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Abstract

A full Leap Frog Fourier method for integrating the Korteweg-de Vries (KdV) equation
U + uuz + €Uzz; = 0 has an O(N~3) stability constraint on the time step, where N
is the number of Fourier modes used[7]. In this paper, we propose two new Fourier
methods which have better stability properties. One method treats the linear dispersive
22z term implicitly without solving linear systems by integrating in time in the Fourier
space and the nonlinear uu, term by Leap Frog. The second method uses basis functions
which solve the linear part of the KdV equation and Leap Frog for time integration.
We carry out a linearized stability analysis of the proposed schemes and prove that a
version of the first scheme possesses a certain kind of unconditionally stability and that
the second scheme has an O(N 1) stability limit. In addition, we analyze a linearization
of a nonlinear finite element scheme proposed by Winther that treats the u,,, term by
Crank-Nicholson. Numerical experiments on soliton solutions show that the linearized
stability analysis gives accurate predictions for all the nonlinear schemes and that the
Fourier methods are more accurate than the finite element method.




1. Introduction

Fourier methods have been shown to perform well on suitable time dependent problems.
Among the problems which have been considered are: equations with variable coefficients [4, 5,
14, 15, 2], the Navier-Stokes equations [5,6,12,13], metereclogical equations [9] and the Korteweg-
de Vries equation [5,6,7]. The theory of these methods is discussed among others by Orszag in
[12,13,14] or Gottlieb & Orszag in [8].

We shall consider the solution of the periodic initial value problem for the Korteweg-de Vries
equation on I = [0, L] by three-level spectral and pseudospectral methods. The solution u(z,t) is
thus defined by

Uy + v, + €Uz, =0 (z,8) € Ix[0,00),

u(z,0) = up(z) z€l,

u(z,t) =u(z+ L,t) (z,t) € R x[0,00).
We show that one can take advantage of specific characteristics of the equation so as to improve
the performance of these methods.

It has been observed in [5,6] that because of the linear dispersiie term u;,;, a Leap Frog
Fourier scheme for solving the Korteweg-de Vries equation gives rise to a very restrictive stability
condition (the timestep k must satisfy k < O(N~3), where N is the number of points in space).
However, we can obtain a significantly larger stability limit for the timestep k by treating the
tzzz term implicitly. Finite element methods in which a Crank Nicholson scheme is used for the
Uzz, term and a Leap Frog scheme for the uu, term, have been proposed by Winther in [19)].
He analyzed these schemes for the solution of the full nonlinear Korteweg-de Vries equation and
proved that they are unconditionally stable in a certain sense. Here we examine a Fourier scheme
for solving the Korteweg-de Vries equation in which the Leap Frog discretization is applied to the

uu, term and u,,, is approximated by
DV +(1-6)DVt o0<0<1,

where D represents differentiation, V+ denotes the solution V to thc discretized problem at the
next timestep and V'~ at the preceding timestep.

Analyzing the proposed scheme for a linearization of the Korteweg-de Vries equation we prove
that there exists a type of unconditional stability (to be defined in Section 4), in the case that
¢ = } (ie. Crank Nicholson) but that for other values of # the method is unstable except for
special cases. For the Crank Nicholson scheme our analysis shows that the timestep k has to be
bounded by a maximal timestep ks, which is independent of N.

We examine how the unconditional stability of the partial Crank Nicholson scheme is obtained
only together with an unavoidable inaccuracy because of large numerical dispersion.
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It is not necessary to treat the linear u:z; term implicitly to extend the stability limit beyond
the O(N~3) limit. We propose an alternative scheme in which we use basis functions which solve
the linear part of the Korteweg-de Vries exactly. As a result the u,;, term no longer affects the
stability properties of the method and we obtain a Leap Frog like-limit for the uu, term only, thus
giving an O(N 1) stability limit for k. The stability limit for this scheme is therefore not quite as
attractive as the one for the scheme in which the linear term is treated implicitly. Although the
alternative scheme is theoretically attractive and probably can be extended to more complicated
equations, it does not perform as well as the one in which Crank Nicholson is used on the dispersive

term in cases where the nonlinear uu, term dominates.

In § 2 we introduce our notation and definitions. In § 8 we consider the implementation of
implicit Fourier methods and propose a scheme for the solution of the Korteweg-de Vries equation.
In § 4 we analyze the stability properties of the proposed scheme for a linearization of the Korteweg-
de Vries equation. In § 5 we propose a scheme which uses modified basis functions for limiting
numerical dispersion and thus improving accuracy. In § 8 we apply the linearized stability analysis
to a finite element scheme which was proposed by Winther in [19] and obtain stability results
which are comparable to those for the Fourier methods. In § 7 we discuss the results of a number
of numerical experiments. These indicate that the linearized stability analysis gives relatively
accurate predictions for stability intervals of the nonlinear problem and show the superiority of
Fourier methods over finite difference methods for sufficiently well-behaved problems. In § 8 we
summarize and comment on the accuracy of the theoretical analysis in predicting the numerical

results.

2. Notation and Definitions.

Let the solution u be approximated by the finite Fourier series V(z,t) = Z;9;(t)¢;(z), where
the ¢; are defined by ¢;(z) = €¢i* with §; = 2—’,:1 and j € {-N,—-(N -1),---,-1,0,1,---,N}.
Define the points z, = 5}’,!’_;; in the domain I with p € {0,1,---,2N — 1,2N}. Let v be a vector
in C?N+!, (The ¢; are orthonormal with respect to the inner product (f,g) = } fo" f(z)g*(z)dz
and eigenfunctions of differentiation with respect to z in physical space. Partial dervatives {;’; of
V can therefore be taken by multiplying each Fourier basis function ¢;(z) for frequency §; by its

eigenvalue 1§;.)

The discrete Fourier transform v = F(v) of the vector v is given by

2N

O = -2y

!)J — Ze ] v'.
p=0
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The inverse discrete Fourier transform v = F~1(¥) of the vector ¥ is thus defined as

1 N
= €2y
v = 2N+1’,§N° ;. )

In the spectral or Galerkin approximation we obtain differential-difference equations for the
approximate solution vector by substituting the approximating series V(z,t) = ;0;(t)¢;(z) for u

in the Korteweg-de Vries equation and imposing the Galerkin conditions
d .
G Ve84 (Ve t Viea §) =0 V5 € (=N, -, N},

The expressions (V'V,,¢;), which we shall write as Pg;(VV;) (i.e. the j-th component of the
Galerkin projection of V'V, ), result in convolutions of Fourier coefficients.

In the pseudospectral or collocation approximation we obtain the semidiscrete equations for
the approximate solution vector by substituting the approximating series V(z,t) = I;5;(t)¢;(z)

for u in the Korteweg-de Vries equation and requiring
Ve(zp,t) + VVe(2p,t) + €Vza(2p,8) = 0

to be satisfied at the 2N+1 points z,. The collocation projection P,y of the VV, term is thus formed
by interpolation with a linear combination of the ¢;’s at the 2N + 1 points z,. Calculation of the
2N + 1 components of P.o(VV;) requires convolutions again, although not spectral convolutions.

The deviations from convolutions which arise as a result of the collocation projection are
explained in terms of aliasing” by Orszag in [12,13,14].

Because we use three-level time stepping schemes we need two initial approximate solution
vectors. These can be obtained from initial functions by collocation and a one-step method.

We can implement an efficient, time O(Nlog(N)) calculation of the convolutions for the
discrete VV, term with the Fast Fourier Transform (FFT) [1,13] by the convolution theorem.
Then both ¥ and vx have to be Fourier transformed, however. If we rewrite VV, as (}V?); on
the other hand, only v need be transformed, saving one FFT per time-step. We thus only need
one transformation from v to F~1(v) = v in O(N log(N)) time, form v.v (multiply corresponding
elements of vectors) in O(N) time by just doing local products, and transform back in O(N log(N))
time. Finally we differentiate by multiplying the N spectral coeflicients by the eigenvalues of the
corresponding spectral basis functions.

Therefore we will henceforth use f;P(%V’) rather than P(VV;), where P is either P; or P.,,
although 2 P.oi(1V?) # P.i(VV,). We choose the collocation which requires the smallest amount
of work because there is no reason to assume that either collocation projection is a more accurate

approximation than the other one.



S. Implicit Fourier methods

In most articles on Fourier methods only explicit time integration schemes have been con-
sidered. However, implicit time stepping can be realized straightforwardly and simply with these
methods by time stepping in Fourier space rather than in physical space, because implementing an
implicit scheme for a linear pde requires only simple divisions in Fourier space and does not require
solution of linear systems. Implicit Fourier schemes can therefore be implemented efficiently by
integrating in time in Fourier space rather than in physical space.

Consider the linear part of the Korteweg-de Vries equation
U+ €Uzee =0 on I=[0,L]

Suppose we decide to solve this equation using a spectral method and the Crank Nicholson time
stepping scheme with a timestep &

~+ _ ~+ -~
% "V e Tl _ g
2k 2
obtaining
-4 _ 1+ tkcfs

% = T ikees” ¢
where 0% indicates a Fourier component of the approximate solution V at the next timestep and
¢~ at the preceding timestep.

From this equation we immediately see that

5] = ll+ckcf !I
¢ tke3
so that |6‘€"| = |v¢ | for all frequencies {. We therefore see that with a spectral method Crank Nichol-
son is unconditionally stable and conservative, just like for a finite difference method.

We can use the above observations about implicit Fourier methods for implementing an implicit
time stepping scheme for the Korteweg-de Vries equation. Because the nonlinear term generates
convolutions of Fourier coefficients however, it is preferable to treat the nonlinear term explicitly
so that we can use the convolution theorem for its evaluation. Thus we discretize the nonlinear
uu, term with the Leap Frog scheme and use an implicit scheme for the u,,, term. The resulting
Fourier-finite difference scheme is

o

vl -7 1 ) - .
—l-2-,-c—’— + :ffP;(EV’) - i3 (097 + (1 - 0)5F) =0, (1)

where P can be either Pg or P,,.



4. Linearized stability analysis of the proposed scheme.
In this section we analyze the stability of Scheme (1) applied to the linearized Korteweg-

de Vries equation

U+ auy +euz, =0 on I=[07L).

Analyzing this equation we are able to apply the usual stability analysis for discrete approximations
to hyperbolic pde’s with constant coefficients with all its implications [16]. The stability properties
of the scheme are determined by the location of the roots of its characteristic polynomial [16].
Stability limits on the size of k follow from limits on the size of the roots of the polynomial.

For stability analysis we introduce the following two classes of polynomials.

Definition 1: A polynomial ¢(z) which has only roots z with |z] < 1 is called a Schur polynomial.
Definition 2: A polynomial ¢(z) which has no roots z with |z| > 1 and only simple roots with
|z] =1 is called a simple von Neumann polynomial.

We define stability by the following
Definition 3: A numerical scheme is stable if and only if its characteristic polynomial ¢(z) is a

simple von Neumann polynomial.

It is possible to examine if a given polynomial ¢(z) is a simple von Neumann polynomial by
reducing it to a polynomial of lower degree using the theory which originated from Schur [17, 18, 3,
10]. This theory, which is exposed by Miller in [11] and Chan in [3], simplifies the algebra needed
to determine the conditions under which the characteristic polynomial ¢(z) is simple von Neumann
considerably. .

Given the polynomial ¢(z) = ﬁ-vzo o,-zj of degree N (any # 0) with ep # 0 we can obtain a
polynomial ¢;(z) of degree N-1 by introducing ¢*(z) = ﬁ:o aj_ J-z" and defining

8(0)8(2) = $(0)8"(z)

z

é1(2) =

Now we use the following two theorems:
Theorem 1: ¢(z) is a Schur polynomial if and only if |¢*(0)] > |¢(0)| and #;1(z) is a Schur
polynomial.

/

Theorem 2: ¢(z) is a simple von Neumann polynomial if and only if either |[¢*(0)| > |#(0)| and
#1(z) is a simple von Neumann polynomia! or ¢,(z) = 0 and j‘;d»(z) is a Schur
polynomial.

We apply the above theory to the linearized Scheme (1):
U -0
2k

The stability polynomial ¢(z) (16] corresponding to the above scheme is given by

+ sagig — i3 (057 + (1 - 0)i}) = 0. (2)

6(2) = (1 — 52(1 — O)ke€®)2® + 2kaz — (1 + 120keE>).
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Because |¢°(0)] < |#(0)] if 8 > 1 the characteristic polynomial of the scheme has at least one
root with size larger than 1 if we make the method too explicit.
Next [¢*(0)| > |6(0)] if 8 < 1 so that ¢(z) is a simple von Neumann polynomial if and only if
#1(2) is. But -
é1(z) = (20 — 1)4k%e2£%2 — (20 — 1)4k%acet?!,

and we therefore need

(1 - 20)4k|afes? <1
(1-20)4k2e2gs .
or

lel
—f— < fz.

Whether this condition is met for all frequencies §; in the Fourier scheme is independent of the
timestep k. Apart from special cases in which « and ¢ are such that this condition happens to
be satisfied for all used frequencies §;, the method will use a number of frequencies &; which are
smaller than this limit so that the method will be unstable at those frequencies.
In the case that § = 1 however, [¢°(0)| = [#(0)] and ¢;(2) = 0, so that we should consider
44(2)
2(1 — ke€®)z + 2ikact.

The stability requirement that this polynomial be a Shur polynomial demands that
1+ K226 > ka2,

which depends only on the absolute value of £. Therefore it follows from the symmetry of the
frequency-spectrum with respect to the origin and from the inequality trivially being fulfilled for
§ = 0, that we only need to consider the inequality for & to &én. Rewriting the criterion as

1+ k€' - |o?) > 0

shows moreover that no instabilities occur for all frequencies ¢ for which ¢2¢* — |af* > 0. Thus
no stability requirements result from the frequencies £ in the spectrum of the method for which
&> L%l Hence the method is unconditionally stable if £ > l%l, or

(%)zzkz—l on I.

If ¢ < I%J however, stability restrictions for k follow from the frequencies below the limit \/ l-‘}l:

1
< E(laF =69
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for the &; < \/15:-1

But W’l—_t’_é—‘)' approaches 400 at {2 = l‘.(!l, assumes its minimum gzé F‘F when (£°) = _\%{L

and approaches +0o again at 0. Thss means that \/ gﬁzé“—fp 13 the absolute minimum for the stabslity
limit of Scheme (2). Whenever k ss below this limit the linearized Scheme (2) is stable.

If \/%E <§ < \/1%1 the strongest restriction for k therefore follows for &;, so that

e 1
&llaf - e¢f)’

With & < \/% < ¢~ the interval of frequencies contains the most restrictive frequency ¢* =
\/% so that we obtain only one stability condition

Ic”<'?“/5 ‘

2 |a¥”
When finally \/% > ¢ the most stringent limit on & is obtained for £y and demands

1

k? .
< &(laF =)

The stability analysis for the linearized version of the Korteweg-de Vries equation thus shows
that there exists an interval [0, k;], where ky = %éﬁ,, such that for k in this interval un-
conditional stability ensues. There is no limitation on the mesh-size of the space discretization
whatsoever. This is attractive using spectral methods because of the high accuracy in space for

these schemes.

Moreover the combined Leap Frog-Crank Nicholson scheme inherits being conservative from
Leap Frog and Crank Nicholson as can be checked easily from the expression for the roots z; 2 of
#(2) in the case 8 =

_ /T Eaf + B¢ — ikaf
a2 = 1— kel

We summarize the results of this Section in the following
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Stability limit k.

Leap Frog—Crank Nicholson Stability Plot.

Leap Frog—Crank Nicholson

Spe:ctral frequencie‘s 3




Theorem 3: For the linear periodic initial value problem
U+ at; + €tz =0 (z,t) € Ix][0,00),
u(z,0) = uo(z) z€l, .
u(z,t) =u(z+ L,t) (z,t)€ Rx|0,00).
where a, ¢ € R, the Fourier-finite difference scheme

..+ -~
Ve — Y

2k

+ sa g — ie€> (0o + (1 - 0)if)=0 (0<0<1)

is unconditionally unstable if # > 1,
is 'unconditionally unstable if # < % except if a and ¢ satisfy \/ l%l < 311
in which case the scheme is unconditionally stable,

is conservative and unconditionally stable if § = % in the sense that

(1) if \/T_I 2 then there are no restrictions on k.
(2) if ‘/—_‘ \/H then &> < (2#)2(10!21_ cz(zr)a)

3) i ff< \'/"gf 2’;” then k2<k2_i‘2/—‘°_’"l,

(4) if 2’;JN —'\—% then k% < By (]arzl- )

The dependence of the stability conditions on the spectrum of the frequencies used is clarified
in the picture. This shows that the Crank Nicholson stability result is valid not only if the nonlinear
Leap Frog term is absent, but also if it is sufficiently dominated by the Crank Nicolson part of
the equation (Case (1)). The Leap Frog part of the equation affects stability first at the smallest
positive frequency reflecting that for this frequency Leap Frog dominates Crank Nicholson least
(Case (2)). Once & < \/g/gs‘[ and £y decreases towards \/%(j the Leap Frog stability limit
gradually takes over (Case (3)). Finally the Leap Frog limit dominates and the stability limit for
the scheme is obtained for {x. The Leap Frog limit increases as {x decreases (Case (4)).

As an overall result of the interaction of the Leap Frog and Crank Nicholson schemes we
have obtained a scheme which is unconditionally stable because the unconditional stability of the
Crank Nicholson part of the finite difference scheme dominates the Leap Frog limit exactly at those

frequencies where the latter is most restrictive, namely the high frequencies. (See picture)
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5. Modified Basis Functions

For the linear part of the Korteweg-de Vries equation u; + €tzs; = 0, we obtain the following
dispersion relation

w=—efs. -
For the Crank Nicholson discretization in time however, the dependence of & on £ is given by
w= —% arcsin(ke&® cos(£3h)).

Thus numerical dispersion will be small only if ke€}, < 1 so that we obtain an accuracy limit
on the size of k. Although the solutions to the discretized equation can be bounded for larger &
because of an extensive stability interval, they might be immensely inaccurate.

The combined Leap Frog-Crank Nicholson scheme which we proposed acquires its uncon-
ditional stability because Crank Nicholson dominates Leap Frog exactly at those frequencies at
which the latter has its lowest stability limit. But at those high frequencies Crank Nicholson is
less accurate.

Fornberg and Whitham [7] used the solutions

to the linear part of the Korteweg-de Vries equation, to modify the coefficients in their full Leap Frog
scheme for increasing their O(N~3) stability limit. We consider another technique for discretising
the Korteweg-de Vries equation using these above solutions which results in an O(N~!) stability
limit.

The approach is to use these solutions to the linear dispersive part of the Korteweg-de Vries
equation as basis functions for a spectral method. In other words we try to approximate the
solution to u; + uu; + €Uz, = 0 by :

W(z,t) = f: i (t)efEretElY)
k=-N
With this scheme our basis functions are running waves which travel at the correct speed for the
linear part of our pde. Because for high frequencies £ the u,,, term dominates the non-linear uu,
term this means that we may expect to be able to avoid the inaccuracy of the Crank Nicholson
scheme for high-frequency modes.
Substituting this last expression for u(z,t) in the pde we can discretize using either the

Galerkin or the collocation projection and obtain

N N
d . 3 (1 e et iton
a0t 5P (5q;NFE_Nw,(t)w,(t)e‘“c othiitiitn) —o



Apart from the correction factors e/€e+& =€) the nonlinear term gives rise to convolutions which
were already present in the Leap Frog-Crank Nicholson scheme.
For the linearized scheme we therefore obtain a Leap Frog like limit under all circumstances:
1 L -
k< = .
lalén  |aj2zN

The stability limit derived in Section 3 is always less restrictive than the Leap Frog limit for the
nonlinear part. Which method is more attractive depends therefore on how accuracy requirements
and stability requirements balance out. (See picture) This is examined in detail in the next section.

For this method in which we use modified basis functions the stability properties do depend
on the length of the domain. The stability limit for a problem on [0, L] is Wl'?ﬁ‘ At the ¢ which
is most restrictive for the Leap Frog-Crank Nicholson scheme the Leap Frog scheme with extended
eigenfunctions results in the limit Ef?‘ =\ /\/55‘[, The difference between the two stability limits

at £* is therefore only a factor \/g .

6. A Finite Element Scheme

Finite element methods for the Korteweg-de Vries equation have been analyzed by Winther
in [19], where he proved convergence for a class of these schemes. We implemented one of the

schemes he proposed:

1 u’.’_tll - u’.‘_;l yttl _ gn-t 1
5( d ok 4 ok 2 +'2—,;((“?+1)2‘(“?)2)+

n+1 n—1 n+41 n—1 n+1 n—-1 n+41 n-1
€ (Y4 TU, 3:;,-_’,l +u;y, 3uj +u; u, ' +u. _
S - =0

_ §—1 -1
2 2 2 2

Linearizing and analyzing the stability of the linearized finite-difference scheme like we did for the

Fourier methods we obtain the following stability polynomial:
k. .3 . k, . . k _.s.
#(z) = [cos(fg) + c—h—a(2c)3 sm’(fg)] 24 207(2:) sin(§4)z - [cos(fg) - cF(Zz)"‘ sms(fg)]

The structure of this polynomial is essentially identical to that of the one we obtained for the Fourier

method. Necessary and sufficient for stability is therefore that f;c{:(z) be a Schur polynomial:
2 2 20p)=6 . 2 s 2 aho. 2 ah.,
1 - sin(€4) + K(4)Psin? (€){sin’(€4) + (5 s (eg) - 22 > 0.

For stability we obtain the necessary condition

from the above requirement while sin?(¢£2) = 1.
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Leap Frog- Leap Frog- odng odified
G é & ol ti . ..
Gank iehokon | Gregk Nochopn | b peions | Baiilihciony | ity goments
k¢, 9.19+10~° 9.19%10~* 1.52+10~° 1.52%10°* 9.19+10°°
koss 9.9 +10~° 9.9+ 10°° 8+10~° 8+107° 1+10°1
€maz 9.33+107° 9.33+10°° 3.28+10~* - 3.28+ 1071 7245107
emaz 3.53+107° 3.53%10™° 8.51+107° 8.51+107° 717+ 1073
Table 1: Comparison of the performance of the discussed
schemes on the propagation of a Korteweg-de Vries soliton
with 8 = 1.5 and ¢ = 1 on the interval [0,20]. We use
64 basis functions or discrete points, Tye: = 10. Shown
are: The theoretical stability limit ks, The observed stability
limit k., (approximate), The maximal error e,,,, when k =
11073, The maximal error e, when k = 5+10~4. (Errors
are scaled by 7!7\7 so that they are independent of the number
of points.)
Under the assumption that h? < %:— (accuracy demands require a very small h anyway) we
obtain
3V3 ¢ 1
k< == —(1 - —=|a|k?
2 l C'P( 4 \/§l I )

as the second stability condition.

7. Numerical Results

We compared the performance of the three methods presented before and verified the linear
stability analysis by numerical experiments. Although the linearized analysis does not distinguish
between the Galerkin and the pseudospectral approach, the resulting data seem to indicate that
neither method performs better than the other one. The results for Winther’s scheme are shown
together with those for the Fourier methods in Table 1.

Because of the much lower accuracy of finite difference methods we had to use a much finer
space grid with 500 points to achieve comparable results in a numerical sense. Needless to say it
took considerably more time to run the finite element method.

We compared the performance of the different schemes for the solution of the Korteweg-de Vries
equation by examining the accuracy and stability with which they propagate a Korteweg-de Vries
soliton P
u(z,t) = 3;51—2—(—7&;_2_5;.
(The errors were computed in the Lz2-norm.) All schemes perform very well on non-trivial problems
like colliding solitons too. All runs were done on a FPS 164 attached processor (53-bit mantissa)
with a Vax-11/780 host.

Comparing the errors for the two different k’s, we see that for the Fourier methods we do have

¢mas = O(k?) approximately, as we should for a centered finite difference approximation in time.
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That we obtained hardly any smaller error by decreasing k for the finite element method reflects
that the error is still dominated by the space discretization and one actually should take a still
much finer mesh for limiting the spatial discretization error.

Overall, the finite element method compared unfavorably with the spectral methods on the
problem considered here. Korteweg-de Vries solitons being analytical functions, this was to be
expected.

Experiments with the # scheme where 8 # % indicated that those cases are unstable indeed.

8. Conclusion.

We have proposed two new Fourier methods for solving the KdV equation that have improved
stability properties over conventional explicit methods. The key features through which this is
achieved are the use of implicit Fourier methods and modified basis functions. Both ideas can be
extended to higher dimensional problems and other types of equations in a straightforward manner.

In the linearized stability analysis the § = %, Crank Nicholson scheme is the only three-
level Fourier scheme in the class of schemes considered here for which some kind of unconditional
stability is obtained.

Numerical experiments show that the Fourier methods are considerably more accurate and
substantially faster than finite element methods if the problems are well suited.

Although a linearized stability analysis is not sufficient for proving stability and convergence
of the corresponding non-linear schemes, obtaining estimates of stability intervals and accuracy
requirements is often desirable in practice. Our experiments show that this analysis does give
accurate predictions about the properties of the nonlinear methods for the problems considered
here. The Korteweg-de Vries equation is an example of a time-dependent problem with a linear-
dispersive term and a nonlinear term. The kind of analysis given here can be extended with minor
modifications to other equations of this type: e.g. modifications of the Kortewe.g-de Vries equation

tuy+(p+1)vPu, + €uzp; =0, pEN

and the Schrédinger equation
st + Uz — V(z)u=0.
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