enriched to capture information about function applica-
tions. The enhanced semantics, called instrumented semantics, collects all function calls performed
during the standard execution of a program. Function calls are recorded in a cache, which maps
a function name to a set of standard signatures. A standard signature consists of the value of the
arguments to a function application. This is depicted in Figure 4. '

7

1. £ : Exp — ECont where ECont = Env — Resulty
£[c] = Consiz [c]
f[z] VarLookupz [£]
Elp(er, --,en)] = Pﬂmor [F1Eleil, . - Elea])
8[:}' e1 e2 e3] = Condy (8[c1] Ele2], E[ea]) ‘
Elf(es,---ren)]l = APP- [f1ELe1], .-, Elen))
where Consty : Const — ECont
VarLookup— Var — ECont
PrimOpz : Po — ECont" — ECont
Condz : ECont"’ — ECont
App— Fn — ECont™ — ECont

2. A : Exp — ACont where ACont = Env — Result
Afc] = Constx [c]
Alz] = Va.rLookup— [=]
Alp(er, -+ ea)] = Prmep— [7] (Alesl,-. ., Alen))
A[lf e €2 63] Cond— (]fﬂ], I[CQ],];_[63]) (f_[_cﬂ) _
Alf(er,--,en)] = APP— [f1 Ale1l, .-, Alea]) (Elerl,..., Elen])
where Const : Const — ACont
VarLookup— Var — ACont
PrimOpz : Po — ACont™ — ACont
Condx : ACont® — ECont — ACont
App— : Fn — ACont® — ECont™ — ACont

Figure 2: Core Semantics

¢ Semantic Domains
v € Resulte = Values = Int + Bool
p € VarEnv = Var — Values
¢ € FunEnv = Fn — Values™ — Values
Env = VarEnv x FunEnv

e Valuation Functions
Eprog : Prog — Values™ — Values
EProg [{ fi(z1,-+-, ""‘) = ei}l{n,..., ”") =
¢ Lf';] (v1y...,vn) whererec ¢ = Llstrict {A(v1,- -, vn) - ELed ((Llvr/zx]), 6)}/ fi]
E =€ .

¢ Combinator Definitions
Conste [c] = A(p,¢) - K [c]
VarLookupe [z] = A(p,) - rlz]
PrimOpe [p] (k1,-.-,kn) = Ao, 8) . Kplp] (k1(p,), .-, kn(p, 6))
Condt (kl) k?: k3) A(I’:) kl(Pr¢) hand kQ(P) ¢)s kS(Pv)
Appe [f] (k1y.-- kn) = X(p,9) - 81f1 (F1(p, 8),-. -, Fn(p)9))

Figure 3: Standard Semantics

¢ Semantic Domains
v € Resulte = Values = as in Figure 3
p € VarEnv = as in Figure 3
¢ € FunEnv = as in Figure 3
o € Resulty = Cachey = Fn — P(Values™)

e Valuation Functions
Eprog : Prog — Values™ — Cachey
Eprog [{ filz1,+++,2n) = €}l v1,-.. o) = h(L[{{v1,...,0n)}/£])
whererec k(o) o U h.(U{A [ei] (L[vx/zx))¢ | (v1,...,vs) € o[fi], VLfi] € Dom(a)}) .
L[strict (A(v1,+++,va) . € [ei] (L[vg/zk]) 8)/ fi] .

i

E=¢
A=A

¢ Combinator Definitions
Consts [c] = as in Figure 3
VarLookupe [z] = as in Figure 3
PrimOpe [p] (k1,...,kn) = as in Figure 3
Condg (k1, k2, k3) = as in Figure 3
Appe [f] (K1, .., kn) = as in Figure 3

Consta [c] = Ap,¢) . (Af.{})
VarLookups [z] = A(p,8) . (Af.{}) n

PrimOpa [7] (a1,...,82) = A(p,4) . Uai(p, 8)
Cond4 (ah az, a3) k= '\(pr ¢) . al(':)1¢) u (kln(Py¢) hd a?(p:¢): aS(P,é))
Appa [f] (a1,--os 8n)(Eiyeney Bn) = Mp,8) . | |aile, @)U (G €{l,...on} st vi=L—(Af.{}),

i=1 -L[{(vl)'“:v")}/fl)
where v; = ki(p,¢) Vi € {1,---,n}

Figure 4: Instrumented Semantics capturing function calls

4.2 Correctness of Instrumentation

~ Because the local semantics is exactly identical to the standard semantics, we only need to show
that the instrumentation part of the instrumented semantics is correct. That is, the instrumented
semantics captures (in the cache) all the calls performed during standard evaluation. Since the
language we consider is strict, only those standard signatures that represent function calls with
non-bottom argument values are collected in the cache. We shall refer to these function calls as
non-trivial calls. - '

Theorem 1 (Correctness of Instrumentation) Given a program P in our first-order language,
let P be evaluated with input (vy,...,v,). For any user-defined function f in P, if f is called with
non-bottom argument (v}, ...,v,) during the standard evaluation, then (vi,...,v) € olf].

The proof is given in Appendix A.

5 On-Line Parameterized Partial Evaluation Semantics

In this section, we instantiate the facet mapping to on-line partial evaluation. Using logical relation,
we then present the specification and correctness proof of on-line parameterized partial evaluation.

5.1 Facets and Product of Facets

An abstract algebra used in on-line parameterized partial evaluation is called a facet. Formally,

Definition 2 (Facet) A facet for a semantic algebra [D; 0] ié an algebra [ﬁ, 6] defined by a facet mappin§
ag: [D; O] — [D; O] with respect to 7.

(Abstraction function 7 is defined on page 6.) This definition implies that when an open facet
operator yields a constant for some abstract values, this constant is the textual representation of
the value produced by the concrete operator called with the corresponding concrete values, modulo
termination (see [CK91b]).

' Multiple facets can be defined for a concrete algebra; each facet captures specific static property
(i.e., signs, types, ranges, etc.). They are bundled together to form a product of facets defined as
follows:3

Definition 3 (Product of Facets) Let &; : [D; 0] — [ﬁi; 6‘] fori€{1,...,m} be the set of facet map-
pings defined for a semantic algebra [D; O]. Iis product of facets, noted [D;)], consists of two components:

m
1. A domainD = D'®---® bm = Hf)‘ ; it is the smashed product of the facet domains;

i=1
2. A set of product operators O such that Vp € O and its corresponding product operator &p € Q,

(a) if p € O is a closed operator, then

p:D* —» D, and

Wy . Dn —D

-~ -~ m -~ -~
Gp = A1, -+, 8n) - [[BiC81, -+, 60)
- i=1

(b) otherwise, p € O is an open operator

p:D* — D’ for some domain D/, and

@p D —»Vall-t\{es

Gp = A@1,-onbn) - (FF (L m} st di = Lm) — Lyam,

(3j €{1,---,m} st.d; € Const) = d;, T =~
where d = (p1(8L, -, 8), ..., Bm (80, -+, 8™))

3This is not a “product of facets” in the algebraic sense, since the result of an operation performed at one facet
may have an effect on other facets in the product.

10

Domain D is partially ordered component-wise. The smashed product construction is used for
this domain to ensure the notion of consistency explained below. Furthermore, we notice that all
operators defined in the product of facets are monotonic [CK91b].

Although facets of a product are defined independently, the facet values with respect to which
a program is specialized must have some consistency. This notion of consistency can be motivated
by the following example. Suppose that two facets are defined for the integer algebra: one facet
describes the sign of an integer value, and the other one indicates whether the value is odd or even.
Then, a value such as (zero, odd) should not be considered as a valid facet value since zero is an
even number. Formally,

Definition 4 Let [’13, ﬁ] be a product of facets of an algebra [D; O];S € D is consistent if and only if

m
ﬂ{d €D | dCg, &'} is neither the empty set nor {1}.

i=1

In essence, the above definition implies that a consistent product of facet values represents
an actual subdomain of D. We assume that all product of facet values provided to the partial-
. evaluation process are consistent. Technically, note that the smashed product construction is used
to conveniently eliminate inconsistent values such as (L, odd).

The notion of facet can also be used to capture the traditional partial-evaluation behavior of
primitives. It is called the partial-evaluation facet. More specifically, for a given semantic algebra,
the corresponding partial-evaluation facet will define its standard semantics whenever it is passed
constant arguments. The partial-evaluation facet is defined as follows:

Definition 5 (Partial-Evaluation Facet) The partial-evaluation facet of a semantic algebra [D; 0] is
defined by the facet mapping & o, ¢ [D; O] — [Values; 0]

1. 3VA : D — Values
. alues -
&om, = T (as defined on page 6)

=1 _
where d; = K[d] Vi€ {1,---,n}

5.2 The Semantics Specification

Figures 5 and 6 display the on-line parameterized partial evaluation semantics. The seman-
tics aims at partially evaluating a program with respect to a set of static properties (including
constants). It returns a residual program consisting of the specialized functions created at partial-
evaluation time. We assume that the partial-evaluation facet always exists during partial evaluation. '

11

¢ Semantic Domains s
5 € 5D = Eﬁ, where ﬁj = (ﬁ} ®:-Q® ﬁ;‘) and s is the number of basic domains
=1
€ RcsultA = Res = Exp x 5D
€ VarE'nv = Va.r — Res
Env=VarEnv x FunEnv

{3

€ FunEnv=Fn— Res;' — Res
€ Resultz= Cachex=Fn — P(Transf x Res™)

o
Q 0

¢ Valuation Functions
£pr°, Prog — Res™ — Prog, .
Eprog [{fi(z1,-++,2a) = e}] (81,---,8) = MEkProg (71(-|-[{(5,f’1»---»")n)}/.fx]))‘?S
whererec h(3) = &U R(UHA [e] (Llsk/zx), 8) | (=, 31,...,6n) € 51f, VIfi] € Dom(5)})
- ¢ = L[strict (A\($1,++,9n) . £ [ei] (.L[vg/a:k] ¢))/f.]
E=¢
A=14
¢ Local Combinator Definitions
Constz [c] = A(5, é). K[
VarLookupA [z] = A(5,9) -5 [z]
PrimOpz [,3] (B, Ba) = A5, $) . Kp [7] (k1(5,9),..-, ka(5,9))
Cond; (k1,k2,k3) = A(p,cﬁ) (it e Const) — ((IC(vlll)) — d2,93), ([if ;i1 vzll 9311], 9202 U 93]2)
where ¥ = k,(p,) V:e{l 2, 3}
A [f] (Bs,. k) = MB6) . (FEIDA (Bi(81), ..., bt(#a)) =
hd ¢ [.f] (v{, 1”")’ ([f-ip(elr ,CZ)],TE)
where % = ki(p,¢) Vie{l,...,n}
fep = SpName([f],ﬁ{,...,t’:ﬁ,
(e¥,...,ely = ResidArgs ([f], (b1,---,bn), (0111,...,9al1))
(91,1 9n SpPat ([f],(%1,-. »”n) (b1,..-1ba))
(b1,...,ba) (Ft [fNDi2 (bt(vl) bt(vn))

° P;émitive Functions
K : Const — Res
K[= ([.(a5.(d), ---,85.(d)) whered = K[]e D

I?Z:Po—»Rfs"-»Rei R

Kp [p] ((e1,61),---, (en, 8n)) = (5 J—*)-*(-Lszp,-l- >) ~
(8 € Const) — (8, (aAl(d), ,agm(d)))» ([p°(e1, -1 en)], 8)
where g D® - D

§ = ap‘(gla"')gu)
i = K@)
Kp [po] ((e;rsl)»---r(einsn)) = (d = V:l.u\u hd (-I-Ezpv-L)

d € Const — (d, (a?,!(d), 8 ())),
([po(el) !en)]y(Tsl”"‘, T,‘D‘I,.))

where p° : D* — D’

a,.g?,,...,fn)

K(d)

a A,
nn

Figure 5: On-Line Parameterized Partial Evaluation Semantics — Part 1

12

e Global Combinator Dgﬁnitions
Const [c] = A4, ¢) - (A‘f -
VarLookup 2 [z] = M56,¢)- (AF-{})

PrimOpz [#] (d1,-.-,42) = X(54) - | |a(5.9)
. . =1 . R - . .
Cond (d1,82,83) b = A(5,9) - &1(5,) U8l € Const — _(K(8) — 82(5,9), a3(p, 9)), 62(5,) L aa(p, 4)
where (e1, (81,...,6T)) = k1(p, é)

App: [f] (&1’“" &ﬂ) (El»"') E") = X(ﬁ»é) . (uas(ﬁ,é))U&
where ﬁi‘: Ei(5,9) Vie '{1»"':2}
c = ((Fi[f])ll(bi(fu),...,bt(z‘)n)) =u)—
L[{(u, %1, ..., 9n)}/fl, L[{(s,91,..-,90)}/f]
(ﬁi,...,ﬁn) = SpPat ([f]',(j;l""’{’",).l (bg,...,bn))
(b1,..-,bn) = (Ft [FDI2 (b2(D1),...,bt(3n))
¢ MkProg Definition
MkProg 6 ¢ .= { fiP(z1,...,2x) = 9l1|V¥(s,91,...,9n) € 6[fi], V[f:] € Dom(5)}
where fF =;SpName([f;],z‘:},...,i,.)
o = £ [ei] (L[ox/zx),8)
(z1,...,zx) = ResidPars ([£:, #141,..., 9al1)

Figure 6: On-Line Parameterized Partial Evaluation Semantics — Part 2

Thus, because a partial-evaluation facet is defined for each semantic domain, it will be ass’ig\ned to
the first component of every product of facets. A sum of these products of facets is noted SD; each
summand corresponds to a semantic algebra. For brevity, We write T g5 to represent the maximum

value of any summand of SD.
" Domain Exp is a flat domain of expressions. Domain Result; is ordered component-wise.

Besides using [] to denote a syntactic fragment, we also use it to construct expressions. This
operation is assumed to be strict in all its arguments (i.e., the subexpressions).

The semantics consists of three valuation functions: I3 , A and fp,og. Function & defines the
partial evaluation of an expression. It produces a pair of values ¥ € Res = Exp X SD, where
the first component is a residual expression and the second component is a product of facet values.
The partial-evaluation facet is assumed to be the first component of a product of facets.

One of the central issues in partial evaluation of functional programs is the treatment of function
calls. Basically, there are two kinds of transformation performed in partially evaluating a function
call: unfold and specialization. The latter includes suspending the call, and specializing the function
with respect to the value of the known (static) arguments values. Exactly how a function call is
to be treated can be determined by the user, or automatically by some termination analysis (eg.,
[Ses88]). To capture this piece of decision making, we introduce the notion of filters.

We associate a filter specification to each user-defined function in a subject program. A filter
consists of a pair of strict and continuous functions. The first function determines how to transform
a function call (unfold or specialize). The second function specifies how a called function is to be -

13 -

specialized (it is not used when the call is unfolded): it determines which argument values are
to be propagated. (Only arguments with constant va.lues are consxdered for propa.gatlon) The
functionality of a filter is (Values - T) x (Values — Values") where Values is the binding-
time domain and domain T contains two values: u and s, which stand for unfolding and specializing
respectively. This strategy has been developed for the partial evaluator Schism [Con88, Con90].

Domain T is ordered as follows: u C s. This ordering reflects our intuition about the termination
behavior of these transformations: unfolding a function call will terminate less often than its
specialization. This means that replacing the unfolding of a call by its suspension cannot cause
non-termination; however, the converse is not true. A detailed discussion on the treatment of calls
can be found in [Ses88], for example. :

For a function f, the two components of its filter are denoted by Ft[f]!1 and Ft[f]|2 respec-
tively. When a function call is suspended, a specialized function will be created. The specialized
function name is denoted by f;?. It is uniquely identified by two components: the name of the
original function f; and the specialization pattern.?

Function A collects partial-evaluation signatures associated with the user-defined functions.
A partial-evaluation signature is created when a non-trivial function call is performed at partial-
evaluation time. It consists of two components: A transformation tagindicating the transformation
* performed on the function, and the argument values of the application. For function specialization,
the partial-evaluation signature is a specialization pattern.

All signatures are recorded in a cache. Formally, it is defined as
Cache; = Fn — P(Transf x Res™).
The cache is updated using a l.u.b. operation eqmvalent to the set union. That is, Voi,02 €
CaChe_A, oyUoy = Af (Ul [fB u o?l[f]])

Lastly, it is worth noticing that, just like a binding-time analysis, fprog performs a fixpoint
iteration to obtain a cache. Such fixpoint iteration can be viewed as a semantic specification of
the pending list technique used in existing partial evaluators. The cache produced will be used by
MEProg to generate the residual code for all the specialized functions.

The auxiliary functions used in the semantics are listed below. Note that all these functions
are continuous:

1. Dom returns elements in the domain of a function.

2. SpName produces a specialized function name from the original function name and the
argument pattern. It has the functionality:

SpName : (Fn x Res"™) — SpFn

where SpFn is a flat domain of specia]izeci function names.

4The specialization pattern describes information about the arguments used in specializing the function. Each
argument value is represented in the pattern by an expression and a product of facet values. The expression is either
a constant (which is to be propagated at function specxa.hza.txon) or a parameter name (representing an unknown

argument). Thus, the specialized pattern is defined as: (Exp x S'D)" or simply, Res™.

14

3. it : Res — Values returns the binding time of a residual pair. It is defined as bi(e,8) = 7(81).
4. If a function call is to be specialized, then

(a) For those arguments that are not propagated at function specialization,

e ResidArgs : Fn X Values® x Exp"® — Exp™ (for m < n) returns a tuple of
residual arguments;

o ResidPars : Fn x Exp® — Var™ (for m < n) returns a tuple of parameters
replacing these residual arguments in the partial-evaluation signature.

(b) SpPat : Fn x Res" X Values — Res™ returns the specialization pattern.

SpPat = (S, (81, -+ -, 9n), (B1y-- -5 Bn)) - (A
where Yi€ {1,...,n}, _
o = (e, (di, 83,...,8M)
(¢!, d;) = b; =Static — (ei,81), :
.b,-‘:::Dyn?mic — (z,‘,Tvm’), (‘LE’?"LVTI;:)
b o= (eq, (6}, 62,...,6T))

where zi,...,Zn are the parameters of function f.
We state here without proof the following two lemmas:
Lemma 1 & is continuous in all its arguments.

Lemma 2 A is continuous in all its arguments. 7

5.3 Correctness of Partial Evaluation Semantics

Let us first restate a theorem from [CK91b], which asserts that any constant produced by par-
tially evaluating a primitive call is always correct with respect to the standard semantics, modulo
termination.

Theorem 2 Let ['5A, Q] be a product of facets (including the partial-evaluation facet) for an algebra
[D;O]. Letc = (Elp(z1, -+ z))(L[([=], &) /2], L)) 11, and v = Elp(z1,+ - za)l(Lldi/ i), L)

where d; € ﬂ{de D | dCg. 3{},forie{l,...,n}. Then,
D-

j=1 i

(c€ Const) andv# L = c=T7(v).

Before proving the correctness of the semantics, we can already show that the parameterized
partial evaluation semantics subsumes standard evaluation in the following sense:

15 -

Theorem 3 Given a program P in our first-order language. Suppose that (1) the input to this
program is completely known at partial-evaluation time, and (2) all function calls in this program
are unfolded during partial evaluation, then for any ezpression e in P,

#E [el(p9)) = (€ [el(3, I

where both ¢ € FunEnv and 43 € FunEnv are ﬁzed for the program; pE VarEhv, andp € VarEnv
is defined as:

p =2l (*(P[[z]l),(%;(PIIfB]l)v--,&5".(P[[$]l))) for (pl=]) € D.

The proof is given in Appendix B.

Since an abstract value used during partial evaluation represents a set of concrete values, a
partially known input (%1, ..., 7s) to a program during partial evaluation represents a set of concrete
inputs to that program. That is,

(1, ...,n) represents the set {(vy,...,vn) | &A_(v,-) =4, i€ {1,...,n}}

where, for each v; € D;, the corresponding abstraction function is a5 (for i€ {1 .,n}). The

safety criterion described in Section 1 (Equation 1) can be expressed i m our semantic specification
as follows: The partial evaluation of a program with input (?i,.. .,¥n) is correct if it produces
a cache that captures all possible non-trivial calls performed during the execution of a program
(under the instrumented semantics) with input taken from the set represented by (%1,...,%,). This -
can be shown by relating the local and global semantics to their respective counterpart in the

instrumented semantics. That is, we define a logical relation RE relating £ and £, and a loglca.l
" relation RA relating A and A. Notice that RE _telates the results v and 9 computed by £ and £
respectively. Since 4 = (e, 8) € (Exp x 8D), RE is composed of two relations, RE and_ ‘R,“:’ that
relate a concrete value v to e and § respectively. It turns out that the correctness of 7251 depends
on that of ’R,A At the same time, the correctness of 'R,A depends partly on the correctness of 'Rg’
Therefore, we shall prove the correctness of ’R)g2 then that of R‘A and finally that of Rel Lastly,
we combine the result of RE and RE to express the correctness of RE.

5.3.1 Correctness of R&

In this section, we define and prove the correctness of the relation 725’ between the result of £ and
the second component (the product of facets) of the result of £.

Definition 6 (Relation Cs_.) For any value v € D and 5 € SD withé = (51, .. .,5"‘),
SD

vCs b & Vie{l,...,m}, vCan 5.
SD Ds

16

m
Since (v Caey) = (/\l(v sz, 8*)), Loz is a logical relation between Values and SD
=
(assuming that the values have been injected in their respective sum domain).

Definition 7 (Relation REs) RE is a logical relation between domains of 8 and £ defined by:

v ngcaultA P & v .C.&A 512
~ £ SD -
P Rf’"”'s’w ﬁ had sz] € Var’ p[z] Rizesult? ﬁ[z]l
¢ RS, pn, ¢ & VIfl € Fn,Vie{l,...,n},Yv; € Values,Vi; € Res,
. n -) -
A R,) = S8 --190) Rrutey UG, 0)

=1
(d;,ég) 'R’%; xD3 (JI’J2) A4 dl 'R'%x Jl L\ dz 'R’sDzz (iz -~
FREG _p, f & Vde D,Vde Dy, dRG d = f(d)RE, 7).

Lemma 3 Given alprogram P in our ﬁrst-brder language. Let ¢ and é be the two function en-
. vironments for P defined by the standard and the partial evaluation semantics respectively. Then

¢ R% §.

Proof : We need to show that V[f] € Fn,Vi € {1,...,n},Vuv; € Values, V9; € Res,
N\ R® %) = $[fl(v1,. .., vn) RE $[f1(B1,- -+) Tn)-
i=1)

Since this involves the recursive function environments ¢ and @, we prove the relation using fixpoint induction
on Kleene’s chain over ¢ and ¢, with the least element (in this proof, i ranges over all user-defined functions):

(o, o) = (Ll(strict (A(v1,.-.,¥n) - Lvatues)/fi;
L[(strict (A(@1, - -+, 9n) - (LEzp, L))/ Fil)-

It is true trivially that ¢o RE? 0.

R Suppose that RE’ is true for some element (¢n, $n) in the dscending chain, we would like to prove that
R is true for ($n+1, $,,+1) where :

($n+1,Pnt1) = (Ll(strict {A(v1,...,vn) . {[ei](l[vk/n],?n)}/fi],
L(strict {A(B1, .-+, 9n) - Ele)(Lox/21], 8n)}/ FiD)-

That is, we want to show that
V[f] € Fn,Vj € {1,...,n},Yv; € Values,Vi; € Res,

A BB 35) = banil A0 0) R dasil G, r).

=1

The proof is by structural induction on e. It suffices to show that ’Ra holds for all the corresponding pa.irs '
of combinators used by £ and & respectively. :

17

e Conste : RE? is true trivially by comparing K and K.
e VarLookupe : by structural induction.

e PrimOpe : PrimOpg R PrimOpg holds by structural induction and a case analysis over the values
produced by PrimOp;. Proof is omitted.

e Condg : Conde 'R.?’ Cond; holds by structural induction and a case analysis over the values produced
by i’l (4, 4311)

e Appe : For any user-defined function f, all the corresponding arguments of Appe and App; are related
by REs (by structural induction hypothesis). '

It is easy to show that Ra holds when the function is specialized, since the maximal element of
domain SD is returned. For the case when the function is unfolded, Appg{f] (k1,..., kn) is reduced

to $ﬂ[f] (D1, - -, 9n), while Appe[f] (k1,-.., k,) is reduced to ¢n[f] (v1,.- .,vn). Since ¢, ’R?’ bn
by fixpoint induction hypothesis, we have '

6aLf1(01, .-, vm) RE* $nlf1(51, .-, Bn)-

Hence, Appe ‘R?’ Appz:.
Hence, ¢ RE’ 43 This concludes the proof. . o
Theorem 4 (Correctness of Local Semantics — 2nd Component) £ R £.

Proof: From Lemma 3. ‘ u]

Before we close this section, let us make an observation about the relationship between the first
and second components of a value produced by €.

Observation 1 During partial evaluation, all values & € Res satisfy the following conditions:

e 91 € Const A (3]2)l1 € Const & 8|1 = (]2)l1
o 9ll=1g,, & (312){1 = J'V:I?u'
The above observation comes directly from the definition of Kp in Figure 5.

We say that a value & € Res is R-consistent if (1) it satisfies one of the above conditions and
(2) its second component (product of facets) is consistent, as defined in Definition 4. This fact is
used in the next section.

18

5.3.2 Correctness of the Global Semantics

In this section, we prove the correctness of the global partial evaluation semantics (1) by relating

the semantics of A with A using logical relation ‘Rz, and (2) by showing that all the non-trivial
calls performed at standard evaluation are captured by A.

Since the result of both A and A is a cache, RA should relate caches. That is, whenever a
standard signature for a function is recorded in the cache produced by .4, there exists a logically

related partial-evaluation signature for that function in the cache produced by A. Formally,

Definition 8 (Relation 'R,;) RA isa logical relation between domains of A and A defined by:
v 'Rﬁuu,,? 4 <& (9 1is R—consistent) A (v gag; 9]2)

n
(‘U]_, s vﬂ) Ré"ran:} X Res™) (t’ ﬁl’ e a") < /\(v*‘R'IAic:ult?ﬁ‘)
i=1

o Rﬁm‘“: & & V[f] € Dom(0),Vs € o[f],35€ 6[f}, s 'R{}mm! x Resn) §
P 'R'.\}arEnu ﬁ < V[:L‘] € Var, P[:B] Rﬁesult? ﬁ[z]
¢ Rfinpne 8 © VIfl€eFnVje {1,...,n},Vv; € Values, Vi; € Res,

n

A R) = #1101 %0) Rty S 90)
j=1

(dh(iz) Ré‘ng (31,32) & dy 'Rﬁl Jl /l) Rﬁ: Jz R
fRA p, f & VdeDy,Vde Dy, dRA d = f(d) Rp, f(d)

Note that the R-consistency (Observation 1) ensures that the first component of 9, the residual
expression is consistent with the result of the partial-evaluation facet. Observe that there is no
value in the standard signature corresponding to the transformation tag of the partial evaluation
signature. In fact, a transformation tag for a standard signature could have been obtained by
performing filter computations at the standard semantics level. However, the transformation has
no effect on standard evaluation. Furthermore, since filters are continuous, the transformation -
computed is guaranteed to be more precise or equal to that computed at the on-line level. Thus,
we can ignore this information without compromising the correctness proof. Lastly, we note that

the Lu.b. operation (which is the set-union operation) on caches is closed under RA.

The next lemma shows that all the standard signatures recorded in the final cache produced by
A are “captured” in the corresponding cache produced by A in the sense that they are related by
RA.

Notice that whenever A uses a value ¥ in decision making (combinators Cond 7 and Appz ,
only the value of the partial-evaluation facet is used, as is manifested by the definition of functions
SpPat, bt and Ft. Therefore, only the second component of ¥ is needed to ihow the correctness
of A. Although the first component of ¥ (the expression) is modified by A when dealing with
combinator App g, it should be noted that the modification is exactly identical to the one done in

£, and by Observation 1, the modified value is still R-consistent.

19

Lemma 4 Given a program P in our first-order language. For any & such that £ RZ E, let ¢ and
@ be two function environments for P defined by the standard and the partial evaluation semantics

respectively. For any ezpression e in P, for any variable environments p and p such that pRAB,
Alel(p,8) R* ALel(5,9).
Proof : The proof is by structural induction on e. Firstly, notice that
eRTE = ¢r%4.

It suffices to show that RA holds for all the corresponding pairs of combinators used by A and A respectively.
By structural induction, it is easy to see that R4 holds for constants, variables and primitive calls.

1. Cond4: By structural induction hypothesis, R* holds for the test expression.

(a) If 8! € Const, since k(p,) RA k(5,4), the branch chosen will be the same for both A and A,
and by structural induction hypothesis, R4 holds.
(b) Hél=T ,» then all non-trivial calls in both branches are recorded by A. Again, by structural

induction hypothesxs, ’R,A holds.

- 2. Appa: By structural induction hypothesis, ‘R.A holds for all the arguments to the application. As
for the application itself, if it is recorded by A, then it is non-trivial. By structural induction on the
arguments, the application is also recorded by A. Its transformation tag is either u or s. It is easy to

see that R4 holds when the transformation tag is u. If it is s, R4 holds if Vi € {1,...,n}, %:12C %

where (9!,---,7,) is the result of applying SpPat in A. This is true by the deﬁmtlon of bt, SpPat
and Ft[f]]2.

Therefore, Alel(p,6) RA ALel(5, 4). o

Notice that, for a value 9, there may be more than one value v such that v ’R,A 9. Therefore, the
above lemma shows that given an expression e, A captures all calls within e that may be invoked

under different initial value v with v RA 5. The following theorem uses Lemma 3 to prove that
the final cache produced by the global semantics is “complete” in the sense that it captures all the
non-trivial calls performed during standard evaluation.

Theorem 5 (Correctness of Global Partial Evaluation Semantics) Given a program P in
our ﬁrst-order language. Let & be a valuation function of the partial evaluation semantics such that

£ RAE. Let (v1,--,n) and (B1,...,,) be initial inputs to P for standard and partial evaluation
semantics respectively, such that v;] ’RA #;, Vi €{1,...,n}. Ifo and & are the final caches produced
by A and A respectively, then o RA &

Proof : Firstly, we notice from the definition of fp,-,, that (s, 91,...,9) € 6[f1], just like (vy,.. .yUn) €
c[f1]. Next, & in £p,oy applies A to each partial-evaluation signature in the cache, similar to function A in

EProg. Since L.u.b. operation is closed under R4, ¢ R4 4. a]

By Theorem 1, weﬂknow that o contains all the non-trivial calls performed at the standard
evaluation. Since ¢ R* &, all these calls must be captured by &.

20 °

5.3.3 Correctness of ‘R’.El

We now prove the correctness of the residual expression produced by £ using the relation R& which
relates a residual expression to a concrete value produced by £. Intuitively, a residual expression
and a concrete value are related if the former evaluates (under standard evaluation) to the latter.

This requires “post-evaluation” of the residual expression. Therefore, RE is not simply a relation
between a value and a residual expression; it is a relation between the value, the residual expression
and its “post-evaluated” value. In the following definition, we introduce the notion of satisfiability
to aid in formulating this relation. This notion is similar, though simpler, to the definition of
agreeability used by Gomard in [Gom89]. For clarity, a =, b denotes the equality between a and b,
provided both of them terminate. Of Course,a=b = a=y b. '

Definition 9 (Satisfiability) Let P be a progrem in our first-order language. Let pa € VarEnv be a
variable environment for a residual ezpression such that Dom(ps) = FV(3ll). We say pa satisfies the pair

(v,) if
v=1 g[‘all](Pdr ¢I) A g&;‘; ﬁl21

where v € Values, 7 € Res, and ¢’ is the function environment, defined by the standard semantics, for the
specialized version of program P.

Without loss of generality, we assume that every user-dgﬁned function consists of two parameters
(z; and z3). To show the relationship between £ and £, we must first show that the function
environments they take as arguments are related. The following lemma clarifies this relation.

Lemma 5 Given a program P in our first-order language. Let ¢ and $ be the two function envi-
ronments for P defined by the standard semantics and the partial evaluation semantics respectively.
For any user-defined function f, let pa be a variable environment that satisfies both the pairs (v1,91)
and (vs, b2) with v1,v2 € Values and 91,72 € Res. Then,

S17] (v1yv2) =1 € [(LS] (B, 8211 (par &)

where ¢ is the function environment, defined by the standard semantics, for the specialized version
of P.

Proof : The proof is similar to that described in [Gom89]. The major difference lies in the the fact that
the property of a cache ¢ is used to show the correctness of partial evaluation of function application. This
enables to show the correctness of multiple instances of specialized functions.

Since the lemma involves three functions FunEnuv: ¢, ¢ for program P, and ¢’ for the residual program,
we define the functional ® as

& ($a, ba, 8) = (L[{Mv1,v2) - {[6;;](-1-[0):/21"];‘%)}/1':' |V [£:] € Fn],
LU (51, 8) - ELeid(Loe/2s), 6a)}/fi |V [fi] € Fnl,
L[{A(v) - E[e?)(L]v/=], 60)}/ 1°F | V specialized function fids)}

In this proof, i ranges over all user-defined functions.

21

Let R be the predicate over ® such that:

RE (4, 6, 4')
Y [f:] € Fn, Vv, v, € Values, Y#;,9; € Res, Vpg € VarEnv,
2

/\(pg satisfies (vj,9;)) = @Lfi)(v1,v2) =1 ENBLFi1(51,92))11)(pa, 4)

j=1

RES

mn

The predicate can be proved using Kleene’s approximation over @, with the least element

(do, 450; do) = L[(strict (A(v1,v2) - Lvates))/fi |V [f] € Fn],
L[(strict (M(#1,92) - Lres))/fi |V [fi] € Fnl,
L[(strict (A(v1,v2) . Lvatues)/f*? I v spcczahzed functzon 7))

and the predicate RE: over the n + 1*! approximation being

Rn+1 Zdet Rel(¢n+l;¢n+1;¢n+1)
= v [f,] € Fn, Vv, v, € Values, Vi;,9; € Res, Vpg € VarEnv,

/\Pd satisfies (vj,55) = éns1lfl(v1,v2) =1 EN@nial£i)(51, 92))110 (e, bt1)
= ‘v’ [f.] € Fn, Yv;, v, € Values, Vi, 92 € Res, Vpg € VarEnv,

/\Pd satisfies (vj, ;) = Efed(L[ve/zx], 6n) =1 ELEA (Lo /28], 801110, $41)

i=1

Notice that at any i + 1°* approximation, ¢}, is obtained from the residual program produced by A
and &, both having 43;.,.1 as their function environment. Formally,

Ly = Ll(strict{A v . E[e*P)(L[v/z],)}/ fF | V specialized function f"’ with body e’F]

th

¢’ is derived from cache & produced by A and ¢! is derived from cache &; at the approximation.

Below are properties about &; and ¢;.

Property 1 Vi€ {0,1,...}, &i Ccache Fi41-

Proof : From the result that &;’s are the cache produced by A with function environment &,-
and A is continuous over all its arguments. a

Property 2 Vi€ {0,1,...}, ¢ CrunEnv ¢,+1
Proof Since Vi € {0,1,...}, 4; is obtained from the residual program, which is the result

of 5,,.0, Inspecting the function definition of 8,,,-,, shows that it is continuous over all its
arguments. In particular, since Y i € {0,1,. .}, i Ecache Gi41, therefore &} Cp,mgm, $iy- O

We prove the validity of RE: by fixpoint induction:

AFor the least element, (¢o,$o, %), we have ¢[f:](v1,v2) = Lvaiues and $[f.-](171,62) = 1lRes. Thus,
RE (o, b0, #5) holds vacuously.

Suppose that ')25l is true for some element (¢,,,¢,., /) in the ascending chain, we want to prove that
Ri; is true for (¢n+1;¢n+1: ¢n+1) = ¢<¢m¢m ¢n)
For clarity, we introduce the following abbreviations:

22

1. L[vi/z:] is abbreviated by p and L[be/zi] by A.
9. Given an expression e, we abbreviate £[e](p, én) by [ele, and E[el(5, én) by [l

~

The proof of REY; requires structural induction on e.

e If e is a constant or a variable, the proof is trivial, and thus omitted.

e e is a primitive call, [p(e1,..-,en)]. Let v= [p(e1,-..,ea)le and 5 = [p(e1, .- -, en)lz

— REL, holds trivially if § = LRes-
— If $]1 is a constant, then 4|1 = #(v) from Theorem 2. Therefore, 'R.ﬁ{n holds in this case.
— If 51 is not a constant, then the residual expression is of the form [p(ef ,.--ren)], where

ef =[elz Vi€ {1,...,n}. By the structural induction hypothesis, 'Rf,‘_,,l holds for all the
arguments of the primitive call. Furthermore, since p and j contain all the bindings for free
variables in e, they also contain the bindings for free variables of the arguments. We thus have:

g[[P(eix LR] en)]é‘](ﬁd, ¢:1+1)
= Elp(et, ... em)l(pa, ny1)
= Kplp)(EleT (e,) (€M pas ;H_l))) [from standard semantics]
=, Kplpl(leide,---» fen)e) [structural induction hypothesis]

= [p(e1,.--r€n)le [from standard semantics]

Therefore, REY; holds.

o e is a conditional expression, [if e; €2 es]. ’R,f,{l_l holds trivially if e; partially evaluates to LRes. Ifey
is partially evaluated to a constant, then the result of partially evaluating e is obtained from partially
evaluating either e; or e3. By the structural induction hypothesis, Rn41 holds.

If e; partially evaluates to a residual expression, then the result of partially evaluating e has the form
[if €/ e 4], where ¢f = [ei]z Vi€ {1,...,3}. Therefore,

EILif e1 ea ealgl(pa, 41)
Elif e €5 e51(pa, nt1)
(E1eX1(pa, dni1)) — (ELeX(pa, $ns1))s (€ [e1(pa, ¢hy1)) ~{from standard semantics]

v [ede— [e2]e, [esle , [structural induction hypothesis]
[if e1 ez es]e [from standard semantics]

waunn

Thus, RE}, holds.

e ¢ is a function application, [fi(e1,e2)]. Partially evaluating e may result in the application being
either unfolded or specialized. Suppose that the application is specialized, without loss of generality,
we assume that the first argument of the application is static and propagated, whereas the second

argument is dynamic. Then [fi(e1, 2 ~becomes [f;?([e2]2)] where f;? is the specialized function.
1 1] £ E :

The partial-evaluation signature obtained from this application is (by the definition of .Z)

(s,[e1dz ([22), &) where & = (Tvm”gz,...,gm)
([eadp ([32]"5’)) = SpPat([f], ([e1lz: [e2dz), (Static, Dynamic))
(_!(61’62)""6”)) = [52]?

23 °

Thus, the specialized function f;? is included in the residual program produced; its definition is as

follows.
i7(z2) [(@al£1([eadz, ([=2), 8)))11]
[(enlfil(7([er]e), ([z2], &)1

The last equality holds by structural induction hypothesis and by the fact that only constants are

allowed to be propagated for a function specialization. The corresponding entry of f;” in ¢}, is

strict(Av . E[($alfil(F(Ierle), ([z2),))N1N(L v/ =], 87)) (2
Thus, we have

EL7 ([e21)) (pas $n41)
= GnulfPNElea{pa; $n41))

=1 ¢ +1 [7%1(Le2le) i [structural induction hypothesis]
= El(galfil(F(ler)e), ([z2],)N LI[e2de /22], ¢7) _

=1 ¢nlfil([ele, [e2]e) ~ [fixpoint induction hypothesis]
= [fi(e1,e2)]e

In the derivation above, the fourth equality is valid based on an instance of our fixpoint induc-
tion hypothesis. This is because (.L[[ez]¢/z2]) is the only environment that satisfies both the pairs

(leade, #([e1]e)) and ([e2le, ([z2],). Therefore, ’Ri{,_l holds for the application.

On the other hand, consider the case where the application is unfolded. The equality in ’R.ﬁ{,_l becomes

dalfil(erle, [eade) =1 EM@aLA1(Ierlp)] (pay Esn)- - ®
For Equation 3 to hold, ps must satisfy both pairs ([e1]e, [e1]z) and ([ez]¢, [e2]). Thatis, Vi € {1,2},

v =1 E[0il1)(pa, bpny1) A vi Ca Bil2.

This is true by the structural induction hypothesis, Property 2 about ¢}, and Theorem 4.
Using pg4, the fixpoint induction hypothesis is

¢nlfil(lerde, [e2de) =1 EL(Salfil(Tendz, [e2]) 10 (pa, 47),

Notice that the only difference between the hypothesis and Equation 3 is the usage of ¢}, and 47, .,.
Let ¢ = (¢nl £iJ((Teadp), ([e212))) 1. Since the domain Exp is flat, the only case where Equation
3 may have failed to hold would be when standard evaluation of ¢’ made references to specialized
functions defined in @}, ,,. Suppose that f° were such a function, and its call in e/ were [f*?(r5)].
This residual call would be the result of partially evaluating a function call. Let the function call be
[f(r1,72)]. Then, it would be the case that at the n** approximation, we had

[f(rura)le =1 EMF(r,)l d(pa, 67) = ELFP(ri)l(pa, 67)
be true vacuously (by the hypothesis), but at the n + 1°* approximation, the equation
[F(rira)le =1 ELFP(ri))(pas dnsa) 4)

became false. However, Equation 4 is the result of function specialization, and we have already proxed

its validity. Thus, we arrive at a contradiction, and Equation 3 must therefore hold. Hence, f,‘+1 :
holds. ‘ '

Hence, R?‘ (¢, é, ¢’) holds. This concludes the proof. _ : v a

24

5.3.4 Correctness of RE

Now, we are ready to define the relation between £ and £. This is defined in terms of the result
of Theorem 4 and Lemma 5. Firstly, since both & and £ take variable environments as their
arguments, we need to relate these environments. To do so, we extend the notion of satisfiability
to define the relationship between variable environments, instead of pairs of related values. This is
a variant of the notion of agreeability as defined by Gomard in [Gom89].

Definition 10 (Agreeability) Let P be a program in our first-order language. Suppose ¢’ is the function
environment, defined by the standard semantics, for a specialized version of P. Also, let p,ps € VarEnv be
two variable environments defined by the standard semantics, and p € VarEnv be a variable environment
defined by the partial evaluation semantics. For any ezpression, e in P, p, p and pg agree on e at ¢ if

V[zl € FV(e), plzl =1 ELAl=DIN(pa ¢) A plel Ca (AL=DI2-

The notion of satisfiability can then be expressed in terms of agreeability as follows.

Observation 2 Given that pg satisfies all the pairs in the set {(v1,91), .-, (vn,9n)}. Letp= Llvi/z1,..., Va/Zn),
and p = L[#1/21,...,9n/Za). Then, for any ezpression e in P with FV(e) = {z1,..., r,}, we must have p,
. p and pg agree on €.

Notice that p and j as defined in Observation 2 represent how all the variable environments
used in standard and partial evaluation semantics are constructed. Therefore, the result of Lemma
5 can be expressed in terms of an arbitrary expression in program P as follows.

Corollary 1 Given a program P in our first-order language. Let ¢ and é be the two function
environments for P defined by the standard and the partial evaluation semantics respectively. Let

¢’ be the function environment, defined by the standard semantics, foraa ’szecialized version of
program P. Then, for any ezpression e in P, Vp,p € VarEnv and pg € VarEnv that agree on e

at ¢/, we have

Elel(pd) =1 € (Elel(5, $))11(pa, #)- |

Correctness of the local partial evaluation semantics can be stated as follows:

Theorem 6 (Correctness of Local Partial Evaluation Semantics) Given a program P in
our first-order language. Let ¢ and é be the two function environments for P defined by the
standard and the partial evaluation semantics respectively. Let ¢' be the function environment,
defined by the standard semantics, for E\specialized version of program P. Then, for any erpression
ein P,V p,p € VarEnv and pg € VarEnv that agree on e at ¢', we have

Elel(p,8) =1 € [(Eled(3, $)N11(pa, 8"
and g
Elel(p,9) Cagy (Elel(p9))2-

Proof : From Theorem 4 and Corollary 1. : ' o

25

6 Off-Line Parameterized Partial Evaluation Semantics

Off-Line parameterized partial evaluation of a program consists of two phases: the preprocess-
ing phase called the facet analysis, and the specialization phase. In this section, the abstraction
methodology described in Section 2 is instantiated for facet analysis. We then use the technique
of logical relation to define and prove the correctness of facet analysis. This conforms to our in-
tuition that facet analysis is an abstraction of on-line parameterized partial evaluation. Lastly, we
describe a systematic way of deriving the specializer from on-line partial evaluation using the result
of facet analysis, and list some optimizations that can be performed to improve the efficiency of
the specializer. :

6.1 Abstract Facets and Product of Abstract Facets

An abstract algebra used at the analysis level is called an abstract facet. Formally,

Deﬁnition 11 (Abstract Facet) An abstract facet []5,6] of a facet [6,6] is defined by a facet mapping
&g :[D; 0] — [D; O] with respect to T.

(Abstraction function 7 is defined on page 6.) The use of facet mapping in the definition ensures
that, if an open operator of an abstract facet maps some properties into the value Static, then
the open operator of the corresponding facet will yield a constant at specialization-time, modulo
termination.

Just like the on-line parameterized partial evaluation, multiple abstract facets of an algebra are
bundled together to form a product of abstract facets defined as follows:

Definition 12 (Product of Abstract Facets) Let @; : [D¥; 0F] — [D¥; 0% for i €{1,...,m} be the set
of Facet mappings defined for the facets of a semantic algebra [D; O)]. Iis product of abstract facets, noted
[D,)], consists of two components:

m
1. A domain D = Hf)‘ is the smashed product of the absiract facet domains;

i=1

9. A set of product operators Q such that Vp € O and its corresponding product operator W, € 8,

(a) if § is a closed operator, then
p:D® — D, and

@y :Dn =D
m
&P =2 (51»""611)' Hi’t(g:‘l:!a:z)
i=1
(b) otherwise, p € O is an open operator, and
p:D® — D’ for some domain D', and
Wp : D" — Values _
Gp= M61,--+,6n) - (35 € {1,---,m} st. ({, = .LV';;;'“) . i)
_ (3je{l,---,m}st. dj= Static) — Static, Dynamic
"’hered=(51(6{'7"'16115)1"-1501(6;“:"‘:6:‘)) ’

26

Domain D is partially ordered component-wise, and all operators defined in the product [D; 9],
are monotonic [CK91b].

Just as the partial evaluation semantics of algebraic operators is captured by a facet, the
computation of their binding-time values can similarly be captured by the notion of abstract facet.
Such an abstract facet is called a binding-time facet.

Definition 13 (Binding-Time Facet) The binding-time facet of a partial-evaluation facet [Va/IEeS; 6] is
defined by the facet mapping &, 7, * [Values; O] — [Values; O]

- — —_—
1 ey, Values — Values
_Values -
aValu s = T

—— 0

ues — Values

-

=X (dy, ,dn) - 33' e{l,..,n}st.di=L 5= —
/\(c-l', = Static) — Static, Dynamic

i=1

o .O.i
<
B

—_—
Values’

6.2 Specification of Facet Analysis

Analogous to the definition of on-line parameterized partial evaluation, we assume the binding-time
facet to be always defined in a facet analysis. The main semantic domain used by the analysis is
noted SD. It is a sum of products of abstract facets. The binding-time facet is assigned to the
first component of each product. For brevity, we write T g5 to represent the maximum value of

any summand of SD.

Figure 7 displays the facet analysis for a first-order language. The analysis aims at collecting
facet information for each function in a given program; this forms the facet signature of the function.
More precisely, a facet signature in domain Sig is created when a function call processed by the
facet analysis. It conmsists of two components: A transformation tag similar to that used in the
partial-evaluation signature, and the argument values of the application in sD".

The valuation function £ is used to define abstract version of each user-defined function. The
resulting abstract functions are then used by the valuation function A to compute the facet signa-
tures. These signatures are recorded in a cache (from domain Cache 7). As usual, computation

is accomplished via fixpoint iteration. Functions K and Kp perform the abstract computatibn on
constants and primitive operators respectively.

The analysis is monovariant: each user-defined function is associated with one facet signature.
Various facet signatures associated with a function at different call sites are folded into one signature
using the Lu.b. operation. This operation is defined as

V51,52 € Cacheg, 51 U5, = L{(t,51,--+162)/f | VIfl € Dom(31)U Dom(G2)]

where (t,81,..,6s) = ([f] € (Dom(31) " Dom(32))) — @ut, Husy,...,eud),
' [f1 € Dom(31) — &:lf1, &2L/]

é,)l a1[f]

(,8,...,8) =
) n) = 62[f]

(&, 81,

27

¢ Semantic Domains

L
5 e Resulty = SD= Zﬁ, where 51' = (]3,'; Q- ® ﬁ,'m) and s is the number of basic domains
=
5 € VarEnv = Var — 8D
¢ € Fu?ﬁnv:FEnv:Fn—»gyDn—»Eﬁ
Env = VarEnv x FunEnv
i € Sig = (TransfxSD)
G € Resuliy = Cachey = Fn — Sig

e Valuation Functions
£p,.,, Program — 57" - Cache:

Eprog [{filz1,+,2n) = el (1, 8n) = B(L[Gs, §1,-++,8)/ f1)

whererec h(3) = & U B(U{A [e] (Lx/2:],8) | (-, 51,52 = 5[£, Vil € Dom(3)))
L $ = L{AG,.. 6,.) £ [e)(L1x/=e], 6)}/ 1]
= £
A=A

¢ Combinator Definitions _
Constz [c] = A5,¢) . K [c] |
VarLookup~ [z] = A5 9) . blz] !
PrimOpz [p] (F1,--- ka) = X(5,9) - Kpl] (F1(7,), ., Ra(5, 8)) : v |
Cond~ (kl,kz,ks) = A(p,¢) 51 —.L~ nd l5 . ‘
Stattc — S U 53, T !
) where 5. = ki(5,4) Vie{1,2,3} :
Appz U] (FiveoB) = AG) - (FUDILErer8) = 0 = 301 GuyeeiBa), To
where § = ki(p,¢) Vie{1,...,n}
Constz[d = A5,8) - (Of - Lsio)
VarLookupA [z] = M5, é) . (Of. .Ls.g)

PrimOpz [#] (d1,---,dn) = A(p,¢).u (5, 9)

- - i=1 - -
Cond (81,82,83) b = A(5,9) . @1(5,¢) U &(5,¢) U 8:(5,9)
Appz [f] (B, rBn) (Bryenka) = X5,9) - (L] & 6N UE

5D

where :&'l: (FelfDiL (8,...,88) =u) :
' - J-[(u,&, ﬁn)/f] L[(s,81,...,8)/1]
(b‘l i 6m) Vi€ {1 sn}
(bx, bn) = (P2 B 88)
5 = k,(p,¢) vi € {1,...,n}
o Primitive Functions_
K : Const — SD
IC[c] = (I"(d), I""(d)) where T% = as, o ag; and d=K[]
: Po —» §SD" — 8D
gp [p=] (1,--0080) = w,:(&;, --,6n) where p° : D" — D
Kp %1 Brye-isbn) = b= L= = L (0, Tz Tim)

Values

whcre p°: D" = D'

b = Dyo(Buyee,n)

Figure 7: Facet Analysis

28 -

6.3 Correctness of Facet Analysis

The initial input to the facet analysis is an abstraction of the initial input of on-line partial evalu-
ation. The facet analysis is correct if its final cache (Cache 7) contains the abstraction to all the
partial-evaluation signatures of the on-line partial evaluation. The correctness is shown by relat-
ing the local and global semantics to their respective counterpart in the on-line partial evaluation

semantics. That is, we define a logical relation RE that relates £ and £ , and a logical relation ’RZ
that relates A and A. We first show the correctness of the local semantics defined by £, and then
that of the global semantics defined by A. :

6.3.1 Correctness of £

We begin by defining a logical relation between product of facets and product of abstract facets.

Definition 14 (Relation Csz—) For any value § € SD and § € SD,
SD
fca_§ o Vie{l,...,m}, & Ca, &.
SD D¢

" where Ca.~ is the logical relation induced from the facet mapping from D' to D'.
Dl

m . ——
Since (§ Cae &) = (/\(3‘ Eas; §)), Coy Is 2 logical relation between SD and SD.

=1

Definition 15 (Relation ’R,E) RE isa logical relation between domains ofg and & defined by:

angmuza & 912 Caz § i
p Rfiara,.u 5 & Vlzl€ Var, jlz] Reesun. Ale]
$ Riunzny & VIAl€Fn Vi€ (L. ,n} Vi€ Res,Vé; € 5D,
NG Rz) = 3n--150) Resute LGB, -, 80)
(d1,d2) R, xp, (31:5:) & 4 RE & A& RS, &

-

FRE o f @ vieDyvieD, d®rb d = fd RS, F(d.

Lemma 6 Given a program P in our ﬁrst-order‘language. Let ¢ and é be the two function en-
vironments_for P defined by the partial evaluation semantics and the facet analysis respectively.
Then ¢ RE .

Proof : The proof is similar to the proof for Lemma 3, and is thus omitted. a
Theorem 7 (Correctness of Local Facet Analysis) EREE.

Proof From Lemma 6. s

29

Corollary 2 Given a program P in our first-order language. For any ezpression e in P, and
Vp € VarEnv,

(€ [e](3,®)1 = Static = (£ [e](5,)1 € Const U {Lgzp}

where both ¢ € FunEnv and ¢ € F unEnv are fized for the program, and p € VarEnv is defined
such that p R¢

6.3.2 Correctness of the Global Analysis

We prove the correctness of the global analysis (1) by relating the semantics of A with that of A

using the logical relation 'R,-A, and (2) by showing that all the non-trivial calls that are recorded by
A are captured in the cache produced by A.

Definition 16 (Relatlon R") RA isa logical relation between the domains of A and A defined by extend-
ing relation ’R.e to include the relation between & and G produced by Aand A respectively:

(@, 91,...,9) RE;, (&, 81,..,0n) © ([Crranss 1) A /\(v.nR,,u,,J)
i=1

G ’R,R“u,,_, & & VI[fl € Dom(o),Vs € 6[f],35 € 6[f] such that 3 RS:g

We note that the Lu.b. operations defined on both caches are closed under RA, ;.. With this
A

relation, the next lemma shows that all the partial-evaluation signatures recorded in the final cache
produced by .A are captured in the corresponding cache produced by A in the sense that they are

related by RA.

Lemma 7 Given a program P in our first-order language. Let é and ¢ be two function environ-
ments for P defined by the partial evaluation and the facet analysis respectively. For any ezpression

e in P, for any j, p such that pRAp,
ALel(5,6) R A[el(5,9)-

Proof : The proof is by structural induction over an expression. Firstly, notice that é 'R,A é. It then
suffices to show that R4 holds for all the corresponding pairs of combinators used by A and A respectively.
By structural induction, it is easy to see that R4 holds for constant, variable and primitive calls. We show
below that R# holds for the case of conditional expressions and function applications. ’

1. Cond: By the structural induction hypothems, all the corresponding pairs of arguments are related
by RA. Since the result of Condy is the L.u.b. of the caches produced at all the arguments whereas
the result of Cond is the Lu. b. of the caches produced at some of the arguments, RA must hold.

30

1. Predicates testing whether an expression partially evaluates to a constant can safely be re-
placed by a predicate testing whether this expression is Static in its binding-time facet.

2. Filter computation for a function call can safely be replaced by an access to the function’s
facet signature; it contains the call transformation to be performed. '

The use of facet information collected for an expression requires that this information be bound
to the expression. That is, each expression in a program should be annotated with the information
computed by the facet analysis. We achieve this annotation by assigning a unique label to each
expression in a program and binding this label to the corresponding facet information. A cache,
noted %, maps each label of an expression to its facet information. For a label I, we write ('JJ)y
to denote the product of abstract facet value corresponding to I. If I is the label of a function call,
then (9 1); refers to its transformation (i.e., unfolding or suspension).

6.4.1 Specification of the Specializer

Note that this annotation strategy only requires a minor change to the core semantics. Namely, the
labels of an expression must be passed to the semantic combinator.’ For example, in specializing a
- labeled conditional expression [(z f ell1 eg’ ef,f)‘]], the combinator Condy takes as an additional argu-
ment (I,11,12,13). Besides passing labels to combinators, we extend the usual pair of environments
to include the cache (i.e., 9 € AtCache).

Figures 8 and 9 depict the detailed specification of the specialization process. Each interpreted
combinator is similar to that of on-line partial evaluation, except in the following cases:

1. For both Cond; and Condy, the predicate that determines whether the conditional test
evaluates to a constant has been replaced by a predicate that tests the staticity of its binding-
time facet value. ’

2. For primitive call, the predicate testing whether the result of the operation is a constant has
been replaced by a predicate testing the staticity of the resulting binding-time facet value.

3. For both App; and Appy, filter computation has been replaced by an access to the static
information about the function call: facet value of the arguments and function call transfor-
mation.

6.4.2 Optimization of Specialization

At this point it is important to determine whether the specialization semantics that we derived
indeed describes a specialization process. In fact, as mentioned in [BJMSS8S, JSS89], binding-
time analysis was introduced for practical reasons. Namely, by taking advantage of binding-time
information, the partial-evaluation process can be simplified and its efficiency improved. This is a
key point for successful self-application [JSS89]. '

$Note that for simplicity we did not introduce labels in the core semantics presented on page 8. Indeed, labels are
only used for the specialization semantics. . :

32

2. Appgz: By the structural induction hypothesis, 'R.I holds for all the arguments to the application.

Let & = L[{({,9Y,...,94)}/fland G = L[(,8,...,8")/f], we need to show that & RA .
We consider the cases with different transformation values produced at the facet analysis level.

e If{ = u, then { = u by the monotonicity of filters. Thus, Vi€ {1,...,n},

3 =_ &(péa) [by definition]
RA f_i;(ﬁ, #n) [structural indgction hypothesis]
= & [by definition]

Therefore, & R* &.
o If{ = s, then f Crransy 1 by monotonicity of the filter.

Let (91,...,79) and (81y---s 8,) be the initial arguments computed for the application. By the
monotonicity of filter,)) . .
(b1y..-sba) T (b1,---1bn)
where (b1,...,8a) = (FtIfDI2 (Bi(in),-..,bi(5a)) and
$r,..,ba) = (FIDI2 (@, 60)
Let (9/,.:.,95) = SpPat ([, (B1y-- -1 D)y (51, vy Ba)). From the definition of SpPat, we have
SpPat ([f, (1 - er9n)s (s s b)) RE (B, 80)
where Vi € {1,...,n}, 5 = (b, 82,.. ,5,”“). Since (f,8,,..., 8') is the facet signature produced
for the application, we therefore have & RA &.

n _ _ , -
Thus, (U a:(p, $a) UG) RA (LI a;(p,#n) U). Hence, App3 R4 Appz-

i=1 =1
Hence, R4 holds in general. This concludes the proof. a

Theorem 8 (Correctnéss of Global Facet Analysis) Given a program P in our first-order
language. Let (91,...,%n) and (1,.. .,8,) be initial inputs to P for on-line partial evaluation and
facet analysis respectively, such that ¥; R;{ j;, vi € {1,...,n}. If & and G are the final caches
produced by A and A respectively, then & R4 G.

Proof : Firstly, we notice from the definition of gp,o, that (s,gl,...,gn) is the corresponding facet
signature for f; in &. Therefore, (s,61,...,6n) € &[f1]. This captures the initial call to the on-line partial
evaluation: (s,?1,...,%) € &[f1]- Next h in Eprog applies A to each facet signature in the cache, like

" function A in gp,.,,. Since l.u.b. operation is closed under RA, & RA G. o

6.4 Deriving the Specialization Semantics

We now describe the derivation of the specialization semantics (for off-line partial evaluation) from
its on-line counterpart. This derivation is based on the observation that, prior to on-line partial
evaluation, the facet analysis has determined the invariants of this process. Indeed, the result of the
on-line partial-evaluation computations has been approximated and is available statically. Thus,
the aim of this derivation is to transform the on-line partial evaluation semantics so that it makes
use of facet information as much as possible. The uses of facet information are listed below.

31

¢ Semantic Domains

1 € Labels © € Resulty = Res = asin On-Line Sem.
§ € 8D = asin On-—Line Sem. § € SD = asin Off—Line Sem.
(& 32 € Att = (Transf x §7)) & € Rcitit T = s in On—Line Sem.
Y € At’C\ache = Labels — Att $ € FunEnv = asin On—Line Sem.
p € VarEnv = asin On-Line Sem. E;z\v = Va?fnv x FunEnv x AtCache

¢ Valuation Functions
EProg * Prog — Res™ — AtCache — P'rog " X
Foves [{fi(g,r2a) =] (b1renes i) = MEProg (R(LL{(s,bx,... in)}/HD)99 |
whererec }:.(c'r) = suh({A [ed(L[ok/2x), 6, 9) | (—’;).{"."’i':‘) € 5[], VL£i]l € Dom(3)})
¢ = Llstrict {\(d1,---,9n) . €5 [ed(L[Dx/zx]), 6, ¥)}/ fi] . .
e MkProg Definition |
MkProgé v ¢ = { fP(z1,...,zk) = 91| V¥(s,d1,...,9n) € &[f:], VIf] € Dom(5)}
where f{? = SpName([fi],91,..., ¥n)
o' = £z [ed(L[ox/z],6,¥)
(z1,..:,zk) = ResidPars ([£],9241,...,9al1)

Figure 8: Specialization Semantics — Part 1

Thus, the off-line strategy aims at lifting as many computations as possible from specialization
by exploiting static information. In other terms, there exists a wide range of specializers for a
given language; each possible specializer reflects how much has been computed in the preprocessing
phase. .

As a matter of fact, the specialization semantics derived in the previous section may be used as
a basis to introduce many optimizations. In this section, we briefly mention some of them.

Eliminating Useless Facet Computations

Facet analysis allows to determine statically which facet computations will produce a constant value
at specialization-time. We can exploit this information to eliminate, prior to specialization, the
" facet computations that do not produce static values.

More precisely, for each static expression in a program, we can determine the abstract facets
which actually produce the static value (there can be more than one). It is then possible to
determine a minimal set of these abstract facets, needed to produce all the static values in the
program. In doing so, we eliminate the time spent on computing irrelevant facet information.

Determining Specialization Actions Statically

It is possible to infer statically the actions to be performed by the specializer. The basic actions
of a specializer consists of reducing or rebuilding an expression. Such actions can be determined
using the facet value of an expression. This technique has been used in traditional off-line partial
evaluation [Con89, CD90]. - '

33

o Local Combinator Definitions
Constz, [c] () = A(mS 9).K[d
Varg, 121 () = A6,8,9) . 5 5] _ « o
Pr'mops [r} (klt kﬂ) § L, caln) = ’\(i’:és J’) . Ksp [r] (El(ﬁ)‘z,d’-)»"'l Eﬂ(ﬁ:é:"’)) ¥ Do

Cond~ (k1,k2,k3) (l 11,12,13) =
A(p,qS 11:) (1# l;)1 = Static — (K(#111) — 92, 93), ([if #1{1 %211 9311], 9212 U 9312)
where ¥ = k.(p,qS P) Yie{l, 2, 3}
APPSE [f] (klr kﬂ) (l hL,.. I") = A(P7¢ 1/’) ('/’ l)‘ =u-— ¢ [f] (01, :vﬁ)’
R .. ([f-'P(ell ,Ck)] Ts-p)
where ¥ = kl(ﬁ)¢1¢) Vie {1)'-""}
f:p = SpName([f]rle y”n)
(ef,...,ex) = ResidArgs ([f1, (b1,...,bn), (9111,...,9al1))

(”1: i'::) = SPP“t ([£1, (01, '”ﬂ) (blv"’b"))
(Brreesybn) = (Byeens82)
6: =(1[J Ii)v Vie {1 :n}
o Primitive Functions
K : Const — Res
K [c] = (as in On—Line Semantics)

|

Po—»Res — 8D — Res

/CSP
KZSP [pc] ((el!sl)i)(ens 6n)) 5 = _
(¢ = Lg) = (Lesp Lgp), (B = Stailc)—#(a (a L(@)yeey B (@), ([5(eh, 2] B)
Awhcrc ¢ 9" — D 5 = w,c(él, 6,.) ; IC(&)
Ksp [¢°] ((61:51) (em&.)) § =
d = L=~ (.Lazp,.LA), 5 = Static — (d, (ag,(d),-- oral,_(d))),
([PO(el»)l (Tone Tﬁ'm))

where p° : D* — D'; d = Bpe(B1,---,8n) 5 d = K(d)
e Global Combinator Definitions
Const~ [= z\(p,¢ 1/)) Al Lage
Var~ [z] () = A56,9) . M. Law

PrimOpzs [p] (d1,-.-,8n) (L11,--s1n) = M5:6,9) - Ua.(p,¢» ¥)

i=1

Cond~ (41,02,43) kl (1 11v12)13) =
,\(p,¢ ¢) (al(p,cﬁ F)U (P 1)} = Static) — K(81) — a2(5, ¢,¢),as(p.¢ ¥),
a2(p, 6, 9)U as(P, $,9))

E) Whseeosdn) = M5.6,9) . ([_Ia.(p,¢ #)us

i=1

Appgz [f1 (a1, .-y @) (kiyeey
where ¥ = I‘:.-(_ﬁ,i,ﬁ) vie{1,--,n}
G = (@Di=u— L[{(wd1,...,5)}/f], LU{(s,51,...,80)}/]]
(#1,.. D) = .S:pPat ([j],(ﬁl,...,ﬁn), (b1, 1bn
<b11 bn) = (51, 1) .
(¢' li)e Vi€ {1 ,n}

Figure 9: Specialization Semantics — Part 2

34

7 Conclusion

In [CK91a, CK91b] we presented a generic form of partial evaluation, parameterized with respect
to user-defined static properties. Based on this work and the technique of factorized semantics, this
paper provides semantic specifications and correctness proofs for both on-line and off-line partial
evaluation of functional programs.

Furthermore, this paper addresses and solves a series of open issues in partial evaluation such
as relating on-line partial evaluation to standard semantics, showing that facet analysis (and thus
binding-time analysis) is an abstraction of the on-line partial-evaluation process, and formally
defining the specialization semantics. '

As such, this work should improve the understanding of partial evaluation. Also, it should
provide a basis for implementation. In fact, the specifications presented in this paper have been
implemented and shown to work using SML.

" Future work includes extending the results of this paper to higher-order programs. Our pre-
liminary studies in.this direction indicate that such an extension should be minor since it" would
be based on an existing framework for abstract interpretation of higher-order programs, such as

[Jon91].

Currently, we are exploring various analyses aimed at taking advantage of facet information
to optimize the specialization process. These optimizations (mentioned in Section 6.4) include
eliminating useless facet computations and determining specialization actions statically.

References

[Abr90] A. Abramsky. Abstract interpretation, logical relations and Kan extensions. Logic and
Computation, 1(1):5-40, 1990.

[AH87] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarativé Languages.
Ellis Horwood, 1987.

[BJMS88] A. Bondorf, N. D. Jones, T. Mogensen, and P. Sestoft. Binding time analysis and
the taming of self-application. Diku report, University of Copenhagen, Copenhagen,
Denmark, 1988.

' [CD90] C. Consel and O. Danvy. From interpreting to compiling binding times. In N. D. Jones,
editor, ESOP’90, & d Furopean Symposium on Programming, volume 432 of Lecture
Notes in Computer Science, pages 88-105. Springer-Verlag, 1990.

[CK91a] C. Consel and S. C. Khoo. Parameterized partial evaluation. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 92-106, 1991.

[CK91b] C. Consel and S. C. Khoo. Parameterized partial evaluation. Research Report 865, Yale
University, New Haven, Connecticut, USA, 1991. Extended version.

35

[Con88]

[Con89)
[Con90]
[Fut71]
(GI85]
[Gom89)]

"[HM89]

[HY88)

[IM76]
[IM86]

[IN90]

' [Jon88a]

[J on885]
[Jon90]

[Jon91]

C. Consel. New insights into partial evaluation: the Schism experiment. In H. Ganzinger,
editor, ESOP’88, 24 Furopean Symposium on Programming, volume 300 of Lecture
Notes in Computer Science, pages 236—-246. Springer-Verlag, 1988.

C. Consel. Analyse de Programmes, Evaluation Partielle et Génération de Compzlateurs
PhD thesis, Université de Paris VI, Paris, France, June 1989.

C. Consel. The Schism Manual. Yale University, New Haven, Connecticut, USA, 1990.
Version 1.0.

Y. Futamura. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls 2, 5, pages 45-50 1971. '

H. Ganzinger and N. D. Jones, editors. Programs as Data Ob]ects, volume 217 of Lecture
Notes in Computer Science. Spnnger-Verlag, 1985.

C. K. Gomard. Higher order partial evaluation — hope for the lambda calculus Master’s

thesis, DIKU, University of Copenhagen, Copenhagen, Denmark, 1989.

J. Hannan and D. Miller. Deriving mixed evaluation from standard evaluation for a
simple functional language. Technical Report MS-CIS-89-28, Umversﬁ:y of Pennsylvama,
Philadelphia, Pennsylvania, 1989.

" P. Hudak and J. Young. A collecting interpretation of expressions (without Powerdo-

mains). In ACM Symposium on Principles of Programming Languages, pages 107-118,
1988.

N. D. Jones and S. S. Muchnick. Some thoughts towards the design of an ideal language.
In ACM Conference on Principles of Programming Languages, pages 77-94, 1976.

N. D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal =

function graphs. In ACM Symposium on Principles of Programming Languages, 1986.

N. D Jones and F. Nielson. Abstract interpretation: a semantics-based tool for program
analysis. Technical report, University of Copenhagen and Aarhus University, Copen-
hagen, Denmark, 1990. '

N. D Jones. Binding time analysis and static semantics (extended abstract). Diku report,
University of Copenhagen, Copenhagen, Denmark, 1988.

N.D. Jones. Automatic program specialization: A re-examination from basic principles.
In D. Bjgrner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mized
Computation, pages 225-282. North-Holland, 1988.

N. D. Jones. Partial evaluation, self-application and types. In M.S. Paterson, editor,
17th International Colloquium on Automata, Languages and Programming, volume 443
of Lecture Notes in Computer Science, pages 639-659. Springer—Verlag, 1990.

N. D Jones. A minimal function gra.ph semantics as a basis for abstract interpretation
of higher order programs, 1991. Presented at the 1991 Workshop on Static Analysis of

- Equational, Functional and Logic Programs.

36

[35589]

[Kle52]
(Lau9o0]

[MS90]

[Nie89]
[Ses85]

[Ses88]

N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partial evaluator for
experiments in compiler generation. LISP and Symbolic Computation, 2(1):9-50, 1989.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

J. Launchbury. Projection Factorisation in Partial Evaluation. PhD thesis, Department
of Computing Science, University of Glasgow, Scotland, 1990.

M. Mizuno and D. Schmidt. A security flow control algorithm and its denotational
semantics correctness proof. Technical Report CS-90-21, Kansas State University, Man-
hattan, Kansas, 1990. ‘ ‘

F. Nielson. Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69:117-242, 1989. : N

P. Sestoft. The structure of a .self-applicable partial evaluator. In [GI85], pages 236-256,
1985. -

P. Sestoft. Automatic call unfolding in a partial evaluator. In D. Bjgrner, A. P. Ershov,

and N. D. Jones, editors, Partial Evaluation and Mized Computation. North-Holland,
1988.

A Correctness of Instrumentation

Lemma 8 Given a program P in our first-order language. Let ¢ be the function environment for
P defined by the instrumented semantics. If the standard evaluation of P with input (v1,...,n)
terminates, and o is the cache computed for P by A, then

1. For any ezpression e in P, if a non-trivial function call occurring in e 1s performed when e
is evaluated, then A records the call in the cache.

2. For any function definition in P of the form

f;(zl,'...,z,,) = e fj(ella“"e:z)r'”

Let (v),...,v.) € o[fi]. If evaluating f; with argument (v},...,v.) results in a call to f;
with (v,...,v}), where v] = E[e](LvL/zk), 8) Vi € {1,...,n}, then (vf,...,v0) € alfil,
provided v # L,Vi € {1,..)

Proof (Sketch):

1. We want to show that the predicate “if a non-trivial function call occurring in e is performed when
evaluating e, then the call is recorded in the cache produced by A” is true. The proof is done by
structural induction over e. ’

9. The second part of the lemma is shown by examining local function h in function EProg é (¥},..-,vn) €
o[f:], then A will be called to collect pon-trivial calls in the body of f;. Using the first result of this
lemma we know that (v, ...,v") € o[f;], provided v} # L,Vi € {1,...,n}. ' o

37"

