Lifestreams: Bigger than Elvis

Nicholas Carriero, Scott Fertig, Eric Freeman and David
Gelernter

March 25, 1996

Introduction

Here’s your compute-environment circa 2010: every document you’ve
ever created or received stretches before you in a time-ordered stream,
reaching from right now backwards to the date you were born. You
can sit back and watch new documents arrive: they’re plunked down
at the head of the stream. You browse the stream by running your
cursor down it—touch a document in the display and it pops out far
enough for you to glance at its contents. You can go back in time, or
go to the future and see what you’re supposed to be doing next week
or next decade. Your entire cyber-life is right there in front of you.

You might be in danger of being overwhelmed by all the documents
on your screen—but you use “substreaming” to describe the documents
you want, and everything else (temporarily) disappears. When you
want to create a new document, you spend zero time deciding where
to put it and what to name it. You press a button and a new element
pops up at the head of the stream; you can put whatever you want
inside. You can tune in your lifestream from any internet-connected
computer: a Unix machine or PC at work, your Mac or set-top TV box
at home, the generic computer at the supermarket, bank, hotel room
or phone booth.

The cyberworld of 2010 is a collection of information sites. Your
lifestream is your “personal site.” A newspaper or TV station, a cata-
log company or tech-report cache are information sites too, and in the
cyberutopia we have in mind, most such sites are stored in lifestreams.
When a lifestream stores the electronic edition of a newspaper, today’s




edition goes at the the streamhead with previous editions lined up be-
hind. On a TV station lifestream, the head element holds the latest
frame of sound-and-picture. You can grab and display each new im-
age as it emerges in realtime or watch material broadcast earlier. In
this worldview, the ignition key that fires up your Lifestreams dash-
board (which will look like a credit card, presumably, and store your
personal decryption and accounting information) is your key to the
cyber-universe.

What makes this utopian picture utopian? Why is it bet-
ter than today’s cyberworld? Our goal in managing information is to
make the time-you-spend-managing tend to zero as your “information
power”—your capacity to find what you need and do what you want—
tends to infinity. The Lifestreams system is promising because it makes
electronic housekeeping fast and easy (you spend minimal time orga-
nizing and arranging things) and retrieval power is high (it’s easy to
find what you want and manipulate it effectively). Most important,
the system promises large benefits from integration: it allows you to
accomplish many tasks using the same small repertoire of techniques.
A good tool—mathematical, philosophical, gardening—has the effect of
bringing to the fore deep-lying similarities among superficially-different
problems (e.g. planting tulips, preparing a perennial bed, digging up
saplings, bopping raccoons). That is the Lifestream system’s main goal.

Another Lifestreams property is more elusive but still important:
the essence of a Lifestreams environment (as opposed to a Unix or con-
ventional Macintosh environment, for example) can be captured in a
simple mental picture. When you connect to your lifestream, the im-
age you see on a Lifestreams-equipped Macintosh might be different
from what you’d encounter on a PC or TV or hand-held digital as-
sistant or ASCII terminal or 3-D virtual-reality goggles. (So far we
have Lifestreams “viewports” for Unix machines running X windows,
ASCII terminals and Apple’s “Newton” PDA.) But it’s the user’s men-
tal picture that counts, not the image on the screen. Because that
mental picture and the operations that go with it are simple, readily
grasped and readily held in mind, it will be easy (we believe) for users
to adapt to a variety of Lifestreams dashboards, using the underlying
mental picture as a guide. That adaptability in turn is a strong basis




for “universal access”—the idea that your Lifestream should be acces-
sible from any net-connected machine anywhere regardless of hardware
or operating system.

Lifestreams isn’t a self-contained, hermetically-sealed sys-
tem. It’s designed to work closely with existing word processors and
a wide range of popular applications, from finance managers to Web
browsers. Today’s browsers, finance managers et. al. are first-rate ac-
tors performing on cramped, junk-strewn stages. Lifestreams’ goal is to
provide them with a cleaned-up rational platform on which to cavort.

The Lifestreams system that is up and running today doesn’t fully
implement the model—it’s still an active research project—but it goes a
fair way towards the goal and already functions well as a personal infor-
mation site. The fully-realized model envisions “Lifestream provider”
companies working in tandem with software on the user’s node, server-
client style. The provider stores your lifestream securely and robustly
and provides you with efficient universal access. (“Securely” will pre-
sumably require encryption. The private key with which you decode
your stream might be stored on the few machines you rely on most,
but to get access from a machine at the supermarket you will need
to insert the key-card you carry in your wallet. The resulting system
isn’t airtight, but can probably be made at least as secure as the paper
version of your diary.)

Your own computer acts as a cache with respect to the Lifestream
server. The server takes over management of your local disk and uses
it to store up-to-date versions of as much of your current stream as will
fit. (Up-to-date master copies of everything remain on the server.) If
you’re hard at work on your stream when a UPS truck arrives with your
new computer, you can unplug your old machine and compost it, hook
up your new one and (assuming the new one supports Lifestreams)
continue working in your stream with no discernible blip, except for
temporary access delays while the server refills your suddenly-empty
cache.

Clearly the Lifestreams model, which puts the internet (or if you
prefer the “information highway”) at the center of the computing uni-
verse, requires important technological changes—most important, faster
and higher-capacity network links. But those changes are coming re-




gardless. The interesting question is this: once we’ve got a high-
speed information highway, what do we do with it? For one, we run
Lifestreams.

Your lifestream as a personal cybersite

Every chunk of information (every document, email message, applica-
tion transcript, rolodex card, appointment-calendar item...) is stored
by this system in a single time-ordered stream. When you tune in,
you see a stream of documents receding into the distance; farther away
in imaginary space means farther back in time. When you create a
new document or one arrives (via email, for example), you see a new
document pop up at the streamhead. To create a new document, you
can press the “new” button and get an empty box ready to fill, or
clone an old document and get a new copy to alter as you choose.
You don’t need to name documents (although you can); documents
are located by attribute and chronology. Attributes describe the type,
point- and time-of-origin and other aspects of a document. We count
every non-trivial word in a document as an attribute too, so we can
do content-based searches. The find button creates a substream—you
can ask for “all documents that mention Zeppelins or rigid airships,”
“all messages from Schwartz,” “the last message from Schwartz” and
so on. In response, the system shows you the portion of the stream
consisting only of the documents you have specified, and deposits on
the main stream a “calling card” document that gives you access to
the new substream if you want to revisit it. Any substream can be
“menu-fied”—displayed as a pull-down menu, for ready access to its
contents; our current viewports menu-fy the substream of calling cards
by default, so that users can browse readily among substreams.

A substream persists until you kill it. A newly-arriving Zeppelin-
related document gets dumped in the main stream and also appears on
every substream where it fits. If Schwartz sends another message, the
single member of the “last message from Schwartz” substream changes.

In our current system you can find things based on keywords and at-
tributes. Future versions will incorporate technology from our ongoing




expert database project; we intend for it to be possible to find docu-
ments on the basis of fuzzy, abstract or not-quite-accurate descriptions
as well as exact ones.

When you press the “squish” button you get a summary of
a substream. The type of summary depends on the type of informa-
tion in the substream—textual for plain documents, graphs or pictures
or animations for the appropriate more-specialized types. The “squish”
button automatically invokes an appropriate squish for this substream
(or offers you a choice of reasonable squishers). (Our prototype comes
with a few different squishes built in, but the system is intended to
accommodate custom add-on squishers as well. In some cases, highly
complex and sophisticated squishers will be desirable. The Lifestream
system’s contribution isn’t to say how these squishers should be built—
rather to suggest that they be built, and to provide a uniform framework
in which they can be installed. We anticipate a lively after-market in
fancy squishers one day.) An “email message” is any document copied
from one stream to another. You print a document by copying it to a
printer stream. To run an application, you create a new document and
run the program inside; output is stored and retrieved like any other
document.

The stream has a future as well as a past. Appointments and
calendar items are stored in the future, and become visible when their
creation-times roll around or when you go to the future on purpose
to look around. You can build forward-into-the-future substreams just
as you build backward-into-the-past ones. A future-looking substream
selects elements from “now” forward—it might show you all your ap-
pointments for next week, or every scheduled meeting in which you are
likely to see Feinstein.

The stream, then, has three segments—past, present and future.
Ordinarily the display shows only the present and (stretching out be-
hind it) the past; the future is visible when you ask for it. (But we’re
considering a different default, in which the entire stream is visible
in the form of two legs hinged together—the longer left leg showing
the present and past exactly as the current display does, the right leg
showing the future, with farther-away documents lying farther ahead
in time.)




Documents in the “present” are writable. Farther back, in the
“past,” they have frozen into history and become read-only. Each user
decides when the present ends and the past begins—at what point, in
other words, documents freeze. One possibility (and the system de-
fault) is to freeze today’s documents at the start of tomorrow. In that
case you can work on a document all day, but to continue the next day
you need to clone a new copy onto the streamhead. Or a user might
postpone freezing for a week, or forever. (Users can override the con-
trols as they choose. By default, Lifestreams saves every document and
makes frozen documents unwritable. But you can delete a document
or unfreeze it if you want.) The far-tail of the stream—for example,
documents that are more than two years old—may disappear at the
implementation’s discretion into archival storage. The user specifies
where the “far tail” begins, but the Lifestreams-provider will presum-
ably set charges that depend on a user’s willingness to have old material
dumped into data warehouses. The implementation guarantees that the
“header” of every document—the information that is available on the
display when you browse but before you open a document—will always
be available immediately. But if you journey to the remote past and
open a document that has been archived, you may have to wait a while
until it wends its way back to daylight.

Agents can troll down lifestreams, which have synchronization prop-
erties that are designed to make agent-building convenient. For exam-
ple: an agent can cruise to the head of a stream and go to sleep after
posting instructions that it be awakened whenever a new document ar-
rives. Agents are important to many aspects of the system; we discuss
some below. Custom squishers, custom agents and custom viewports
are the main ways in which the system is designed to accommodate
extensions and refinements.

The stream is organized by time because it is intended to
function as an electronic diary. It’s not just a file cabinet for in-
formation; it tracks your daily experience as it unfolds. Such a record
is inherently useful—which is why people keep journals or diaries, or
used to. For example Terry Cook, director of the Records Disposi-
tion Division at the National Archives of Canada, argues that the key
to effective electronic record-keeping “lies in being able to determine,




sometimes long after the fact, not only the content but also the context
of a record in question.” (He has studied cases in which lack of con-
text made electronic records useless.) Further, organizing documents
chronologically makes it possible to use daily experience as a power-
ful retrieval guide. Mark Lansdale’s experiments at the Loughborough
University of Technology have shown that, as you would expect, “peo-
ple remember chronological information about information.” He cites
examples: “My boss wants to see all the project reviews I have carried
out over the last six months. The trouble is, they are filed under each
of the individual projects. It will take me ages to work through and dig
them all out.” “Yes I remember that paper. It came at the same time
as the product audit. I can’t remember what happened to it, though.”

The underlying idea requires, furthermore, that every doc-
ument at a personal site be stored in a single structure—so
that you don’t have to invest any time in correctly pigeon-
holing a document upon creation, and searches can take
in your whole cyberworld at one shot. So we need a sin-
gle master structure—and creation or arrival time is the
one unambiguous, useful ordering attribute all documents
have. (Thus we might have organized the master structure
by “topic,” but topic is hard to establish and a document
might have several; we might have organized it by “length,”
but time is far more useful as a retrieval key; and so on.)

You don’t search for documents only on the basis of creation time,
of course. And for those who like conventional directories, the system
can accommodate them by means of the substream mechanism.

Lifestreams in Action

§ Daily Business

Let’s say you’d been working last night on the user manual for the
new two-seater blimp coupé your company (Blimptronics Inc.) will be
releasing soon. When you logged off, the blimp manual was at the




head of your stream. When you log on this morning you find five
pieces of fresh email at the stream head. You glance at the new email
by running the cursor down it—when you jtouch a stream document
with your cursor, it slides out of line and you can see the beginning.

You decide to ignore the email and get on with the manual. You'’ve
set up your system to freeze documents overnight, so you reach back
with your cursor to the manual and press “clone.” A new copy appears
at the streamhead. Names are optional; if you'd given the old version
a name (say “blimp manual”), the clone inherits the same name. (In
this case, typing “latest blimp manual” to find yields a one-element
substream. The query “blimp manual” produces the multi-element
substream holding every version since the start.)

Let’s say you are about to get to work on the “valving helium”
section and recall that your colleague Feinstein once sent you email on
the topic. You press find and type “Feinstein and valving helium.” The
resulting substream has one element. You go to that document and,
using your standard screen editor, copy a paragraph into your manual.
Then you decide that it might be worth examining everything you’ve
got on “valving helium”—mail, notes, even Web pages (we discuss them
below)—so you type a new find request and get (let’s say) a sixteen-
element substream. (It includes the document you’re working on, and
Feinstein’s message.)

You browse through the substream, selectively copy bits into your
new document and return to your main stream. Later in the day you
switch back to the “valving helium” substream, and it’s three docu-
ments longer than before: helium valving being a hot topic these days
at Blimptronics, of the messages that have accumulated during the day
three mentioned it and were automatically trapped on the substream.
(They appear on the main stream too.) To send a copy of the manual to
your boss at the end of the day, you clone it to the streamhead, maybe
add a note at the beginning, press “transfer,” identify his lifestream
and off it goes.

In his Psychology of Information Management, Lansdale
gives an example we cited earlier: the boss wants to see
this year’s project reviews, but the user has them filed un-




der each individual project. In a conventional environment
that would mean he’d created a separate directory for each
project, and needs to visit each one and pull out the report.
Under Lifestreams you can create substreams that function
(more or less) as conventional directories: you point to a
document and press “explicit substream.” The system in-
vents a unique id; it represents the id as an icon stamped
on the document and on the calling card that gets created
for this new substream. You can put other documents on
the same substream by pointing to the icon and then a
document: the icon gets stamped on the document. This
is the natural way to group together (for example) all the
separate files that make up a single longer paper. Explicit
substreams are like conventional directories, except that you
don’t make up names for them, grabbing any member gives
you access via icon to the rest, a document may be part of
arbitrarily many of them, and they are shuffled in with the
rest of the stream—thus are all searched together when you
do a find.

So: you could visit each project’s substream individually
and pull out the reviews. But you can also gather all the
project reviews by means of a single find operation, squish
them into a short summary and copy the reports and sum-
mary onto your boss’s stream. He is likely to respond with
a big raise on the spot.

For your next trick, let’s say you need to retrieve information about
a particular real-estate deal. The information was collected by a former
co-worker who can’t help you find it because he has since departed
the firm. In a non-Lifestreams world, you face the complex task of
find’ing and grep’ing your way through an alien directory structure.
Under Lifestreams, you focus your viewport on your former co-worker’s
stream (assuming you have the necessary software permissions) and
type the appropriate query (say “Castle Grande and Web Hubbell”).
For your purposes, any pre-existing directory structure is completely
transparent.

Simple enough, but how do you point your viewport at someone




10

else’s stream? You call up a substream on your display by clicking on
its calling card; you get access to someone else’s stream in the same
way. Each lifestream is represented by its own calling card. (You aren’t
likely to give many people unlimited access to your lifestream, but the
system allows you to grant limited partial access.) You can store copies
of your co-workers’ calling cards on your stream, just as you might keep
their addresses or phone numbers.

Suppose, though, that you don’t have the calling card for a stream
you want to investigate. We already have a way of finding things—
namely (surprise!) find. Ordinarily find rummages through your own
stream, but you can make it rummage through calling cards for ev-
eryone else’s stream instead—through the calling cards of every other
stream in the world that is willing to be visible to outsiders. (You can,
similarly, confine your dog to the inside of your house or set him loose
to investigate the outside of everyone else’s.)

If you want to refocus your display on Conchita Feinstein’s stream
but don’t have her calling card, you can let find search the world for
“Conchita Feinstein,” starting with “nearby” lifestreams and foraging
further and further afield until it reaches Outer Mongolia (or what-
ever site is most distant from yours as your particular installation sees
things). The result will be a substream consisting of calling cards for
every Conchita Feinstein in the world—unless you see what you want
and terminate find in mid-search, as you ordinarily would. (The call-
ing card for your stream carries whatever information you are willing
to release; Conchita’s might read “Conchita Feinstein, VP for Mooring
Masts, Blimptronics Inc., Teaneck NJ.”)

§ Scheduling and Reminders

The “future” segment of your stream is as an appointment calendar. If
you have four meetings and a doctor’s appointment next Wednesday,
the “next Wednesday” segment of your stream has five entries. When
the time stamped on a future document (say “Wednesday the 27th,
10AM?”) arrives, the document materializes on your stream as if it were
newly-arriving email. You can see the future by resetting the system
clock, via the same operation that takes you on browsing missions back




11

to the past. You can also (as we’ve said) build a forward-looking sub-
stream, in the same way you would a backward-looking one. If you
build a “rest of today” substream at the start of each day, all your
remaining appointments are trapped on that stream. If new events are
scheduled during the day (perhaps by your meeting-maker agent) for
later the same day, they are trapped in the substream also.

Most people use their computers to help manage their calendars,
but when they need to generate reminders they often fall back on leav-
ing files on the desktop or sending themselves email—ad hoc methods
that are plainly less than ideal. There are plenty of time and calen-
dar management software packages on the market, but the advantage
of the Lifestreams system is integration. When you need to generate
reminders or update your calendar, you rely on exactly the same oper-
ations and software tools and the same underlying model as you do in
the course of normal document and email handling. The time-ordered
stream with its idea of “right now” plus the substream mechanism are
all you need to manage your files, mail and calendar. Integrating many
capabilities under one model allows you, also, the flexibility to blur
or eliminate unneeded distinctions. Calendar items automatically turn
into stored documents (migrate automatically with the passage of time,
that is, from your stream’s “future” to its “past”). If you need a record
of all billable hours on the Castle Grande case, you can select and squish
a substream in the same way you always do. And you can squish the
future as well—to get a synopsis, for example, of all your appointments
for next week.

§ Integration and Money Management

Lifestreams isn’t a money-management package, but it is a
basis for squeezing more value out of existing packages. To
write checks under Lifestreams you might, for example, pop
a new document on your stream and stamp it with the at-
tribute “check”; a check agent slides down your stream and
prints the checks out or carries out the transfer electroni-
cally. The check agent isn’t part of Lifestreams; Lifestreams
merely provides the integrated framework within which the




12

agent can do its stuff. The same techniques that allow you
to substream your files or appointments allows you now,
also, to find all the checks you’ve written this year to Phil’s
Zeppelins. If you want to track the whole story of this year’s
business with Phil’s, you might need to see email and phone
records and appointments too— Lifestreams-style “integra-
tion” means that you can trap them all in a single sub-
stream. In our current system, for example, squishing the
substream created by an appropriate find command yields a
chart displaying the historical performance of each security
in a user’s portfolio.

§ Integration and your Rolodex

- Let’s say you acquired Phil Schwartz’s phone number at some point, but
can’t recall where or when: it might be stuck in email or an electronic
bill or phone notes, or maybe you located it in the phonebook and
copied it onto a “rolodex card” stream document. To find it, you could
make a Phil Schwartz substream. But the fact that Lifestreams puts
your entire info-life in one place makes it convenient to turn an agent
loose on the whole bundle. Your phone-number agent (we’ve built one
for our prototype system) ranges backward through the stream, looking
for likely candidates—phone numbers appearing in the textual vicinity
of Phil’s name. The time-ordering makes it easy to guess which numbers
are most recent. So the agent gathers candidate phone numbers and
presents you with a choice: work? home? fax? beeper? It will dial the
call for you too, if you like. ’

You run the agent as you would any application: pop a new doc-
ument on the stream and run the agent inside. The agent treats the
document as a transcript window for user communication. If you tell
it to dial, it pops a phonecall document on the stream, which serves as
a record of the call and can store your notes about the conversation.




13

§ Integration and the Web

When you locate an interesting Web site and want to find your way back
easily, you create a “bookmark” that points there. But it’s easy to ac-
cumulate an unwieldy supply of bookmarks. Many software companies
have acknowledged that fact by developing bookmark manager applica-
tions. Lifestreams, again, supports bookmark and Web-browsing man-
agement within an integrated framework. QOur prototype works like
this: a Web agent watches your Web browser and shadows it. Each
time you create a new bookmark in the browser, the agent creates a
new URL document on your stream and puts a copy of the new book-
mark inside. When you open a URL document in Lifestreams, your
Web browser opens and shows you the referenced page—just as your
word processor is deployed when you open a text document. The URL
document itself stores a copy of the page as it looked when the book-
mark was created. Your list of bookmarks (or hotlist) is simply your
“bookmarks” substream.

Integration means that substreams can trap Web pages along with
other document types, and that passing around URLs is easy. To send
someone a bookmark in a conventional environment, you copy it from
the browser to the mailer; the recipient copies it in the reverse direction
and then uses the browser to open it. In Lifestreams, you simply copy
the URL document to the recipient’s stream. When he opens it, a copy
of his web browser fires up and shows him the page.

In sum: under Lifestreams, the same operation that makes
a directory also creates a mailbox, hotlist, phone log or ap-
pointment calendar. In each case, pressing “squish” creates a syn-
opsis. Browsing documents in search of a file or mail boxes in search of
a letter or next week’s appointments to get a feel for your schedule are
three instances of the same operation. If you know how to locate the file
you want (by creating a substream via find), you know how to set up an
agent to filter your mail (incoming mail gets tossed automatically into
the appropriate substreams). When you return to your machine you
can tell at a glance how much mail has collected, and check through it
at the sweep of a mouse. You can reorder your entire information world
in a few keystrokes. Our prototype realizes all of these capacities.




14

Lifestreams is also a good platform for properties that would
be desirable in any software context but make particular
sense here. Archiving to and retrieving from bulk storage
ought to be automatic in every system, but Lifestreams is
a strong basis for automatic archiving because of its well-
defined browsing model and the attributes list that it asso-
ciates with every document. When the document goes, its
browsable header and attribute list remain behind, to point
the user in its direction when it’s needed. Your personal file-
space ought to be accessible from any net-connected com-
puter running any operating system. But Lifestreams is a
particularly good basis for supporting this kind of universal,
machine-independent access, because of its small operation
set and simple underlying model. Thus the Macintosh en-
vironment (for example, by way of contrast) is defined by
windows and menus working together with the hierarchical
directory structure and the applications in a particular way;
you can’t change the windows and menus and still keep the
Mac environment, because look and feel is the Mac environ-
ment. Lifestreams on the other hand substitutes a simple
mental picture for a particular image on the screen. The
stream and its basic operations are easily visualized, and
the essence of the system is the user’s mental imagery and
not the details of the display.

Beyond the Personal Cybersite

The Lifestreams system has big aspirations. It provides a simple, pow-
erful way to maneuver around any environment based on time-ordered
data. That capacity is potentially useful all over the place.

Consider TV. There’s universal agreement that TV will change rad-
ically in the near future; the question is, will it be well or poorly in-
tegrated with the internet-based cyberworld? Everyone agrees that a
TV station ought to be an archive and not just a real-time data feed.
On Tuesday at 10 you ought to be able to watch program material
originating on Tuesday at 10 or at any previous moment. Clearly, too,




15

you ought to be able to bring the power of your desktop computer to
bear on your TV, searching through archived material, posting agents
to trap what you want, stripping out commercials. But what kind of
data structure should an “archival” TV station live in? How do you
dial yourself backward in time? How do you search for what you want?
How is programming information integrated with program material?

The match to Lifestreams is obvious. A lifestream is a network-
accessible data archive for time-ordered information, which is just the
sort of structure a TV station needs. If a lifestream (in other words)
is an infinite pile of cards, you can draw little pictures on each one,
thumb the edges and get a flip-book. Edge-thumbing is performed by
an agent you hang on the the end of the stream with instructions to
take action whenever a new element shows up. (Our current system
assigns new documents to the proper substreams by means of such an
agent). On a TV stream, an agent would grab each new element and
throw it up as an image on your display. When a stream is ordinarily
escorted by a particular agent its calling-card can say so, and the agent
can be fired-up automatically when you tune in the stream—the way
an appropriate viewer application is fired-up when you open individual
documents.

Program information in the form of text documents would be in-
terspersed with images (the TV agent ignores interspersed text.) The
“future” part of a TV stream functions as a program guide: the same
operation (create a future-looking substream) that shows you your ap-
pointment calendar for next week will also work, when you apply it to a
TV stream, to show you next week’s programming. The same operation
that dials you back to last April to scrounge around for a report can
also take you back to last April to watch a movie you missed. The TV
agent can respond to commands like “fast forward” or “search for” or
“rewind” in the intuitive way, toodling blithely forward and backward
over the stream like a speedy locomotive on a high-quality branch line.
(The TV-stream brings up an issue we won’t discuss except in passing:
a lifestream is a recursive structure. A stream element can itself be an
entire stream. Thus “the 7 o’clock news” might be a stream element;
peer inside and you see another stream, the succession of frames that
capture the program.)




16

Your TV set in this worldview consists of Lifestreams running on a
computer with a biggish display and the appropriate agent. After you
unpack it and plug it in, you need to find some interesting stations; you
might point find at the outside world and type “NBC.” You would get
back a stream of calling cards for “NBC” streams, and you could tune
in an NBC station by clicking on its calling card in the regular way.
(The same tricks work, obviously, for digital sound. You can seek out
a particular recording of the Waldstein sonata or Pea-Brain and the
Rap Romeos the same way you look for NBC, pay for your own copy
of the stream or rent it by the hour, and set your music agent cruising.
The music stream might have program notes or video mixed in. Your
favorite-substreams menu might now include email, the report you're
working on, C-Span, email from some particular person, a local radio
station and your favorite recording of the Missa Solemnis. You mouse
among them in the regular way.)

The consumer electronics company Thomson recently announced
“Genius Theatre,” a big TV with a built-in computer and a wireless,
remote-control keyboard. “An enterprising move to blur the distinc-
tions between the PC and TV,” according to International Design mag-
azine’s March-April 1996 issue. But those distinctions are likely to blur
a good deal more convincingly in a Lifestreams world.

A lifestream is a natural way to organize a certain sort
of Web site. Suppose you're a catalog company selling a bunch of
different products. The conventional view of a “catalog” is a collection
of product blurbs that must be updated (by and large) simultaneously;
to change a blurb, you bring out a new catalog. A Lifestreams catalog,
on the other hand, is a stream of blurbs. To update a listing, you add
a new blurb to the end of the stream. Everything else stays the same.

What good does the time-ordering do? Granted, obsolete prod-
uct listings (e.g. for last year’s ZippoBlimp 230, which has since been
superseded by the pricier but more powerful 250) will rarely be of in-
terest and will probably be deleted from the publicly-accessible stream
view. But the Lifestreams structure means that you can search the cat-
alog using the same operations you depend on at your personal site—if
you're interested only in ZeppoSweaters and Hydrogen Leak Detectors,
you can create the appropriate substream, then either browse it or (if




17

you'’re in a hurry) squish it. And you can post an agent at the end of
a catalog stream to send you new product blurbs as they appear.

The same organizing principles make sense at (for example) a Web
site holding a government department’s or university research group’s
technical reports, or a candidate’s press releases, or each new edition
of a newspaper or magazine—except that, in these cases, the historical
archive remains interesting in its entirety. Each “Webstream” has a fu-
ture as well as a past, where upcoming events can be posted. (The “Ada
Project,” a popular Yale web site for women in computer science de-
veloped by graduate students Elisabeth Freeman and Susanne Hupfer,
uses Lifestreams to provide web access to announcements, news articles
and other web links. Users of the Webstream see a time-ordered list of
documents and can search the stream in the ways we’ve discussed.)

Suppose you and another Lifestreams user want to chat
online in Unix “talk” style. One approach: you spawn a new
Lifestream, and you each tune it in. (The streams we’ve discussed so far
have been long-lasting, but lifestreams are merely data structures and
can be created and destroyed dynamically as the need arises.) To make
a comment, you pop a document on the stream and put the comment
inside. Of course the Lifestreams-based conversation (versus the Unix
talk version) supports any number of participants, and allows chatters
to join in asynchronously: a third party might add new comments to
a conversation that took place yesterday, assuming the original partic-
ipants allowed their “conversational lifestream” to hang around.

But notice, now, that there is no fundamental distinction between
this sort of software conversation and a network bulletin board. Sup-
pose we store bulletin boards in lifestreams: users once again acquire
the power to browse, search and squish the same way they do at home.

Given “chatstreams,” it’s easy to see how phone calls could
be stored on lifestreams too. Each party to the call runs a “phone
agent” that translates speech into data packets and tosses them on a
phonecall stream, while concurrently grabbing each successive packet
from the stream and turning it back into sound. To phone Schwartz I
would spawn a stream plus an agent, then send Schwartz the stream’s
calling card. If he wants to take the call he opens the stream, his own
phone agent fires up and he’s in business. Phone ringing is handled by




18

an agent that sits on the end of your stream and makes noise when a
call-request document shows up. If you are in frequent phone contact
with some party, you can allow the phonestream you share with him to
persist; either of you can place a call (or leave a message) by re-opening
the shared stream.

Again, integration yields benefits. To find out what calls I’ve missed
when I return to my machine, I build a substream of call-requests.
(Callers who failed to reach me can leave answering-machine-type mes-
sages on the phonestream they had intended to hold the conversation.)
Lifestreams now provides a complete filing system for phone calls and
phone messages. An agent can forward my calls by copying an in-
coming call-request document to some other stream. If you want to
identify yourself in hopes of convincing someone to take your call, you
can type a message into your call-request document before shipping it
off. Setting up a conference call is trivial: you send your request to
many streams instead of one. Because your TV is also your phone it
can pause a program when you get a call, and pick up where you left
off when the call is over.

It’s widely agreed that services like phones, TV and internet access
will be unified in the future; there’s nothing new in that prediction.
But merely to make the prediction begs the important questions: will
these services be integrated? How? How will users negotiate the new
communications landscape? Will ninety percent of them make do with
two percent of the system’s power, because they can’t figure out how
to get the rest to work? Will the communications landscape become a
slap-dash, complex pastiche along the lines of today’s computing land-
scape? Or do we stand a chance of achieving power and simplicity and
integration—in other words, elegance?

In Sum...

If you master the Lifestreams dashboard, you know in essence how to
deal with files and calendars, mail and phonelogs and hotlists—and how
to work your fancy new digital TV set, how to deal with a wide range of
bulletin boards and Web sites, how to set up a chat room or a conference
call online (just spawn a stream and hand out calling cards). And these




19

capacities are delivered in a context where you no longer worry about
managing your file and disk space, no longer care what base operating
system a machine is running and can dive into your private information
world at any gas station, karaoke bar or McDonald’s in the country.

There’s a certain class of computer user who enjoys learning new
systems, puzzling out new ways to get things done and lugging around
portable computers. For those of us who aren’t in it, the Lifestreams
system is a promising way to cut down on the time-wasting, brain-
wasting overhead of operating in cyberspace.

Lifestreams in context

Because Lifestreams undertakes to perform such a wide variety of func-
tions, the number of systems it resembles in one way or another is
gigantic. Relevant points of comparison include file indexing systems,
information retrieval and filtering systems, corporate document and
~archiving systems, personal information handlers, time and contact
managers, workflow systems and financial managers, among others.
The relationship between Lifestreams and these other applications is
an important topic and we have surveyed it at length elsewhere; here
is a brief overview.

Note first that, so far as we are concerned, the Lifestreams system’s
appeal isn’t a matter of its being able to carry out new kinds of in-
formation processing that other systems can’t. It depends instead on
the versatility and simplicity of the Lifestreams tool-set and underlying
model. Among competing tool-sets whose capacities are (ultimately)
equivalent, the choice comes down to subjective, aesthetic judgements.
That doesn’t mean there are no useful experiments to run; we are in the
process of running some simple ones designed to gauge a user’s produc-
tivity under Lifestreams versus a conventional Unix environment with
“standard” tools. We have to confess, though, that even if the ex-
periments fail to turn up any measurable productivity gains, we are
extremely unlikely to stop using Lifestreams ourselves. We have tried
to explain why certain users might find the system attractive inde-
pendent of any measurable performance gains. Some key issues are




20

well-summarized by Andrew Corradini, Manager of Internet Services
for Phoenix FiberLink, a Western U.S. data and telecommunications
provider (he is an observer of the system rather than a user):

I have so much stuff coming in my “InBox” daily, whether
it’s incoming e-mail, snailmail, phone messages, articles, or
what-have-you; that there’s not really time to organize it
all. Rather, as you quite convincingly point out, I'd rather
just STORE it all (since storage is cheap!) and access only
what I want when I want to access it.

Corradini believes that “Lifestreams is a fundamental paradigm shift...”

It’s worth recalling the formal studies that have shown the Mac-
intosh environment to be more productive, in well-defined ways, than
various PC environments. Those studies were interesting—and yet,
in a sense, they were doubly irrelevant. Macintosh enthusiasts didn’t
need them; their enthusiasm tends to be based on the machine’s subjec-
tive appeal. Nor have the studies been sufficient to put the Macintosh
over in business environments dominated by the PC. Subjective factors
dominate in that case also.

Lotus Notes is today’s dominant “workgroup” application. Both
Lifestreams and Notes maintain document databases and allow cus-
tom viewing and filtering of any database (via a “view” in the case
of Notes). In both systems email is tightly integrated with document
handling. But Notes is intended mainly as a corporate document sys-
tem, and its databases are optimized to the needs of general audiences
as opposed to single owners. Notes databases are statically config-
ured, and database filters are created not by typical employees but
by system administrators. Although Lifestreams supports collabora-
tive work, a single-user “stand-alone” Lifestreams system makes perfect
sense; stand-alone Notes makes less sense.

Systems like the MIT Semantic File System, Manber and Wu’s
“Glimpse” and various versions of the Macintosh find application allow
files to be retrieved on content rather than name or location. Content-
based document retrieval is central to Lifestreams also, but in a way
that is integrated with document creation, time management and com-
munication as we’ve described.




21

Lansdales’ “Memoirs” system used time and content-based search
as a basis for organizing personal information on Macintosh systems.
Ben Schneiderman and Catherine Plaisant’s “Lifelines” is a system for
producing graphical, timeline summaries of historical information; their
techniques are potentially valuable in the Lifestreams context.

Lots of other systems bear comparison to Lifestreams; Eric Freeman
discusses them in his dissertation.

Conclusions

Big predictions are a risky business at best, and most people wisely
avoid making any. But life would be less interesting if no-one ever went
out on a limb. We are about to go out on one.

The internet, the information highway and associated software (like
the Web and Java) have yet to find their killer app. Web browsing
itself is sometimes spoken of in those terms, but it’s unlikely to drive
the development of a network environment substantially more capable
than today’s—and it is unclear where the ultimate commercial payoft
lies in a system whose main function, in business terms, is to make
advertisements and product descriptions available to people who choose
to ferret them out. Advertisement-deprivation is not a problem many
Americans struggle with, whether they are habitual Web browsers or
not. Web shopping is a promising area. Yet we tend to believe that,
in a period as enlightened as ours, in which anyone with a stack of
catalogs and a credit card can shop up a storm without ever stirring
from his Barca-lounger ... net shopping won’t change many lives. Video
on demand has significant business potential. But demand video could
be delivered by a more limited and specialized infrastructure than a
full-blown info-highway, and the whole prospect raises an interesting
question. How many families will spring for the incremental cost of the
required network services, versus the far-more-modest requirements of
an expanded cable-TV world offering (say) 500 movie channels instead
of five? The answer, some industry insiders believe, is “not many.”

So here’s our prediction: Lifestreams (or something else with a dif-
ferent name and realization but the same purpose and basically the




22

same design) is the information highway killer app. It offers something
new, powerful and different, a service that will pay off daily in real
life and can’t be realized (in all its glory) in any other way; a service
that needs the information highway and milks it for all it’s got. The
big commercial opportunity won’t be selling the base Lifestreams sys-
tem; it will be renting out Lifestreams service, and selling the custom
agents, squishers and viewports that support fancy special-purpose en-
vironments for libraries and hospitals, fertilizer factories, supermarkets,
film buffs, et. al. (You read it here first!)

Lifestreams is a three-phase project. We are near the end of the
first phase. In phase one we build a stable, robust implementation
for Unix workstations; servers handle a modest number of clients (less
than ten), and provide an interface between the Lifestreams world and
the surrounding internet (making arriving email appear on lifestreams,
for example). Our intention at the end of this phase is to distribute
the Unix implementation to interested users via internet. In phase
two we port the system to Windows and Mac and add some important
refinements (for example in attribute-handling and find); in phase three,
we develop full-blown utility servers. The system will be valuable, we
think, even if it never gets anywhere near the ambitious TV and phone
integration we’ve proposed. In any case we can’t help believing that
an integrated, elegant communications landscape would be of value to
nearly everyone, and that Lifestreams is a strong basis for achieving
one.




