

Neural Network Theory and Applications

2006

Willard L. Miranker
Yale/DCS/TR-1376

December 2006

Table of Contents

Emergence of Language-Specific Phoneme Classifiers in Self-Organized Maps

Marek W. Doniec 1

Modeling Child Development using a Game Theoretic Approach and Genetic Algorithm

Laura J. Gehring 7

Cluster Analysis with Dynamically Restructuring Self-Organizing Maps

Daniel Holtmann-Rice 15

Dimensionality Reduction via Self-Organizing Feature Maps for Collaborative Filtering

Andrew R. Pariser 23

Face Recognition: A Comparative Study

Yan Sui 31

Note Onset Detection in Audio Sources

Andreas Voellmy 37

Emergence of
Language-Specific Phoneme Classifiers

in Self-Organized Maps
Marek W. Doniec

Department of Computer Science
Yale University

New Haven, Connecticut 06511, U.S.A.
marek.doniec@yale.edu

Abstract— The difference between self-organizing maps based
phoneme classifiers that emerge for different input languages
is studied. For each such language a self-organizing map is
trained on Mel-Frequency Cepstral Coefficient (MFCC) con-
verted auditory input to form a phoneme classifier. Unsupervised
learning is used as the training method. The emerging classes
are then compared to the classes found in the International
Phonetic Alphabet. Particular class differences across languages
and speakers are discussed.

I. I NTRODUCTION AND RELATED WORK

Kepuska et al. [4] have shown that a hexagonal lattice self-
organizing map (SOM) shows similar response patterns for
the same words and different response patterns for different
words. They used 9 repetitions of 20 different words to train
and test their SOM. Kumpf et al. [7] showed that using a
Hidden Markov Model (HMM) they were able to classify
accents within a group of Australian English speakers with an
accuracy of up to85.3%. Kangas [3] has shown that using
a time-dependant representation of Mel-Frequency Cepstral
Coefficients (MFCCs) can improve phoneme classification
from a 10.4% rate error to a5.0% rate error. However none
of these works have compared the resulting classes to the
classes found in the international phonetic alphabet (IPA). This
alphabet is a much studied and widely accepted classification
of phonemes that provides a representation for phonemes
of any spoken language [5]. A comparison of the classes
learned by a phoneme-recognition SOM to the IPA might
reveal strengths or weaknesses of training phoneme classifiers
using SOMs and possibly lead to improvement. Further a
positive correspondence would suggest that SOMs are capable
of capturing the functionality of the human auditory system.

We investigate the differences between phone classes of
different languages. The languages are chosen to be different
enough so that a native speaker of one language usually has
a strong accent in the other language chosen. We first convert
the audio signal using Mel Frequency Cepstral Coefficients
(MFCCs) which approximate the human auditory system’s
response and are widely used in speech recognition systems
[6], [8]. A self-organizing map is then trained on feature
vectors for each of the languages tested. We use unsupervised

learning. The classes found in the resulting feature maps
are then compared to the IPA by submitting example words
for specific phonemes to the trained SOMs or by looking
at neurons that respond only to utterances from a particular
language. In particular we look for classes that are present
in at least one of the trained SOMs but not present the
other trained SOMs. In addition we trained an SOM on two
languages and examined at neurons that responded only to
utterances from one of the two languages. We then identified
the phoneme class that these neurons correspond to. Finally we
investigate the use of Principal Component Analysis (PCA) to
find phoneme classes and to compare phoneme classes from
different languages.

The paper is organized as follows. Section II explains how
data was collected, preprocessed, and how the SOMs were
trained. Section III talks about differences between SOMs
that were trained on utterances from different speakers and in
different languages. Section IV focuses on differences between
languages. Section V examines the use of PCA to detect
language and speaker dependencies. Section VI summarizes
the results and Section VII contains brief critique.

II. M ETHODOLOGY

First we describe the setup for recording our wave samples.
Then we describe how the self-organizing maps were trained,
and we introduce a distance measure for the trained SOMs.

A. Recording

Wave files for the experiment were recorded at 8 bits mono
with a 22 kHz sampling rate. A simple laptop microphone
was used and subjects were given a piece of text from a
newspaper article or encyclopedia to read. We recorded two
speakers. The first speaker is a native English speaker and was
recorded reading English texts. The second speaker is a native
German speaker (the author of this paper) and was recorded
reading German as well as English texts. For each language /
speaker, three wave files were recorded for a total of 9 wave
files. Each wave file has a 23 to 33 seconds duration and
is about a paragraph of text long. In the following text the
abbreviationS1E refers to the first speaker in English. The

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 1

abbreviationsS2E and S2G stand for the second speaker in
English and German respectively.S2E,1 stands for the first
wave file recorded for the second speaker in English, etc.
The index for wave files extends to the other abbreviations
appropriately.

For the second part of the paper in which we focus on
differences across languages another set of data was collected.
One native German speaker was recorded a total of 14 minutes
reading 16 short text excerpts, 8 in English and 8 in German.
The texts were divided into 4 groups, 2 English and 2 German,
of which each is 3.5 minutes long. The groups are named
S1

E , S2
E , S1

G, S2
G. S1

E and S1
G were used as the training sets,

S2
E andS2

G were used as the test sets.

B. Training the Self-Organizing Maps

Recorded wave files were first processed using a simple
Matlab MFCC library obtained from the internet [9]. The
library offers tools to convert the entire wave file into 20-
dimensional MFCCs. The signal was converted using a Ham-
ming window of size 32 msec and a hop time of 16 msec. For
example, a 32 second wave file would result in 2000 MFCCs
of size 20. This data was then presented a total of 20 times to
a 10× 10 SOM.

C. A Distance Measure

To be able to compare the different SOMs we need a
distance measure. For each SOMN and i ∈ {1, ..., 100} let
N(i) ∈ R20 be the weight vector of theith neuron ofN .
For j ∈ {1, ..., 20} let N(i, j) be the jth entry of the ith

weight vector ofN . An advantage of this notation is, that a
SOM N can be represented by a100 × 20 matrix in which
each row represents one neuron. Define the distance between
two neurons to be the square of the euclidian distance of their
weight vectors:

d′(N1(a), N2(b)) =
20∑

k=1

(N1(a, k)−N2(b, k))2

Further define the bijective functionm : 1, ..., 20 →
1, ..., 20 to be the optimal match between the neurons of
two SOMs using the metric just define. This means thatm
minimizes the following function:

d(N1, N2) =
100∑

i=1

d′(N1(i), N2(m(i)))

Define this optimal match distance to be the distance
between two SOMs. We see that this distance measure satisfies
the three distance axioms:

1) d(N1, N2) ≥ 0 and d(N1, N2) = 0 iff N1 = N2.
(Obvious.)

2) d(N1, N2) = d(N2, N1). (Obvious.)
3) d(N1, N3) ≤ d(N1, N2) + d(N2, N3). If m12 is the

optimal match forN1, N2 andm23 is the optimal match
for N2, N3 then the optimal match forN1, N3 is at least
as good asm23(m12).

Speaker 1 Speaker 2 Speaker 2
English English German

Speaker 1, English 11.1053 20.3451 22.0439
Speaker 2, English 20.3451 12.2026 16.4283
Speaker 2, German 22.0439 16.4283 11.5012

TABLE I

DISTANCES FORSOMS THAT WERE TRAINED ON DATA FROM TWO

SPEAKERS. ONE SPEAKER PROVIDED ONLYENGLISH DATA , THE OTHER

PROVIDED BOTH, ENGLISH AND GERMAN DATA . DISTANCES FOR A

DATA -SET WITH ITSELF (FOR EXAMPLE THE DISTANCE D(SPEAKER 1

ENGLISH, SPEAKER 1 ENGLISH)) WERE COMPUTED BY COMPARING PAIRS

OF SOMS WITHIN THAT DATA -SET. THE AVERAGE OF THOSE DISTANCES

IS GIVEN. DISTANCES ACROSS DATA-SET (FOR EXAMPLE THE DISTANCE

D(SPEAKER 1 ENGLISH, SPEAKER 2 ENGLISH)) WERE COMPUTED BY

MEASURING DISTANCES FOR ALL POSSIBLE MATCHINGS BETWEEN THE

SOMS IN THOSE DATA-SETS. THE AVERAGE VALUE IS SHOWN IN THE

TABLE .

III. SPEAKER AND LANGUAGE DEPENDENCIES

In this section we examine the differences (distances) be-
tween SOMs that are trained on utterances from different
speakers and in different languages. We computed the dis-
tances between SOMs trained for all nine wave files (S1E,i,
S2E,i, S2G,i, i ∈ 1, 2, 3). The process was repeated 5 times to
obtain a good average. However it turned out that the SOMs
converge so strongly that the differences across two SOMs
trained for the same data-set are negligible and thus with a
Matlab precision of 4 digits the distances computed for all 5
runs were the same. The results can be seen in Table I.

Note that the absolute value of each distance does not pro-
vide useful information, because it depends on the number of
neurons used and the representation of the MFCCs. However
since the number of neurons and the MFCC representation
chosen are the same for all SOMs, comparing two distances
is a relevant approach to seek meaning. First we notice that the
distance for SOMs trained on the same speaker and the same
language are closer to each other then all the other SOMs by
at least34.6%. This means that the metric used does capture
some difference between different speakers and languages.
Note next that the distance between speakers seems to be
larger than the distance between languages by up to34.1%.
This means that our SOMs characterize speaker dependencies
more readily than language dependencies. However the SOMs
are still capable of capturing the difference between languages
for one speaker. Thus we decided to use only one speaker who
spoke multiple languages in the balance of the experiments.

IV. L ANGUAGE SPECIFICSOM AREAS

In this section we attempted to measure and visualize
differences between SOMs that were trained on utterances
in multiple languages collected from one speaker. Instead
of using our previously defined distance measure, we now
use activation maps (specified in this section) to visualize
similarities for different language inputs. Because we work

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 2

with only one SOM, the distance measure does not enter into
this part of the study.

A. Training the SOM

Only the wave filesS1
E and S1

G were used to train the
SOM for this experiment. Recorded wave files were again first
processed using a simple Matlab MFCC library. To reduce the
amount of data and keep training times reasonable, a Hamming
window of size 100 msec and a hop time of 50 msec was
used. This data was then presented a total of 30 times to a
10×10 SOM. Note that the rest of this section is based on the
one particular SOM that resulted from such training. However
this training process was repeated multiple times and while
the resulting SOMs had a different spatial distribution of the
neurons, they showed the same properties. These properties
are presented in the following subsection.

B. Activation Maps

After training the SOM the four wave filesS1
E , S2

E , S1
G,

andS2
G were processed into MFCCs. The newly trained SOM

was used to classify the input vectors. For each input vector
the Euclidean distance to all neurons was computed. Each
input vector was then assigned the number of the neuron
with the smallest Euclidean distance to this input vector (That
means this neuron fired for that particular input vector). A
count was kept how often each neuron would respond to
the input data stream. A separate counter was kept for each
of the four data streams resulting from the four wave files.
The activation counts were then visualized in two activation
maps that are shown in Figure 1. In these maps a neuron’s
color intensity corresponds to the firing frequency for a given
data stream. The intensity of the color red is determined by
the firing frequency of that neuron during German utterance,
the intensity of green corresponds to English. The color of
a neuron moves along the colorspectrum (from red to green)
proportionately to the relative frequency of German to English.
This means that a brightly red colored neuron responded
almost only to German utterances whereas a green colored
neuron responded only to data streams of English utterances.
Orange and Yellow colored neurons corresponded to a mixture
of utterances in both languages. The first activation map
(Figure 1(a)) represents the SOMs response to data created
from the training set wave filesS1

E and S1
G. The second

activation map (Figure 1(b)) represents the SOM’s response
to data created from the test set wave filesS2

E andS2
G.

C. Observations

Note that the SOM develops the following four types of
neurons:

1) There are a few neurons that do not respond to utterances
from either language. For example, neuron(10, 3) is
almost entirely dark in both activation maps (For neuron
numbering, see the caption of Figure 1). These neurons
are most likely a result of the neighborhood-rule, i.e. two
neighboring neurons that are far apart ’pull’ this neuron
into a space that is not used by the input.

2) Most neurons respond in similar ways to utterances in
both languages. This is to be expected. Examples are
neurons(1, 1) and (1, 10).

3) Some neurons respond almost exclusively to utter-
ances in German. These neurons represent sounds and
phonemes that occur predominantly in German. One
such neuron is neuron(1, 9).

4) Some neurons respond almost exclusively to utter-
ances in English. These neurons represent sounds and
phonemes that occur predominantly in English. One
such neuron is neuron(5, 7).

The occurrence of neurons that respond only to utterances
in one langauge is a sign that the SOM does develop language-
specific regions. To show that these regions are not entirely
training-set dependant we produced a second activation map
using utterances from a separate test set. As can be ex-
pected the activation maps are not identical, however the
predominance of certain similarities supports the hypothesis
that SOMs develop language specific neurons. In the example
illustrated in Figure 1 we can see that for both activation
maps the lower right corner is German-dominated and that the
center of the SOM is English-dominated. The left top corner
responds frequently for both languages. As we shall see later
it corresponds to silence (i.e., a pause) between words.

D. A Closer Look at Single Neurons

To illustrate the occurrence of each of the four neuronal
classes discussed above and to show that language dependant
neurons emerged during training, we have singled out the
parts of the wave files that activate certain neurons that are
predominant in one or in both languages, as the case may
be. We give the total response time of neurons to utterances
in different languages. The total response time for a neuron
is calculated by multiplying the number of input vectors to
which this neuron responded by the stepping size that was
used to calculate the input vectors (50 msec).

First we examined the brightly yellow colored neuron
number(1, 1). We found that this neuron responded to MFCCs
that represented silence. For the training set this neuron
responded for a total of 7.6 sec for German and 5.75 sec
for English. For the test set the total response time was 12.3
sec for German and 7.75 sec for English. This suggests that
when speaking German, our speaker paused longer between
words. However pauses might also have been classified by
neighboring neurons. Since pauses occur frequently between
words in both languages, this neuron(1, 1) is colored a bright
yellow in the activation maps.

For further analysis we examined a neuron that exhibited
a strong response only for MFCCs created from English
utterances. Neuron(5, 7) is colored green and responded a
total of 0.05 sec for German and 3.15 sec for English in
the training set and 0.05 sec for German and 3.15 sec for
English in the test set. Here is a list of some of the words
during which neuron(5, 7) fired. Each word is accompanied
by a pronunciation transcription as presented by the Merriam-
Webster Online Dictionary [10].

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 3

(a) SOM activation map for German and English utterances from
the training set.

(b) SOM activation map for German and English utterances from
the test set.

Fig. 1. These SOM activation maps display the response frequency of neurons to utterances in English (green) and German (red). Yellow denotes a neuron
that responded frequently during utterances from both languages. The activation map on the left shows neuron firing frequencies during utterances from the
same sample set that was used to train the SOM. The right activation map shows neuron firing frequencies during utterances from a separate test set. The
similarities of the images show that certain neurons respond more frequently during utterances in English than utterances in German and other neurons respond
more frequently during utterances in German. The neurons are numbered lexicographically in row/column order. The bright yellow neuron at the top in each
activation map is thus numbered(1, 1).

• thirty [’th&r-tE]
• traverse [tr&-’v&rs]
• effort [’e-f&rt]
• computer [k&m-’py\ u-t&r”]
• service [’s&r-v&s]
• aircraft [’er-\ kraft”]
The neuron responded in particular to the [&r], which is

pronounced like the ur/er in further.
Neuron(1, 9) was also examined. It is colored a dark red

and responded for a total of 4.7 sec for German and 0.45 sec
for English for the training set and 4.65 sec for German and
1.0 sec for English for the test set. This neuron corresponded
to the nasal [n] sound as in ’nice’ which occurs less frequently
in English then it does in German.

Similarly to neuron(1, 9), neuron(10, 4) responded more
frequently to German than to English. It represented the [sh]
sound as in ’shoe’. It responded for a total of 4.0 sec for
German and 2.05 sec for English for the training set and 4.5
sec for German and 2.9 sec for English for the test set.

We also examined the [th] phoneme that does not occur
in the German language but frequently occurs in English in
words like ’this’ and ’that’. A small test file that contained
only that words ’this’ and ’that’ was recorded and the resulting
MFCCs were classified with our bilingual SOM. The result is
shown in figure 2. This image helped us identify the neuron
that corresponded to [th]. This was neuron(6, 6) for this
particular SOM. Neuron(6, 6) responded for a total of 0.8
sec for German and 2.35 seconds for English for the training
set and 1.45 sec for German and 3.6 sec for English for the

Fig. 2. Activation map for our bilingual SOM in reaction to a recording of
’this’ and ’that’ utterances. Dark blue means no activation, light blue corre-
sponds to medium activation, yellow and red correspond to high activation.

test set. While it responded far more frequently to English
then to German it is still surprising that this neuron responded
to German at all, since the [th] sound does not occur in the
German language. We see two possible reasons for this:

1) The most likely reason is that the speaker recorded was a
native German speaker whose pronunciation very likely

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 4

Speaker 1 Speaker 2 Speaker 2
English English German

Speaker 1, English 0.2852 0.7209 0.8076
Speaker 2, English 0.7209 0.2146 0.3766
Speaker 2, German 0.8076 0.3766 0.2536

TABLE II

AVERAGE DISTANCES BETWEEN THE FIRST PRINCIPAL COMPONENTS FOR

OUR WAVE FILES SORTED BY GROUP(LANGUAGE, SPEAKER). THE

ABSOLUTE VALUES ARE OF NO MEANING, HOWEVER THERE IS A

SIGNIFICANT DIFFERENCE BETWEEN THE DISTANCE FOR SPEAKERS AND

THE DISTANCE FOR LANGUAGES. THIS SUGGESTS THATPCA IS ABLE TO

CAPTURE SPEAKER DIFFERENCES.

biased the result.
2) The resolution of the SOM might cause two sounds to

be classified by one neuron. Thus the same neuron might
respond to similar sounds like [v].

V. PRINCIPAL COMPONENTANALYSIS

We also investigated the use of Principal Component Anal-
ysis (PCA) to recognize speaker or language dependencies.
PCA is a good candidate because it both extracts the most
significant components and allows for a dimensionality reduc-
tion of the data. We hoped that we could identify components
that would help identify the speaker or the language.

The input wave files were again transformed into MFCCs
using 100 msec Hamming windows and a hop time of 50
msec. We use the files (S1E,i, S2E,i, S2G,i, i ∈ 1, 2, 3). We
then applied PCA to each data stream and saved the principal
components (20 components for each file, each component
of size 20). For each principal component and each pair of
files we computed the Euclidian distance giving a total of
9 × 9 = 81 distances. The distances were then averaged
over comparisons between files from the same group (there
are three groups:S1E , S2E , and S2G). This resulted in 20
tables, one for each principal component. Each table gives
the average distances for this particular principal component
between languages and speakers. We found that the first
component represented the distances between speakers well
as can be seen in Table II. However none of the components
seemed to represent differences in language.

In a second analysis we used PCA to reduce the input
space for our SOM training algorithm. For this the MFCC
transformed filesS1

E , S2
E , S1

G, andS2
G were concatenated and

PCA was applied to the resulting data stream. This time the
representation in principal components was input to the SOM
as input. The results were similar as in the that in Section IV.

However we found the following problem in utilizing
PCA together with SOMs. PCA generates different principal
components for different input files as shown in Table II.
This results in the problem that if we transform two files
separately then their representation in their respective principal
components are of no value to the SOM, because they are
independent of each other. We tried to represent additional

data in the principal component space of the training data but
only with marginal results.

VI. SUMMARY OF RESULTS

We showed that training SOMs on MFCCs results in SOMs
that are both, speaker and language dependant. This result
was obtained by comparing the SOMs with a specified metric.
This suggests that SOMs can be used to differentiate between
languages and between speakers.

We further showed that SOMs do capture differences be-
tween languages that can be easily made discernable. In
particular we showed that if an SOM is trained with two
languages then some neurons represent sounds that are unique
or predominant in one of the languages. An additional result
was that independently of the language used, the SOM has
certain neurons that correspond to silence (a pause) and are
activated more frequently than other neurons in the same
SOM.

We showed that PCA might be able to extract speaker
differences but most likely is not suitable to extract language
differences. Further we explained that it is not possible to use
PCA to preprocess the input to the SOM training algorithm
because PCA will generate different principal components for
two separate input samples. Thus representing each sample
in the principal component space does not allow for a good
comparison of two different samples.

VII. D ISCUSSION

The results suggest that training an SOM on unlabeled
speech data can result in the formation of a phoneme classifier
in which groups of neurons or single neurons correspond to
different phonemes. Although these phonemes are not labeled
they seem to represent the phoneme space of spoken languages
well. These SOMs help to further reduce the dimensionality
of the input and could be of use for further classification and
speech recognition tasks. The advantage over existing work is
that our system uses unsupervised learning and thus needs no
feedback.

We have found that the SOMs capture speaker as well as
language differences. This suggests that an SOM might be
used to discern certain simple classes of speakers. An analog
of this is the preferential response of infants to their mother’s
voice as found by Mehler et al. [12].

The language differences captured suggest that an SOM
adapts to a certain language and its phonemes. This is also
similar to findings in infants who habituate themselves to a
particular set of phonemes and tend to attenuate non-native
phonemes during advanced langauge learning [11]. Further
we have shown that if trained with two languages at once
an SOM can learn both phoneme sets and even distinguish
between sounds that occur only in one of the languages. For
future work we envision a system that learns to differentiate
between several different languages based on the firing pattern
of a trained SOM.

Another utilization of such an SOM could be speech seg-
mentation. We observed that the neurons representing silence

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 5

in the SOM fire more frequently then any other neuron
(see Figure 1). This suggests that if indeed silence is the
predominant feature vector, our system has developed a set
of neurons that represent word-boundary signals. So not only
does our SOM learn to classify phonemes but it could provide
a subsequent speech recognition system with word boundary
information.

We showed that PCA is not well suited for preprocessing the
input for the SOM in the case of building phoneme classifiers.
We believe however that PCA might serve to extract principal
components from a large data set for in the identification of
speakers. The reason that PCA demonstrated no utility for
preprocessing is that different input files produced different
principal components. This happens especially if the input files
are small and thus provide only a small sample of training data.
Further study will show whether the principal components will
tend to stabilize for large bodies of data (multiple hours of
recordings for each speaker / language combination). If such
fixed points exist they might prove useful for preprocessing
the speech signal.

Future work should include a more detailed analysis of
the exhibited behaviors. The results obtained in this study
are based on noisy data that was collected under suboptimal
conditions from only two subjects. We believe that a large
scale study employing data from many subjects might reveal
additional features and allow testing of the interaction between
different languages and speakers. The reason that we used
only one speaker for the second part of the study is that
currently there is no good method for extracting speaker
independent feature vectors from speech. MFCC still captures
the base frequency and possibly other speaker dependent
features and thus does not allow for efficient comparison of
languages across speakers. Current work on speaker inde-
pendent phoneme classification usually trains classifiers on a
large body of subjects [13]. While these classifiers learn to
generalize across different subjects, they are still presented
with speaker-dependent input such as MFCCs. A similar
approach might be used in combination with the methods
presented here. Naturally this would require a large body of
data.

We have shown that the unsupervised learning of SOMs
with as few as 100 neurons enables extraction of speaker
and langauge differences. We showed that some can extract
additional useful information such as word boundaries. Thus
SOMs are well suited for use in unsupervised learning systems
for word grounding (learning the meaning of words) and
language recognition. We have also shown that SOM phoneme
recognizers show learning and recognition behavior similar to
that of human infants.

REFERENCES

[1] C. Yu, D. H. Ballard and R. N. Aslin,The Role of Embodied Intention
in Early Lexical Acquisition, Coginitive Science, 29(6), 961-1005, 2005.

[2] D. K. Roy and A. P. PentlandLearning words from sights and sounds:
a computational model, Cognitive Science, 26(1), 113-146, 2001.

[3] J. Kangas,Phoneme recognition using time-dependent versions of self-
organizing maps, In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, p. 101-104, Toronto, Canada,
May 1991.

[4] V. Z. Kepuska and J. N. Gowdy,Investigation of phonemic context in
speech using self-organizing feature maps, IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP ’89, Glasgow,
Scotland, May 1989.

[5] International Phonetic Association,Handbook of the International Pho-
netic Association - A Guide to the Use of the International Phonetic
Alphabet, July 1999.

[6] Z. Fang, Z. Guoliang and S. Zhanjiang,Comparison of different im-
plementations of MFCC, Journal of Computer Science and Technology,
16(6), 582-589, 2001.

[7] K. Kumpf and R. W. King,Automatic accent classification of foreign
accented australian english speech, In Proceedings of 4th International
Conference on Spoken Language Processing, Philadelphia, USA, October
1996.

[8] Mel frequency cepstral coefficient, Wikipedia,
http://en.wikipedia.org/wiki/Melfrequencycepstralcoefficient, 2006.

[9] PLP and RASTA (and MFCC, and inversion) in Matlab, D. Ellis,
http://labrosa.ee.columbia.edu/matlab/rastamat/, 2006.

[10] Merriam-Webster’s Online Dictionary, www.m-w.com, 2006.
[11] D. Burnham,Language specificity in the development of auditory-visual

speech perception, R. Campbell & B. Dodd (Eds.), Hearing bye eye
II: Adances in psychology of speechreading and auditory-visual speech.
Hove, england: erlbaum UK, pp. 27-60, 1998.

[12] J. Mehler, J. Bertonicini, M. Barriere,Infant recognition of mother’s
voice, Journal of Perception, 7(5):491-7, 1978.

[13] M. Antal, Speaker Independent Phoneme Classification in Continuous
Speech, Studia Univ. Babes-Bolyai Informatica, Vol. XLIX, No. 2, pp.
55-64, 2004.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 6

Abstract— A child’s development of mind is studied using

iterations of a Prisoner’s Dilemma game in conjunction with a
genetic algorithm. Situations where a poor parent is replaced
mid-set with a near optimal parent are investigated. This
provides a model for the situation where a child in the care of an
individual suffering from a form of psychopathy such as
depression are witness to their recovery or removed to more
attentive care. A genetic algorithm is used to represent the child’s
memory throughout parental development. As hypothesized the
model demonstrates rates of change in fitness and mental
development which correlate to the length and quality of care
received by the child in each distinct section of the trial.

Index Terms—Parental Psychopathology, Theory of Mind,
Game Theory

I. INTRODUCTION

S adults, the vast majority of humans realize that there is
not one collective mind in use by the entire population.

Beliefs and the substance of knowledge vary from person to
person. Such an awareness of the individuality of others does
not seem to be inherent from birth, but develops as a child
does with common tests for this ability usually being
successfully completed by children who are, at the very
youngest, 3 to 4 years old[2]. Understanding how such ability
arises remains a topic of continued psychological research.
Studies have shown that one factor affecting the time before
emergence of a full theory of mind is the amount and type of
discourse a child is exposed to[4]. Interactions between
parents and children can be grouped into two broad categories,
“mentalizing” and “non-mentalizing”[5]. Mentalizing
responses to a child would include any in which a caregiver
recognizes and draws attention to the child’s state of mind, and
how it relates to their actions and reactions to events. Non-
mentalizing responses deal more directly with actions, events,
and consequences with no reference to how a child’s mental
state was involved. The ratio of mentalizing to non-
mentalizing interactions children and caregivers engage in
would necessarily vary due to environmental factors.
However, not all children are given the opportunity to interact
with a “normal” adult.
 We will develop a model for the interaction of a normal

Manuscript received November 28, 2006.
L. J. Gehring , junior at Yale Universtiy(e-mail: laura.gehring@yale.edu).

child with a normal parent and contrast this with relations
formed by a child with some imperfect parent. Such a model
could be equated with situations in which a child is interacting
with a caregiver suffering some form of psychopathology, such
as depression, which affects ability to interact in a manner
comparable to that accomplished by normal adults.
Interactions with such “semi-developed” adults should delay
child’s development[1]. Further, we will model the effects of
switching from a semi-developed parent to a fully-developed
one such as would occur in a real-life situation when a parent
seeks help for their condition or when children are moved to a
more stable environment. Such a situation should influence
the child’s rate of development. An initial drop in
development could be expected directly after such a shift
followed by an increased rate of development correlating with
the increased efficacy of the current caregiver over the
previous.
 A game theoretic methodology such as the one outlined by
Mayes and Miranker[5] will be used to model this interaction
and the resulting development of the child. Here a version of
the Prisoner’s Dilemma was suggested to model the interaction
between caregiver and child while the development of mind
would be represented by the convergence of a child’s strategy
of play to one beneficial in the current context. The child’s
memory of past exchanges is represented with a genetic
algorithm and is used to help choose the child’s course of
action

II. THE MODEL

A. Initializing Prisoner’s Dilemma

In the interest of clarity, female pronouns will be used to
refer to the parent while male pronouns will be used in
reference to the child from this point on. In the model, the
parent and child each have two options. She has the option of
ignoring the child which requires an absolute minimal effort,
or paying attention to him which does require effort. The
child’s two options are to use his intuition which is associated
with a minimal cost, or to use his mind, which would use more
energy. Both parties have the goal of expending as little effort
while reaping the benefits of the other’s efforts. The ideal
situation, from a parent’s perspective, therefore, would be one
in which the child is constantly ignored and yet continues to
use his mind. Using the mind causes him to mature. The
child’s decision to use mind would therefore benefit the parent

Modeling Child Development using a Game
Theoretic Approach and Genetic Algorithm

Laura J. Gehring

A

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 7

by reducing the period of time in which he was dependent on
her parents. The child’s ideal situation, in contrast, would be
to continuously choose to use intuition and receive attention
from the parent. In such a case, the child is not neglected and
does not have to pay for the attentions received with the cost
of using his mind instead of intuition. Remaining possible
scenarios are that both parties choose actions requiring effort
or that both parties choose actions requiring minimal effort.
These two courses result in changes which are equal in both
the parent and child. These relative costs can be assimilated
into the payoff matrix of Table I.

Table I: Child\Parent Action Payoffs

Child\ Adult Attend Ignore
Mind R, R S, T
Intuition T, S P, P

When values of T>R>P>S are implemented a true Prisoner’s
dilemma is created which models the previously defined
interactions as desired. The value each participant in the game
receives hinges on the actions of their opponent. In this case,
the best results for an individual are the product of
successfully tricking the other player into doing more work
while engaging in less itself. The opponent then receives the
lowest possible return value. In the real world, such actions
result in a loss of trust. A rational agent would learn from such
an experience and when confronted with that same type of
situation would be more apt to anticipate another deception.
The logical course would be to minimize losses by engaging in
the less expensive activity. This kind of activity would
naturally degrade into the (P,P) situation. Cooperating to
achieve the (R,R) situation would benefit both parties more in
the long term, but is much more difficult to achieve because of
the increased risk associated with that position.

B. Memory

Each iteration of the Prisoner’s Dilemma will result in a
move by the child and a reaction from the parent. To isolate
the reactions of the child, it will be assumed for this model that
the parent’s strategy will not be affected by game play and
only alters at the designated time when it is shifted to its
more/less optimal counterpart. For ease of implementation
and because of its proven efficacy, an optimal parent will use
the tit-for-tat strategy and respond to the child’s action with an
action of corresponding cost. For example, if the child
chooses Mind she will counter with Attend while if he opts for
Intuition she will choose Ignore.

 When a child begins, it has no memory and is obliged to
make a random play. At the end of the iteration, it receives the
payoff determined by the above matrix. This amount is added
to the child’s fitness level, which is initially set to 0. This
fitness level provides an indication of how well he understands
his adversary. A high fitness value results from typically high
values returned after participating in the Prisoner’s Dilemma
and indicates a better understanding of the strategy being used
by the opponent and its successful exploitation. At this point a

decision, on the basis of payoff and a random variable, is made
to either include the play sequence in memory or to discard it.

A child’s memory is represented by a tree. Each node
represents a point of play and has two branches which
represent the two possible actions that the child may take at
that instant. Additionally, a weight, initially set to zero, is
associated with each of these options. These two branches
lead to two more nodes each with two more branches and so
on. The weight associated with each branch signifies how
successful a given choice at this node has been at increasing
the child’s fitness in the past. All weights are initially set to 0,
meaning that there is neither benefit nor loss associated with
each choice at that point. However, as the child ages and
creates memories, these weights come to reflect the outcomes
of previous decisions. When an event is committed to memory
the outcome is associated not only with the most recent action,
but also with the sequence of deeds leading up to the most
recent choice. Weights corresponding with the action chosen
must be updated in each of the specific nodes reached by
following the increasingly complex sequence of previously
chosen actions up to the depth of the child’s ability to recall
specific past choices. For example, if he could only remember
the last four choices made, it would be necessary to change the
weights of those nodes reached by walking the last 4, 3, 2, and
1 actions chosen by the child.

 If a child chooses to use its memory, a number of past
sequences equal to the child’s memory recall level are
summoned from the end of the record of past child choices.
Using these, the most beneficial sequence may be selected
using a genetic algorithm, and a choice between the two
current options is returned. Weights of the associated
sequence of plays and the child’s fitness are altered based on
payoff garnered as a result of the choice.

C. Introduction of Psychopathy

Each run of the simulation will consist of time spent with an
optimal parent and time with a suboptimal parent. The optimal
parent will use a pure tit-for-tat strategy while the suboptimal
parent will follow a similar strategy, but interspersed with
noise created by random deviations from that strategy. The
amount of deviation will be controlled between trials to
investigate effects of more and less deviation from the tit-for-
tat strategy. The actions of the suboptimal parent will be
determined by the value of a randomly generated variable,
which when greater than some threshold will choose to play
randomly rather than use tit-for-tat. This threshold may be
increased (to increase optimality) or decreased (to increase the
number of random plays).

The model will consist of having the child play the
suboptimal parent for a number of iterations before switching
to the optimal parent and measuring how long it takes the child
to reach a strategy for use with the fitter parent which provides
the highest payoffs as they have been previously defined.
Each segment of the experiment will consist of 50 distinct
games so that an average course of development less skewed
by chance may be obtained. Each game will be composed of
100 iterations of the Prisoner’s Dilemma, or 200 combined
moves made by the child and parent. Each game will begin
with a fresh child with no previous memories and no record of

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 8

past moves. The goal will be to determine and compare the
effects of exposure to suboptimal parents of varying degrees of
degradation on the child’s development and ability to recover
when later exposed to optimal parenting.

III. EXPERIMENT

A. Overview

Initially, the model was run solely with the optimal parent
and subsequently completed runs with each of the suboptimal
parents to be investigated to create points of comparison.
Next, the game was executed several times with differing
levels of degradation in the initial suboptimal parent before
switching to the optimal caregiver after 50 iterations involving
the suboptimal player. After that, the length of exposure to the
suboptimal parent was modified to evaluate the effects of
varying amounts of exposure to the same suboptimal caregiver.
Finally, the effects of exposing a child to a more effective,
though still suboptimal, parent following 50 iterations with a
suboptimal parent will be explored.
 During each of these trials, records will be kept regarding
the child’s fitness which correlates with the values received
from engaging in the Prisoner’s Dilemma. Also, Maturity of
the mind will be recorded. Maturity may be defined as the
number of times he has chosen mind over intuition. As the
child plays, strategies should form, which when followed,
cause the child’s fitness to grow more quickly than when
playing randomly. Since a tit-for-tat strategy is being used, the
response strategy for the child is to always choose mind.
Playing intuition against a parent utilizing a strict tit-for-tat
strategy will always yield a lower payoff than that achieved by
playing mind. The emergence of this strategy will also be
monitored during each of these trials and recorded. Point of
emergence will be defined as the point at which child chooses
to play mind over intuition during ten consecutive iterations.
As the optimality of the parent decreases and the number
random plays made by the parent increases, the value of
constantly choosing mind degrades and children are slower to
adopt it because of its decreased utility. In fact, those children
paired with a parent who makes only random plays will soon
adopt the opposite strategy of always choosing intuition so as
to minimize losses against this irrational agent.

B. Optimal Exposure

Under optimal conditions, the parent counters all moves of
the child using a pure tit-for-tat strategy. Results for these
trials are displayed in Tables II.a-c. Here the strategy arrives
very early on averaging at around 4.68 iterations into the trial
with a standard deviation of 3.71. The average maturity, or
number of times the mind was chosen, at the end of the trial
was 97.54 with a standard deviation of 1.25 while fitness at the
end of the runs averaged 95.08 with a standard deviation of
2.50.

C. Varied Suboptimal Exposures

To contrast with the optimal parent, trials of 100 iterations
were also performed with parents of varying levels of random
play. Information from these trials is summarized in Tables

II.a-c alongside information from the optimal trial as a point of
comparison.

Table II.a: Emergence of strategy

Parent
Exposure

Mean Number
Plays to
Emergence

Stand.
Dev.

Non-
maturing

Optimal 4.68 3.71 0

70% Optimal 10.2 8.25 0

50% Optimal 22.26 20.88 0

30% Optimal 66.08* 20.25* 21 (42%)

Random Play --------- ---------- 49 (98%)

*To make the mean and standard deviation of trials where many runs did not
converge more meaningful, a value of 100 was substituted as the point of
maturation for such runs. This helps offset the somewhat lesser values for each of
these that would otherwise occur.

Table II.b: Maturity

Parent
Exposure

Mean End
Maturity

Stand. Dev.

Optimal 97.54 1.25

70% Optimal 95.04 3.61

50% Optimal 88.22 10.33

30% Optimal 55.34 29.77

Random Play 7.9 6.34

Table II.c: Fitness

Parent
Exposure

Mean End
Fitness

Stand. Dev.

Optimal 95.08 2.50

70% Optimal 46.7 12.62

50% Optimal 21.06 14.85

30% Optimal 1.98 14.23

Random Play 36.88 20.24

It is important to note, that when a completely random parent

is used with no adherence to a tit-for-tat strategy that the child
does in fact reach an effective strategy of sorts, it simply never
uses its mind and maturity, as it is measured, suffers. With
random plays this would equate to an overall increase in
fitness when the values of the payoff are arranged
symmetrically and the parent gives attention and ignores
equally. However, this strategy is relatively useless against a
parent with a strategy like tit-for-tat where the child will never
receive a reward, or positive payoff, for not using his mind.
As the amount of random activity is increased the fitness of the
child initially decreases as it makes the transition between two
very different strategies which is why the fitness is so low
when the parent is only playing at a 30% optimal level.
Further decreases in random play firmly establish an effective

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 9

strategy to be used in conjunction with tit-for-tat. Graph III in
the appendix illustrates these two clear strategies adopted by
the child and the ways in which fitness and maturity are
affected.

 It is also appropriate that the standard deviation for aspects
of measurement like fitness and maturity tend to increase as
random play is increased. The exceptions to this rule tend to
occur at points of key change such as the instance where there
are an unusual number of trials which never converged to the
strategy and thus affected the mean emergence and standard
deviation.

D. Varied Suboptimal Parenting followed by Optimal
Parenting

The ability of a child to converge upon the ideal tit-for-tat
response strategy following exposure to varied levels of
suboptimal parenting was examined by having the child
interact for 50 iterations of the game with parents of varying
degrees of random play before being exposed to the optimal
parent for the remaining 50 iterations. Results from these
trials, summarized in Tables III.a-c and Graph I of the
appendices, highlight the unique changes in fitness that
accompany such changes in strategy. Notation of the type of
Parent Exposure is defined in the form Split-X-Y where X/Y
refers to the number of iterations performed by the first parent
/ her optimality. For example “Split-10-70” would denote
trials in which a parent adhering to the tit-for-tat strategy 70%
of the time was used for the first 10 iterations and a completely
optimal parent was used for the remaining 90.

Table III.a: Emergence of Strategy

Parent
Exposure

Mean
Number Plays
to Emergence

Stand.
Dev.

Non-
maturing

Optimal 4.68 3.71 0

Split-50-70 9.74 7.02 0

Split-50-50 21.3 18.46 0

Split-50-30 43.28 23.25 0

Split-50-rand 70.42 12.03 0

Table III.b: Maturity

Parent
Exposure

Mean End
Maturity

Stand. Dev.

Optimal 97.54 1.25

Split-50-70 94.96 3.60

Split-50-50 87.86 12.28

Split-50-30 70.24 17.40

Split-50-rand 41.56 12.67

Table III.c: Fitness
Parent
Exposure

Mean End
Fitness

Stand. Dev.

Optimal 95.08 2.50

Split-50-70 72.16 8.44

Split-50-50 57.3 11.41

Split-50-30 39.46 12.12

Split-50-rand 35.86 8.70

 As expected, the rates of emergence of a strategy, maturity,

and fitness are inherently linked with the optimality of the
parent with means for these three points of measurement
increasing as random play is decreased. Also, again the
standard deviations consistently decrease as random play does
so in most instances. The most interesting point in this data
occurs once again in the area at which there seems to be a
boundary between two very distinct strategies whose
respective execution seems mutually exclusive. Once again,
there is a very real drop in the mean fitness at the level of play
where a 30% optimal parent is used, also the level with the
highest standard deviations across all points of comparison. It
is also interesting to note, that while mean fitness seems to be
linearly associated with decreasingly random plays, the values
measuring maturity seem to decrease slowly before dropping
off dramatically as the amount of random play is increased
while emergence of strategy follows an inverted version of this
pattern.

E. Varied Length of Exposure to Suboptimal then Optimal
Parenting

The effects of length of exposure are examined using varied
lengths of exposure time with a 70% random parent followed
by an optimal caregiver. Such situations are represented in
Tables IV.a-c by an identifier such as “Split-10-30” which
would denote that the first 10 iterations of each trial were held
between a child and parent who uses the tit-for-tat strategy on
30% of the iterations and randomly selects a course of action
70% of the time. The remaining 90 iterations would then
utilize the optimal parent who consistently uses tit-for-tat.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 10

Table IV.b: Maturity
Parent
Exposure

Mean End
Maurity

Stand. Dev.

Optimal 97.54 1.25

Split-10-30 92.32 4.04

Split-20-30 87.48 6.88

Split-30-30 82.26 10.55

Split-40-30 77.06 12.51

Split-50-30 70.24 17.40

Split-100-30 55.34 29.77

Table IV.c: Fitness

Parent
Exposure

Mean End
Fitness

Stand.
Dev.

Optimal 95.08 2.50

Split-10-30 85.6 6.27

Split-20-30 75.14 7.89

Split-30-30 64.16 8.45

Split-40-30 52.68 9.15

Split-50-30 39.46 12.12

Split-100-30 1.98 14.23

 The emergence strategy is particularly interesting. The data
suggests that the child was on the verge of converging and
only needed the smallest of nudges created by an optimal
parent to achieve this. Particularly, the points of achievement
were all recorded as the point at which a sequence of 10 or
more iterations achieved a stable state. With this in mind, note
that the mean point of emergence for all of the trials involving
an optimal later parent are within 10 iterations of the point at

which this change was made. As more trials are performed
with the 30% optimal parent, more trials will converge before
reaching the point at which the optimal parent takes over.
Also note that the differences in the mean points of emergence
of those trials which were subjected to the optimal parent are
roughly linear. This is also true of the corresponding
differences in mean values of maturity and fitness.

F. Suboptimal Parenting followed by better Parenting

As one last point of comparison, the effects of interactions
with a suboptimal parent with a rate of optimality of 30% for
fifty instances of the Prisoner’s dilemma was replaced in the
last 50 iterations of the game with parents of varying
optimality to see how such a change would affect the child.
Observations from these trials are summarized in Tables V.a-c
and noted in the form Split-X-Y-Z. X refers to the number of
iterations performed by the first suboptimal parent, Y is the
optimality of that parent which in this case is always 30%, and
Z is the optimality of the parent which will be used in the
remaining iterations.

Table V.a: Emergence of Strategy
Parent
Exposure

Mean Number
Plays to
Emergence

Stand. Dev. Non-
maturing

Split-50-30-100 43.28 23.25 0

Split-50-30-70 46.82 26.39 0

Split-50-30-50 62.32 29.74 11 (22%)

Split-50-30-30 66.08 20.25 21 (42%)

*values of 100 are substituted as mean trial convergence point
for trials that do not converge

Table V.b: Maturity
Parent
Exposure

Mean End
Maurity

Stand.
Dev.

Split-50-30-100 70.24 17.40

Split-50-30-70 68.2 18.28

Split-50-30-50 60.18 24.01

Split-50-30-30 55.34 29.77

Table V.c: Fitness
Parent
Exposure

Mean End
Fitness

Stand.
Dev.

Split-50-30-100 39.46 12.12

Split-50-30-70 20.14 14.36

Split-50-30-50 -2.38 14.74

Split-50-30-30 1.98 14.23

It is interesting that when an optimal parent is replaced in the

second half of the run by one whose optimality is only 70%
there is relatively little effect in either the emergence of a
strategy or the evolution of the mind as measured by maturity.
As can be seen in Graph II of the appendices, the line of ascent
is smoother for the trial utilizing the optimal parent for the last

Table IV.a: Emergence of Strategy

Parent
Exposure

Mean Number
Plays to
Emergence

Stand.
Dev.

Non-
maturing

Optimal 4.68 3.71 0

Split-10-30 12.72 4.51 0

Split-20-30 21.02 10.23 0

Split-30-30 28.50 13.14 0

Split-40-30 34.42 17.15 0

Split-50-30 43.28 23.25 0

Split-100-30 66.08 20.25 21 (42%)

*values of 100 are substituted as mean trial convergence
point for trials that do not converge

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 11

50 iterations, and fitness suffers as the parent’s playing ability
decays. Results in areas such as end maturity, on the other
hand are much the same.

However, as further demonstrated by the comparison, results
achieved by a later parent at 50% optimality seem rather
abysmal in categories such as fitness while there is also a
substantial drop in measures of maturity and a substantial
increase in the amount of time needed to converge to the tit-
for-tat based strategy.

 Trials only utilizing a 50% optimal parent converge after an
average of 22.26 iterations while 70% optimal parents
converge after 10.2. When these same two are made to follow
the 30% optimal parent, the difference between rates of
convergence becomes 15.5. The small difference between
rates of convergence for the trial with a 50% optimal parent
used in the second half and one where a 30% optimal parent
continues to be used is also telling. It seems that the ability to
reduce the effects of poor previous efficacy is not linear. Of
course, the standard deviations for all of these trials are quite
large making accurate in-depth analysis difficult.

IV. CONCLUSION

Results illustrate, as common sense would suggest, that both
the quality and level of exposure to suboptimal caregivers is
reflected in the child’s development. It is comforting,
however, to realize that while consistent childcare is best for
the development of a distinct, effective strategy on the part of
the child, complete consistency is not necessary for its
achievement. Rather, it seems that the consistency must
simply outweigh the loss the child would expect by not
conforming to the strategy being deviated from. This is a

necessary evolutionary development given that the
overwhelming majority of parents would find it impossible to
always behave fairly and in a tit-for-tat fashion throughout
childhood. It is also interesting to note, that for the intent of
the parent, a pure tit-for-tat strategy does not seem to be most
advantageous when cost and resulting maturation are
compared.

V. APPENDIX

Graph I

Graphs showing the average progression of fitness and Mind or maturity values in a situation in which a random agent is utilized for the first 50
iterations, after which an optimal (tit-for-tat) parent is substituted. Note the dramatic dip in fitness that occurs on the left at the point where the parents
are exchanged. The child’s fitness decreases after the initial switch before rising steeply once more. The right demonstrates the sloping off of mind usage
when exposed to a random agent followed by increased choosing of Mind in the presence of the optimal parent.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 12

Graph II

Both graphs illustrate the situation where a 30% optimal parent plays the first 50 iterations. However, on the left, this suboptimal
parent is replaced by a parent who is 70% optimal while that on the right was replaced by an optimal parent. The increase in fitness is
smoother and more dramatic on the right, but both demonstrate a definite improvement in the child’s fitness resulting from their
respective changes.

Graph III

The top two illustrate the progression of a child’s fitness and maturity, as measured by the number of times they’ve chosen mind
over the course of 100 iterations of the Prisoner’s Dilemma with a parent who randomly chooses actions while the bottom two are
the results from interactions with a parent using tit-for-tat.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 13

VI. REFERENCES

[1] J. Logan, “A Game Theoretic and Genetic Algorithmic Approach to
Modeling the Emergence of Mind in Early Child Development with
Exposure to Semi-Developed Parents”.

[2] F. Happe “Theory of Mind and Self,” Annals of the New York Academy
of Sciences, vol. 1001, Oct. 2003, pp 134.

[3] K. C. Pears, L. J. Moses, “Demographics, Parenting, and Theory of
Mind in Preschool Children, “ Social Development, vol. 12, Feb. 2003,
pp 1.

[4] J. Dunn, J. Brown, L. Beardsall, “Family Talk About Feeling States and
Children’s Later Understandin of Others’ Emotions,” Developmental
Psychology, vol. 27, May 1991, pp 448-455.

[5] L. Mayes, W. Miranker, “A Game Theoretic and Genetic Algorithmic
Approach to Modeling the Emergence of Mind in Early Child
Development,”

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 14

Abstract—Self-organizing maps (also called Kohonen

networks) are a popular method of analyzing multidimensional
data. In addition to compressing input data while preserving its
topology, self-organizing maps can be used as a preliminary
technique in cluster analysis. However, despite the fact that
similar inputs remain close together in the output of the
algorithm (suggesting possible clusters), no automatic
segmentation of the data into discrete groups is provided. A
variant of the SOM algorithm is proposed that dynamically
clusters input data in an unsupervised fashion, automatically
dividing the map into easily interpretable discrete submaps that
correspond to clusters in the input data.

Index Terms—knowledge acquisition, neural networks, self-
organizing feature maps, cluster analysis

I. INTRODUCTION

umans are capable of performing unsupervised
categorization tasks, in which they distinguish between

and create categories around objects with which they have no
prior experience. This process, called category construction
in the literature on concepts and categorization (Murphy, [1]),
is seen to occur quite frequently in children, and it is believed
that children recognize objects as being in separate categories
before they learn names for them (Merriman et al., [2]). Little
is known about the precise mechanisms for how this is
accomplished in humans, but being able to construct a system
capable of simulating this behavior reliably would impact
applications ranging from information storage and retrieval to
object recognition and classification.
 One presumably important mechanism in such a system is
the analysis of multidimensional data, such as might be
received from input sensors or from the feature-based analysis
of text, images, sound, or other information. Specifically, the
creation of discrete categories from a data set would seem to
require some method of clustering the data, such that coherent
groups are formed that maximize the similarity of data within
a group while minimizing the similarity between groups.
Such clustering is formally the assignment of labels to vectors
in the input. The number of labels that are assigned is equal to
the number of clusters in the data. To mimic cognitive
capabilities, this must proceed in an unsupervised manner.
 Thus it is necessary to discover algorithms capable of
autonomously discovering clusters in a data set given minimal
a priori information about the nature of the data set’s

distribution. Several statistical methods for clustering data
exist and are widely used, however as these are not fully
autonomous (requiring information regarding the expected
number of clusters, and generally only capable of finding
ellipsoidal clusters, cf. Costa and de Andrade Netto, [3]) they
will not be reviewed here.
 Models of neural systems look to be a more promising path.
Many such models are capable of unsupervised learning and
organization, and furthermore most are inherently amenable to
neurobiological accounts of the processes involved (i.e., they
are psychologically plausible). In particular, the self-
organizing map algorithm, developed by Teuvo Kohonen, has
several properties that make it well suited for analyzing large
amounts of multidimensional data with the goal of discovering
natural groupings within that data. There have been clustering
techniques that make use of the SOM algorithm; these will be
discussed in section III below.
 After reviewing the relevant SOM-based approaches to
cluster analysis and discussing some failed attempts at
deriving autonomous cluster analysis tools, an algorithm is
proposed that is capable of autonomously discovering clusters
(including complex clusters with non-ellipsoidal shapes) by
systematically adding and removing connections between
units in the SOM, dynamically restructuring it in response to
the underlying data distribution. In comparison with the
traditional SOM algorithm, the proposed approach holds
several advantages, including facilitated interpretation of the
resulting map and better fit to the underlying data (as
determined by visual inspection of the map).

II. THE SELF-ORGANIZING MAP ALGORITHM

A. Capabilities of the self-organizing map algorithm

Self-organizing maps (SOMs) are an effective tool in the
analysis of multidimensional data. They are capable of
converting high-dimensional data into a low-dimensional
(often two-dimensional) representation that preserves the
topological relations present in the primary data, in essence
providing an estimation of the probability density function
underlying the input data. SOMs have been widely used as
tools to visualize high-dimensional data (Vesanto, [4]), and
often act as guides in the exploratory phase of data mining
(Vesanto and Alhoniemi, [5]). They have also been applied
successfully in many natural language settings, having been
shown to be capable of grouping words in a semantically
meaningful way based on contextual information (Honkela et
al., [6]). Furthermore, there is reason to believe that many of

Cluster Analysis with Dynamically
Restructuring Self-Organizing Maps

Daniel Holtmann-Rice

H

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 15

Fig. 1. The SOM algorithm with 49 neurons after 1000 iterations (well before
convergence), on a two-dimensional input space. The grid-layout structure
can be clearly seen. The black circles represent the neurons’ locations in
weight space, with links between the neurons represented as lines connecting
them. Light-gray circles represent the weight-space locations of previously
presented input data.

our own neurobiological subsystems may operate in ways
similar to self-organizing maps. It has been shown (Ritter and
Schulten, [7]) that SOM algorithms can successfully model
sensory mappings and motor control functions, both of which
are systems that the brain organizes topologically as well.
Whether or not a SOM-based method for modeling aspects of
the human conceptual system is feasible remains to be seen,
but the place of SOM algorithms as effective knowledge
representation devices is well established (Honkela, [8]).

B. The algorithm

A self-organizing map consists of a set of N neurons (also
called units), each with l dimensional weight vectors that are
initialized at random or from input data. Each neuron is
“linked” to a number of other neurons (see Fig. 1) by a
neighborhood relation that defines the structure of the map.
(the choice of structure is rather flexible, a feature that will be
exploited by the dynamic restructuring algorithm proposed in
section IV). This linking is often done in such a way that the
N neurons form a two-dimensional lattice – in this paper the
SOM algorithm was implemented such that a two-dimensional
grid of neurons was created, i.e. most neurons were linked to
four other neurons (one in each direction, with the exception
of neurons on the edges or corners of the grid). The set of
neurons that a neuron is linked to is called its neighborhood.

The SOM algorithm proceeds iteratively, exposing the map
to input data in the form of data vectors chosen with some
probability from a data set. For each iteration, the algorithm
proceeds as follows (refer to Haykin, [9], for a more in-depth
analysis of the algorithm):

1. Select an input vector x at random from the data set.

2. Determine the “winning” neuron j whose weights are
closest to the input vector in a Euclidean sense, i.e. the
neuron whose weights wj are closest to x:

 j =
k

argmin x − wk

3. Update the weights of neurons in the map in a fashion

dependent upon their distance from neuron j. The
distance dj,i between two neurons i and j is measured as
the minimum number of links (as defined above)
crossed when traversing the map from i to j. Let hj,i be
a specified monotonic function that decreases with
increasing d (in this paper the Gaussian function is
used):

 h j ,i(x) = exp(−
d j ,i

2

2σ(t)2)

where σ(t) is an exponentially decreasing function that
specifies the size of a neuron’s topological
neighborhood (intuitively, proportional to the extent of
a neuron’s influence over other neurons during an
iteration). Weights for a neuron i are then updated
according to the following function:

 wi (t +1) = wi (t) + η(t) ⋅ h j ,i (t) ⋅ (x − w j (t))

where η(t) is a learning rate function that
exponentially decreases with time.

This is continued for either a specified number of iterations
or until a satisfactory level of convergence has been
achieved.

III. USING THE SELF-ORGANIZING MAP ALGORITHM AS A

TOOL FOR CLUSTER ANALYSIS

The SOM algorithm does manage to maintain the
topological relations of primary data quite well, resulting in a
representation of the data where inputs that are close together
(i.e. similar) in the primary data remain close together in the
SOM. However, there is no immediate way of recognizing
whether discrete clusters (“classes”) of points are present in
the data (and if so, how many) using solely the SOM
algorithm. Furthermore, when presented with data that is not
contiguous throughout weight space (as in Fig. 1, where the
data is clearly composed of eight discrete regions), the SOM
algorithm does a mediocre job of approximating the data
distribution (Fig. 2), despite the fact that this is precisely the
sort of data one would expect a clustering algorithm to have
no difficulty with. Some neurons (“interpolating map units”)
converge to locations in between clusters of data points,

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 16

Fig. 2. Using the SOM algorithm, discontiguous clusters of data (grey)
remain connected in the map. Many neurons are stranded in between clusters,
leading to inaccurate coverage and inefficient use of neurons. Ideally the map
should be broken into eight separate maps, each approximating one cluster of
points.

leading to inaccurate coverage of the data and obscuring the
borders between clusters (Vesanto and Alhoniemi, [5]). These
two problems stand in the way of a simple approach to
clustering using self-organizing maps (for a review of where
we are heading, see Fig. 4).

Nonetheless, several cluster analysis techniques have been
proposed that utilize the SOM algorithm in various ways.
Vesanto and Alhoniemi ([5]) use a two-stage approach, where
the SOM algorithm is run on a data set and then the resulting
set of map units (not including those interpolating units that
did not win frequently enough to be included) is analyzed
using statistical clustering techniques. The underlying data
vectors are associated with the map unit (neuron) closest to
them and hence are clustered by association with the map
units. While this is a useful technique from the perspective of
reducing computational complexity (compared with clustering
the underlying data directly), it also shares the problems of
most statistical clustering techniques. It is not fully
unsupervised, can only deal with ellipsoidal clusters, and
despite avoiding the problem of interpolating map units (by
not including them in the clustering), it does little to address
the issue.

Costa and de Andrade Netto ([3]) also propose a two-stage
clustering technique using the SOM algorithm. Their method
involves running the SOM algorithm and then using image-
processing techniques to analyze a visualization of the map.
Clustering proceeds by segmenting the visualization, and
labeling the map units based upon this segmentation. Unlike
the Esa and Alhoniemi algorithm, Costa and de Andrade
Netto’s method is truly unsupervised, and is able to generate
complex-shaped clusters. However, it too does not address the

issue of interpolating units directly.
In order to both address the issue of interpolating units and

to develop a simpler technique for creating easily interpretable
clusters from SOM data, it is our intention to modify the SOM
algorithm so that some of the links between units in the map
are systematically weakened or removed, in such a way that
smaller “submaps” emerge, each covering a contiguous region
of input space and representing a cluster of points within the
data.

IV. MODIFICATIONS TO THE ALGORITHM

A. Unsuccessful Attempts

To gain insight, we first discuss several “naive” attempts at
modifying the algorithm that did not succeed.

1) The “Strain” Method
The first attempted modification was to use the length

(“strain”) of the links between neurons as a way of weeding
out those links that were connecting two neurons from distinct
clusters of data. In this modification, each neuron keeps track
of the average length of its links (i.e. its average distance from
its neighbor neurons). If the ratio between the length of a link
to a neuron and the average length of other links connecting to
that neuron is above some threshold value, then the link is
removed.

The problem with this method is that long links tend to raise
the average length of a neuron’s links, and thus a neuron with
more than one long link all of which should be removed
doesn’t remove them because their ratio to the average isn’t
above the threshold value. Comparisons involving variance or
standard deviation fail for the same reason. Using the
difference between a link’s length and the average link length
for a neuron doesn’t scale – if the neurons are spread out, link
size differences will naturally be larger (since one can expect
the link sizes to be more varied) than when the neurons are
closer together (assuming the neurons are spread out evenly),
and this shouldn’t result in removal of links.

2) The “Pull” Method
The second attempted modification kept track of the average
direction of a neuron’s closest neighbors over time, and used
this information to penalize links to neurons trying to pull it in
an opposing direction. This was calculated as the weighted
sum of the “direction vectors” for each link connected to it
(the position of the neighboring neuron minus the position of
the neuron in weight space), with each link’s direction
weighted by the inverse of its length (using a Gaussian
function was also tried, but this proved equally unsuccessful).
This vector (the “pull vector”) was used to weed out links to
neighbors that were trying to move the neuron in a direction
opposing the pull vector. For each link, the dot product of its
direction (the position of the neighbor minus the position of
the neuron) with the pull vector was calculated, and if this was
below some threshold value, the link was removed. However,
the method of calculating the pull vector was inadequate – the
direction vectors of links were weighted by the inverse of their
length in order to favor shorter links, but this didn’t seem to
scale when neurons were farther apart (since the difference

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 17

Fig. 3. The “Reward” method as used on a data set containing four clusters.
As can be seen, while it successfully creates a submap for each cluster, it does
not deal with interpolating units, and has converged to a less than desirable
state.

between the inverses of the lengths became smaller) and thus
the pull vector became skewed. To fix this, a non-arbitrary
way of scaling the inverse function (or Gaussian function)
used to weight the directions would need to be found.

3) The “Reward” Method
A slightly more successful method involved using a reward

system for links that connect two neurons that consistently
have input vectors fall between them in weight space. Instead
of finding only the closest neuron to the input vector, the two
closest are found, and if there is a connection between them,
the “strength” of this connection is set to 1. Then the strength
of all the other links from the winning neuron are decreased by
some small amount. The strength of each link ξ is used during
the weight modification stage of the algorithm to decrease the
effect of links with lower strengths:

wi (t +1) = wi (t) + ξ i (t) ⋅η(t) ⋅ hi, j (t) ⋅ (x − w j (t))

Over time, the strength of a link may decrease to 0, and thus

is effectively removed.
Results of this method can be seen in Fig. 3. While this

succeeds in breaking the map down into smaller pieces that
partially capture the discrete regions present in the input data,
the accuracy (the number of neurons stranded between clusters
and the general fit to the underlying data) is only improved
very slightly, if at all. The problem with this approach is that
it takes a long time for many of the links to start decreasing in
strength, and by the time they do, the distance function h has
decreased to the point where neurons don’t affect their
neighbors enough to move them very far in weight space.
Thus neurons get stranded in between the data clusters.

B. The Proposed Method (The Dynamic SOM Algorithm)

1) Motivating Factors
Several issues had to be addressed in order to overcome the

obstacles encountered during the first three “naïve” attempts at
modifying the algorithm.

1. Some method to deal with interpolating units (units that

get stranded between clusters) is necessary
2. The map should not be allowed to converge

prematurely
3. Link modification should not take place until the map

has converged substantially
4. If a method for removing links is present, a method for

adding links needs to be included as well
5. Map units should not have links of wildly differing

lengths (“strains”)

A robust and simple method of dealing with interpolating

units is to kill neurons that have gone too many iterations
without winning. This simply involves having each neuron
store an “age” property, that is incremented by unity every
iteration and reset to zero if a neuron is the winning neuron for
that iteration. This method was originally biologically
inspired (though subsequent research indicated it was by no
means a new concept, as Vesanto and Alhoniemi make use of
essentially the same idea to cull interpolating units). During
development of the human motor system, many more motor
neurons are created than will actually used by the developing
child. While still in the womb, motor neurons undergo
Hebbian competition, and neurons that do not get activated
with enough frequency eventually die off (Kandel et al., [10]).
 In order to address the issue of premature convergence, the
learning rate (η(t)) and neighborhood topology (σ(t))
functions are modified such that they never fully reach zero.
This ensures that the neurons never completely converge, and
can still adapt to changing input (though not very much). In
light of the motivation for the current algorithm (mimicking
the human ability to categorize in an unsupervised manner),
complete convergence, and hence a complete loss of plasticity,
seems undesirable.
 Any link modification techniques are meaningless until the
map has at least ordered itself (topologically oriented itself
such that there are a reduced number of intersecting links) and
converged to a point where metrics such as link strain or
neuron age have some meaningful relation to the underlying
data (i.e., can be used as reliable indicators of how well the
map is approximating the data’s distribution). Thus a
“minimum convergence” threshold is specified, and link and
neuron modification only takes place when the last iteration’s
total “change” (the sum of the distances traveled by the
neurons in weight space) is less than the threshold value.
Until this point the algorithm proceeds identically to the
standard SOM algorithm.
 If links were only allowed to be removed, then the map
would become rather sparse, and this would inhibit clear-cut
analysis of clusters as well as undermining the intuitive appeal
of using links as a representation for “connectedness” within
the map (i.e., neurons and the categories they represent are
more similar the more connections there are between them).

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 18

Thus a method for adding links is included: instead of only
computing the winning neuron, the winning neuron and the
second closest neuron are computed. If a link exists between
the neurons, this link’s age is reset to zero. If no such link
exists, it is created. Every time a neuron wins an iteration, the
“age” properties of the links connected to it are incremented
(with the exception of the link between the winning neuron
and the second closest neuron, which is reset). If a link’s age
is too great, then the link is removed. This method of link
addition and removal is extremely similar to that employed by
the “Growing Neural Gas” algorithm originally developed by
Fritzke ([11]), and is equivalent to the “Reward” method
discussed earlier (which however dealt only with link
removal).
 Finally, links that are significantly longer than others on the
neurons they connect to should be removed to speed the
convergence process (in general, these links will be removed
by the aging process mentioned above, but removing them
proactively makes the convergence process faster). To
determine whether a link from a given neuron should be
affected, the links from that neuron are first sorted by their
length. Then, this sorted list is traversed in order, and each
link is compared to the link preceding it in the list. If the ratio
between them is greater than some threshold value, the link
and all subsequent links in the list (i.e. the link and all all links
longer than it) are “weakened” by some amount, while links in
the list previous to the link being tested are “strengthened” by
some amount. If a link’s strength property reaches zero (i.e. it
has been weakened several times in a row) then the link is
removed. Any neurons that don’t have any links after this
process are also removed.

2) A Summary of the Dynamic SOM Algorithm
1. Select an input vector x at random from the data set.
2. Determine the “winning” neuron j whose weights are

closest to the input vector in a Euclidean sense, as
well as the “second best” neuron k whose weights are
second-closest to the input vector.

3. If the map is sufficiently converged (i.e. the total
distance moved by all the neurons in the map over
the previous iteration is below some threshold):

a. Age all links connected to j by 1 and reset
j’s age to zero.

b. Check to see if a link exists between j and k.
If so, reset its age to zero, and if not, create
it.

4. The conventional SOM update step occurs, and
neurons within the topological neighborhood of the
winning neuron are moved closer to x.

5. If the map is sufficiently converged (using the same
criteria as above), for each neuron:

a. Sort its links by length.
b. Find the link whose ratio to an adjacent link

is greater than some threshold.
c. Weaken that link and all links longer than it.
d. Remove links whose strength is zero.
e. Remove links that are older than some

threshold.
f. If the neuron is older than some threshold or

has no links attached to it, kill it.
g. Age the neuron.

Fig. 4. The dynamic SOM algorithm breaks into 8 separate maps, one for
each cluster present in the input data. Two neurons die in the process.

V. RESULTS AND DISCUSSION

A. Comparison with the Traditional SOM Algorithm

Fig. 4 shows the same data set from Fig. 1 as analyzed by
the dynamic SOM algorithm. The modified SOM algorithm
does a substantially better job of staying true to the
distribution of the underlying data as a result of its flexible
structure. While this is difficult to quantify, it is readily
apparent from visual inspection. As can be seen, there are no
more interpolating map units, no connections between
clusters, and link sizes are all relatively uniform. Many links
between neurons have been added, leading to submaps that are
extensively interconnected. Two neurons that didn’t make it
to the “safety” of a cluster before they grew too old were
removed entirely.

The algorithm is also capable of clustering complex shapes.
The appendix to this paper contains several comparisons
between the regular SOM algorithm and the dynamic
algorithm, some of which demonstrate the ability of the
dynamic algorithm to cluster non-linearly separable
collections of data.

Based on experience with the algorithm, it appears that
approximately 5-15% of neurons die during the analysis of a
given input data set. Lowering this number (ideally all
neurons should survive to prevent information loss) remains a
task for future work.

B. Comparison with the Human Conceptual System

Despite the dynamic SOM algorithm’s flexibility, it is
difficult to imagine it acting as a real-time model of human
category construction tasks (if only due to efficiency
concerns). However, it shares several properties with the
conceptual system that are worth noting. These are
(explanations to follow):

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 19

1. It functions as a cross between exemplar and prototype
models of category representation.

2. Active “perception” in a specific area of weight-space
changes representation of that area of weight-space.

3. It functions by viewing only one piece of input data at a
time, much as we do (with selective attention).

1. Two approaches to category representation exist in the

concepts and categories literature (Murphy, [1]). The
“exemplar view” holds that we store every memory of things
we’ve encountered that belong to a certain category. When
we categorize a novel object, we compare that object to every
exemplar we have stored in memory, and choose the most
similar exemplars for use in categorizing the object. The
opposing view is that we “average” our interactions with
category members to arrive at an “idealized” category member
– a prototypical member of the category. The SOM algorithm
represents clusters using what could be viewed as a set of
multiple prototypes. This is not as memory intensive as the
exemplar approach, and not as limiting from a representational
standpoint as the prototype approach.

2. It is reasonable to assume that our representation of a
concept only changes when we interact with or think about
instances of that concept (or very similar concepts). This is
similar to the SOM algorithm, since there is a limit to the
influence of an input vector – it only affects the neurons
closest to it.

3. When we interact with objects in the world, we interact
with them generally one at a time. Thus, whatever system we
have for learning and organizing our conceptual knowledge
must operate on minimal input, i.e., it can function without
knowing a priori the size, distribution, and frequency of a
category – it can learn based on seeing only one instance of
that category at a time. The SOM algorithm operates on
similar principles.

Finally, one aspect of the SOM algorithm as implemented
here that differs substantially from human conceptual
experience is the lack of temporal continuity with respect to
input. When we walk into a room, we are faced with the same
set of objects for an extended period of time. This is not the
case with the SOM algorithm, where input data is selected
randomly, and there is no reliable relation between one input
vector and the next.

C. Remaining Problems and Future Work

Several problems with the dynamic SOM algorithm remain.
Clusters must be spaced rather far apart in order for the
algorithm to detect them and not treat them as contiguous
regions of input data. There is an inverse relationship between
the number of neurons in the map and the minimum separation
between clusters that must be present in order for clusters to
be accurately identified – more neurons in the map makes the
spacing between neurons smaller, which means links between
clusters are less likely to be activated.

The algorithm is also slow. Due to the similarity between
this algorithm and the growing neural gas algorithm, it would
thus be desirable to do a direct comparison between the two to
see which converges faster.

Finally, the algorithm has not yet been tested on real-world
data. It remains to be seen whether it can accurately and

meaningfully detect clusters in multidimensional real-world
data, however the preliminary results from synthetic data are
promising.

REFERENCES
[1] Murphy, G. The Big Book of Concepts, Cambridge, MA: MIT Press,

2002.
[2] Merriman, W. E., Schuster, J. M., and Hager, L. (1991) Are names ever

mapped onto pre-existing categories. Journal of Experimental
Psychology: General, 120, 288-300.

[3] Costa, J.A.F.; de Andrade Netto, M.L., (1999) Cluster analysis using
self-organizing maps and image processing techniques. IEEE
International Conference on Systems, Man, and Cybernetics, 1999, vol.
5, pp. 367-372.

[4] Vesanto, J. (1999) SOM-based data visualization methods. Intelligent
Data Analysis, vol. 3, pp. 111–126.

[5] Vesanto, J. and Alhoniemi, E. (2000) Clustering of the Self-Organizing
Map. IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 586-
600.

[6] Honkela, T., Pulkki, V., & Kohonen, T. (1995) Contextual Relations of
Words in Grimm Tales Analyzed by Self-Organizing Map. Proceedings
of ICANN-95, International Conference on Artificial Neural Networks,
vol. 2, F. Fogelman-Soulié and P. Gallinari (eds.), EC2 et Cie, Paris, pp.
3-7.

[7] Ritter, H. J. and Schulten, K. (1988) Kohonen's self-organizing maps:
Exploring their computational capabilities, In: Proc. IEEE Int. Conf.
Neural Network, ICNN-88, San Diego, CA, pp. 109-116.

[8] Honkela T. (2000) Adaptive and Holistic Knowledge Representations
Using Self-Organizing Maps. Proceedings of IIP'2000, International
Conference on Intelligent Information Processing, Z. Shi, B. Faltings
and M. Musen (eds.), Beijing, China, August 21-25, 2000, pp. 81-86.

[9] S. Haykin, Neural networks: A comprehensive foundation, Upper Saddle
River, NJ: Prentice-Hall, 1994.

[10] Kandel, E. R., Schwartz, J. H., Jessell, T. M. Principles of Neural
Science, 4th Edition, Chicago, IL: The Unviersity of Chicago Press,
2000.

[11] Fritzke, B. (1995) A Growing Neural Gas Network Learns Topologies,
in: Tesauro, G., Touretzky, D. S., Leen, T. K. (Eds.): Advances in
Neural Information Processing Systems 7, MIT Press, 625-632.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 20

VI. APPENDIX: A GRAPHICAL COMPARISON BETWEEN

REGULAR SOM AND DYNAMIC SOM ALGORITHMS

Fig. 5(a) The classical SOM algorithm’s analysis of input data consisting of
concentric rings. Not the unclosed gap as a result of the grid shape being
stretched to fit around the rings.

Fig. 5(b) The dynamic SOM algorithm’s analysis of the same data.
Distribution of neurons is very uniform, and there are no links between the
rings. Six neurons died.

Fig. 6(a) The classical algorithm’s analysis of two interlocking rings. There
are interpolating neurons in all three “holes”, and this inefficient use of
neurons makes the distribution of neurons along the rings less dense.

Fig. 6(b) The dynamic SOM algorithm’s analysis of the same data. No
neurons died.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 21

Fig. 7(a) The classical algorithm’s analysis of a five-cluster input data set.
Due to the symmetrical nature of the data, the presence of interpolating map
units is particularly prominent.

Fig. 7(b) The dynamic SOM algorithm’s analysis of the same data. Five
neurons died.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 22

Neural Network Theory and Applications 2006 1

Abstract—With customer preference databases growing to

colossal sizes, collaborative filtering algorithms run into
scalability concerns. By reducing the dimensionality of the input
space, we ease the demands of predicting users’ tastes for films. A
movie-to-movie correlation and distance metric are used to
decompose the user-movie rating data into two different movie
graphs. Using a Kohonen self-organizing map (SOM), the
product space can be divided into meaningful clusters centered
on the neurons whose weight vectors are nearest the product
weights. The SOM –derived clustering is analyzed via a Principal
Components Analysis of the data. The clusterings are then
evaluated for their effectiveness via quantitative and qualitative
observations on the meaningfulness of the groupings of the films.

Index Terms—Clustering methods, Collaborative filtering,
Karhunen-Loeve transforms, Movies, Neural network
applications, Self-organizing feature maps

I. INTRODUCTION
OLLABORATIVE filtering, the automated process
of making predictions about a user’s interests given

data collected on customers’ prior preferences, has
become an increasingly relevant problem. Mindful
companies are cataloging their customers’ every move,
hoping to uncover meaningful trends that help refocus
product selection and marketing. Collaborative filtering
need not only be seen as an aid to the seller, however;
customers, who are more regularly inundated by an
increasingly complicated market with thousands of
slightly differentiated products, benefit highly from
individualized product suggestions.
 The substantial size of the customer preference
databases (the inputs for collaborative filtering) makes
the problem of individualizing the recommendation
process even more difficult [6]. Collaborative filtering
techniques generally fall into two groups by the type of
approach, either memory-based or model-based
algorithms. The former make determinations according
to an analysis of the entire dataset whereas the latter
fine-tune a user-specific model designed to capture an
individual’s relationship to the entire product space.

Each approach presents difficulties when scalability is a
concern [6].
 This paper proposes dimensionality reduction via
product clustering as a solution to the problem of
scalability. The product space—here, the set of all
films—when partitioned, becomes more manageable for
calculations. In the same way that the human brain
generates classification schema to aid in comprehending
the world [1], collaborative filtering algorithms can
consider a user’s relationship to these categories (instead
of looking at the user’s relationship to each individual
item independently) [5].
 The partitioning of the product space is accomplished
by training a Kohonen self-organizing map on relational
film data. The resulting clusters are analyzed and then
graphed via a principal components analysis. It is hard
to quantitatively measure the partitions that emerge,
though data on the films’ genres, directors contribute to
a qualitative assessment of the clustering algorithm.
 The clusters derived from the self-organizing map are
by no means perfect, though the similarity between the
films in each partition is no accident. In almost every
partitioning of the films, movies end up in the same
clusters as their sequels (with the noted exception of the
Harry Potter franchise, where the third and fourth films
are markedly different than the first and second, both
sets of which are grouped in different clusters). Most
clusters seem to exhibit some property that differentiates
the films in the particular group from the entire set of all
movies being considered, be it genre, budget, director
style, or some more subjective quality.

Indeed, the quality of the partitions is impressive
considering the amount of data that is aggregated to
arrive at the results. This suggests that SOM algorithms
like this one may provide the key to developing
collaborative filtering systems in the face of increasing
scalability concerns.

II. THE NETFLIX PRIZE™ DATA
 Netflix provides the following as description of its
data:
“The movie rating files contain over 100 million ratings from

A. Pariser is a senior at Yale University, expecting graduation with a BS in

May of 2007 for a Physics and Applied Mathematics double major, (e-mail:
andrew.pariser@yale.edu).

Dimensionality Reduction via Self-Organizing
Feature Maps for Collaborative Filtering

Andrew R. Pariser

C

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 23

Neural Network Theory and Applications 2006 2

480 thousand randomly-chosen, anonymous Netflix customers
over 17 thousand movie titles. The data were collected
between October, 1998 and December, 2005 and reflect the
distribution of all ratings received during this period. The
ratings are on a scale from 1 to 5 (integral) stars. To protect
customer privacy, each customer id has been replaced with a
randomly-assigned id. The date of each rating and the title
and year of release for each movie id are also provided.”
 The five hundred most rated movies were extracted
from this dataset for the tests that follow, representing a
meaningful portion of the entire population of ratings
while keeping computation time reasonable. These films
comprise the product space of this research.

III. TASTE PROFILE DECOMPOSITION

A. Overview
It is difficult to find a basis on which one can partition

the set of viewer-movie rating pairs. Instead, one would
intuitively think to create groupings among either the set
of movies or the set of users. A cluster from the set of
users would hopefully contain customers who would
rank movies similarly. Likewise, a cluster from the set
of movies would ideally collect all titles which will
probably receive the same ratings across all users.

The goal of this first step is to transform the viewer-
movie rating pairs into data that relate the films via some
calculation on collective ratings data, simplifying
hundreds of user ratings for two films into one value.

B. Movie-Movie Metrics
In order to transform the user-movie rating pairs into a

relational graph of movies, we must aggregate the user
data via some metric that relates two movies. We
consider two such measures, a correlation metric and a
distance metric.

Let U(m) represent the set of all users who have rated
movie m. We define U(m,n) = U(m) ∩ U(n) as the set of
users who have rated both movies m and n. Using the
variable u to represent a user, we define rm(u), mm, and
sm as the rating user u gives movie m, the mean rating
for movie m, and the standard deviation of all users’
ratings for movie m, respectively. We then consider the
functions

 1 2
(,)

() (()) (())mn m n m m n nu U m n
r u r uρ σ σ μ μ−

∈
= − −∑ (1)

and

 2
(,)

(() ())mn m nu U m n
d r u r u

∈
= −∑ (2)

where (1) represents a measure of correlation and (2) a
measure of distance between m and n.

The resulting data from equations (1) and (2) are then

normalized so that –1 ≤ rmn ≤ 1 and 0 ≤ dmn ≤ 1. To
sharpen the metrics and to aid in providing clearer
boundaries on which to cluster the graphs, we
exponentiate the results of the two formulae above,
obtaining

 exp()mn mnρ ρ′ = − (3)

and

 exp()mn mnd d′ = − . (4)

The bounds on (3) and (4) are 0.368 ≤ r'mn ≤ 2.718 and
0.368 ≤ d'mn ≤ 1, and are determined by transforming the
bounds on (1) and (2).

The values from (3) and (4) are compiled into two
matrices, R = (r'mn) and D = (d'mn).The columns of these
two matrices, which we denote Rm and Dm respectively,
correspond to vectors in the input space of the system.
The elements in each vector define the particular movie
in relation to the other films via the relational metrics in
(3) and (4).

That the 500 most rated Netflix films were extracted
from all movies provided in the dataset proved useful
not only for computation time. Equations (1) and (2),
which relate two films, depend upon having a non-empty
intersection U(m,n) = U(m) ∩ U(n). It would be unclear
how to speak of a “correlation” or “distance” between
two products if one could not find a common subset of
users who have provided taste profiles on both products.
Thankfully, when limiting the data to the top 500 most
rated films, the size of the intersection, |U(m,n)|, is
strictly positive and thus Equations (1) – (4) are always
defined.

An introductory analysis of the 500 most rated Netflix
films is compiled in Appendix A. It includes lists of the
ten most rated films, the ten films with highest and
lowest ratings, and the ten films with highest and lowest
variance in their ratings. Additionally, insight into the
metrics of Equations (1) and (2) is provided by listing
the ten most and least correlated films, as well as the ten
most and least distant films.

IV. CLUSTERING VIA SELF-ORGANIZING MAP

A. Definition and Motivation
Self-organizing maps (SOMs) distinguish features from
an input space by forming topographical representations
of their input patterns. Using competitive learning,
“winning” neurons (and their neighbors) adjust their
weight vectors to move closer to presented inputs (the
columns of R and D) in synaptic weight space. After a
convergence phase, the resulting neuron assembly
exhibits important properties of the input space [2]:

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 24

Neural Network Theory and Applications 2006 3

1. The feature map, as represented by the set of
synaptic weight vectors, approximates the entire
input space

2. The feature map is topologically ordered. That is,
the spatial locations of the neurons represent a
particular feature or subset of the input space.

3. The neuron density of the resulting feature map
mimics the probability density of the input space.

4. As a conclusion of the previous three properties, a
self-organizing map is able to select a set of best
features for approximating an underlying
distribution.

Given these four properties, one can easily assign
clusters to movies from a particular SOM network: for
each movie in the input space, it belongs in the cluster
corresponding to the neuron nearest it in weight space.

B. Specification of SOM model and parameters
Two SOMs are trained on each of the input spaces

defined by the sets of column vectors {Rm} and {Dm},
one with N neurons, both for N = 10 and N = 30. The
output, therefore, corresponds to four different
clusterings, one for ten clusters of each input space and
the other of thirty clusters of each input space.

In these four clusterings, the synaptic weight space for
each network is [0.368, 2.718]500 and [0.368, 1]500, for Rm
and Dm, respectively. The initial synaptic weights for
the fifty neurons are chosen randomly from the sets {Rm}
and {Dm}.

At each iteration n of the network training phase, an
input vector x(n) is presented to the network, where the
input vector is given by a column vector of R or D, allof
which are presented in a randomly permuted order in
each training epoch. Competitive learning is used such
that a best-matching (winning) neuron i(x) is chosen
according to the minimum-distance criterion:

{1,2, , }

() arg min () j
j N

i n
∈

= −x x w
…

The winning neuron moves its weights in the direction
of the input presentation x according to the update
formula

 , ()(1) () () () (() ())j j j i jn n n h n n nη+ = + −xw w x w ,

where the learning rate function is defined by

 0() exp (/)n nη η τ= − ,

and the neighborhood function is defined to be the
Kroniker delta function

 ,

1 if
()

0 otherwisei j ij

i j
h n δ

=⎧
= = ⎨

⎩
.

Choosing the particular parameters for these functions
affects the speed and accuracy of the network training
algorithm. Making h(n) ineffective by starting h0 too
low may trap the network in local minima, whereas
choosing h0 too high can cause the network to exhibit
unfortunate oscillatory behavior. Similarly, these same
effects can be achieved by changing the exponential
decay of h(n) improperly; the network may overshoot
optimal regions when t set too high, whereas, if t is set
too low, the network will converge very slowly if at all.

C. Choosing Network Training Parameters
The learning rate parameters h0 = 0.01 and t = 1000

are suggested by Haykin [2]. In selecting these
parameters, one would hope to find the minimum value
for the total self organizing map error as a function of
the network’s weights W given by

2500

()1
() total_net_error ()

ji jj =
≡ = −∑ xW W W x, . (5)

Here, the input vectors {x1, …, x500} correspond to the
column vectors {Rm} and {Dm} as the case may be, and
the term ()ji xW symbolizes the weight vector of the best-
matching (winning) neuron i(xj) for the given input
vector xj. Once each network has been sufficiently
trained, this value in (5) no longer decreases.

For each matrix and each number of output clusters,
multiple values for each of the network training
parameters h0 and t were compared according to their
ability to minimize this error ,(w).

Tables 1 and 2 show results from these calculations.
Shaded rows in each table correspond to parameter
choices producing the lowest final values of the error ,
found. The values for h0 and t for the actual training of
each network were read directly from these shaded rows.

Table 1 – Optimal Parameters, R-Network Training

10 Clusters, R 30 Clusters, R
, h0 t , h0 t

0.9389 0.1 250 0.8856 0.1 250
0.9314 0.1 500 0.8683 0.1 500
0.9302 0.1 750 0.8606 0.1 750
0.9299 0.1 1000 0.8578 0.1 1000
0.9334 0.2 250 0.8656 0.2 250
0.9267 0.2 500 0.8563 0.2 500
0.9264 0.2 750 0.8486 0.2 750
0.9238 0.2 1000 0.8509 0.2 1000
0.9304 0.3 250 0.8593 0.3 250
0.9245 0.3 500 0.8489 0.3 500
0.9259 0.3 750 0.8429 0.3 750
0.9227 0.3 1000 0.8439 0.3 1000

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 25

Neural Network Theory and Applications 2006 4

Table 2 – Optimal Parameters, D-Network Training
10 Clusters, D 30 Clusters, D

, h0 t , h0 t
0.9389 0.1 250 0.8856 0.1 250
0.9314 0.1 500 0.8683 0.1 500
0.9302 0.1 750 0.8606 0.1 750
0.9299 0.1 1000 0.8578 0.1 1000

0.9334 0.2 250 0.8656 0.2 250
0.9267 0.2 500 0.8563 0.2 500
0.9264 0.2 750 0.8486 0.2 750
0.9238 0.2 1000 0.8509 0.2 1000
0.9304 0.3 250 0.8593 0.3 250
0.9245 0.3 500 0.8489 0.3 500
0.9259 0.3 750 0.8429 0.3 750
0.9227 0.3 1000 0.8439 0.3 1000

Figure 1 – Training Error vs. Number of Epochs

Bold lines in Figures (1a) and (1b) correspond to networks trained on R,
whereas the regular lines of Figures (1c) and (1d) show the error for networks
trained on D. The solid lines in Figures (1a) and (1c) are ten neuron networks;
dashed lines in Figures (1b) and (1d) are thirty neuron networks.

Figure 2 – Cluster Sizes

These four charts indicate (in increasing order) the size distribution of each of
the four networks. Figures (2a) and (2c) are the ten neuron cases and Figures
(2b) and (2d) are the thirty neuron cases for the R and D matrices,
respectively.

D. Training Phase
The self organizing map converged on its ultimate

synaptic weight locations in no more than six training
epochs, with the presentation of the entire input space in
randomly permuted order per epoch. Figure 1 shows the
network training error for each of the four ways of
clustering the graphs.

Figure 2 shows the cluster sizes of each the clusterings
that result from each trained SOM.

V. PRINCIPLE COMPONENTS ANALYSIS

A. Definition and Motivation
A principal components analysis (PCA) of a dataset is

a statistical operation that shrinks multidimensional data
into lower dimensions. PCA is the linear transformation
of any multidimensional data X into a subspace Y for
maintaining the largest variance. The data Y is just a
projection of X onto the m eigenvectors of X that have
the largest eigenvectors. The transformation, also called
the discrete Karhunen-Loeve transform, is used for
pattern recognition and minimizes data reconstruction
error under the L2 norm [3]. In our case, we reduce 500-
dimensional data R and D into two-dimensional so that
we may visualize the films’ locations.

B. Applying PCA to Movie-Movie Interaction Data
One can transform the data R or D into a reduced

subspace by repetitively subtracting the projection of the
data on the first l eigenvalues from R or D, respectively,
and then calculating the projection of this residual on the
(l + 1)th eigenvector.

Choosing the output to be either two- or three-
dimensional data allows complicated data in R or D to be
visualized. These reduced dimension points allow us not
only to visualize movies but also to visualize clusters on
these movies. Ideally, clusters should contain points that
are not very distant after a PCA transformation.

Figures 3 through 6 show the different clusters
resulting from the SOM algorithm for each of the four
scenarios, as plotted on two-dimensional PCA
coordinates.

Indeed, we note that the films which are in the same
clusters are near each other in the reduced dimensional
space generated by the PCA analysis. And, furthermore,
there are few overlapping lines from different
clusterings, which is consistent with the desire for
clusterings to partition the input space into regions that
are both contiguous and disjoint possible.

Along these lines, we can identify some regions that
may be problematic, specifically in the lower left
quadrant of the R data in Figures 3 and 4.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 26

Neural Network Theory and Applications 2006 5

Figure 3 – Ten-Clustering of R Data

Figure 4 – Thirty-Clustering of R Data

Figure 5 – Ten-Clustering of D Data

Figure 6 – Thirty-Clustering of D Data

VI. QUALITATIVE ANALYSIS OF PARTITIONS

A. Introduction
What sort of metric can be used to quantitatively say

that a clustering of films is meaningful? One can only
do this when using some measure of “closeness”
between films. Having defined two such measures (r'mn
and d'mn) in the decomposition step (see III) and used
these values as inputs to our clustering algorithm, it
would be tautological to say that the clusters we have
created are successful partitions with respect to these
metrics. Supposing the metrics used for decomposition
are poor indicators of the film “closeness,” our analysis
would not observe poor clusterings of the data.

As such, we must look to a qualitative analysis of the
film partitions. To do this, data from the Internet Movie
Database (IMDB) were collected for each of the films in
the product space. The average rating, budget, opening
weekend gross, MPAA rating (i.e., R, PG-13, etc.),
genres, directors, writers, and cast were then aggregated
for each cluster as a means for qualitative comparison of
the partitions.

B. Example Clusters
First, we will look at a cluster that provides a sanity

check and reveals that the SOM methodology above
generates at least some meaningful partitions. Example
Cluster 1 (text box, next page) contains only eleven
films, which is significantly fewer than 50, the average
cluster size with ten partitions on 500 films. The
extremely small size of the partition as compared to the
average cluster size means that these eleven films must
be very closely related and highly distinct from the other
films in the product space.

Indeed, we see that six of these films are from the
Lord of the Rings franchise (three Extended Edition
DVD releases and three theatrical versions). The other
films are also epic films, which are similar in scope and
extravagance (not to mention, in length).

The average budget for these eleven films is on the
high end of all clusterings at 73 million USD. The
budgets of this cluster also have a low variance of 41
million dollars (relative to the budget size and compared
to the other clusterings’ budget variance) which can be
accounted for by the change in value of the dollar since
the Star Wars films came out.

These films were made to be giant blockbusters. All
had extremely high opening weekend gross revenues,
and these films have been seen by an extremely large
portion of all moviegoers. Indeed, with the exception of
Sky Captain and the World of Tomorrow, people also
extremely enjoyed these movies (the Lord of the Rings

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 27

Neural Network Theory and Applications 2006 6

films top the list of the highest rated films). Indeed, this
the films in this cluster have the largest aggregate
average rating at 4.322 stars. Also worth noting is that
people generally agree on the ratings of these films; the
average standard deviation of the ratings of these eleven
films is only 0.807 stars.

Lastly, there is an extremely high overlap of writers,
directors, and cast members in these films, due to the
fact that all six Lord of the Rings films were made by
and with the same people.

Looking to Example Cluster 2, we see a markedly
different type of movie represented by these films. Here
we have, with very few exceptions, a cluster of thirteen
romantic comedies (indeed, thirteen are listed under the
‘comedy’ genre by IMDB and 9 are under ‘romance’).
These films have a relatively high budget and a decent
opening weekend gross, but they are not as well liked as
the successful epic blockbusters of Example Cluster 1.
With an aggregate average rating of 3.381, this are the
third least liked group of films in this partitioning.
Furthermore, high variance in the ratings of these films
may be explained by these movies “chick flick” status.

Cluster Size : 20
 :
Titles : 21 Grams (3.382 +/- 1.049)
 : 28 Days Later (3.335 +/- 1.118)
 : About Schmidt (3.059 +/- 1.071)
 : Amelie (4.115 +/- 1.033)
 : Bowling for Columbine (3.785 +/- 1.202)
 : Closer (2.989 +/- 1.139)
 : Crouching Tiger, Hidden Dragon (3.898 +/- 1.065)
 : Donnie Darko (3.925 +/- 1.064)
 : Fahrenheit 9/11 (3.593 +/- 1.324)
 : Garden State (3.693 +/- 1.111)
 : High Fidelity (3.710 +/- 1.006)
 : In the Bedroom (3.290 +/- 1.066)
 : Napoleon Dynamite (3.398 +/- 1.302)
 : Run Lola Run (3.887 +/- 1.004)
 : Secretary (3.423 +/- 1.153)
 : Super Size Me (3.864 +/- 0.974)
 : The Good Girl (3.109 +/- 1.022)
 : The Hours (3.351 +/- 1.141)
 : Traffic (3.693 +/- 0.988)
 : Whale Rider (3.915 +/- 1.017)
 :
Rating Avg. : 3.571
Stddev : 1.097
 :
Budget : 11.463 +/- 13.093 Mil. (19)
Opening Gross : 2.588 +/- 5.663 Mil. (20)
 :
MPAA Ratings : PG-13 = 3
 : R = 15
 : PG = 2
 :
Genres : 16 Drama
 : 7 Comedy
 : 6 Romance
 : 5 Thriller
 : 3 Crime
 : 3 Documentary
 : 2 Action
 : 2 Sci-Fi
 :
Director (2) : 0601619 Michael Moore
 :
Writer (2) : 0601619 Michael Moore

Example Cluster 3
An example of an output cluster, from clustering R by a 30 neuron SOM

Example Cluster 1
An example of an output cluster, from clustering R by a 10 neuron SOM

Cluster Size : 11
 :
Titles : LOTR: Fellowship (4.435 +/- 0.895)
 : LOTR: Fellowship: Extended (4.717 +/- 0.619)
 : LOTR: Return of King (4.545 +/- 0.806)
 : LOTR: Return of King: Extended (4.723 +/- 0.610)
 : LOTR: Two Towers (4.461 +/- 0.862)
 : LOTR: Two Towers: Extended (4.703 +/- 0.629)
 : Master and Commander (3.546 +/- 0.986)
 : Raiders of the Lost Ark (4.504 +/- 0.714)
 : Sky Captain and World of Tomor. (2.860 +/- 1.054)
 : Star Wars IV: A New Hope (4.504 +/- 0.805)
 : Star Wars V: Empire Strikes Back(4.544 +/- 0.759)
 :
Rating Avg. : 4.322
Stddev : 0.807
 :
Budget : 73.000 +/- 41.578 Mil. (11 reported)
Opening Gross : 36.071 +/- 28.924 Mil. (10 reported)
 :
MPAA Ratings : PG-13 = 7
 : PG = 3
 :
Genres : 11 Action
 : 11 Adventure
 : 8 Fantasy
 : 3 Sci-Fi
 : 2 Thriller
 : 1 Drama
 : 1 Family
 : 1 Mystery
 : 1 War
 :
Director (6) : 0001392 Peter Jackson
 :
Writer (6) : 0909638 Fran Walsh
 : 0866058 J.R.R. Tolkien
 (3) : 0000184 George Lucas
 :
Cast (6) : 0089217 Orlando Bloom
 : 0101710 Billy Boyd
 : 0000949 Cate Blanchett
 : 0000276 Sean Astin
 (4) : 1019674 Sala Baker
 : 0032370 Noel Appleby
 : 0045324 John Bach
 : 0000293 Sean Bean
 : 0190744 Marton Csokas
 : 0384060 Bernard Hill
 : 0000489 Christopher Lee
 (3) : 0000148 Harrison Ford

Cluster Size : 13
 :
Titles : Cheaper by the Dozen (3.512 +/- 1.016)
 : Coyote Ugly (3.230 +/- 1.226)
 : How to Lose a Guy in 10 Days (3.552 +/- 1.086)
 : Maid in Manhattan (3.145 +/- 1.123)
 : Miss Congeniality (3.361 +/- 1.112)
 : Miss Congeniality 2 (3.225 +/- 1.055)
 : Raising Helen (3.551 +/- 1.010)
 : Runaway Bride (3.291 +/- 1.056)
 : Sweet Home Alabama (3.539 +/- 1.077)
 : The Princess Diaries (3.571 +/- 1.046)
 : The Wedding Planner (3.184 +/- 1.123)
 : Two Weeks Notice (3.363 +/- 1.007)
 : What Women Want (3.425 +/- 1.069)
 :
Rating Avg. : 3.381
Stddev : 1.079
 :
Budget : 49.167 +/- 11.654 Mil. (12)
Opening Gross : 21.886 +/- 8.227 Mil. (13)
 :
MPAA Ratings : PG-13 = 10
 : PG = 2
 :
Genres : 13 Comedy
 : 9 Romance
 : 3 Drama
 : 2 Family
 :
Director (3) : 0005190 Garry Marshall
 (2) : 0677953 Donald Petrie
 :
Writer (3) : 0492909 Marc Lawrence
 (2) : 0920859 Gina Wendkos
 : 0974301 Katie Ford
 :
Cast (3) : 0000113 Sandra Bullock
 : 0122688 Heather Burns

Example Cluster 2
An example of an output cluster, from clustering R by a 30 neuron SOM

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 28

Neural Network Theory and Applications 2006 7

Example Cluster 3 poses a more difficult analysis.
With respect to movie topics and subject matter, there is
little that relates these films to each other. These films
include documentaries and journeys in science fiction.
Some are disheartening postmodern character studies,
while others are uplifting romantic comedies. Given the
knowledge of the difference in these films’ themes, has
the partitioning scheme made an error?

Looking at this cluster from a different perspective
reveals that there are ways to understand these movies
with respect to each other. The average opening gross
ranks in as the fourth lowest among all clusters. This
indicates that these films were not initially well attended
in theaters. This is generally true of these films—they
are primarily movies with an indie following.

These are movies that have been very successful with
one demographic group but no others. Michael Moore’s
films, Bowling for Columbine and Fahrenheit 9/11, are
generally watched by many who are politically liberal
and by few conservatives. Similarly, Garden State and
High Fidelity, which express the youth generation’s
complaints about love and society, are generally watched
by the 18-25 year old demographic.

There are four foreign films in this cluster (Amelie,
Crouching Tiger, Hidden Dragon, Run Lola Run and
Whale Rider), as well as three documentaries (Bowling
for Columbine, Fahrenheit 9/11 and Super Size Me).
This cluster has an alternative feel, with films that are
not out to please any large audience.

VII. CONCLUSION
The intangible quality of “indie-ness” that relates the

films in Example Cluster 3 demonstrates power in the
SOM algorithm. By many standards, these films would
not be grouped similarly, and yet this group shares many
features that could be very meaningful in analyzing the
films for a collaborative filtering system.

It is important to note, however, that SOM clustering
technique is also very successful with films that are
easier to classify. Films with clearly defined features are
separated along these lines (e.g., epics and romantic
comedies are divided into Example Clusters 1 and 2,
respectively). Additionally, films in the same franchise
made in similar ways with similar casts are extremely
rarely split into different clusters.

Further quantitative validity of these clusterings could
be garnered via the empirical results of a collaborative
filtering scheme that utilizes these partitions, such as the
content-boosted system proposed by Melville, Mooney
and Nagaraan [4]. Qualitatively, however, these clusters
are consistent with the author’s personal perspectives on

these films, and seem to be very meaningful with respect
to the content data gathered from IMDB on these films.

It seems that the problems of scalability can be
mitigated by using this algorithm. The data considered
in the calculations that arrive at these clusterings are
much fewer than the entire set of viewer-movie rating
pairs. Indeed, one only needs a single relational number
between any two films in order to create meaningful
partitions of some product space. Only one step of pre-
processing must be done before clustering the films via
the SOM algorithm.

In addition to being extremely useful for collaborative
filtering algorithms [4, 5, 6], this work can be altered to
be applicable in many fields. The problem of clustering
is important for all sorts of computational algorithms and
models (from pattern classification and data mining to
resource allocation and strategic management). In order
to extend this algorithm to other problems, the only thing
necessary is some feedback on the items that one wants
to partition and a measure of how the similar the items
are as a function of all of their feedback.

APPENDIX A
Table 3 – Most Frequently Rated Films

Count Rating Title
233 3.361 Miss Congeniality
217 3.724 Independence Day
201 3.784 The Patriot
196 3.442 The Day After Tomorrow
194 4.154 Pirates of the Caribbean: Curse of the Black Pearl
193 3.905 Pretty Woman
182 4.300 Forrest Gump
181 4.307 The Green Mile
178 3.454 Con Air
178 3.412 Twister

Table 4 - Highest Rated Films
Rating StdDev Title

4.723 0.372 LOTR: Return of King, Extended
4.717 0.383 LOTR: Fellowship of Ring, Extended
4.703 0.396 LOTR: The Two Towers, Extended
4.593 0.459 Shawshank Redemption, Special Ed.
4.545 0.649 LOTR: Return of the King
4.544 0.577 Star Wars, V: Empire Strikes Back
4.504 0.622 The Godfather
4.504 0.648 Star Wars, IV: A New Hope
4.504 0.509 Raiders of the Lost Ark
4.461 0.638 Star Wars, VI: Return of the Jedi

Table 5 - Lowest Rated Films
Rating StdDev Title
2.798 1.003 The Stepford Wives
2.855 1.018 Hollow Man
2.856 1.196 Wild Wild West
2.860 1.110 Sky Captain and World of Tomorrow
2.901 1.639 Punch-Drunk Love
2.907 1.209 Legally Blonde 2
2.925 1.478 Anchorman
2.947 1.106 Once Upon a Time in Mexico
2.965 1.201 A.I. Artificial Intelligence
2.980 1.119 Daredevil

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 29

Neural Network Theory and Applications 2006 8

Table 6 – Films with Highest Rating Variance
Rating StdDev Title
3.593 1.752 Fahrenheit 9/11
3.398 1.697 Napoleon Dynamite
3.374 1.658 Moulin Rouge
3.280 1.656 The Royal Tenenbaums
2.901 1.639 Punch-Drunk Love
3.372 1.627 Lost in Translation
3.748 1.609 The Passion of the Christ
3.077 1.595 The Life Aquatic with Steve Zissou
3.230 1.503 Coyote Ugly
3.598 1.494 Sin City

Table 7 – Films with Lowest Rating Variance
Rating StdDev Title
4.723 0.372 LOTR: Return of King, Extended
4.717 0.383 LOTR: Fellowship of Ring, Extended
4.703 0.396 LOTR: The Two Towers, Extended
4.593 0.459 The Shawshank Redemption Special Ed.
4.504 0.509 Raiders of the Lost Ark
4.544 0.577 Star Wars, V: Empire Strikes Back
4.416 0.603 Finding Nemo
4.458 0.611 Schindler's List
4.173 0.617 Stand by Me
4.504 0.622 The Godfather

Table 8 - Films with Highest Correlation (r'mn)
Corr Rating Title

0.873 4.717 LOTR: Fellowship of Ring: Extended
4.703 LOTR: The Two Towers: Extended

0.850 4.723 LOTR: Return of King: Extended
4.703 LOTR: The Two Towers: Extended

0.839 4.723 LOTR: Return of King: Extended
4.717 LOTR: Fellowship of Ring: Extended

0.814 4.435 LOTR: The Fellowship of the Ring
4.461 LOTR: The Two Towers

0.801 4.092 Harry Potter and the Sorcerer's Stone
4.045 Harry Potter and the Chamber of Secrets

0.785 4.545 LOTR: The Return of the King
4.461 LOTR: The Two Towers

0.764 3.814 Lethal Weapon 3
3.877 Lethal Weapon 2

0.761 4.545 LOTR: The Return of the King
4.435 LOTR: The Fellowship of the Ring

0.757 3.874 Kill Bill: Vol. 2
3.759 Kill Bill: Vol. 1

0.754 3.604 Star Wars, I: The Phantom Menace
3.550 Star Wars, II: Attack of the Clones

Table 9 - Films with Lowest Correlation (r'mn)
Corr Rating Title

-0.267 3.280 The Royal Tenenbaums
3.398 Pearl Harbor

-0.258 2.901 Punch-Drunk Love
3.398 Pearl Harbor

-0.253 3.372 Lost in Translation
3.398 Pearl Harbor

-0.253 3.725 Annie Hall
3.583 Armageddon

-0.249 3.352 Adaptation
3.398 Pearl Harbor

-0.241 3.372 Lost in Translation
3.583 Armageddon

-0.239 3.725 Annie Hall
3.398 Pearl Harbor

-0.237 3.280 The Royal Tenenbaums
3.583 Armageddon

-0.235 2.901 Punch-Drunk Love
3.640 Double Jeopardy

-0.234 2.901 Punch-Drunk Love
3.583 Armageddon

Table 10 - Films of Highest Distance (d'mn)
Distance Rating Title

1.000 4.094 Pulp Fiction
3.361 Miss Congeniality

0.964 4.300 Forrest Gump
3.361 Miss Congeniality

0.952 3.280 The Royal Tenenbaums
3.361 Miss Congeniality

0.951 3.963 American Beauty
3.361 Miss Congeniality

0.948 3.280 The Royal Tenenbaums
4.300 Forrest Gump

0.944 4.593 The Shawshank Redemption: Special Ed.
3.361 Miss Congeniality

0.937 4.461 Lord of the Rings: Two Towers
3.361 Miss Congeniality

0.936 4.307 The Green Mile
3.361 Miss Congeniality

0.935 4.435 Lord of the Rings: Fellowship of the Ring
3.361 Miss Congeniality

0.933 3.372 Lost in Translation
4.094 Forrest Gump

Table 11 - Films of Lowest Distance (d'mn)
Distance Rating Title

0.124 4.717 LOTR: Fellowship of the Ring: Extended
4.703 LOTR: Two Towers: Extended

0.131 4.723 LOTR: Return of the King: Extended
4.703 LOTR: Two Towers: Extended

0.134 4.723 LOTR: Return of the King: Extended
4.717 LOTR: Fellowship of the Ring: Extended

0.170 4.723 LOTR: Return of the King: Extended
4.545 LOTR: Return of the King

0.187 3.609 Shall We Dance?
3.790 In the Line of Fire

0.188 4.717 LOTR: Fellowship of the Ring: Extended
4.545 LOTR: Return of the King

0.188 4.703 LOTR: Two Towers: Extended
4.545 LOTR: Return of the King

0.190 3.766 Rules of Engagement
3.609 Shall We Dance?

0.190 4.241 Rear Window
4.071 Coach Carter

0.191 4.703 LOTR: Two Towers: Extended
4.461 LOTR: Two Towers

ACKNOWLEDGMENT
A. Pariser would like to thank the Yale University Computer Science

department for providing a venue to study this data, as well as Frederick Shic
for helping focus the project. Thanks are also due to Daniel Spielman, who
provided the author insight into ways to analyze clusters.

REFERENCES
[1] S. Harnad, “Cognition is Categorization”, in Cohen, Henri and Lefebvre,

Claire, Eds. Handbook of Categorization, Elsevier, 2005.
[2] S. Haykin, Neural Networks: A Comprehensive Foundation (Upper

Saddle River, NJ: Prentice-Hall, 1999).
[3] E. Kreyszig, Advanced Engineering Mathematics, 8th Ed. (Hoboken, NJ:

John Wiley & Sons, Inc., 1999).
[4] P. Melville, R.J. Mooney and R. Nagarajan, “Content-Boosted

Collaborative Filtering for Improved Recommendations” in Proceedings
of the Eighteenth National Conference on Artificial Intelligence (AAAI,
2002), pp. 187-192, Edmonton, Canada, July 2002.

[5] M. O’Connor and J. Herlocker, “Clustering Items for Collaborative
Filtering” in Proceedings of the ACM SIGIR Workshop on
Recommender Systems, Berkeley, CA, 1999.

[6] G.R. Xue, C. Lin, Q. Yang, et. Al., “Scalable Collaborative Filtering
Using Cluster-based Smoothing” in Proceedings of the 2005 ACM
SIGIR Conference, Salvador, Brazil, 2005, pp. 114-121

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 30

Abstract—The conventional face recognition system consists of
two parts: training and classification. The training part normally
includes principle component analysis to reduce the
dimensionality of images. In classification, a query image is
projected to the reduced dimension and then compared with
training images. Both training and classification could be done
using neural networks’ techniques. Specifically, PCA in the
training phase could be done by neural network with Hebbian
learning and the classification could also be done using a feed
forward net. This paper compares the conventional techniques of
face recognition with the techniques from neural networks.

Index Terms—face recognition, eigenvalue, eigenvector,
eigenface, principle component analysis, singular value
decomposition, neural network, hebbian learning, feed forward
net, backpropogation

I. INTRODUCTION

ACE recognition has become a central technology for
identity verification. Commercial systems are already

widely used in access control and proactive surveillance
applications all over the world.

Face recognition is not an easy task because of two major
obstacles. Lighting conditions could significantly distort the
content of the image. Makeup, hairdo and outfit could
significantly change an individual’s appearance. A pair of
images of the same individual may look dramatically different.
Such difficulties can make recognition extremely challenging.
Moreover, difference in facial expressions also complicates the
recognition problem. We shall, for simplicity, assume the
lighting conditions are fairly constant. A good and robust face
recognition system should work on faces with slight facial
expressions. For convenience and simplicity, we only consider
vertically oriented grey scale images.

Face recognition begins with a collection of labeled images.
The label identifies the individual in the image. These labeled
images, also called training images, are the bases for

developing the recognition system. Typically, images are of
size 100 pixels by 100 pixels, or more. For grey scale images,
each pixel could take on any value between 0 and 255.
Therefore, ten thousand dimensions of data need to be
considered. Such high dimensionality of image data
contributes to complexity of the problem. Since a large
number of pixels could change their values due to a slight
change in lighting and facial expression, recognition by
comparing corresponding pixels in a pair of images is very
inefficient and non-robust.

A more advanced face recognition system consists of two
phases: training and classification. The first phase consists of
training a system on a set of labeled images. The primary task
of training is to reduce the dimensionality of the training
images. Training is an offline process and it allows the
classification phase, an online process, to perform
comparisons among images in the reduced dimension.

To achieve the reduction of dimensions, the standard face
recognition system uses principle component analysis (PCA).
As well known, PCA presents the data in a way that maximizes
the variance within the data. A nearest neighbor classifier
could then be used to compare a pair of images in the reduced
dimension by computing the Euclidean distance between them.
The winner of this classification protocol is the labeled image
that has the shortest distance from the target image in the
reduced dimension.

Both the training and classification phases of the algorithm
could be performed using neural networks. A neural network
using Hebbian learning also produces the principle
components. A feed forward net could be used in place of the
nearest neighbor classifier in the classification phase.

Section II will present two different techniques for the
training phase, namely the eigenface technique and the
Hebbian learning neural network. Both are used to find the
principle components. The classification could use either a
nearest neighbor classifier or a feed forward net. These will be
introduced in Section III. Since we have two options for
training and two options for classification, there are total of
four ways to construct the face recognition algorithm. In
section IV, the performance of each of the four algorithms are
presented and compared. The advantages and disadvantages
of each option are discussed. Conclusion will be in section V.

Face Recognition
A Comparative Study

Yan Sui

Computer Science Department, Yale University

F

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 31

II. TRAINING

A. Eigenface

Principle component analysis, originated as a statistical

analysis technique, identifies a way to represent high
dimensional data in lower dimensions. The representation of
the training images in lower dimensions is called the
eigenfaces. See figure 3b). Eigenfaces have two important
properties. The dimensions, or eigenfaces, are orthogonal to
one another. A good estimate of the original data can be
reconstructed by simply sum up the eigenfaces.

 An outline of an algorithm to find eigenfaces from images is
listed below:

1. For each training image i = 1 … m, place its pixels into

a column vector x i. m is the number of images.

2. Compute the mean face of the training images: µ

µ = 1
m

x i

i = 1

m

∑

Figure 1 shows an example of the mean face.
3. Compute the covariance matrix: ∑

Σ = 1
m −1

(x i − µ)(x i − µ)T

i=1

m

∑

4. Compute the eigenvalues and eigenvectors of the
covariance matrix ∑

5. Choose the first K eigenvectors of ∑ that correspond to
the largest K eigenvalues

6. Project the training images onto the principle
component subspace of dimension K

Note in step 3, the covariance matrix has high dimensions, p

by p, where p is the number of pixels in each image. It is
memory intensive to compute such covariance matrix.
Fortunately, eigenvectors can be computed without first
computing the covariance matrix ∑, by using singular value
decomposition (SVD).

If we combine the m column vectors into a matrix A

A = x1 x2 L

xm[]

and subtract the mean face µ from each training image
A = A − µ

therefore, Σ = AAT (ignore the scalar
1

m −1
)

According to SVD, any m by n matrix A may be factored as

the following:

A = U S V T
 where U is of size m by m, S is of size m by n, and V is of
size n by n. Also, the columns of U are the eigenvectors of

AAT . They are conveniently sorted by their corresponding
eigenvalues, in descending order. The columns of V are the

eigenvectors of AT A. The diagonal of S are the singular

values, or the square roots of the eigenvalues of AAT , in
descending order.

Therefore, the first K columns of matrix U are the same as
the eigenvectors of the covariance matrix ∑ that correspond to
the K highest eigenvalues.

B. Neural Network using Generalized Hebbian Algorithm

Besides eigenface, principle components can also be

computed using neural network with Hebbian learning. A
visualization of the neural network to compute the first K
principle components is shown in figure 2.

Here, there are m input nodes and k output nodes. m is the

number of pixels in the images and k is the number of
principle components to be computed. There is a weight value
associated with each edge in the figure. The weights can be
written in matrix form w . The following functions are used to
update the weight matrix w .

Fig 2. Neural Network for Hebbian Learning
Here m is number of pixels in each image

 Figure 1. an example of mean face

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 32

Where η is the learning rate.
In the beginning, entries in the weight matrix w are

initialized to small positive values. An iterative process to
update the weight matrix w is used here. The training images
are fed to the neural network, one at a time, repeatedly. After
each iteration, the weights are updated. The process stops
after the weights are stabilized. The weight matrixw is of size
m × k . The columns of w are the first k principle
components. Or equivalently, the first column of weight
matrix w is the first principle component. And the second
column of w is the second principle component and so on.

For fast convergence, the following implementation issues
need to be considered.

• Updating the learning rate. Gradually decrease the
learning rate to ensure faster convergence.

• Testing for convergence. Every time after feeding all
training images to the neural net, the change in
weight matrix w is compared to a threshold value.
Terminate the process if the change in the weight
matrix is less than the threshold.

Both eigenface and Hebbian Learning produce principle
components of the training images. But the number of
dimensions to keep, or the value of K is a choice left for the
user. In general, a larger K reserves more information from
the original data and results in a smaller reconstruction error.
At the same time, keeping more dimensions also produces
more work to do in the classification phase. A good way to
optimize the trade off between speed and accuracy is to look at
the eigenvalues as in Figure 3 a). Here, K = 10 is a good
choice due to the fact that eigenvalues drop off dramatically
after the first 10. In essence, eigenvectors after the first 10
carry a lot less information than the first 10 eigenvectors and
can be ignored. The visualization of the first 10 eigenfaces for
a sample collection of faces is shown in Figure 3 b).

Fig. 3 b). First 10 eigenfaces or eigenvectors corresponding to the first 10
eigenvalues of a sample collection of images

As in

If the columns of matrix w are the principle components
of the training images, each training image can be projected
to lower dimensions by a simple multiplication.

y i = w • x i

w is a matrix of size k × m and each row of w is a
principle component. x i is a vector of size m ×1

containing the pixels of image i. y i is the vector in the k

dimensional space.
After all training images are projected to the subspace of

dimension k, the next step is classification.

III. CLASSIFICATION

The goal of classification is to find the training image that
best matches a query image. To find the best match,
comparisons between the query image and each of the
training images need to be performed. Note that all
comparisons are done in the reduced dimension. A fast and
easy way to do classification is to use nearest neighbor
classifier.

A. Nearest Neighbor Classifier

The distance between an input image and a training image
is computed as follows.

The difference in each dimension is squared and then
added. The training image having the minimum distance
from the query image is the best match.

This method is very simple and effective. Since the

y j (n) = w ji(n)x i(n)
i=1

m

∑ j =1,2,...,k

∆w ji(n) = η[y j (n)x i(n) − y j (n) w pi(n)y p (n)
p=1

j

∑]

i =1,2,...m j =1,2,...,k

dist = (train[i] − input[i])2

i=1

k

∑dist = (train[i] − input[i])2

i=1

k

∑

Fig. 3. a). Eigenvalues of a sample collection of images

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 33

principle components are orthogonal to one another, the
Euclidean distance between two points in the reduced
dimension is a good measure of the difference between two
images. As we will see in the next section, nearest neighbor
classifier performs fairly well with PCA.

B. Feed Forward Net

The classifier could also be implemented using feed
forward net. The idea is to train the feed forward net with
the labeled training images. Use back-propagation to
update the weights so that the neural net will recognize each
training image. A visualization of the net is shown in Figure
4. Each training image is fed to the net only once. This
process is a form of learning with a teacher, since the
training images are all labeled.

In Figure 4, there are K input nodes in the input layer,
representing the K principle components of the input data.
In the output layer, there are C nodes, where C is the
number of classes, or in this case, the number of different
individuals in the training images. As in any feed forward
net, the number of hidden layer is critical to performance.
Having too few hidden layers results in inaccurate
classification. On the other hand, too many hidden layers
dramatically slow down the classification process. Some
initial experiments show that two hidden layers is a good
balance between speed and accuracy. The value at each
output node represents the distance between the input and
the node’s corresponding class. If node yi has the minimum
value, then class i is the best match to the input.

IV. PERFORMANCE EVALUATION

So far, two methods of computing PCA and two possible
classifiers are introduced. There are a total of four possible
combinations.

• Eigenface with nearest neighbor classifier

• Eigenface with feed forward net
• Hebbian learning with nearest neighbor classifier
• Hebbian learning with feed forward net

To illustrate to power and limitations of each of the four

methods, experiments were conducted using the same data set
for each of the four combinations. The images used were from
AT&T laboratory at Cambridge University. In the database,
there are images of 40 different people. Each individual has
10 images taken with slight lighting and facial expression
changes. See Figure 5 for a snapshot of a subset of the
database. The first seven images of each person were used as
training images. All images were used as query images to test
for accuracy.

The classification accuracy of the Hebbian learning with

nearest neighbor and feed forward net are shown in Figure 6
and 7, respectively. K, the number of principle components
used for classification, varies from 1 to 21 and the number of
iteration to feed the training images to the neural net varies
from 10 to 100. Note, the number of iteration is only an upper
bound. The iterative process may end before it reaches this
upper bound, if weights are stabilized early.

x1

x2

x3

xk

y1

y2

yc
.
.
.

.
.
.

Hidden layers Output layerinput

Fig. 4. Feed forward net with K input nodes, C output nodes, and
two hidden layer each having K neurons

 0

20

40

60

80

100

K = 1 K = 6 k = 11 k = 16 k = 21

iter = 10

iter = 20

iter = 50

iter = 100

Fig. 6. Hebbian learning with nearest neighbor success rate as K and
iteration vary

Fig. 5. Images from database of AT&T laboratory at Cambridge
University

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 34

For Hebbian learning with nearest neighbor classifier,

accuracy gets better as the value of K and the number of
iterations increases. The accuracy of Hebbian learning with
feed forward net is relatively consistent as shown in figure 7.
Notice that the accuracy in figure 7 is greater than 70% even
when K = 1. This is due to feed forward net’s ability to
correctly recognize the training images.

The classification accuracy of eigenface with both nearest

neighbor and feed forward net is given in figure 8.

We can plot the four combinations on the same graph to

better visualize of the comparison, as shown in Figure 9.

Several interesting points to note:

• For the training phase, eigenface produces slightly
higher accuracy. This is expected because hebbian
learning is an iterative process that estimates the
principle components. Errors in principle
components need to be tolerated when using
hebbian learning. Eigenface, on the other hand,
finds the optimal solution in one shot.

• For classification, nearest neighbor does a slightly
better job than feed forward net, when K >= 11.
Feed forward net does a better job than nearest
neighbor, when K < 11. This is due to the fact that
nearest neighbor needs good results of PCA to
work well. When K is large, more information
about the data is captured in the principle
components. Thus nearest neighbor performs
better. Conversely, feed forward net does not
require as much information to recognize the
training images.

V. CONCLUSION

Face recognition, when assuming good lighting condition, is

a well-researched problem. The simple and effective way to
do face recognition is to use eigenface with nearest neighbor
classifier. As shown in this paper, it works reasonably well.
While face recognition can also be implemented using neural
network techniques, it is not commonly used in this field. The
major problem with neural network in face recognition is not
the accuracy but speed. For both training and classification,
neural network runs a lot slower than the simple eigenvector
calculation. The iterative process of neural network limits its
applicability to face recognition problems. In addition, as we
discussed, when using neural network, there are a number of
parameters that need to be carefully initialized and updated
before and during the iterative process. This also makes the
use of neural network more complicated and less desirable
than eigenface.

Feed forward net recognizes the training images very
accurately with little help from the training phase. It works
exceptionally well in recognizing images it has seen before.
For applications whose query images are a subset of its
training images, feed forward net could be the leading
candidate for classification.

Currently in face recognition, the query image needs to be
compared to each and every training image in the training set
during classification. If there are a large number of training
images, the large number of comparisons will significantly
reduce the speed of recognition system. Instead, the query
image should only need to be compared with each class in the
training set. For future studies in face recognition, instead of
features describing each individual image, features describing

65

70

75

80

85

90

K = 1 K = 6 K = 11 K = 16 K = 21

iter = 10

iter = 20

iter = 50

iter = 100

Fig. 7. Hebbian learning with feed forward net success rate as K and
iteration vary. Note that in the case of feed forward net, the result is
fairly consistent with different number of principle components.

0

20

40

60

80

100

120

K = 1 K = 6 K = 11 K = 16 K = 21

Nearest
Neighbor

Feedforward
Net

Fig. 8. Eigenface with nearest neighbor and feed forward net
varying the value of K

0

20

40

60

80

100

120

k = 1 k = 5 k = 11 k = 16 k = 21

Hebbian, FFNet

Eigen, Near Neighbor

eigen, FFNet

Hebbian, Near Neighbor

Fig. 9. Accuracy of all four combinations as K increases.
 Note: Accuracy for Hebbian Learning is sampled at iteration = 50

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 35

each class or each individual person, should be investigated.
This will greatly speed up the classification process.

In summary, face recognition could also be solved using
techniques in neural networks. But the iterative process of
neural networks needs a long time to converge. Nevertheless,
there is potential in using neural network techniques in
classification to improve the performance of face recognition.

ACKNOWLEDGMENT

I am grateful for the suggestions and help Professor Willard
Miranker and teaching assistant Fred Shic have been giving
me throughout the course of the project.

REFERENCES

[1] M. Turk and A. Pentland, “Face recognition using eigenfaces, ” Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, 1991, pp.
586-591

[2] T. Kanade, Computer Recognition of Human Faces. Basel and
Stuttgart: Birkhauser, 1977

[3] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
fisherfaces: recognition using class specific linear projection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 711-p20, July 1997

[4] A. L. Yuille, D. S. Cohen, and P. W. Hallinan, “Feature extraction from
faces using deformable templates,” Proc. CVPR, San Diego, CA June
1989

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 36

NEURAL NETWORK THEORY AND APPLICATIONS 2006 1

Note Onset Detection in Audio Sources
Andreas Voellmy (andreas.voellmy@yale.edu)

Abstract— This paper presents the results of an investigation
into note onset detection methods, in particular a note detection
method using the high-frequency content of a signal and simple
peak detection. The performance of this method is evaluated
with sample audio in a variety of different musical styles. The
advantages and disadvantages of this method are discussed and
suggestions are made for further investigation into machine
listening algorithms.

Index Terms— machine listening, note onset detection, beat
tracking systems, audio.

I. INTRODUCTION

NOTE onset detection, the temporal identification of note
locations in audio sources, is an essential component in

a variety of musical applications. Note detection is used in
automatic transcription systems and real time musical appli-
cations, such as beat matching software for DJs and interactive
performance of electronic music. Note onset detection is
typically used in beat estimating applications, which use note
onset events as inputs for the analysis of inter-note intervals
and tempo estimation.

A variety of methods exist for detecting events in audio sig-
nals, some of which use neural nets [3]. This paper examines
one such method, developed by Jensen and Anderson [2], that
uses a single audio feature, the high frequency content. The
simplicity of this method makes it suitable to real-time musical
applications. The following sections describe the method and
present the results of evaluating the method on a variety of
musical examples.

II. NOTE ONSET DETECTION ALGORITHM

Kristoffer Jensen and Tue Haste Anderson [2] developed
a method for estimating the beat interval of musical audio
which can be used in real-time musical applications to predict
locations of beats. They have used this method in DJ software
that automatically synchronizes two pieces of audio. In a
first phase, the method uses a note onset detection algorithm
to identify potential rhythmic markers in the audio source.
In a second phase, the detected note onsets are used in a
beat induction method that calculates the most probable beat
intervals. This paper describes the note onset method.

The note onset detection method of Jensen and Anderson
looks for peaks in the high frequency content of the audio
source. High frequency content is a measure that emphasizes
the higher frequencies, and is calculated by computing the
discrete Fourier transform of an audio signal. It is defined as,

hfc =
B/2∑
n=0

ann2 (1)

where B is the block size of the audio segment, i.e. the
number of samples in the audio segment, and an is the

magnitude of frequency bin n. Jenson and Anderson define
a time-varying high frequency content by computing the high
frequency content over a window that slides over the audio
signal. This can be defined as,

hfc(kS) =
B/2∑
n=0

an,kn2 (2)

where kS is an index into the audio signal stepping by
S samples and an,k is the magnitude of frequency bin n
computed over B samples centered at S × k, i.e. the samples
from S × k − B

2) to S × k + B
2). Jensen and Anderson use a

block size B of 2048 samples and step size S of 1024 samples,
which they found to work optimally.

The time-varying high frequency content of the audio signal
is then peak filtered to identify potential note onsets. The set of
peaks is the set of block indexes, k, that satisfy the following
criterion:

Peaks = {k | hfc(k−1) < hfc(k) < hfc(k+1), hfc(k) > θ}
(3)

where θ is a threshold over which the peak must rise.
As an example, figure 1 shows an audio signal along with

the high frequency content and peaks computed from it. Note
that the audio signal and high frequency content are both
normalized to the range [−1, 1]. The high frequency content
clearly tracks this simple percussive signal closely.

While many peaks identified with this method correspond
to appropriate rhythmic elements of the audio signal, others
are spurious, i.e. they do not correspond to any perceivable
note onsets. Such spurious peaks can be seen clearly in figure
2, which shows the analysis of a complex audio signal from
a string quartet. The threshold θ helps to eliminate some of
these spurious peaks. Unfortunately, raising the threshold to
elimate spurious peaks often elimates real peaks.

Adding an event coalescing step significantly reduces the
number of spurious peaks. The coalescing method merges
peaks that occur within some time threshold δ of each other.
The method replaces such pairs with the average of the pair
and iterates over the peak set until a fixed point is reached.
This can be described with more formally as,

Pairs(P) = {(i, j) | |Pi − Pj | < δ} (4)

Av(P) = { i + j

2
| (i, j) ∈ Pairs(P)} (5)

Spur(P) = {i | (i, a)or(a, i) ∈ Pairs(P)} (6)

Pk = Pk−1 ∪Av(Pk−1)− Spur(Pk−1)} (7)

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 37

Samples

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Peaks

High Freq. Content

Signal

Fig. 1. Audio signal with high frequency content and peaks shown. Sample taken from Daft Punk song “Da Funk”.

Samples

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Peaks

High Freq. Content

Signal

Fig. 2. Audio signal showing spurious peaks. Audio taken from a performance of Satie’s Gymnopedies for solo piano.

III. RESULTS

I evaluated the note detection method with a set audio
signals from a variety of musical styles. The clips include
simple clapping and percussion clips, solo piano, solo guitar
and string quartet clips. In addition to the visual display (as
seen in figures 1 and 2, I developed an auditory display in order
to audition the quality of matching. This display creates a new
audio clip with short reference tones inserted at every match
point. This measure is very effective, because the human ear is
very good at detecting accurate timing. By listening alone, it
is clear that the note detection method is effective with simple
and highly percussive music and much less effective with non-
percussive music.

Furthermore, I developed a quantitative measure of success
that compares detected note events with reference note events
in audio clips. I manually analyzed a number of audio clips
and determined the timing of each significant note event. These
timings are not entirely precise and are assumed to have a
tolerance of ±15ms.

The quality of note detections was judged on two criteria:

the percent of reference notes found, and the ratio of the
number of reference notes found to the total number of notes
found. These measures are important because consumers of
note event data will likely require a sufficient number of real
detections without too many spurious detections confusing the
signal. For example, Jensen and Anderson found that their
beat estimation method required approximately 75% of events
identified in order to perform adequately.

Because the performance generally depends on the value
of the threshold θ used, we let Pθ be the set of detections at
some threshold θ, Pref be the set of reference events, and φ
be the error resolution of the reference events and formalize
these criteria as:

MatchingPθ = {p | p ∈ Pθ, ∃j ∈ Pref . |j − p| < φ} (8)

RefsFoundθ =
|MatchingPθ|

|Pref |
(9)

NonSpuriousθ =
|RefsFoundθ|

|Pθ|
(10)

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 38

NEURAL NETWORK THEORY AND APPLICATIONS 2006 3

I also define a measure of the most peaks matched, that is, the
number of peaks matched with zero threshold:

MaxMatched = |MatchingPθ=0| (11)

These numeric measures can be used to confirm the result
that this note detection method works better for percussive
music than for non-percussive music, as can be seen in Table
I.

I found that note detection is highly sensitive to threshold
selection, though slightly less sensitive in simple, percussive
music. This can be seen in figures 3 and 4, which show
note detections as a function of threshold for clips of simple
percussion and solo guitar respectively. The method performs
more poorly on the solo guitar clip overall, and reaches 0
detections more quickly.

Figures 3 and 4 also show the effect of the coalescing step
of the algorithm, by showing NonSpuriousθ for peaks with
and without coalescing. In figure 3 coalescing typically elimi-
nates all non-spurious detections, while in figure 4 coalescing
only eliminates non-spurious detections at very low threshold
levels.

IV. DISCUSSION

The note onset detection method of Jensen and Anderson
appears to perform better on simple percussive music and
worse on complex or non-percussive music. It also tends to be
very sensitive to the threshold parameter and generates many
spurious detections.

However, the performance may still be adequate for many
uses. For example, beat estimation methods may perform
adequately with many missed notes and spurious detections.
Jensen and Anderson’s beat estimation procedure involves the
construction of a probability vector of inter-onset intervals.
This probability vector may still tend to indicate a reasonable
tempo despite numerous missed events.

On the other hand, the performance is not sufficient for
automated music transcription purposes or other uses requiring
a high degree of accuracy and precision. Other methods, such
as the neural net-based approach used in Marolt, Kavcic, and
Privosnik [3], may perform better for such tasks.

Due to the limited number of reference audio clips used
in this investigation, these preliminary results can only be
interpreted as indications of performance. A much larger set
of reference clips should be used in order to fully evaluate
and quantify the performance of this, and other, note detection
methods. Producing high quality event timings on audio clips
is a time-consuming manual task. Further work should identify
a database of such reference clips or work to create such
a reference database. Such a database would be useful for
the quantitative comparison of the many published note onset
detection methods. Typically, no inter-method comparisons
are published, making it difficult for choose a method for a
particular use.

Further work should be done to compare the performance
of using high-frequency content with using simple audio
amplitude. Using amplitude is the simplest approach to note
detection and would establish a reference point for other
methods.

A more serious problem with the general approach of note
onset detection lies in how to define a note onset or an
event. Though the definition of events in extremely simple
percussive music is fairly clear, such a definition is difficult
to make for most music. Most music has overlapping and
complex events, with multiple levels of detail. Human listeners
may have difficulty identifying individual events and may
require careful, repeated listening to perceive events. Different
listeners may interpret events differently, with expert listeners
identifying finer details of the music.

Despite these difficulties in detecting note onsets, humans
have no trouble tracking beat and tempo and precisely co-
ordinating their actions with musical audio. This suggests
that detecting note onsets is not essential to both temporal
coordination and beat perception, and it suggests that the
mechanisms may be somewhat independent. It also suggests
that detecting note onsets may be useful in only a small
number of cases, and that other methods of processing audio
are useful for most tasks. Indeed, a beat tracking system built
by Eric Scheirer [4] estimates beats without identifying note
onsets. The method processes audio directly, using resonant
filters to identify probable rhythmic pulses. This method draws
on psychoacoustic experiments that show that some audio
signal simplificationspreserve listeners perception of pulse and
rhythm. One example of such a transformation is “amplitude-
modulated noise” in which white noise is resynthesized with
the amplitude envelopes of an original signal in a few (4-6)
frequency bands.

V. CONCLUSIONS

Note onset detection can be performed adequately for
simple, percussive audio signals by applying a thresholded
peak detection algorithm to the time-varying high frequency
content of a signal. Note onsets are much more difficult
to define in most musical audio sources. Fortunately, for
most applications of machine listening, accurate note onset
are probably not required. I am interested in investigating
the neural mechanisms for the psychoacoustic properties of
rhythm and pulse. Such understanding may lead to more
effective algorithms for machine understanding of rhythm in
audio sources.

REFERENCES

[1] K. Jensen and T.H. Andersen. Beat estimation on the beat. In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics,
2003.

[2] K. Jensen and T. H. Andersen, ”Real-time beat estimation using feature
extraction,” in Proceedings of the Computer Music Modeling and Re-
trieval Symposium, ser. Lecture Notes in Computer Science. Springer
Verlag, 2003.

[3] Matija Marolt, Alenka Kavcic, and Marko Privosnik. Neural networks
for note onset detection in piano music. In Proc. Int. Computer Music
Conference, Gothenberg, Sweden, 2002.

[4] E. D. Scheirer, ”Tempo and beat analysis of acoustic musical signals,” J.
Acoust. Soc. Am., vol. 103, no. 1, pp. 588–601, January 1998.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 39

NEURAL NETWORK THEORY AND APPLICATIONS 2006 4

TABLE I
EVENTS MATCHED BY REFERENCE CLIP

Clip Description MaxMatched
Clap3.aif monophonic clap 1.0

DaFunk-Short-1.aif simple percussive 1.0
DaFunkFill-Short-1.aif simple percussive, high-pass filtered 0.67

Starobin-Short-1.aif solo guitar 1.0
Satie-Gymno-Short-1.aif solo piano, chords 0.5

Schiff-Goldberg-Short-1.aif solo piano, two voice counterpoint 0.77
Kronos-Glass-Short-1.aif string quartet 0.67

0.2 0.4 0.6 0.8 1
threshold

0.2

0.4

0.6

0.8

1

DaFunk!Short!1.aif

% non spur after merge

% non spur

% found

Fig. 3. Detection quality as a function of threshold for a simple percussive audio clip.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 40

0.2 0.4 0.6 0.8 1
threshold

0.2

0.4

0.6

0.8

1

Starobin!Short!1.aif

% non spur after merge

% non spur

% found

Fig. 4. Detection quality as a function of threshold for a solo guitar audio clip.

Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 41

