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Emergence of
Language-Specific Phoneme Classifiers
In Self-Organized Maps

Marek W. Doniec
Department of Computer Science
Yale University
New Haven, Connecticut 06511, U.S.A.
marek.doniec@yale.edu

Abstract—The difference between self-organizing maps based learning. The classes found in the resulting feature maps
phoneme classifiers that emerge for different input languages are then compared to the IPA by submitting example words
is studied. For each such language a self-organizing map IS for specific phonemes to the trained SOMs or by looking

trained on Mel-Frequency Cepstral Coefficient (MFCC) con- ¢ that d onlv to utt f ticul
verted auditory input to form a phoneme classifier. Unsupervised at neurons that respond only to utterances irom a parucuiar

learning is used as the training method. The emerging classeslanguage. In particular we look for classes that are present
are then compared to the classes found in the International in at least one of the trained SOMs but not present the
Phonetic Alphabet. Particular class differences across languages other trained SOMSs. In addition we trained an SOM on two
and speakers are discussed. languages and examined at neurons that responded only to
utterances from one of the two languages. We then identified
the phoneme class that these neurons correspond to. Finally we
Kepuska et al. [4] have shown that a hexagonal lattice seifivestigate the use of Principal Component Analysis (PCA) to
organizing map (SOM) shows similar response patterns fimd phoneme classes and to compare phoneme classes from
the same words and different response patterns for differelifferent languages.
words. They used 9 repetitions of 20 different words to train The paper is organized as follows. Section Il explains how
and test their SOM. Kumpf et al. [7] showed that using data was collected, preprocessed, and how the SOMs were
Hidden Markov Model (HMM) they were able to classifytrained. Section Il talks about differences between SOMs
accents within a group of Australian English speakers with ahat were trained on utterances from different speakers and in
accuracy of up ta85.3%. Kangas [3] has shown that usingdifferent languages. Section IV focuses on differences between
a time-dependant representation of Mel-Frequency Cepsteaiguages. Section V examines the use of PCA to detect
Coefficients (MFCCs) can improve phoneme classificatidanguage and speaker dependencies. Section VI summarizes
from a10.4% rate error to &.0% rate error. However none the results and Section VII contains brief critique.
of these works have compared the resulting classes to the
classes found in the international phonetic alphabet (IPA). This Il. METHODOLOGY
alphabet is a much studied and widely accepted classificatiorFirst we describe the setup for recording our wave samples.
of phonemes that provides a representation for phonenfsen we describe how the self-organizing maps were trained,
of any spoken language [5]. A comparison of the classasd we introduce a distance measure for the trained SOMs.
learned by a phoneme-recognition SOM to the IPA might )
reveal strengths or weaknesses of training phoneme classifférsRecording
using SOMs and possibly lead to improvement. Further aWave files for the experiment were recorded at 8 bits mono
positive correspondence would suggest that SOMs are capabigh a 22 kHz sampling rate. A simple laptop microphone
of capturing the functionality of the human auditory systemwas used and subjects were given a piece of text from a
We investigate the differences between phone classesnefvspaper article or encyclopedia to read. We recorded two
different languages. The languages are chosen to be differspeakers. The first speaker is a native English speaker and was
enough so that a native speaker of one language usually hesorded reading English texts. The second speaker is a native
a strong accent in the other language chosen. We first conv@drman speaker (the author of this paper) and was recorded
the audio signal using Mel Frequency Cepstral Coefficiemtsading German as well as English texts. For each language /
(MFCCs) which approximate the human auditory system&peaker, three wave files were recorded for a total of 9 wave
response and are widely used in speech recognition systdites. Each wave file has a 23 to 33 seconds duration and
[6], [8]. A self-organizing map is then trained on featurés about a paragraph of text long. In the following text the
vectors for each of the languages tested. We use unsupervigeldreviationS; p refers to the first speaker in English. The

I. INTRODUCTION AND RELATED WORK
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abbreviationsS,; and Sy stand for the second speaker if Speaker 1 Speaker 2 Speaker 2

English and German respectivel§ox 1 stands for the first English English| German

wave file recorded for the second speaker in English, etcSpeaker 1, English| 11.1053| 20.3451| 22.0439

The index for wave files extends to the other abbreviationsSpeaker 2, English| 20.3451| 12.2026| 16.4283

appropriately. Speaker 2, German 22.0439| 16.4283| 11.5012
For the second part of the paper in which we focus on TABLE |

differences across languages another set of data was collectedy s 1ances FORSOMS THAT WERE TRAINED ON DATA FROM TWO
One.natlve German Speaker was f:eCOI’de.d a tOtal OT 14 mInUt§§EAKERS ONE SPEAKER PROVIDED ONLYENGLISH DATA, THE OTHER
reading 16 short text excerpts, 8 in English and 8 in German.
The texts were c_J|V|ded into 4 groups, 2 English and 2 German, ,ra .set with ITSELF (FOR EXAMPLE THE DISTANCE D(SPEAKER 1

Ofl Wh2|Ch leaczh 1S 13'5 mInIUtes long. The groups_ a_re nam%ﬂGUSH, SPEAKER 1 ENGLISH)) WERE COMPUTED BY COMPARING PAIRS
Sg,S%,5¢,5¢. S and Si were used as the training sets
S% and SZ were used as the test sets.

PROVIDED BOTH, ENGLISH AND GERMAN DATA. DISTANCES FOR A

'OF SOMS WITHIN THAT DATA-SET. THE AVERAGE OF THOSE DISTANCES
IS GIVEN. DISTANCES ACROSS DATASET (FOR EXAMPLE THE DISTANCE
D(SPEAKER 1 ENGLISH, SPEAKER 2 ENGLISH)) WERE COMPUTED BY

B. Training the Self-Organizing Maps
. . . . MEASURING DISTANCES FOR ALL POSSIBLE MATCHINGS BETWEEN THE
Recorded wave files were first processed using a simple

Matlab MECC Iibrary obtained from the internet [9] The SOMS IN THOSE DATA-SETS THE AVERAGE VALUE IS SHOWN IN THE
library offers tools to convert the entire wave file into 20-

dimensional MFCCs. The signal was converted using a Ham-

ming window of size 32 msec and a hop time of 16 msec. For

example, a 32 second wave file would result in 2000 MFCCs  |||. SPEAKER AND LANGUAGE DEPENDENCIES

of size 20. This data was then presented a total of 20 times tq, his section we examine the differences (distances) be-

a10 x 10 SOM. tween SOMs that are trained on utterances from different
speakers and in different languages. We computed the dis-
nces between SOMs trained for all nine wave fil&sx(;,

28, S2¢.,i, © € 1,2,3). The process was repeated 5 times to

obtain a good average. However it turned out that the SOMs
converge so strongly that the differences across two SOMs
trained for the same data-set are negligible and thus with a

SOM N can be represented by 180 x 20 matrix in which al\/IatIab precision of 4 digits the distances computed for all 5

each row represents one neuron. Define the distance betvvre"'érhS were the same. The results can be seen in Table I.

two neurons to be the square of the euclidian distance of thei ote that.the absplute value of'each distance does not pro-
weight vectors: vide useful information, because it depends on the number of

neurons used and the representation of the MFCCs. However
since the number of neurons and the MFCC representation
chosen are the same for all SOMs, comparing two distances
o is a relevant approach to seek meaning. First we notice that the
. o . distance for SOMs trained on the same speaker and the same
Further define the bijective functiom : 1,..,20 — |anguage are closer to each other then all the other SOMs by
1,..,20 to be the optimal match between the neurons @f east34.6%. This means that the metric used does capture
two SOMs using the metric just define. This means #hat some difference between different speakers and languages.
minimizes the following function: Note next that the distance between speakers seems to be
larger than the distance between languages by uptith.
This means that our SOMs characterize speaker dependencies
more readily than language dependencies. However the SOMs
Define this optimal match distance to be the distan e still capable of capturing the difference between languages
L one speaker. Thus we decided to use only one speaker who

between two SOMs. We see that this distance measure satisf ” itile | in the bal f th . i
the three distance axioms: spoke multiple languages in the balance of the experiments.

1) d(Nl,NQ) > 0 and d(Nl,NQ) = 0 iff Ny
(Obvious.)

2) d(Nl, Ng) = d(]\/vg7 Nl) (ObViOUS.)

3) d(Nl,N3) < d(Nl,NQ) + d(NQ,Ng). If mio is the
optimal match forNy, N andmygs is the optimal match
for Ny, N3 then the optimal match fal;, N3 is at least
as good asnaz(mia).

TABLE.

C. A Distance Measure

To be able to compare the different SOMs we needt
distance measure. For each SOWandi € {1,...,100} let
N(i) € R?° be the weight vector of thé' neuron of N.
For j € {1,...,20} let N(i,5) be thej' entry of thei"
weight vector of N. An advantage of this notation is, that

20

d'(Ni(a), Na(b)) = Y (Ni(a, k) — Na(b,k))?

100
(N1, N) = d (N1 (i), Na(m(i)))
=1

IV. LANGUAGE SPECIFICSOM AREAS

In this section we attempted to measure and visualize
differences between SOMs that were trained on utterances
in multiple languages collected from one speaker. Instead
of using our previously defined distance measure, we now
use activation maps (specified in this section) to visualize
similarities for different language inputs. Because we work

Nos.
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with only one SOM, the distance measure does not enter int?2) Most neurons respond in similar ways to utterances in
this part of the study. both languages. This is to be expected. Examples are
- neurons(1,1) and(1, 10).

A. Training the SOM 3) Some neurons respond almost exclusively to utter-
Only the wave filesS;, and S}, were used to train the ances in German. These neurons represent sounds and

SOM for this experiment. Recorded wave files were again first  phonemes that occur predominantly in German. One

processed using a simple Matlab MFCC library. To reduce the  such neuron is neurofi, 9).

amount of data and keep training times reasonable, a Hamming) Some neurons respond almost exclusively to utter-

window of size 100 msec and a hop time of 50 msec was ances in English. These neurons represent sounds and

used. This data was then presented a total of 30 times to a phonemes that occur predominantly in English. One

10 x 10 SOM. Note that the rest of this section is based onthe  such neuron is neurofb, 7).

one particular SOM that resulted from such training. However The occurrence of neurons that respond only to utterances
this training process was repeated multiple times and whilgone langauge is a sign that the SOM does develop language-
the resulting SOMs had a different spatial distribution of thgoeciﬁc regions. To show that these regions are not entirely
neurons, they showed the same properties. These propetfigfing-set dependant we produced a second activation map
are presented in the following subsection. using utterances from a separate test set. As can be ex-
pected the activation maps are not identical, however the
o ] predominance of certain similarities supports the hypothesis
After training the SOM the four wave f|Ie§}3,S{%3,S};, that SOMs develop language specific neurons. In the example
and Sz were processed into MFCCs. The newly trained SON,strated in Figure 1 we can see that for both activation
was used to classify the input vectors. For each input veciglns the lower right corner is German-dominated and that the
the Euclidean distance to all neurons was computed. Eghter of the SOM is English-dominated. The left top corner

input vector was then assigned the number of the neurply,onds frequently for both languages. As we shall see later
with the smallest Euclidean distance to this input vector (Thﬁ‘tcorresponds to silence (i.e., a pause) between words.

means this neuron fired for that particular input vector). A
count was kept how often each neuron would respond B A Closer Look at Single Neurons
the input data stream. A separate counter was kept for eactTo illustrate the occurrence of each of the four neuronal
of the four data streams resulting from the four wave fileglasses discussed above and to show that language dependant
The activation counts were then visualized in two activatiofeurons emerged during training, we have singled out the
maps that are shown in Figure 1. In these maps a neuropits of the wave files that activate certain neurons that are
color intensity corresponds to the firing frequency for a givgsredominant in one or in both languages, as the case may
data stream. The intensity of the color red is determined bg. We give the total response time of neurons to utterances
the firing frequency of that neuron during German utterandg, different languages. The total response time for a neuron
the intensity of green corresponds to English. The color @f calculated by multiplying the number of input vectors to
a neuron moves along the colorspectrum (from red to greamhich this neuron responded by the stepping size that was
proportionately to the relative frequency of German to Englishsed to calculate the input vectors (50 msec).
This means that a brightly red colored neuron respondedrirst we examined the brightly yellow colored neuron
almost only to German utterances whereas a green colorgfinber(1, 1). We found that this neuron responded to MFCCs
neuron responded only to data streams of English utteranag@t represented silence. For the training set this neuron
Orange and Yellow colored neurons corresponded to a mixtyegponded for a total of 7.6 sec for German and 5.75 sec
of utterances in both languages. The first activation magr English. For the test set the total response time was 12.3
(Figure 1(a)) represents the SOMs response to data creaed for German and 7.75 sec for English. This suggests that
from the training set wave file§}, and Si,. The second when speaking German, our speaker paused longer between
activation map (Figure 1(b)) represents the SOM's respongerds. However pauses might also have been classified by
to data created from the test set wave fit§s and SZ. neighboring neurons. Since pauses occur frequently between
words in both languages, this neurfin 1) is colored a bright
yellow in the activation maps.
Note that the SOM develops the following four types of For further analysis we examined a neuron that exhibited
neurons: a strong response only for MFCCs created from English
1) There are a few neurons that do not respond to utterancét®rances. Neuroii5,7) is colored green and responded a
from either language. For example, neur@i®, 3) is total of 0.05 sec for German and 3.15 sec for English in
almost entirely dark in both activation maps (For neurothe training set and 0.05 sec for German and 3.15 sec for
numbering, see the caption of Figure 1). These neuroBaglish in the test set. Here is a list of some of the words
are most likely a result of the neighborhood-rule, i.e. twduring which neuron5,7) fired. Each word is accompanied
neighboring neurons that are far apart 'pull’ this neurohy a pronunciation transcription as presented by the Merriam-
into a space that is not used by the input. Webster Online Dictionary [10].

B. Activation Maps

C. Observations
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(a) SOM activation map for German and English utterances fo)nSOM activation map for German and English utterances from
the training set. the test set.

Fig. 1. These SOM activation maps display the response frequency of neurons to utterances in English (green) and German (red). Yellow denotes a neuron
that responded frequently during utterances from both languages. The activation map on the left shows neuron firing frequencies during utterances from the
same sample set that was used to train the SOM. The right activation map shows neuron firing frequencies during utterances from a separate test set. The
similarities of the images show that certain neurons respond more frequently during utterances in English than utterances in German and other neurons respon
more frequently during utterances in German. The neurons are numbered lexicographically in row/column order. The bright yellow neuron at the top in each
activation map is thus numberéd, 1).

o thirty ['th&r-tE ]

o traverse fr&-'v&rs ]

o effort [e-f&rt ]

o computer k&m-"py\ u-t&r”]

o service [s&r-v&s |

o aircraft [er-\ kraft”]

The neuron responded in particular to the [&r], which is
pronounced like the ur/er in further.

Neuron(1,9) was also examined. It is colored a dark red
and responded for a total of 4.7 sec for German and 0.45 sec
for English for the training set and 4.65 sec for German and
1.0 sec for English for the test set. This neuron corresponded
to the nasal [n] sound as in 'nice’ which occurs less frequently
in English then it does in German.

Similarly to neuron(1,9), neuron(10,4) responded more
frequently to German than to English. It represented the [sh]
sound as in ’'shoe’. It responded for a total of 4.0 sec for
German and 2.05 sec for English for the training set and 4.5
sec for German and 2.9 sec for English for the test set. ) _ . . ) .

. Fig. 2. Activation map for our bilingual SOM in reaction to a recording of

We also examined the [th] phoneme that does not occ is’ and 'that’ utterances. Dark blue means no activation, light blue corre-
in the German language but frequently occurs in English #ponds to medium activation, yellow and red correspond to high activation.
words like 'this’ and 'that’. A small test file that contained
only that words 'this’ and 'that’ was recorded and the resulting
MFCCs were classified with our bilingual SOM. The result itest set. While it responded far more frequently to English
shown in figure 2. This image helped us identify the neurdRen to German it is still surprising that this neuron responded
that corresponded to [th]. This was neur¢® 6) for this to German at all, since the [th] sound does not occur in the
particular SOM. Neuron(6,6) responded for a total of 0.8 German language. We see two possible reasons for this:
sec for German and 2.35 seconds for English for the trainingl) The most likely reason is that the speaker recorded was a
set and 1.45 sec for German and 3.6 sec for English for the native German speaker whose pronunciation very likely
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Speaker 1 Speaker 2| Speaker 2| gata in the principal component space of the training data but
English| English| German| gy with marginal results.
Speaker 1, English 0.2852 0.7209 0.8076
Speaker 2, English|  0.7209|  0.2146|  0.3766 VI. SUMMARY OF RESULTS
Speaker 2, Germar 0.8076 0.3766 0.2536 We showed that training SOMs on MFCCs results in SOMs
TABLE Il that are both, speaker and language dependant. This result

was obtained by comparing the SOMs with a specified metric.
This suggests that SOMs can be used to differentiate between
languages and between speakers.

We further showed that SOMs do capture differences be-
tween languages that can be easily made discernable. In
particular we showed that if an SOM is trained with two
languages then some neurons represent sounds that are unique
or predominant in one of the languages. An additional result
was that independently of the language used, the SOM has

biased the result. certain neurons that correspond to silence (a pause) and are

2) The resolution of the SOM might cause two sounds tctivated more frequently than other neurons in the same

be classified by one neuron. Thus the same neuron miG®M.
respond to similar sounds like [v]. We showed that PCA might be able to extract speaker
differences but most likely is not suitable to extract language
V. PRINCIPAL COMPONENTANALYSIS differences. Further we explained that it is not possible to use

We also investigated the use of Principal Component An&CA to preprocess the input to the SOM training algorithm
ysis (PCA) to recognize speaker or language dependencitascause PCA will generate different principal components for
PCA is a good candidate because it both extracts the mogb separate input samples. Thus representing each sample
significant components and allows for a dimensionality reduity the principal component space does not allow for a good
tion of the data. We hoped that we could identify component®mparison of two different samples.
that would help identify the speaker or the language.

The input wave files were again transformed into MFCCs Vil
using 100 msec Hamming windows and a hop time of 50 The results suggest that training an SOM on unlabeled
msec. We use the filesS(g ;, Sar,i, S2¢,i, @ € 1,2,3). We speech data can result in the formation of a phoneme classifier
then applied PCA to each data stream and saved the principaivhich groups of neurons or single neurons correspond to
components (20 components for each file, each compondifferent phonemes. Although these phonemes are not labeled
of size 20). For each principal component and each pair thiey seem to represent the phoneme space of spoken languages
fles we computed the Euclidian distance giving a total ofell. These SOMs help to further reduce the dimensionality
9 x 9 = 81 distances. The distances were then averagefithe input and could be of use for further classification and
over comparisons between files from the same group (theseech recognition tasks. The advantage over existing work is
are three groupsSig, S2g, and Sag). This resulted in 20 that our system uses unsupervised learning and thus needs no
tables, one for each principal component. Each table givieedback.
the average distances for this particular principal componentWe have found that the SOMs capture speaker as well as
between languages and speakers. We found that the fisstguage differences. This suggests that an SOM might be
component represented the distances between speakers ussH to discern certain simple classes of speakers. An analog
as can be seen in Table Il. However none of the componenfsthis is the preferential response of infants to their mother’s
seemed to represent differences in language. voice as found by Mehler et al. [12].

In a second analysis we used PCA to reduce the inputThe language differences captured suggest that an SOM
space for our SOM training algorithm. For this the MFC@dapts to a certain language and its phonemes. This is also
transformed filesS};, S%, S¢., and S% were concatenated andsimilar to findings in infants who habituate themselves to a
PCA was applied to the resulting data stream. This time tiparticular set of phonemes and tend to attenuate non-native
representation in principal components was input to the SOpthonemes during advanced langauge learning [11]. Further
as input. The results were similar as in the that in Section IWe have shown that if trained with two languages at once

However we found the following problem in utilizingan SOM can learn both phoneme sets and even distinguish
PCA together with SOMs. PCA generates different principéletween sounds that occur only in one of the languages. For
components for different input files as shown in Table Ifuture work we envision a system that learns to differentiate
This results in the problem that if we transform two filebetween several different languages based on the firing pattern
separately then their representation in their respective principéla trained SOM.
components are of no value to the SOM, because they arédnother utilization of such an SOM could be speech seg-
independent of each other. We tried to represent additiomaéntation. We observed that the neurons representing silence

AVERAGE DISTANCES BETWEEN THE FIRST PRINCIPAL COMPONENTS FOR
OUR WAVE FILES SORTED BY GROURLANGUAGE, SPEAKER). THE
ABSOLUTE VALUES ARE OF NO MEANING HOWEVER THERE IS A

SIGNIFICANT DIFFERENCE BETWEEN THE DISTANCE FOR SPEAKERS AND

THE DISTANCE FOR LANGUAGES THIS SUGGESTS THATPCA IS ABLE TO

CAPTURE SPEAKER DIFFERENCES

DIscuUssION
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in the SOM fire more frequently then any other neurops] J. Kangas,Phoneme recognition using time-dependent versions of self-
(see Figure 1). This suggests that if indeed silence is the JERETS S 1 e Soessing, . 101-104, Toronto, Canada
predominant feature vector, our system has developed a setyy,y 1997, P 9 9P ’ ' '
of neurons that represent word-boundary signals. So not ofdy V. Z. Kepuska and J. N. Gowdynvestigation of phonemic context in
does our SOM learn to classify phonemes but it could provide speech usi_ng self-organizing fe_ature mapEE _International Cyonference
a subsequent speech recognition system with word boundarygéoﬁggg,st,{ﬁ;, fgsege_Ch and Signal Processing, ICASSP '89, Glasgow,
information. [5] International Phonetic Associatiof{andbook of the International Pho-
We showed that PCA is not well suited for preprocessing the Rfé'ﬁaﬁjfﬁﬁ;ﬁtggé A Guide to the Use of the International Phonetic
input for the SOM in the case of building phoneme classifierg; z. Fang, z. Guo”a}]g and S. ZhanjianGomparison of different im-
We believe however that PCA might serve to extract principal plementations of MFCCJournal of Computer Science and Technology,
components from a Iarge data set for in the identification ] Iié(l%n?sfzfnsdgle.o\?\}'King Automatic accent classification of foreign
speakers. The reason that PCA demonstrated no utility for accented australian english speech Proceedings of 4th International
preprocessing is that different input files produced different Conference on Spoken Language Processing, Philadelphia, USA, October
principal components. This happens especially if the input f"fs? e frequency cepstal coefficient  Wikipedia
are small and thus provide only a small sample of training data. hitp://en.wikipedia.org/wiki/Mefrequencycepstralcoefficient, 2006. Y
Further study will show whether the principal components wil®] PLP and RASTA (and MFCC, and inversion) in Matlab. Ellis,

T ; ; http://labrosa.ee.columbia.edu/matlab/rastamat/, 2006.
tend to stabilize for large bodies of data (multiple hours ?IO] Mperriam_Webster,s Online Dictionarywww.m-w.com. 2006.

recordings for each speaker / language combination). If Sugl| p. Bumham,Language specificity in the development of auditory-visual

fixed points exist they might prove useful for preprocessing speech perceptionR. Campbell & B. Dodd (Eds.), Hearing bye eye

the speech signal 1l: Adances in psychology of speechreading and auditory-visual speech.
’ . . . Hove, england: erlbaum UK, pp. 27-60, 1998.

Future work should include a more detailed analysis @f2] J. Mehler, J. Bertonicini, M. Barrierdnfant recognition of mother's

the exhibited be.haViorS' The results obtained in this Stl'.ldf/ V(r\)/ilceAﬂ?al:rr?égaftkztrerlcnedrgg);ﬁdgr?t):Iiaim_n?én%z?giassification in Continuous
are based on noisy data that was collected under suboptlﬁwgt]lspéech Studia Univ. Babes-Bolyai Informatica, Vol. XLIX, No. 2, pp.
conditions from only two subjects. We believe that a large 55-64, 2004.
scale study employing data from many subjects might reveal
additional features and allow testing of the interaction between
different languages and speakers. The reason that we used
only one speaker for the second part of the study is that
currently there is no good method for extracting speaker
independent feature vectors from speech. MFCC still captures
the base frequency and possibly other speaker dependent
features and thus does not allow for efficient comparison of
languages across speakers. Current work on speaker inde-
pendent phoneme classification usually trains classifiers on a
large body of subjects [13]. While these classifiers learn to
generalize across different subjects, they are still presented
with speaker-dependent input such as MFCCs. A similar
approach might be used in combination with the methods
presented here. Naturally this would require a large body of
data.
We have shown that the unsupervised learning of SOMs
with as few as 100 neurons enables extraction of speaker
and langauge differences. We showed that some can extract
additional useful information such as word boundaries. Thus
SOMs are well suited for use in unsupervised learning systems
for word grounding (learning the meaning of words) and
language recognition. We have also shown that SOM phoneme
recognizers show learning and recognition behavior similar to
that of human infants.
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Modeling Child Development using a Game

Theoretic Approach

Laura J.

Abstract— A child’'s development of mind is studied using
iterations of a Prisoner’s Dilemma game in conjundgbn with a
genetic algorithm. Situations where a poor parenis replaced
mid-set with a near optimal parent are investigated This
provides a model for the situation where a child irthe care of an
individual suffering from a form of psychopathy sud as
depression are witness to their recovery or removedo more
attentive care. A genetic algorithm is used to re@sent the child’s
memory throughout parental development. As hypotheéged the
model demonstrates rates of change in fithess and emtal
development which correlate to the length and qualy of care
received by the child in each distinct section ofe trial.

Index Terms—Parental Psychopathology, Theory of Mind,
Game Theory

I. INTRODUCTION

Sadults, the vast majority of humans realize thatdhs
not one collective mind in use by the entire poforta
Beliefs and the substance of knowledge vary fromsge to
person. Such an awareness of the individualitgtbérs does
not seem to be inherent from birth, but develops azhild
does with common tests for this ability usually rfggi
successfully completed by children who are, at tley
youngest, 3 to 4 years old[2]. Understanding hoehsability
arises remains a topic of continued psychologieskearch.
Studies have shown that one factor affecting thee tbefore
emergence of a full theory of mind is the amourd &pe of
discourse a child is exposed to[4]. Interactioretwieen
parents and children can be grouped into two boadegories,
“mentalizing” and “non-mentalizing”[5]. Mentalizin
responses to a child would include any in whichagegiver
recognizes and draws attention to the child’s sitaind, and
how it relates to their actions and reactions tenés. Non-
mentalizing responses deal more directly with agtjevents,
and consequences with no reference to how a chité'stal
state was involved. The ratio of mentalizing tonno
mentalizing interactions children and caregivergage in
would necessarily vary due to environmental
However, not all children are given the opportundyinteract
with a “normal” adult.
We will develop a model for the interaction of armal
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child with a normal parent and contrast this withations
formed by a child with some imperfect parent. Saamodel
could be equated with situations in which a chsldnteracting
with a caregiver suffering some form of psychophigy, such
as depression, which affects ability to interactairmanner
comparable to that accomplished by normal adults.
Interactions with such “semi-developed” adults dtiodelay
child’s development[1]. Further, we will model th&ects of
switching from a semi-developed parent to a fdieloped
one such as would occur in a real-life situatiorewla parent
seeks help for their condition or when children m@ved to a
more stable environment. Such a situation shoofldénce
the child’'s rate of development. An initial drom i
development could be expected directly after suckhidt
followed by an increased rate of development catirgd with
the increased efficacy of the current caregiverrothe
previous.

A game theoretic methodology such as the onenmatlby
Mayes and Miranker[5] will be used to model thitenaction
and the resulting development of the child. Hekesion of
the Prisoner’s Dilemma was suggested to modelntieeaction
between caregiver and child while the developméntind
would be represented by the convergence of a shiltategy
of play to one beneficial in the current contexthe child’s
memory of past exchanges is represented with atigene
algorithm and is used to help choose the child'are® of
action

Il. THE MODEL

A. Initializing Prisoner’s Dilemma

In the interest of clarity, female pronouns will eed to
refer to the parent while male pronouns will beduise
reference to the child from this point on. In thedel, the
parent and child each have two options. She teagyition of
ignoring the child which requires an absolute malieffort,
or paying attention to him which does require dffdrhe
child’s two options are to use his intuition whishassociated
with a minimal cost, or to use his mind, which wbuke more
energy. Both parties have the goal of expendingtheseffort
while reaping the benefits of the other’s efforthe ideal
situation, from a parent’s perspective, therefarayld be one
in which the child is constantly ignored and yettiaues to
use his mind. Using the mind causes him to mattiree
child’s decision to use mind would therefore bertb# parent
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by reducing the period of time in which he was dejent on
her parents. The child’s ideal situation, in castr would be
to continuously choose to use intuition and recaivention
from the parent. In such a case, the child iseglected and
does not have to pay for the attentions receivéid the cost
of using his mind instead of intuition. Remainpassible
scenarios are that both parties choose actiongrirgeffort
or that both parties choose actions requiring mahieffort.
These two courses result in changes which are égbalh
the parent and child. These relative costs caasbignilated
into the payoff matrix of Table I.

Table I: Child\Parent Action Payoffs

Child\ Adult Attend Ignore
Mind R, R S, T
Intuition T,S P, P

When values of T>R>P>S are implemented a true Reis®
dilemma is created which models the previouslyrasfi
interactions as desired. The value each partitipahe game
receives hinges on the actions of their opponknthis case,
the best results for an individual are the proddct
successfully tricking the other player into doingrmwork
while engaging in less itself. The opponent theeives the
lowest possible return value. In the real worlgshsactions
result in a loss of trust. A rational agent wolgdrn from such
an experience and when confronted with that sape ay
situation would be more apt to anticipate anottesegtion.
The logical course would be to minimize losses tyaging in
the less expensive activity. This kind of actiwitguld
naturally degrade into the (P,P) situation. Coatieg to
achieve the (R,R) situation would benefit both ieartmore in
the long term, but is much more difficult to acleehecause of
the increased risk associated with that position.

B. Memory

Each iteration of the Prisoner’s Dilemma will resola
move by the child and a reaction from the pardmd.isolate
the reactions of the child, it will be assumedtfas model that
the parent’s strategy will not be affected by gty and
only alters at the designated time when it is etitb its
more/less optimal counterpart. For ease of implaai®n
and because of its proven efficacy, an optimal qtasd| use
the tit-for-tat strategy and respond to the chikitsion with an
action of corresponding cost. For example, ifchid
chooses Mind she will counter with Attend whildné opts for
Intuition she will choose Ignore.

When a child begins, it has no memory and is eblig
make a random play. At the end of the iteratibredeives the
payoff determined by the above matrix. This amasiaidded
to the child’s fitness level, which is initially s 0. This
fitness level provides an indication of how welldraerstands
his adversary. A high fitness value results frgpidally high
values returned after participating in the PrisenBilemma
and indicates a better understanding of the stydiegng used
by the opponent and its successful exploitatiohth#s point a
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decision, on the basis of payoff and a random bégjas made
to either include the play sequence in memory aligoard it.

A child’s memory is represented by a tree. Eaateno
represents a point of play and has two brancheshwhi
represent the two possible actions that the chigl take at
that instant. Additionally, a weight, initially ts® zero, is
associated with each of these options. These tamches
lead to two more nodes each with two more branahdsso
on. The weight associated with each branch semtiow
successful a given choice at this node has beecratsing
the child’s fitness in the past. All weights ardgially set to O,
meaning that there is neither benefit nor loss@ased with
each choice at that point. However, as the clylsand
creates memories, these weights come to refledutemmes
of previous decisions. When an event is commiibetiemory
the outcome is associated not only with the mastneaction,
but also with the sequence of deeds leading ulpetonbst
recent choice. Weights corresponding with theoacthosen
must be updated in each of the specific nodes eshloi
following the increasingly complex sequence of prasly
chosen actions up to the depth of the child’s ihiiti recall
specific past choices. For example, if he coulg cemember
the last four choices made, it would be necessachange the
weights of those nodes reached by walking thedla3t 2, and
1 actions chosen by the child.

If a child chooses to use its memory, a numbgrast
sequences equal to the child’s memory recall lakel
summoned from the end of the record of past chilulaes.
Using these, the most beneficial sequence maylbetsd
using a genetic algorithm, and a choice betweetwtbe
current options is returned. Weights of the asgedi
sequence of plays and the child’s fithess areadtbased on
payoff garnered as a result of the choice.

C. Introduction of Psychopathy

Each run of the simulation will consist of time spwith an
optimal parent and time with a suboptimal parértte optimal
parent will use a pure tit-for-tat strategy white tsuboptimal
parent will follow a similar strategy, but intersped with
noise created by random deviations from that gyatd he
amount of deviation will be controlled between|sito
investigate effects of more and less deviation fthentit-for-
tat strategy. The actions of the suboptimal panéhbe
determined by the value of a randomly generateidbiay,
which when greater than some threshold will chdogday
randomly rather than use tit-for-tat. This thrddhoay be
increased (to increase optimality) or decreaseth(i@ase the
number of random plays).

The model will consist of having the child play the
suboptimal parent for a number of iterations befwéching
to the optimal parent and measuring how long iesatke child
to reach a strategy for use with the fitter pavemtch provides
the highest payoffs as they have been previoudigeatt
Each segment of the experiment will consist of Bfirtt
games so that an average course of developmersdessd
by chance may be obtained. Each game will be ceagpof
100 iterations of the Prisoner’s Dilemma, or 20éhbined
moves made by the child and parent. Each gamdegiin
with a fresh child with no previous memories andeword of
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past moves. The goal will be to determine and @rmghe Il.a-c alongside information from the optimal tr&d a point of
effects of exposure to suboptimal parents of vargiagrees of comparison.

degradation on the child’s development and aliitityecover
when later exposed to optimal parenting.

I1l. EXPERIMENT

A. Overview

Initially, the model was run solely with the optihparent
and subsequently completed runs with each of theggimal
parents to be investigated to create points of esispn.
Next, the game was executed several times witkritiff
levels of degradation in the initial suboptimal grarbefore
switching to the optimal caregiver after 50 itevat involving
the suboptimal player. After that, the length xyf@sure to the
suboptimal parent was modified to evaluate thecedfef
varying amounts of exposure to the same suboptiaralgiver.
Finally, the effects of exposing a child to a meftective,
though still suboptimal, parent following 50 itdosts with a
suboptimal parent will be explored.

During each of these trials, records will be keggarding
the child’s fitness which correlates with the valueceived
from engaging in the Prisoner’s Dilemma. Also, My of
the mind will be recorded. Maturity may be defirsedithe
number of times he has chosen mind over intuitias.the
child plays, strategies should form, which wherofekd,
cause the child’s fitness to grow more quickly thdren
playing randomly. Since a tit-for-tat strategyp&ing used, the
response strategy for the child is to always chooise.
Playing intuition against a parent utilizing a attit-for-tat
strategy will always yield a lower payoff than tlaahieved by
playing mind. The emergence of this strategy aldb be
monitored during each of these trials and record@aint of
emergence will be defined as the point at whiclkdattiooses
to play mind over intuition during ten consecutitexations.
As the optimality of the parent decreases and timeber
random plays made by the parent increases, the @dlu
constantly choosing mind degrades and childrerslakger to
adopt it because of its decreased utility. In,fdeise children
paired with a parent who makes only random playissadn
adopt the opposite strategy of always choosingtiotuso as
to minimize losses against this irrational agent.

B. Optimal Exposure

Under optimal conditions, the parent counters ales of
the child using a pure tit-for-tat strategy. Réstbr these
trials are displayed in Tables Il.a-c. Here thiategy arrives
very early on averaging at around 4.68 iterations the trial
with a standard deviation of 3.71. The averageurtst or
number of times the mind was chosen, at the etldeotfial
was 97.54 with a standard deviation of 1.25 whitleeks at the
end of the runs averaged 95.08 with a standardtieniof
2.50.

C. Varied Suboptimal Exposures

To contrast with the optimal parent, trials of itéations
were also performed with parents of varying lewélsandom
play. Information from these trials is summarized ables

Table Il.a: Emergence of strategy
Parent Mean Number| Stand. Non-
Exposure Plays to Dev. maturing

Emergence

Optimal 4.68 3.71 0
70% Optimal 10.2 8.25 0
50% Optimal 22.26 20.88 0
30% Optimal 66.08* 20.25* 21 (42%)
Random Play | --------- | -emeeeeee- 49 (98%)
*To make the mean and standard deviation of triaisrermany runs did not
converge more meaningful, a value of 100 was dulbst as the point of
maturation for such runs. This helps offset th@ewhat lesser values for each of|
these that would otherwise occur.

Table Il.b: Maturity

Parent Mean End | Stand. Dev.
Exposure Maturity

Optimal 97.54 1.25

70% Optimal 95.04 3.61

50% Optimal 88.22 10.33
30% Optimal 55.34 29.77
Random Play 7.9 6.34

Table ll.c: Fitness

Parent Mean End | Stand. Dev.
Exposure Fitness

Optimal 95.08 2.50

70% Optimal 46.7 12.62
50% Optimal 21.06 14.85
30% Optimal 1.98 14.23
Random Play 36.88 20.24

It is important to note, that when a completelydam parent
is used with no adherence to a tit-for-tat stratibgy the child
does in fact reach an effective strategy of sdartsmply never
uses its mind and maturity, as it is measuredesuiffWith
random plays this would equate to an overall irezea
fitness when the values of the payoff are arranged
symmetrically and the parent gives attention amdiigs
equally. However, this strategy is relatively esslagainst a
parent with a strategy like tit-for-tat where theld will never
receive a reward, or positive payoff, for not udlig mind.

As the amount of random activity is increased ttme$s of the
child initially decreases as it makes the transibetween two
very different strategies which is why the fithésso low
when the parent is only playing at a 30% optimetle
Further decreases in random play firmly establiskféective
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strategy to be used in conjunction with tit-for-taGraph 11l in
the appendix illustrates these two clear strategiilepted by
the child and the ways in which fithess and mataie
affected.

It is also appropriate that the standard devidtoraspects
of measurement like fithess and maturity tend todase as
random play is increased. The exceptions to tiiestend to
occur at points of key change such as the instaheee there
are an unusual number of trials which never coregtig the
strategy and thus affected the mean emergencet@mdbsd
deviation.

D. Varied Suboptimal Parenting followed by Optimal
Parenting

The ability of a child to converge upon the idé@afdr-tat
response strategy following exposure to variedlteot
suboptimal parenting was examined by having thiel chi
interact for 50 iterations of the game with parefitgarying
degrees of random play before being exposed toptimal
parent for the remaining 50 iterations. Resulistfthese
trials, summarized in Tables lll.a-c and Graph thaf
appendices, highlight the unique changes in fitiiesss
accompany such changes in strategy. Notationeofyiie of
Parent Exposure is defined in the form Split-X-Yend X/Y
refers to the number of iterations performed byfitts¢ parent
/ her optimality. For example “Split-10-70” woutlknote
trials in which a parent adhering to the tit-fordtrategy 70%
of the time was used for the first 10 iterationd arcompletely
optimal parent was used for the remaining 90.

Table lll.a: Emergence of Strategy
Parent Mean Stand. Non-
Exposure Number Plays| Dev. maturing
to Emergence
Optimal 4.68 3.71 0
Split-50-70 9.74 7.02 0
Split-50-50 21.3 18.46 0
Split-50-30 43.28 23.25 0
Split-50-rand 70.42 12.03 0
Table Illl.b: Maturity
Parent Mean End | Stand. Dev.
Exposure Maturity
Optimal 97.54 1.25
Split-50-70 94.96 3.60
Split-50-50 87.86 12.28
Split-50-30 70.24 17.40
Split-50-rand 41.56 12.67

Table lll.c: Fitness
Parent Mean End | Stand. Dev.
Exposure Fitness
Optimal 95.08 2.50
Split-50-70 72.16 8.44
Split-50-50 57.3 11.41
Split-50-30 39.46 12.12
Split-50-rand 35.86 8.70

As expected, the rates of emergence of a stramegyirity,
and fitness are inherently linked with the optirtyadif the
parent with means for these three points of measeme
increasing as random play is decreased. Alsonabai
standard deviations consistently decrease as raptiyntoes
so in most instances. The most interesting paithis data
occurs once again in the area at which there seebesa
boundary between two very distinct strategies whose
respective execution seems mutually exclusive. eGrgain,
there is a very real drop in the mean fitnesseatetel of play
where a 30% optimal parent is used, also the leitblthe
highest standard deviations across all points ofgarison. It
is also interesting to note, that while mean fignesems to be
linearly associated with decreasingly random pltysvalues
measuring maturity seem to decrease slowly befarpping
off dramatically as the amount of random play Ié&ased
while emergence of strategy follows an invertedsiar of this
pattern.

E. Varied Length of Exposure to Suboptimal then Ogtima
Parenting

The effects of length of exposure are examinedgugimied
lengths of exposure time with a 70% random paridvied
by an optimal caregiver. Such situations are repres! in
Tables IV.a-c by an identifier such as “Split-10-3hich
would denote that the first 10 iterations of eaé tvere held
between a child and parent who uses the tit-fosttategy on
30% of the iterations and randomly selects a coofrsetion
70% of the time. The remaining 90 iterations wdilein
utilize the optimal parent who consistently useoti-tat.



Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376

Table IV.a: Emergence of Strategy
Parent Mean Number| Stand. | Non-
Exposure Plays to Dev. maturing

Emergence
Optimal 4.68 3.71 0
Split-10-30 12.72 4.51 0
Split-20-30 21.02 10.23 0
Split-30-30 28.50 13.14 0
Split-40-30 34.42 17.15 0
Split-50-30 43.28 23.25 0
Split-100-30 | 66.08 20.25 21 (42%)
*values of 100 are substituted as mean trial cayerece
point for trials that do not converge

Table IV.b: Maturity
Parent Mean End Stand. Dev.
Exposure Maurity
Optimal 97.54 1.25
Split-10-30 92.32 4.04
Split-20-30 87.48 6.88
Split-30-30 82.26 10.55
Split-40-30 77.06 12.51
Split-50-30 70.24 17.40
Split-100-30 55.34 29.77
Table IV.c: Fitness
Parent Mean End | Stand.
Exposure Fitness Dev.
Optimal 95.08 2.50
Split-10-30 85.6 6.27
Split-20-30 75.14 7.89
Split-30-30 64.16 8.45
Split-40-30 52.68 9.15
Split-50-30 39.46 12.12
Split-100-30 1.98 14.23

The emergence strategy is particularly interestinge data
suggests that the child was on the verge of comgand
only needed the smallest of nudges created by éimalp
parent to achieve this. Particularly, the poirftachievement
were all recorded as the point at which a sequehié or
more iterations achieved a stable state. Withithisind, note
that the mean point of emergence for all of thegrinvolving
an optimal later parent are within 10 iterationshaf point at

which this change was made. As more trials artopaed
with the 30% optimal parent, more trials will conye before
reaching the point at which the optimal parent sadeer.

Also note that the differences in the mean poifitsneergence
of those trials which were subjected to the optipaknt are
roughly linear. This is also true of the correggiog
differences in mean values of maturity and fitness.

F. Suboptimal Parenting followed by better Parenting

As one last point of comparison, the effects adriattions
with a suboptimal parent with a rate of optimabfy30% for
fifty instances of the Prisoner’s dilemma was repthin the
last 50 iterations of the game with parents of wvayy
optimality to see how such a change would affeetcthild.
Observations from these trials are summarized biegaV.a-c
and noted in the form Split-X-Y-Z. X refers to thember of
iterations performed by the first suboptimal payéhis the
optimality of that parent which in this case is aj& 30%, and
Z is the optimality of the parent which will be dsia the
remaining iterations.

Table V.a: Emergence of Strategy

Parent Mean Number| Stand. Dev.| Non-
Exposure Plays to maturing

Emergence
Split-50-30-100| 43.28 23.25
Split-50-30-70 46.82 26.39
Split-50-30-50 62.32 29.74 11 (22%)
Split-50-30-30 66.08 20.25 21 (42%)
*values of 100 are substituted as mean trial cayerere point
for trials that do not converge

Table V.b: Maturity

Parent Mean End | Stand.
Exposure Maurity Dev.
Split-50-30-100| 70.24 17.40
Split-50-30-70 68.2 18.28
Split-50-30-50 60.18 24.01
Split-50-30-30 55.34 29.77

Table V.c: Fitness

Parent Mean End | Stand.
Exposure Fitness Dev.
Split-50-30-100| 39.46 12.12
Split-50-30-70 20.14 14.36
Split-50-30-50 -2.38 14.74
Split-50-30-30 1.98 14.23

It is interesting that when an optimal parent [gaeed in the
second half of the run by one whose optimalityrily @0%
there is relatively little effect in either the elgence of a
strategy or the evolution of the mind as measusechdturity.
As can be seen in Graph Il of the appendicesi,nieeof ascent
is smoother for the trial utilizing the optimal pat for the last
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50 iterations, and fithess suffers as the pargidiging ability
decays. Results in areas such as end maturitieoother
hand are much the same.

However, as further demonstrated by the comparigssults
achieved by a later parent at 50% optimality sestimer
abysmal in categories such as fithess while theadsp a
substantial drop in measures of maturity and ataunbal
increase in the amount of time needed to convergfaet tit-
for-tat based strategy.

Trials only utilizing a 50% optimal parent converafter an
average of 22.26 iterations while 70% optimal peen
converge after 10.2. When these same two are togdéow
the 30% optimal parent, the difference betweersrate
convergence becomes 15.5. The small differencecset
rates of convergence for the trial with a 50% optiparent
used in the second half and one where a 30% opgiaraht
continues to be used is also telling. It seemsthiwability to
reduce the effects of poor previous efficacy islmatar. Of
course, the standard deviations for all of theisdstare quite
large making accurate in-depth analysis difficult.

IV. CONCLUSION

Results illustrate, as common sense would sugtpedtboth
the quality and level of exposure to suboptimakgasers is
reflected in the child’'s development. It is contiiog,
however, to realize that while consistent childcaréest for
the development of a distinct, effective strategytle part of
the child, complete consistency is not necessany if®
achievement. Rather, it seems that the consistemggt
simply outweigh the loss the child would expect bgt
conforming to the strategy being deviated from. isTis a
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necessary evolutionary development given that the
overwhelming majority of parents would find it ingsible to
always behave fairly and in a tit-for-tat fashidwaughout
childhood. It is also interesting to note, that flee intent of
the parent, a pure tit-for-tat strategy does netrsé& be most
advantageous when cost and resulting maturation are

compared.

V. APPENDIX

Graph |
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Graphs showing the average progression of fithessMind or maturity values in a situation in whiehrandom agent is utilized for the first §
iterations, after which an optimal (tit-for-tat)neat is substituted. Note the dramatic dip ind#s that occurs on the left at the point wherg#rents
are exchanged. The child’s fithess decreasesthftanitial switch before rising steeply once mofighe right demonstrates the sloping off of misdge
when exposed to a random agent followed by incteaBeosing of Mind in the presence of the optinakpt.
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Graph Il
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Both graphs illustrate the situation where a 30%nagl parent plays the first 50 iterations. Howewen the left, this suboptima
parent is replaced by a parent who is 70% optintalevthat on the right was replaced by an optinakept. The increase in fitness
smoother and more dramatic on the right, but baimahstrate a definite improvement in the childtadss resulting from thei

respective changes.

Graph IlI
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The top two illustrate the progression of a chilfiteess and maturity, as measured by the numbemes they've chosen min
over the course of 100 iterations of the PrisonBilemma with a parent who randomly chooses actignie the bottom two are
the results from interactions with a parent usitipt-tat.
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Cluster Analysis

with Dynamically

Restructuring Self-Organizing Maps

Daniel Holtmann-Rice

Abstract—Self-organizing maps (also called Kohonen
networks) are a popular method of analyzing multidmensional
data. In addition to compressing input data whilepreserving its
topology, self-organizing maps can be used as a fiminary
technique in cluster analysis. However, despite ¢hfact that
similar inputs remain close together in the output of the
algorithm  (suggesting possible clusters), no autortia
segmentation of the data into discrete groups is pwided. A
variant of the SOM algorithm is proposed that dynanically
clusters input data in an unsupervised fashion, agimatically
dividing the map into easily interpretable discretesubmaps that
correspond to clusters in the input data.

Index Terms—knowledge acquisition, neural networks, self-
organizing feature maps, cluster analysis

. INTRODUCTION

H umans are capable of performing
categorization tasks, in which they distinguishwisstn
and create categories around objects with which bae no
prior experience. This process, calleategory construction
in the literature on concepts and categorizatioarf¥y, [1]),
is seen to occur quite frequently in children, &nd believed
that children recognize objects as being in separategories
before they learn names for them (Merriman ef2]), Little
is known about the precise mechanisms for how this
accomplished in humans, but being able to consaststem
capable of simulating this behavior reliably wodutdpact
applications ranging from information storage aefttieval to
object recognition and classification.

One presumably important mechanism in such a syse
the analysis of multidimensional data, such as mige
received from input sensors or from the featurezbamalysis
of text, images, sound, or other information. Sfeadly, the
creation of discrete categories from a data setidveeem to
require some method of clustering the data, suahdbherent
groups are formed that maximize the similarity atadwithin
a group while minimizing the similarity between gps.
Such clustering is formally the assignment of lakielvectors
in the input. The number of labels that are agsige equal to
the number of clusters in the data. To mimic ctgmi
capabilities, this must proceed in an unsupervisadner.

Thus it is necessary to discover algorithms capaifl
autonomously discovering clusters in a data setrgiminimal
a priori information about the nature of the datat'ss

distribution. Several statistical methods for tduimg data
exist and are widely used, however as these arefuligt
autonomous (requiring information regarding the estpd
number of clusters, and generally only capable indifig
ellipsoidal clusters, cf. Costa and de Andrade d\d8]) they
will not be reviewed here.

Models of neural systems look to be a more prawigiath.
Many such models are capable of unsupervised legrand
organization, and furthermore most are inherentigm@able to
neurobiological accounts of the processes involied, they
are psychologically plausible). In particular, treelf-
organizing map algorithm, developed by Teuvo Kompreas
several properties that make it well suited forlyziag large
amounts of multidimensional data with the goal istdvering
natural groupings within that data. There havenbeastering
techniques that make use of the SOM algorithm;ethve be

unsupervise@fscussed in section Il below.

After reviewing the relevant SOM-based approactes
cluster analysis and discussing some failed attengt
deriving autonomous cluster analysis tools, an rilyo is
proposed that is capable of autonomously discogesinsters
(including complex clusters with non-ellipsoidalaples) by
systematically adding and removing connections betw
units in the SOM, dynamically restructuring it iasponse to
the underlying data distribution. In comparisonthwthe
traditional SOM algorithm, the proposed approacHd$io
several advantages, including facilitated integgieh of the
resulting map and better fit to the underlying dgtes
determined by visual inspection of the map).

Il. THE SELF-ORGANIZING MAP ALGORITHM

A. Capabilities of the self-organizing map algorithm

Self-organizing maps (SOMs) are an effective tookhe
analysis of multidimensional data. They are capabft
converting high-dimensional data into a low-dimensil
(often two-dimensional) representation that presenthe
topological relations present in the primary datagssence
providing an estimation of the probability densfiynction
underlying the input data. SOMs have been widagduas
tools to visualize high-dimensional data (Vesanftj), and
often act as guides in the exploratory phase o daining
(Vesanto and Alhoniemi, [5]). They have also begplied
successfully in many natural language settingsjnigabeen
shown to be capable of grouping words in a semalhtic
meaningful way based on contextual information (kida et
al.,, [6]). Furthermore, there is reason to belitha many of
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Iterations: 1000
# of Neurons: 49

Fig. 1. The SOM algorithm with 49 neurons afte@Q@erations (well before

convergence), on a two-dimensional input spacee gitd-layout structure

can be clearly seen. The black circles repredamtneurons’ locations in
weight space, with links between the neurons reptes! as lines connecting
them. Light-gray circles represent the weight-spaoations of previously

presented input data.

our own neurobiological subsystems may operate @tysw
similar to self-organizing maps. It has been sh@Ritter and
Schulten, [7]) that SOM algorithms can successfatigdel
sensory mappings and motor control functions, lmdttvhich
are systems that the brain organizes topologicaflywell.
Whether or not a SOM-based method for modeling @spef
the human conceptual system is feasible remairzeteseen,
but the place of SOM algorithms as effective knalgke
representation devices is well established (Honk8lx

B. The algorithm
A self-organizing map consists of a sethheurons (also

1. Select an input vectorat random from the data set.
2. Determine the “winning” neuropwhose weights are
closest to the input vector in a Euclidean sensethie
neuron whose weights, are closest ta:
j =argmin|x —w,||
k
3. Update the weights of neurons in the map in a fashi

dependent upon their distance from neyroihe
distanced,; between two neuronsandj is measured as
the minimum number of links (as defined above)
crossed when traversing the map friotmj. Leth;; be
a specified monotonic function that decreases with
increasingd (in this paper the Gaussian function is
used):

2

expl—!

h . 2
20(t)

i) =

whered(t) is an exponentially decreasing function that
specifies the size of a neuron’s topological
neighborhood (intuitively, proportional to the extef

a neuron’s influence over other neurons during an
iteration). Weights for a neurdrare then updated
according to the following function:

w;(t+1) = w;(t) +7(t) Lhy () T(x —w; (1))

where 7(t) is a learning rate function that
exponentially decreases with time.

This is continued for either a specified numbeiterfations
or until a satisfactory level of convergence hasrbe
achieved.

called units), each with dimensional weight vectors that are

initialized at random or from input data. Each noeuis
“linked” to a number of other neurons (see Fig. ) a
neighborhood relation that defines the structure¢hef map.
(the choice of structure is rather flexible, a teatthat will be
exploited by the dynamic restructuring algorithnogsed in
section IV). This linking is often done in suclway that the
N neurons form a two-dimensional lattice — in thaper the
SOM algorithm was implemented such that a two-disreral
grid of neurons was created, i.e. most neurons Vigked to
four other neurons (one in each direction, with ¢ixeeption
of neurons on the edges or corners of the gridhe 3et of
neurons that a neuron is linked to is called iighgorhood.

The SOM algorithm proceeds iteratively, exposing tiap
to input data in the form of data vectors chosethwibme
probability from a data set. For each iteratidre &lgorithm
proceeds as follows (refer to Haykin, [9], for armin-depth
analysis of the algorithm):

I1l. USING THESELF-ORGANIZING MAP ALGORITHM AS A

TooL FORCLUSTERANALYSIS

The SOM algorithm does manage to maintain the
topological relations of primary data quite we#tsulting in a
representation of the data where inputs that arseclogether
(i.e. similar) in the primary data remain closedthgr in the
SOM. However, there is no immediate way of recoigig
whether discrete clusters (“classes”) of points @mesent in
the data (and if so, how many) using solely the SOM
algorithm. Furthermore, when presented with daga s not
contiguous throughout weight space (as in Fig. here the
data is clearly composed of eight discrete regioth® SOM
algorithm does a mediocre job of approximating thata
distribution (Fig. 2), despite the fact that thésprecisely the
sort of data one would expect a clustering algoritio have
no difficulty with. Some neurons (“interpolatingam units”)
converge to locations in between clusters of datatg,
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Iterations: 20000
# of Neurons: 49

Fig. 2. Using the SOM algorithm, discontiguousstéus of data (grey)
remain connected in the map. Many neurons aradsgchin between clusters,
leading to inaccurate coverage and inefficientafseeurons. Ideally the map
should be broken into eight separate maps, eadtmxpmting one cluster of
points.

leading to inaccurate coverage of the data anduoiogrthe
borders between clusters (Vesanto and Alhonien)i, [bhese
two problems stand in the way of a simple appro&zh
clustering using self-organizing maps (for a reviefwvhere
we are heading, see Fig. 4).

Nonetheless, several cluster analysis techniques haen
proposed that utilize the SOM algorithm in varioways.
Vesanto and Alhoniemi ([5]) use a two-stage appnpatere
the SOM algorithm is run on a data set and therrelalting
set of map units (not including those interpolatingts that
did not win frequently enough to be included) isalgmed
using statistical clustering techniques. The ulyideg data
vectors are associated with the map unit (neurdogest to
them and hence are clustered by association withntlp
units. While this is a useful technique from tlegpective of
reducing computational complexity (compared witlistéring
the underlying data directly), it also shares thebfems of
most statistical clustering techniques. It is nidly
unsupervised, can only deal with ellipsoidal clusteand
despite avoiding the problem of interpolating maptsu (by
not including them in the clustering), it doeslditto address
the issue.

Costa and de Andrade Netto ([3]) also propose astage
clustering technique using the SOM algorithm. Timeéthod
involves running the SOM algorithm and then usingge-
processing techniques to analyze a visualizatiothefmap.
Clustering proceeds by segmenting the visualizatiand
labeling the map units based upon this segmentatidnlike

issue of interpolating units directly.

In order to both address the issue of interpolatinigs and
to develop a simpler technique for creating edsiigrpretable
clusters from SOM data, it is our intention to nfgpdhe SOM
algorithm so that some of the links between umitshe map
are systematically weakened or removed, in suclay tvat
smaller “submaps” emerge, each covering a contiguegion
of input space and representing a cluster of paiitisin the
data.

IV. MODIFICATIONS TO THEALGORITHM

A. Unsuccessful Attempts

To gain insight, we first discuss several “naivéémpts at

modifying the algorithm that did not succeed.
1) The “Strain” Method

The first attempted modification was to use thegthn
(“strain”) of the links between neurons as a waywefeding
out those links that were connecting two neuroamfdistinct
clusters of data. In this modification, each naukeeps track
of the average length of its links (i.e. its averaljstance from
its neighbor neurons). If the ratio between thegth of a link
to a neuron and the average length of other lioksiecting to
that neuron is above some threshold value, theninkeis
removed.

The problem with this method is that long linksdea raise
the average length of a neuron’s links, and thonewon with
more than one long link all of which should be rewd
doesn’t remove them because their ratio to thea@eeisn’t
above the threshold value. Comparisons involviagance or
standard deviation fail for the same reason. Usihg
difference between a link’s length and the aveladelength
for a neuron doesn’t scale — if the neurons areaspout, link
size differences will naturally be larger (sinceeaan expect
the link sizes to be more varied) than when therorei are
closer together (assuming the neurons are spreaevealy),
and this shouldn’t result in removal of links.

2) The “Pull” Method
The second attempted modification kept track ofdlerage
direction of a neuron’s closest neighbors over tiared used
this information to penalize links to neurons tgito pull it in
an opposing direction. This was calculated asvikaghted
sum of the “direction vectors” for each link contezt to it
(the position of the neighboring neuron minus thsifon of
the neuron in weight space), with each link's dit
weighted by the inverse of its length (using a Gaus
function was also tried, but this proved equallguotessful).
This vector (the “pull vector”) was used to weed buoks to
neighbors that were trying to move the neuron iliraction
opposing the pull vector. For each link, the datduct of its
direction (the position of the neighbor minus thesipon of
the neuron) with the pull vector was calculatedj drhis was
below some threshold value, the link was removddwever,
the method of calculating the pull vector was irpdee — the

the Esa and Alhoniemi algorithm, Costa and de Adelra direction vectors of links were weighted by thearse of their

Netto’s method is truly unsupervised, and is ablgénerate
complex-shaped clusters. However, it too doesddtess the

length in order to favor shorter links, but thislnli seem to
scale when neurons were farther apart (since tfierehce
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Fig. 3. The “Reward” method as used on a datz@®tining four clusters.
As can be seen, while it successfully creates enapltfor each cluster, it does
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B. The Proposed Method (The Dynamic SOM Algorithm)

1) Motivating Factors
Several issues had to be addressed in order toamerthe
obstacles encountered during the first three “riattempts at
modifying the algorithm.

1. Some method to deal with interpolating units (uttiest
get stranded between clusters) is necessary

2. The map should not be allowed to converge
prematurely

3. Link modification should not take place until then
has converged substantially

4. If a method for removing links is present, a metfard
adding links needs to be included as well

5. Map units should not have links of wildly differing

lengths (“strains”)

A robust and simple method of dealing with integtivlg
units is to kill neurons that have gone too maageitions
without winning. This simply involves having eacturon
store an “age” property, that is incremented byyuavery
iteration and reset to zero if a neuron is the wigmeuron for
that iteration. This method was originally bioloajily

not deal with interpolating units, and has converge a less than desirable INSpired (though subsequent research indicatedsthy no

state.

between the inverses of the lengths became smalterthus
the pull vector became skewed. To fix this, a adutrary
way of scaling the inverse function (or Gaussiancfion)
used to weight the directions would need to be doun
3) The “Reward” Method

A slightly more successful method involved usingaard
system for links that connect two neurons that isbeistly
have input vectors fall between them in weight spalnstead
of finding only the closest neuron to the inputteecthe two
closest are found, and if there is a connectiowdet them,
the “strength” of this connection is set to 1. ihke strength
of all the other links from the winning neuron decreased by
some small amount. The strength of each §imk used during
the weight modification stage of the algorithm &xdase the
effect of links with lower strengths:

wi(t+D) =w; (1) + & O [a(t) Th ; (D) [(x—w; (1))

Over time, the strength of a link may decrease &nd thus
is effectively removed.

Results of this method can be seen in Fig. 3. &Vtiils
succeeds in breaking the map down into smalleregigbat
partially capture the discrete regions presenhéinput data,
the accuracy (the number of neurons stranded batalasters
and the general fit to the underlying data) is oimfproved
very slightly, if at all. The problem with this pgach is that
it takes a long time for many of the links to s@etreasing in
strength, and by the time they do, the distancetfonh has
decreased to the point where neurons don't afféeir t
neighbors enough to move them very far in weighdacsp
Thus neurons get stranded in between the datacdust

means a new concept, as Vesanto and Alhoniemi nnskef
essentially the same idea to cull interpolatingg)niDuring
development of the human motor system, many motemo
neurons are created than will actually used bydtheloping
child. While still in the womb, motor neurons ungie
Hebbian competition, and neurons that do not gitated
with enough frequency eventually die off (Kandeakt [10]).

In order to address the issue of premature coevery the
learning rater{(t)) and neighborhood topologg(f))
functions are modified such that they never fullgeh zero.
This ensures that the neurons never completelyergey and
can still adapt to changing input (though not verych). In
light of the motivation for the current algorithmifnicking
the human ability to categorize in an unsupervisegner),
complete convergence, and hence a complete Iqdasiicity,
seems undesirable.

Any link modification techniques are meaninglessiluhe
map has at least ordered itself (topologically B itself
such that there are a reduced number of intergglitiks) and
converged to a point where metrics such as lirdirstor
neuron age have some meaningful relation to thenlyidg
data (i.e., can be used as reliable indicator®af Wwell the
map is approximating the data'’s distribution). Flau
“minimum convergence” threshold is specified, an# bnd
neuron modification only takes place when theitasation’s
total “change” (the sum of the distances travelgthle
neurons in weight space) is less than the threstraic.

Until this point the algorithm proceeds identicatythe
standard SOM algorithm.

If links were only allowed to be removed, then thap
would become rather sparse, and this would inklbar-cut
analysis of clusters as well as undermining thaitine appeal
of using links as a representation for “connectsdhevithin
the map (i.e., neurons and the categories thegsept are
more similar the more connections there are betwlzem).
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Thus a method for adding links is included: instefdnly
computing the winning neuron, the winning neurod tre
second closest neuron are computed. If a linkekistween
the neurons, this link’s age is reset to zeramolsuch link
exists, it is created. Every time a neuron wingenation, the
“age” properties of the links connected to it arerémented
(with the exception of the link between the winnimguron
and the second closest neuron, which is rese.lik’s age
is too great, then the link is removed. This mdthblink
addition and removal is extremely similar to thaupdoyed by
the “Growing Neural Gas” algorithm originally degpkd by
Fritzke ([11]), and is equivalent to the “Rewardétiod
discussed earlier (which however dealt only wittk i
removal).

Finally, links that are significantly longer thathers on the
neurons they connect to should be removed to spheed
convergence process (in general, these links willdmoved
by the aging process mentioned above, but remdhieg
proactively makes the convergence process fasier).
determine whether a link from a given neuron shdad
affected, the links from that neuron are first edrby their
length. Then, this sorted list is traversed ineoyénd each
link is compared to the link preceding it in thet.li If the ratio
between them is greater than some threshold vddedink
and all subsequent links in the list (i.e. the lamid all all links
longer than it) are “weakened” by some amount, evliiiks in
the list previous to the link being tested areesgthened” by
some amount. If a link’s strength property reacters (i.e. it
has been weakened several times in a row) thelinthis
removed. Any neurons that don’t have any linksrathis
process are also removed.

2) A Summary of the Dynamic SOM Algorithm

1. Select an input vectorat random from the data set.

2. Determine the “winning” neuropwhose weights are
closest to the input vector in a Euclidean sense, a

Iterations: 20000
# of Neurons: 47

¢ .

5 Py 2

Fig. 4. The dynamic SOM algorithm breaks into §agate maps, one for
each cluster present in the input data. Two neuddmin the process.

V. RESULTS ANDDISCUSSION
A. Comparison with the Traditional SOM Algorithm

Fig. 4 shows the same data set from Fig. 1 as zedlyy
the dynamic SOM algorithm. The modified SOM algjomi
does a substantially better job of staying trutheo
distribution of the underlying data as a resulit®flexible
structure. While this is difficult to quantify, ig readily
apparent from visual inspection. As can be sdwrgtare no
more interpolating map units, no connections betwee
clusters, and link sizes are all relatively uniforMany links

well as the “second best” neuron k whose weigtes abetween neurons have been added, leading to sulihzEee

second-closest to the input vector.
3. Ifthe map is sufficiently converged (i.e. the tota

extensively interconnected. Two neurons that didrake it
to the “safety” of a cluster before they grew tdd were

distance moved by all the neurons in the map over removed entirely.

the previous iteration is below some threshold):
a. Age all links connected to j by 1 and reset
j's age to zero.

The algorithm is also capable of clustering compleapes.
The appendix to this paper contains several cospasi
between the regular SOM algorithm and the dynamic

b.  Check to see if a link exists between j and kalgorithm, some of which demonstralte ability of the
If so, reset its age to zero, and if not, create dynamic algorithm to cluster non-linearly separable

it.
4. The conventional SOM update step occurs, and

collections of data
Based on experience with the algorithm, it apptsat

neurons within the topological neighborhood of the approximately 5-15% of neurons die during the asialgf a

winning neuron are moved closento
5. If the map is sufficiently converged (using the sam
criteria as above), for each neuron:
a. Sortits links by length.

given input data set. Lowering this number (ideall
neurons should survive to prevent information lees)ains a
task for future work.

b. Find the link whose ratio to an adjacent link B Comparison with the Human Conceptual System

is greater than some threshold.

oo

Remove links whose strength is zero.
e. Remove links that are older than some
threshold.

Despite the dynamic SOM algorithm’s flexibility,ig

Weaken that link and all links longer than it. difficult to imagine it acting as a real-time moaé¢human

category construction tasks (if only due to effinzig
concerns). However, it shares several propertigstie
conceptual system that are worth noting. These are

f.  If the neuron is older than some threshold or(explanations to follow):

has no links attached to it, kill it.
g. Age the neuron.
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1. Itfunctions as a cross between exemplar and ot
models of category representation.

2. Active “perception” in a specific area of weightase
changes representation of that area of weight-space

3. It functions by viewing only one piece of input datt a
time, much as we do (with selective attention).

1. Two approaches to category representation existein
concepts and categories literature (Murphy, [T]he
“exemplar view” holds that we store every memorytohgs
we’ve encountered that belong to a certain categdiien
we categorize a novel object, we compare that bbjeevery
exemplar we have stored in memory, and choose tis¢ m
similar exemplars for use in categorizing the objdthe
opposing view is that we “average” our interactivith
category members to arrive at an “idealized” catggoember
— a prototypical member of the category. The SQddrithm
represents clusters using what could be viewedsas af
multiple prototypes. This is not as memory inteasis the
exemplar approach, and not as limiting from a regméational
standpoint as the prototype approach.

2. ltis reasonable to assume that our representatian
concept only changes when we interact with or tlaib&ut
instances of that concept (or very similar concdeptis is
similar to the SOM algorithm, since there is a titoithe
influence of an input vector — it only affects theurons
closest to it.

3. When we interact with objects in the world, we rat
with them generally one at a time. Thus, whateystem we
have for learning and organizing our conceptualWadge
must operate on minimal input, i.e., it can funeti@ithout
knowing a priori the size, distribution, and freqog of a
category — it can learn based on seeing only cstarige of
that category at a time. The SOM algorithm operate
similar principles.

Finally, one aspect of the SOM algorithm as impleted
here that differs substantially from human concabtu
experience is the lack of temporal continuity witspect to
input. When we walk into a room, we are faced g same
set of objects for an extended period of time. sTinot the
case with the SOM algorithm, where input data iscied
randomly, and there is no reliable relation betwees input
vector and the next.

C. Remaining Problems and Future Work

Several problems with the dynamic SOM algorithmaiam
Clusters must be spaced rather far apart in omtehé
algorithm to detect them and not treat them asigootis
regions of input data. There is an inverse refstiip between
the number of neurons in the map and the minimyvarsgion
between clusters that must be present in ordesidisters to
be accurately identified — more neurons in the mages the
spacing between neurons smaller, which means tiekseen
clusters are less likely to be activated.

The algorithm is also slow. Due to the similabgtween
this algorithm and the growing neural gas algorititrvould
thus be desirable to do a direct comparison betwetwo to
see which converges faster.

Finally, the algorithm has not yet been testedeatworld
data. It remains to be seen whether it can acelyrahd
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meaningfully detect clusters in multidimensionallrerorld
data, however the preliminary results from synthdéta are
promising.
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VI. APPENDIX A GRAPHICAL COMPARISONBETWEEN xer?lhilons: 4505?
REGULAR SOM AND DYNAMIC SOMALGORITHMS o Newrans:

Iterations: 30000
# of Neurons: 64

Fig. 6(a) The classical algorithm’s analysis obtimterlocking rings. There
are interpolating neurons in all three “holes”, athis inefficient use of
neurons makes the distribution of neurons alongitiys less dense.

Fig. 5(a) The classical SOM algorithm’s analysisnput data consisting of  iterations: 45000
concentric rings. Not the unclosed gap as a resulhe grid shape being # °f Neurons: 36
stretched to fit around the rings.

Iterations: 30000
# of Neurons: 59

Fig. 6(b) The dynamic SOM algorithm’s analysistbé same data. No
neurons died.

Fig. 5(b) The dynamic SOM algorithm’s analysis tfe same data.
Distribution of neurons is very uniform, and thene no links between the
rings. Six neurons died.
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Iterations: 30000 Iterations: 30000
# of Neurons: 49 # of Neurons: 44

2

Fig. 7(@) The classical algorithm’s analysis ofive-cluster input data set. Fig. 7(b) The dynamic SOM algorithm’s analysistbé same data. Five
Due to the symmetrical nature of the data, thegmes of interpolating map neurons died.
units is particularly prominent.
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Dimensionality Reduction via Self-Organizing
Feature Maps for Collaborative Filtering

Andrew R. Pariser

Abstract—With customer preference databases growing to
colossal sizes, collaborative filtering algorithms run into
scalability concerns. By reducing the dimensionality of the input
space, we ease the demands of predicting users’ tastes for films. A
movie-to-movie correlation and distance metric are used to
decompose the user-movie rating data into two different movie
graphs. Using a Kohonen self-organizing map (SOM), the
product space can be divided into meaningful clusters centered
on the neurons whose weight vectors are nearest the product
weights. The SOM —derived clustering is analyzed via a Principal
Components Analysis of the data. The clusterings are then
evaluated for their effectiveness via quantitative and qualitative
observations on the meaningfulness of the groupings of the films.

Index Terms—Clustering methods, Collaborative filtering,
Karhunen-Loeve transforms, Movies, Neural network
applications, Self-organizing feature maps

I. INTRODUCTION

OLLABORATIVE filtering, the automated process

of making predictions about a user’s interests given
data collected on customers’ prior preferences, has
become an increasingly relevant problem. Mindful
companies are cataloging their customers’ every move,
hoping to uncover meaningful trends that help refocus
product selection and marketing. Collaborative filtering
need not only be seen as an aid to the seller, however;
customers, who are more regularly inundated by an
increasingly complicated market with thousands of
slightly differentiated products, benefit highly from
individualized product suggestions.

The substantial size of the customer preference
databases (the inputs for collaborative filtering) makes
the problem of individualizing the recommendation
process even more difficult [6]. Collaborative filtering
techniques generally fall into two groups by the type of
approach, either memory-based or model-based
algorithms. The former make determinations according
to an analysis of the entire dataset whereas the latter
fine-tune a user-specific model designed to capture an
individual’s relationship to the entire product space.

A. Pariser is a senior at Yale University, expecting graduation with a BS in
May of 2007 for a Physics and Applied Mathematics double major, (e-mail:
andrew.pariser@yale.edu).

Each approach presents difficulties when scalability is a
concern [6].

This paper proposes dimensionality reduction via
product clustering as a solution to the problem of
scalability. The product space—here, the set of all
films—when partitioned, becomes more manageable for
calculations. In the same way that the human brain
generates classification schema to aid in comprehending
the world [1], collaborative filtering algorithms can
consider a user’s relationship to these categories (instead
of looking at the user’s relationship to each individual
item independently) [5].

The partitioning of the product space is accomplished
by training a Kohonen self-organizing map on relational
film data. The resulting clusters are analyzed and then
graphed via a principal components analysis. It is hard
to quantitatively measure the partitions that emerge,
though data on the films’ genres, directors contribute to
a qualitative assessment of the clustering algorithm.

The clusters derived from the self-organizing map are
by no means perfect, though the similarity between the
films in each partition is no accident. In almost every
partitioning of the films, movies end up in the same
clusters as their sequels (with the noted exception of the
Harry Potter franchise, where the third and fourth films
are markedly different than the first and second, both
sets of which are grouped in different clusters). Most
clusters seem to exhibit some property that differentiates
the films in the particular group from the entire set of all
movies being considered, be it genre, budget, director
style, or some more subjective quality.

Indeed, the quality of the partitions is impressive
considering the amount of data that is aggregated to
arrive at the results. This suggests that SOM algorithms
like this one may provide the key to developing
collaborative filtering systems in the face of increasing
scalability concerns.

II. THE NETFLIX PRIZE™ DATA

Netflix provides the following as description of its
data:
“The movie rating files contain over 100 million ratings from
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480 thousand randomly-chosen, anonymous Netflix customers
over 17 thousand movie titles. The data were collected
between October, 1998 and December, 2005 and reflect the
distribution of all ratings received during this period. The
ratings are on a scale from 1 to 5 (integral) stars. To protect
customer privacy, each customer id has been replaced with a
randomly-assigned id. The date of each rating and the title
and year of release for each movie id are also provided.”

The five hundred most rated movies were extracted
from this dataset for the tests that follow, representing a
meaningful portion of the entire population of ratings
while keeping computation time reasonable. These films
comprise the product space of this research.

III. TASTE PROFILE DECOMPOSITION

A. Overview

It is difficult to find a basis on which one can partition
the set of viewer-movie rating pairs. Instead, one would
intuitively think to create groupings among either the set
of movies or the set of users. A cluster from the set of
users would hopefully contain customers who would
rank movies similarly. Likewise, a cluster from the set
of movies would ideally collect all titles which will
probably receive the same ratings across all users.

The goal of this first step is to transform the viewer-
movie rating pairs into data that relate the films via some
calculation on collective ratings data, simplifying
hundreds of user ratings for two films into one value.

B. Movie-Movie Metrics

In order to transform the user-movie rating pairs into a
relational graph of movies, we must aggregate the user
data via some metric that relates two movies. We
consider two such measures, a correlation metric and a
distance metric.

Let U(m) represent the set of all users who have rated
movie m. We define U(m,n) = U(m) N U(n) as the set of
users who have rated both movies m and n. Using the
variable U to represent a user, we define ry(U), um, and
om as the rating user U gives movie m, the mean rating
for movie m, and the standard deviation of all users’
ratings for movie m, respectively. We then consider the
functions

Pon =00 ) Y (W= ) (W =) (1)
and

dm” = ZueU(m,n)(rm (U) - r-n (U))2 (2)

where (1) represents a measure of correlation and (2) a
measure of distance between m and n.
The resulting data from equations (1) and (2) are then
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normalized so that -1 < ppn < 1 and 0 < dp, < 1. To
sharpen the metrics and to aid in providing clearer
boundaries on which to cluster the graphs, we
exponentiate the results of the two formulae above,

obtaining
Pin = XP(=Pyn) 3)
and
dpn = exp(=dy,) - “

The bounds on (3) and (4) are 0.368 < p'yy < 2.718 and
0.368 <d'y,, <1, and are determined by transforming the
bounds on (1) and (2).

The values from (3) and (4) are compiled into two
matrices, P = (0'mn) and D = (d'y).The columns of these
two matrices, which we denote Py, and Dy, respectively,
correspond to vectors in the input space of the system.
The elements in each vector define the particular movie
in relation to the other films via the relational metrics in
(3) and (4).

That the 500 most rated Netflix films were extracted
from all movies provided in the dataset proved useful
not only for computation time. Equations (1) and (2),
which relate two films, depend upon having a non-empty
intersection U(m,n) = U(m) N U(n). It would be unclear
how to speak of a “correlation” or “distance” between
two products if one could not find a common subset of
users who have provided taste profiles on both products.
Thankfully, when limiting the data to the top 500 most
rated films, the size of the intersection, |[U(m,n)|, is
strictly positive and thus Equations (1) — (4) are always
defined.

An introductory analysis of the 500 most rated Netflix
films is compiled in Appendix A. It includes lists of the
ten most rated films, the ten films with highest and
lowest ratings, and the ten films with highest and lowest
variance in their ratings. Additionally, insight into the
metrics of Equations (1) and (2) is provided by listing
the ten most and least correlated films, as well as the ten
most and least distant films.

IV. CLUSTERING VIA SELF-ORGANIZING MAP

A. Definition and Motivation

Self-organizing maps (SOMs) distinguish features from
an input space by forming topographical representations
of their input patterns. Using competitive learning,
“winning” neurons (and their neighbors) adjust their
weight vectors to move closer to presented inputs (the
columns of P and D) in synaptic weight space. After a
convergence phase, the resulting neuron assembly
exhibits important properties of the input space [2]:
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1. The feature map, as represented by the set of
synaptic weight vectors, approximates the entire
input space

2. The feature map is topologically ordered. That is,
the spatial locations of the neurons represent a
particular feature or subset of the input space.

3. The neuron density of the resulting feature map
mimics the probability density of the input space.

4. As a conclusion of the previous three properties, a
self-organizing map is able to select a set of best
features for approximating an underlying
distribution.

Given these four properties, one can easily assign
clusters to movies from a particular SOM network: for
each movie in the input space, it belongs in the cluster
corresponding to the neuron nearest it in weight space.

B. Specification of SOM model and parameters

Two SOMs are trained on each of the input spaces
defined by the sets of column vectors {Py,} and {Dp},
one with N neurons, both for N = 10 and N = 30. The
output, therefore, corresponds to four different
clusterings, one for ten clusters of each input space and
the other of thirty clusters of each input space.

In these four clusterings, the synaptic weight space for
each network is [0.368, 2.7187°" and [0.368, 17°%, for Py,
and Dy, respectively. The initial synaptic weights for
the fifty neurons are chosen randomly from the sets {Pp}
and {Dp}.

At each iteration n of the network training phase, an
input vector X(n) is presented to the network, where the
input vector is given by a column vector of P or D, allof
which are presented in a randomly permuted order in
each training epoch. Competitive learning is used such
that a best-matching (winning) neuron i(X) is chosen
according to the minimum-distance criterion:

i(x) = argmin ”X(n)—wj ”
jeil.2,...N}

The winning neuron moves its weights in the direction
of the input presentation X according to the update
formula

wi(n+1) =w;(m+n(n)h;,, (N XM -w;m),
where the learning rate function is defined by
n(n)=n,exp(-n/z),

and the neighborhood function is defined to be the
Kroniker delta function
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1 ifi=j
hi’j (= 5” - {0 otherwise -

Choosing the particular parameters for these functions
affects the speed and accuracy of the network training
algorithm. Making n(n) ineffective by starting 7, too
low may trap the network in local minima, whereas
choosing 7y too high can cause the network to exhibit
unfortunate oscillatory behavior. Similarly, these same
effects can be achieved by changing the exponential
decay of n(n) improperly; the network may overshoot
optimal regions when 7 set too high, whereas, if 7 is set
too low, the network will converge very slowly if at all.

C. Choosing Network Training Parameters

The learning rate parameters 770 = 0.01 and 7 = 1000
are suggested by Haykin [2]. In selecting these
parameters, one would hope to find the minimum value
for the total self organizing map error as a function of
the network’s weights W given by
500

E(W) = total net_error (W) = z )

j=1

Wi(m =X “2 )

Here, the input vectors {Xi, ..., Xso0} correspond to the
column vectors {Py} and {Dp} as the case may be, and

the term W, , symbolizes the weight vector of the best-

matching (winning) neuron i(Xj) for the given input
vector X;. Once each network has been sufficiently
trained, this value in (5) no longer decreases.

For each matrix and each number of output clusters,
multiple values for each of the network training
parameters 770 and T were compared according to their
ability to minimize this error &(W).

Tables 1 and 2 show results from these calculations.
Shaded rows in each table correspond to parameter
choices producing the lowest final values of the error &

found. The values for 77y and 7 for the actual training of
each network were read directly from these shaded rows.

Table 1 — Optimal Parameters, P-Network Training

10 Clusters, P 30 Clusters, P
& 1o T E 1o T
0.9389 0.1 250 0.8856 0.1 250
0.9314 0.1 500 0.8683 0.1 500
0.9302 0.1 750 0.8606 0.1 750
0.9299 0.1 1000 0.8578 0.1 1000

0.9334 0.2 250 0.8656 0.2 250
0.9267 0.2 500 0.8563 0.2 500
0.9264 0.2 750 0.8486 0.2 750
0.9238 0.2 1000 0.8509 0.2 1000

0.9304 0.3 250 0.8593 0.3 250
0.9245 0.3 500 0.8489 0.3 500
0.9259 0.3 750 0.8429 0.3 750
0.9227 0.3 1000 0.8439 0.3 1000
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Table 2 — Optimal Parameters, D-Network Training

10 Clusters, D 30 Clusters, D
& o T & o T
0.9389 0.1 250 0.8856 0.1 250
0.9314 0.1 500 0.8683 0.1 500
0.9302 0.1 750 0.8606 0.1 750
0.9299 0.1 1000 0.8578 0.1 1000

0.9334 0.2 250 0.8656 0.2 250
0.9267 0.2 500 0.8563 0.2 500
0.9264 0.2 750 0.8486 0.2 750
0.9238 0.2 1000 0.8509 0.2 1000

0.9304 0.3 250 0.8593 0.3 250
0.9245 0.3 500 0.8489 0.3 500
0.9259 0.3 750 0.8429 0.3 750
0.9227 0.3 1000 0.8439 0.3 1000
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Figure 1 — Training Error vs. Number of Epochs
Bold lines in Figures (la) and (1b) correspond to networks trained on P,
whereas the regular lines of Figures (1c) and (1d) show the error for networks
trained on D. The solid lines in Figures (1a) and (1c) are ten neuron networks;
dashed lines in Figures (1b) and (1d) are thirty neuron networks.
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These four charts indicate (in increasing order) the size distribution of each of
the four networks. Figures (2a) and (2c) are the ten neuron cases and Figures
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D. Training Phase

The self organizing map converged on its ultimate
synaptic weight locations in no more than six training
epochs, with the presentation of the entire input space in
randomly permuted order per epoch. Figure 1 shows the
network training error for each of the four ways of
clustering the graphs.

Figure 2 shows the cluster sizes of each the clusterings
that result from each trained SOM.

V. PRINCIPLE COMPONENTS ANALYSIS

A. Definition and Motivation

A principal components analysis (PCA) of a dataset is
a statistical operation that shrinks multidimensional data
into lower dimensions. PCA is the linear transformation
of any multidimensional data X into a subspace Y for
maintaining the largest variance. The data Y is just a
projection of X onto the m eigenvectors of X that have
the largest eigenvectors. The transformation, also called
the discrete Karhunen-Loeve transform, is used for
pattern recognition and minimizes data reconstruction
error under the L? norm [3]. In our case, we reduce 500-
dimensional data P and D into two-dimensional so that
we may visualize the films’ locations.

B. Applying PCA to Movie-Movie Interaction Data

One can transform the data P or D into a reduced
subspace by repetitively subtracting the projection of the
data on the first | eigenvalues from P or D, respectively,
and then calculating the projection of this residual on the
(1+ 1)™ eigenvector.

Choosing the output to be either two- or three-
dimensional data allows complicated data in P or D to be
visualized. These reduced dimension points allow us not
only to visualize movies but also to visualize clusters on
these movies. Ideally, clusters should contain points that
are not very distant after a PCA transformation.

Figures 3 through 6 show the different clusters
resulting from the SOM algorithm for each of the four
scenarios, as plotted on two-dimensional PCA
coordinates.

Indeed, we note that the films which are in the same
clusters are near each other in the reduced dimensional
space generated by the PCA analysis. And, furthermore,
there are few overlapping lines from different
clusterings, which is consistent with the desire for
clusterings to partition the input space into regions that
are both contiguous and disjoint possible.

Along these lines, we can identify some regions that
may be problematic, specifically in the lower left
quadrant of the P data in Figures 3 and 4.
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Figure 5 — Ten-Clustering of D Data

Figure 6 — Thirty-Clustering of D Data
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VI. QUALITATIVE ANALYSIS OF PARTITIONS

A. Introduction

What sort of metric can be used to quantitatively say
that a clustering of films is meaningful? One can only
do this when using some measure of “closeness”
between films. Having defined two such measures (0'mn
and d'y,) in the decomposition step (see III) and used
these values as inputs to our clustering algorithm, it
would be tautological to say that the clusters we have
created are successful partitions with respect to these
metrics. Supposing the metrics used for decomposition
are poor indicators of the film “closeness,” our analysis
would not observe poor clusterings of the data.

As such, we must look to a qualitative analysis of the
film partitions. To do this, data from the Internet Movie
Database (IMDB) were collected for each of the films in
the product space. The average rating, budget, opening
weekend gross, MPAA rating (i.e., R, PG-13, etc.),
genres, directors, writers, and cast were then aggregated
for each cluster as a means for qualitative comparison of
the partitions.

B. Example Clusters

First, we will look at a cluster that provides a sanity
check and reveals that the SOM methodology above
generates at least some meaningful partitions. Example
Cluster 1 (text box, next page) contains only eleven
films, which is significantly fewer than 50, the average
cluster size with ten partitions on 500 films. The
extremely small size of the partition as compared to the
average cluster size means that these eleven films must
be very closely related and highly distinct from the other
films in the product space.

Indeed, we see that six of these films are from the
Lord of the Rings franchise (three Extended Edition
DVD releases and three theatrical versions). The other
films are also epic films, which are similar in scope and
extravagance (not to mention, in length).

The average budget for these eleven films is on the
high end of all clusterings at 73 million USD. The
budgets of this cluster also have a low variance of 41
million dollars (relative to the budget size and compared
to the other clusterings’ budget variance) which can be
accounted for by the change in value of the dollar since
the Star Wars films came out.

These films were made to be giant blockbusters. All
had extremely high opening weekend gross revenues,
and these films have been seen by an extremely large
portion of all moviegoers. Indeed, with the exception of
Sky Captain and the World of Tomorrow, people also
extremely enjoyed these movies (the Lord of the Rings
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Cluster Size :@ 11 Cluster Size 13
Titles : LOTR: Fellowship (4.435 +/- 0.895) Titles : Cheaper by the Dozen (3.512 +/- 1.016)
: LOTR: Fellowship: Extended (4.717 +/- 0.619) : Coyote Ugly (3.230 +/- 1.226)
: LOTR: Return of King (4.545 +/- 0.806) : How to Lose a Guy in 10 Days (3.552 +/- 1.086)
: LOTR: Return of King: Extended (4.723 +/- 0.610) : Maid in Manhattan (3.145 +/- 1.123)
: LOTR: Two Towers (4.461 +/- 0.862) : Miss Congeniality (3.361 +/- 1.112)
: LOTR: Two Towers: Extended (4.703 +/- 0.629) : Miss Congeniality 2 (3.225 +/- 1.055)
: Master and Commander (3.546 +/- 0.986) : Raising Helen (3.551 +/- 1.010)
: Raiders of the Lost Ark (4.504 +/- 0.714) : Runaway Bride (3.291 +/- 1.056)
: Sky Captain and World of Tomor. (2.860 +/- 1.054) : Sweet Home Alabama (3.539 +/- 1.077)
: Star Wars IV: A New Hope (4.504 +/- 0.805) : The Princess Diaries (3.571 +/- 1.046)
: Star Wars V: Empire Strikes Back(4.544 +/- 0.759) : The Wedding Planner (3.184 +/- 1.123)
H : Two Weeks Notice (3.363 +/- 1.007)
Rating Avg. : 4.322 : What Women Want (3.425 +/- 1.069)
Stddev - 0.807 :
H Rating Avg. : 3.381
Budget : 73.000 +/- 41.578 Mil. (11 reported) Stddev : 1.079
Opening Gross : 36.071 +/- 28.924 Mil. (10 reported)
H Budget 49.167 +/- 11.654 Mil. (12)
MPAA Ratings : PG-13 = 7 Opening Gross : 21.886 +/- 8.227 Mil. (13)
M PG = 3 M
H MPAA Ratings : PG-13 = 10
Genres : 11 Action H PG = 2
: 11 Adventure M
8 Fantasy Genres : 13 Comedy
3 Sci-Fi 9 Romance
2 Thriller 3 Drama
1 Drama 2 Family
1 Family B
1 Mystery Director ( 3) : 0005190 Garry Marshall
1 War ( 2) : 0677953 Donald Petrie
Director ( 6) : 0001392 Peter Jackson Writer ( 3) : 0492909 Marc Lawrence
B ( 2) : 0920859 Gina Wendkos
Writer ( 6) : 0909638 Fran Walsh : 0974301 Katie Ford
: 0866058 J.R.R. Tolkien -
( 3) : 0000184 George Lucas Cast ( 3) : 0000113 Sandra Bullock
H : 0122688 Heather Burns
Cast ( 6) : 0089217 Orlando Bloom
: 0101710 Billy Boyd
1 0000949 Cate Blanchett Examp|e Cluster 2
: 0000276 Sean Astin . ! 3 N .
( 4) : 1019674 Sala Baker An example of an output cluster, from clustering P by a 30 neuron SOM
: 0032370 Noel Appleby
: 0045324 John Bach
: 0000293 Sean Bean
: 0190744 Marton Csokas
: 0384060 Bernard Hill Cluster Size 20
: 0000489 Christopher Lee -
( 3) : 0000148 Harrison Ford Titles : 21 Grams (3.382 +/- 1.049)
: 28 Days Later (3.335 +/- 1.118)
: About Schmidt (3.059 +/- 1.071)
Examp|e Cluster 1 : Amelie i (4.115 +/- 1.033)
. N Rk . : Bowling for Columbine (3.785 +/- 1.202)
An example of an output cluster, from clustering P by a 10 neuron SOM - Closer (2.989 +/- 1.139)
: Crouching Tiger, Hidden Dragon (3.898 +/- 1.065)
. . . : Donnie Darko (3.925 +/- 1.064)
films top the list of the highest rated films). Indeed, this : Fahrenheit 9/11 (3.593 +/- 1.324)
. . : Garden State (3.693 +/- 1.111)
the films in this cluster have the largest aggregate : High Fidelity (3-710 +/- 1.006)
. . . : In the Bedroom (3-.290 +/- 1.066)
average rating at 4.322 stars. Also worth noting is that : Napoleon Dynamite (3.398 +/- 1.302)
. : Run Lola Run (3.887 +/- 1.004)
people generally agree on the ratings of these films; the : Secretary (3.423 +/- 1.153)
.. . : Super Size Me (3.864 +/- 0.974)
average standard deviation of the ratings of these eleven > The Good Girl (3.109 +/- 1.022)
frl . 1 : The Hours (3.351 +/- 1.141)
ums 1S only 0.807 stars. - Traffic (3.693 +/- 0.988)
: . . : Whale Rider 3.915 +/- 1.017
Lastly, there is an extremely high overlap of writers, : ¢ )
directors, and cast members in these films, due to the Rating Avg- = 3.571
fact that all six Lord of the Rings films were made by Budget D 11.463 +/- 13.093 Mil. (19)
and Wlth the same people Opening Gross : 2.588 +/- 5.663 Mil. (20)
Looking to Example Cluster 2, we see a markedly WPAA Ratings = PG-13 = 3
different type of movie represented by these films. Here =2
we have, with very few exceptions, a cluster of thirteen Genres 1 ggﬁzgy
romantic comedies (indeed, thirteen are listed under the o Romanee
‘comedy’ genre by IMDB and 9 are under ‘romance’). 3 Crime
X ; 3 Documentary
These films have a relatively high budget and a decent 2 Action
opening weekend.gross, but they are not as well liked as Director ¢ 25 . 0601619 Michael Noore
the successful epic blockbusters of Example Cluster 1. ] : ]
Writer ( 2) : 0601619 Michael Moore

With an aggregate average rating of 3.381, this are the
third least liked group of films in this partitioning.
Furthermore, high variance in the ratings of these films
may be explained by these movies “chick flick” status.

Example Cluster 3

An example of an output cluster, from clustering P by a 30 neuron SOM
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Example Cluster 3 poses a more difficult analysis.
With respect to movie topics and subject matter, there is
little that relates these films to each other. These films
include documentaries and journeys in science fiction.
Some are disheartening postmodern character studies,
while others are uplifting romantic comedies. Given the
knowledge of the difference in these films’ themes, has
the partitioning scheme made an error?

Looking at this cluster from a different perspective
reveals that there are ways to understand these movies
with respect to each other. The average opening gross
ranks in as the fourth lowest among all clusters. This
indicates that these films were not initially well attended
in theaters. This is generally true of these films—they
are primarily movies with an indie following.

These are movies that have been very successful with
one demographic group but no others. Michael Moore’s
films, Bowling for Columbine and Fahrenheit 9/11, are
generally watched by many who are politically liberal
and by few conservatives. Similarly, Garden State and
High Fidelity, which express the youth generation’s
complaints about love and society, are generally watched
by the 18-25 year old demographic.

There are four foreign films in this cluster (Amelie,
Crouching Tiger, Hidden Dragon, Run Lola Run and
Whale Rider), as well as three documentaries (Bowling
for Columbine, Fahrenheit 9/11 and Super Size Me).
This cluster has an alternative feel, with films that are
not out to please any large audience.

VII. CONCLUSION

The intangible quality of “indie-ness” that relates the
films in Example Cluster 3 demonstrates power in the
SOM algorithm. By many standards, these films would
not be grouped similarly, and yet this group shares many
features that could be very meaningful in analyzing the
films for a collaborative filtering system.

It is important to note, however, that SOM clustering
technique is also very successful with films that are
easier to classify. Films with clearly defined features are
separated along these lines (e.g., epics and romantic
comedies are divided into Example Clusters 1 and 2,
respectively). Additionally, films in the same franchise
made in similar ways with similar casts are extremely
rarely split into different clusters.

Further quantitative validity of these clusterings could
be garnered via the empirical results of a collaborative
filtering scheme that utilizes these partitions, such as the
content-boosted system proposed by Melville, Mooney
and Nagaraan [4]. Qualitatively, however, these clusters
are consistent with the author’s personal perspectives on
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these films, and seem to be very meaningful with respect
to the content data gathered from IMDB on these films.

It seems that the problems of scalability can be
mitigated by using this algorithm. The data considered
in the calculations that arrive at these clusterings are
much fewer than the entire set of viewer-movie rating
pairs. Indeed, one only needs a single relational number
between any two films in order to create meaningful
partitions of some product space. Only one step of pre-
processing must be done before clustering the films via
the SOM algorithm.

In addition to being extremely useful for collaborative
filtering algorithms [4, 5, 6], this work can be altered to
be applicable in many fields. The problem of clustering
is important for all sorts of computational algorithms and
models (from pattern classification and data mining to
resource allocation and strategic management). In order
to extend this algorithm to other problems, the only thing
necessary is some feedback on the items that one wants
to partition and a measure of how the similar the items
are as a function of all of their feedback.

APPENDIX A
Table 3 — Most Frequently Rated Films
Count Rating  Title
233 3361 Miss Congeniality
217 3.724 Independence Day
201  3.784  The Patriot
196 3.442 The Day After Tomorrow
194 4.154 Pirates of the Caribbean: Curse of the Black Pearl
193 3.905 Pretty Woman
182 4300 Forrest Gump
181 4.307 The Green Mile
178 3454 Con Air
178 3.412 Twister
Table 4 - Highest Rated Films
Rating  StdDev  Title
4723 0372 LOTR: Return of King, Extended
4.717 0.383 LOTR: Fellowship of Ring, Extended
4703  0.396 LOTR: The Two Towers, Extended
4.593 0.459  Shawshank Redemption, Special Ed.
4.545 0.649 LOTR: Return of the King
4.544 0.577  Star Wars, V: Empire Strikes Back
4504  0.622 The Godfather
4.504 0.648  Star Wars, [V: A New Hope
4504  0.509 Raiders of the Lost Ark
4.461 0.638  Star Wars, VI: Return of the Jedi
Table 5 - Lowest Rated Films
Rating  StdDev  Title
2.798 1.003 The Stepford Wives
2.855 1.018 Hollow Man
2.856 1.196 Wild Wild West
2.860 1.110 Sky Captain and World of Tomorrow
2.901 1.639 Punch-Drunk Love
2.907 1.209 Legally Blonde 2
2.925 1.478 Anchorman
2.947 1.106 Once Upon a Time in Mexico
2.965 1.201 AL Artificial Intelligence
2.980 1.119 Daredevil
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Table 6 — Films with Highest Rating Variance
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Table 10 - Films of Highest Distance (d'mn)

Rating  StdDev  Title Distance Rating  Title
3.593 1.752 Fahrenheit 9/11 1.000 4.094 Pulp Fiction
IIIIIIIII 3398  1.697 Napoleon Dynamite ) 3.361 Miss Congeniality
3.374 1.658 Moulin Rouge 0.964 4.300 Forrest Gump
_________ 3280 1656 _The Royal Tenenbaums ' 3361 Miss Congeniality
2.901 1.639 Punch-Drunk Love 0.952 3.280 Th_e Royal Te‘nepbaums
3.372 1.627 Lost in Translation 3.361 Miss Congeniality
IIIIIIIII 3748  1.609 The Passion of the Christ 0951 3.963 Arperican Be_aut.y
3.077 1.595 The Life Aquatic with Steve Zissou 3.361 Miss Congeniality
......... 3230 1503 _Coyote Ugly 0.948 Z ggg ggfri?gl r’g;nenbaums
. 1494 SinCi : u
= K an 0.944 4.593 The Shawsha'nk.Redemption: Special Ed.
Table 7 — Films with Lowest Rating Variance 3.361  Miss Congeniality
Rating  StdDev  Title 0.937 13“3‘21 Il\;[()lrs(: ?}i)ilee}r?ilzl:l%tsz Two Towers
0.372 LOTR: Return of King, Extended 4' 307 The Greef Mile Y
0.383 LOTR: Fellowship of Ring, Extended 0.936 ' . L
3.361 Miss Congeniality
0.396 LOTR: The Two Towers, Extended 4.435 Lord of the Rings: Fellowship of the Ring
0.459 The Shawshank Redemption Special Ed. 0.935 3.361 Miss Coneenialit ’
- . geniality
0.509 Raiders of the Lost Ark 3372 Lost in Translation
0.577 SFar Wars, V: Empire Strikes Back 0.933 4,094 Forrest Gump
0.603 Finding Nemo
0.611 _Schindler's List Table 11 - Films of Lowest Distance (d'mn)
ggg it}?:dGE(}i, fle\t/t[;er Distance | Rating  Title
- 0.124 33(1)’37 Iﬂg;g g elloyrvship of ]E:he Ridngd: Extended
. . . . . : rs: Exten
Table 8 - Films with Highest Correlation (p'mn) 475 TOTR. Retum of the King: Extonded
Corr Rating  Title i i 0-131 4.703  LOTR: Two Towers: Extended
0873 4717 LOTR: Fellowship of Ring: Extended 0.134 4723 LOTR: Return of the King: Extended
4.703 LOTR: The Two quers: Extended ) 4.717  LOTR: Fellowship of the Ring: Extended
0.850 4.723 LOTR: Return of King: Extended | 4723 LOTR: Return of the King: Extended
4.703 LOTR: The Two Towers: Extended 0.170 4.545 LOTR: Return of the King
0839 4.723 LOTR: Return of King: Extended 0.18 3.609 Shall We Dance?
4.717 LOTR: Fellowship of Ring: Extended 187 3.790 In the Line of Fire
0.814 4.435 LOTR: The Fellowship of the Ring 0.188 4717  LOTR: Fellowship of the Ring: Extended
4.461 LOTR: The Two Towers ) 4.545  LOTR: Return of the King
0.801 4.092 Harry Potter and the Sorcerer's Stone 4.703 LOTR: Two Towers: Extended
4.045 Harry Potter and the Chamber of Secrets 0.188 4.545 LOTR: Return of the King
0785 4.545 LOTR: The Return of the King 3.766 Rules of Engagement
4.461 LOTR: The Two Towers 0.190 3.609 Shall We Dance?
3.814 Lethal Weapon 3 :
0.764 3.877 Lethal Weapon 2 0.190 jgii Iézzrcgv Clr;(rit(;‘:
0.761 4.545 LOTR: The Return of the King 0.191 4703  LOTR: Two Towers: Extended
4.435 LOTR: The Fellowship of the Ring : 4.461 LOTR: Two Towers
0757 3.874 K@ll B@ll: Vol. 2
3.759 Kill Bill: Vol. 1
0754 3.604 Star Wars, I: The Phantom Menace ACKNOWLEDGMENT
3.550 Star Wars, II: Attack of the Clones

Table 9 - Films with Lowest Correlation (0'mn)

Corr Rating Title
0267 3.280 The Royal Tenenbaums
s 3.398 Pearl Harbor
2.901 Punch-Drunk Love
-0258 3.398 Pearl Harbor
3.372 Lost in Translation
-0253 3.398 Pearl Harbor
3.725 Annie Hall
-0253 3.583 Armageddon
3.352 Adaptation
-0249 3.398 Pearl Harbor
0241 3.372 Lost in Translation
) 3.583 Armageddon
3.725 Annie Hall
-0239 3.398 Pearl Harbor
0237 3.280 The Royal Tenenbaums
) 3.583 Armageddon
0235 2.901 Punch-Drunk Love
) 3.640 Double Jeopardy
2.901 Punch-Drunk Love
-0.234 3.583 Armageddon

A. Pariser would like to thank the Yale University Computer Science

department for providing a venue to study this data, as well as Frederick Shic
for helping focus the project. Thanks are also due to Daniel Spielman, who
provided the author insight into ways to analyze clusters.
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Face Recognition
A Comparative Study

Yan Sui

Computer Science Department, Yale University

Abstract—The conventional face recognition system consists
two parts: training and classification. The training part normally
includes principle component analysis to reduce the
dimensionality of images. In classification, a qug image is
projected to the reduced dimension and then compacke with
training images. Both training and classificationcould be done
using neural networks’ techniques. Specifically, €A in the
training phase could be done by neural network withHebbian
learning and the classification could also be donasing a feed
forward net. This paper compares the conventionalechniques of
face recognition with the techniques from neural nsvorks.

Index Terms—face recognition, eigenvalue, eigenvector,
eigenface, principle component analysis, singular alue
decomposition, neural network, hebbian learning, fed forward
net, backpropogation

I. INTRODUCTION

developing the recognition system. Typically, imagre of
size 100 pixels by 100 pixels, or more. For greglesimages,
each pixel could take on any value between 0 and. 25
Therefore, ten thousand dimensions of data needoeo
considered. Such high dimensionality of image data
contributes to complexity of the problem. Sincelasge
number of pixels could change their values due tslight
change in lighting and facial expression, recognitiby
comparing corresponding pixels in a pair of imagesery
inefficient and non-robust.

A more advanced face recognition system consistsvof
phases: training and classification. The firsagghconsists of
training a system on a set of labeled images. primeary task
of training is to reduce the dimensionality of ttraining
images. Training is an offline process and it vafothe
classification phase, an online process, to perform
comparisons among images in the reduced dimension.

To achieve the reduction of dimensions, the stahdace
recognition system uses principle component aralfBCA).
As well known, PCA presents the data in a way thaximizes
the variance within the data. A nearest neighHassifier
could then be used to compare a pair of imagesemaduced

FACE recognition has become a central technology fQfimension by computing the Euclidean distance betviem.

identity verification. Commercial systems are athg
widely used in access control and proactive suareik
applications all over the world.

Face recognition is not an easy task because ohtajor
obstacles. Lighting conditions could significantlistort the
content of the image. Makeup, hairdo and outfitldo
significantly change an individual's appearance. p&ir of
images of the same individual may look dramaticdifferent.
Such difficulties can make recognition extremelwltdnging.
Moreover, difference in facial expressions also plicates the
recognition problem. We shall, for simplicity, as® the
lighting conditions are fairly constant. A gooddambust face
recognition system should work on faces with slifgntial
expressions. For convenience and simplicity, wg oonsider
vertically oriented grey scale images.

Face recognition begins with a collection of laddl@ages.
The label identifies the individual in the imag€hese labeled
images, also called training images, are the bdses

The winner of this classification protocol is ttaéled image
that has the shortest distance from the target @magthe
reduced dimension.

Both the training and classification phases ofalgmrithm
could be performed using neural networks. A nenedivork
using Hebbian learning also produces the principle
components. A feed forward net could be usedacebf the
nearest neighbor classifier in the classificatibage.

Section Il will present two different techniquesr fthe
training phase, namely the eigenface technique #r&l
Hebbian learning neural network. Both are usedind the
principle components. The classification could e#ber a
nearest neighbor classifier or a feed forward fidtese will be
introduced in Section Ill. Since we have two opsiofor
training and two options for classification, thexee total of
four ways to construct the face recognition aldmnit In
section IV, the performance of each of the fouoathms are
presented and compared. The advantages and ditages
of each option are discussed. Conclusion willrbgeiction V.



Neural Network Theory and Applications 2006 - Yale/DCS/TR-1376 32

eigenvectors ofA"A. The diagonal of S are the singular

values, or the square roots of the eigenvalueé.é?, in
descending order.

Therefore, the first K columns of matrix U are #ane as
the eigenvectors of the covariance majtithat correspond to
the K highest eigenvalues.

II. TRAINING

A. Eigenface

Principle component analysis, originated as asticédil
analysis technique, identifies a way to represagit h
dimensional data in lower dimensions. The reprasiem of
the training images in lower dimensions is callesl t
eigenfaces. See figure 3b). Eigenfaces haverwoitant
properties. The dimensions, or eigenfaces, at®ganal to
one another. A good estimate of the original databe
reconstructed by simply sum up the eigenfaces.

An outline of an algorithm to find eigenfaces framages is
listed below:

1. For each training image i=1 ... m, place its pixets
a column vectorX;. m is the number of images.

L Fi 1. le of f
2. Compute the mean face of the training images: p gure = an example ot mean face

1y
Tz

Figure 1 shows an example of the mean face.
3. Compute the covariance matrix:

B. Neural Network using Generalized Hebbian Algorithm

m Besides eigenface, principle components can also be
:LZ(X_ - 1)(x _,U)T computed using neural network with Hebbian learning
_1|—1 ' ' visualization of the neural network to compute firat K

4. Compute the eigenvalues and eigenvectors of the ~ Principle components is shown in figure 2.
covariance matri},

5. Choose the first K eigenvectorsYfthat correspond to
the largest K eigenvalues

6. Project the training images onto the principle
component subspace of dimension K

Note in step 3, the covariance matrix has high dsimns, p
by p, where p is the number of pixels in each imagés
memory intensive to compute such covariance matrix.
Fortunately, eigenvectors can be computed withiosit f
computing the covariance matjx by using singular value

decomposition (SVD). Fig 2. Neural Network for Hebbian Learning
If we combine the m column vectors into a matrix A Here m is number of pixels in each im
Az % %]
and subtract the mean face u from each trainingéma Here, there are m input nodes and k output nodets the
A=A-u number of pixels in the images and k is the nunalber
1 principle components to be computed. There isightealue
therefore,> = AAT  (ignore the scalar——) associated with each edge in the figure. The viighn be

written in matrix formW. The following functions are used to

update the weight matrixv.
According to SVD, any m by n matrix A may be faetras

the following:
A = USV'
where U is of size m by m, S is of size m by d anis of
size n by n. Also, the columns of U are the eigetors of

AAT. They are conveniently sorted by their corresjramnd
eigenvalues, in descending order. The columns aféthe
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yj(n):ZWji(n)Xi(n) j=12,..k

J
2w () =Ly, ()%, (n) = ¥, () 2w, (n)y, ()]
p=1
i=12,.m j=12,.k
Wheren is the learning rate.
In the beginning, entries in the weight matik are
initialized to small positive values. An iteratipeocess to
update the weight matriw is used here. The training images
are fed to the neural network, one at a time, repiba After
each iteration, the weights are updated. The gsos®ps
after the weights are stabilized. The weight matriis of size
mx K. The columns ofw are the first k principle
components. Or equivalently, the first column efgit
matrix W is the first principle component. And the second
column of W is the second principle component and so on.
For fast convergence, the following implementaigsues
need to be considered.
» Updating the learning rate. Gradually decrease the
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. Fig. 3 b). First 10 eigenfaces or eigenvectorsesmonding to the first 10
learning rate to ensure faster convergence. eigenvalues of a sample collection of images
e Testing for convergence. Every time after feedilg

training images to the neural net, the change in As in

weight matrix W is compared to a threshold value.
Terminate the process if the change in the weight
matrix is less than the threshold.

Both eigenface and Hebbian Learning produce priacip
components of the training images. But the nunalber
dimensions to keep, or the value of K is a chaéfefor the
user. In general, a larger K reserves more inftondrom
the original data and results in a smaller recotsn error.
At the same time, keeping more dimensions alsoymes
more work to do in the classification phase. Adjp@y to
optimize the trade off between speed and accusattylook at
the eigenvalues as in Figure 3 a). Here, K = H)geod
choice due to the fact that eigenvalues drop afratically
after the first 10. In essence, eigenvectors #fiefirst 10
carry a lot less information than the first 10 eigectors and
can be ignored. The visualization of the firstel@enfaces for
a sample collection of faces is shown in Figurg.3 b

eigenvalue
14000 T
@

12000 &
&
10000 F
&000 -
B000 -

4000

2000

o 10 20 30 a0 s0 B0 70

Fig. 3. a). Eigenvalues of a sample collectiomuaiges

If the columns of matrixw are the principle components
of the training images, each training image camptogected
to lower dimensions by a simple multiplication.

Yi=We X

W is a matrix of sizek X m and each row ofw is a

principle component. X, is a vector of sizemx1

containing the pixels of image i.Y; is the vector in the k
dimensional space.

After all training images are projected to the gpaoe of
dimension k, the next step is classification.

[ll. CLASSIFICATION

The goal of classification is to find the trainiimgage that
best matches a query image. To find the best match
comparisons between the query image and each of the
training images need to be performed. Note that al
comparisons are done in the reduced dimensionasfand
easy way to do classification is to use nearesghteir
classifier.

A. Nearest Neighbor Classifier

The distance between an input image and a trainiage
is computed as follows.

k
dist =_ > (train[i] —input[i])
i=1
The difference in each dimension is squared and the
added. The training image having the minimum dista
from the query image is the best match.

This method is very simple and effective. Since th
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principle components are orthogonal to one anottfes,

Euclidean distance between two points in the redluce

dimension is a good measure of the difference beivieo
images. As we will see in the next section, nagareghbor
classifier performs fairly well with PCA.

B. Feed Forward Net

The classifier could also be implemented using fe
forward net. The idea is to train the feed forvaet with
the labeled training images. Use back-propagation
update the weights so that the neural net will gacze each
training image. A visualization of the net is stmowr Figure
4. Each training image is fed to the net only ondehis
process is a form of learning with a teacher, sitioe
training images are all labeled.

In Figure 4, there are K input nodes in the in@yet,
representing the K principle components of the ingata.
In the output layer, there are C nodes, where Ghés
number of classes, or in this case, the numberiffefreint
individuals in the training images. As in any fdedward
net, the number of hidden layer is critical to periance.
Having too few hidden layers results in
classification. On the other hand, too many hidtigmrs
dramatically slow down the classification procesSome
initial experiments show that two hidden layersaigjood

balance between speed and accuracy. The valuacht e

output node represents the distance between tha anul
the node’s corresponding class. If node yi hasrimemum
value, then class i is the best match to the input.

Output layer

Hidden layers

Fig. 4. Feed forward net with K input nodes, Gpatt nodes, and
two hidden layer each having K neurons

IV. PERFORMANCE EVALUATION
So far, two methods of computing PCA and two pdssib
classifiers are introduced. There are a totaloof fpossible
combinations.

Eigenface with nearest neighbor classifier

€

inaccurate

34

Eigenface with feed forward net
Hebbian learning with nearest neighbor classifier
Hebbian learning with feed forward net

To illustrate to power and limitations of each bé tfour
methods, experiments were conducted using the sataeset
for each of the four combinations. The images wgeid from

T&T laboratory at Cambridge University. In thetdbase,
there are images of 40 different people. Eachviddal has
10 images taken with slight lighting and facial eegsion
changes. See Figure 5 for a shapshot of a sulistteo
database. The first seven images of each persmnused as
training images. All images were used as quengasado test
for accuracy.

Fig. 5. Images from database of AT&T laboratorambridge
University

The classification accuracy of the Hebbian learnivith
nearest neighbor and feed forward net are showsigare 6
and 7, respectively. K, the number of principlenponents
used for classification, varies from 1 to 21 and tlumber of
iteration to feed the training images to the neuwet varies
from 10 to 100. Note, the number of iteration fidycan upper
bound. The iterative process may end before ithes this
upper bound, if weights are stabilized early.

100

e P
. . I
el Y
:Q// - |_‘ —&—iter = 10
60 / iter = 20
40 ==fe==iter = 50
iter = 100

20 -—/‘“\'

K=1 K=6 k=11 k=16 k=21

Fig. 6. Hebbian learning with nearest neighboicsss rate as K and
iteration vary
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90
85 = /\ v

Pl > N —&—iter = 10
80 ——~24 — ')— o

N | iter = 20
75 - iter = 50
iter = 100

70 =
65 T T T T

K=1 K=6 K=11 K=16 K=21

Fig. 7. Hebbian learning with feed forward netcess rate as K ar
iteration vary. Note that in the case of feed famdvnet, the result is
fairly consistent with different number of prinagptomponents.

For Hebbian learning with nearest neighbor claasifi
accuracy gets better as the value of K and the euib
iterations increases. The accuracy of Hebbiamiegwith
feed forward net is relatively consistent as shawfigure 7.
Notice that the accuracy in figure 7 is greatenti@% even
when K = 1. This is due to feed forward net’s iypiio
correctly recognize the training images.

The classification accuracy of eigenface with boéarest
neighbor and feed forward net is given in figure 8.

120
100

-

80 = —&— Nearest
/ Neighbor
60
‘ Feedforward

40 Net

20

0 T T T T
K=1 K=6 K=11 K=16 K=21

Fig. 8. Eigenface with nearest neighbor and femuvdrd net
varying the value of K

We can plot the four combinations on the same gitaph
better visualize of the comparison, as shown imfE®.

120

100 1 | Hebbian, FFNet
i -2} uf ebbian, e

80'; 4 ; G v jv Eigen, Near Neighbor
4

60 “ eigen, FFNet

Hebhian, Near Neighbor

40

Fig. 9. Accuracy of all four combinations as Kiieases.
Note: Accuracy for Hebbian Learning is sampledattion = 50
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Several interesting points to note:

< For the training phase, eigenface produces slightly
higher accuracy. This is expected because hebbian
learning is an iterative process that estimates the
principle components. Errors in principle
components need to be tolerated when using
hebbian learning. Eigenface, on the other hand,
finds the optimal solution in one shot.

e For classification, nearest neighbor does a slghtl
better job than feed forward net, when K >= 11.
Feed forward net does a better job than nearest
neighbor, when K < 11. This is due to the faet th
nearest neighbor needs good results of PCA to
work well. When K is large, more information
about the data is captured in the principle
components.  Thus nearest neighbor performs
better. Conversely, feed forward net does not
require as much information to recognize the
training images.

V. CONCLUSION

Face recognition, when assuming good lighting diorliis
a well-researched problem. The simple and effectvay to
do face recognition is to use eigenface with neareghbor
classifier. As shown in this paper, it works rezdaly well.
While face recognition can also be implemented gusieural
network techniques, it is not commonly used in flgkl. The
major problem with neural network in face recognitis not
the accuracy but speed. For both training andsifieation,
neural network runs a lot slower than the simplgervector
calculation. The iterative process of neural nekwionits its
applicability to face recognition problems. In #aboh, as we
discussed, when using neural network, there arenabar of
parameters that need to be carefully initialized apdated
before and during the iterative process. This atsdes the
use of neural network more complicated and lessratds
than eigenface.

Feed forward net recognizes the training imagesy ver
accurately with little help from the training phasé works
exceptionally well in recognizing images it has rsdefore.
For applications whose query images are a subseitsof
training images, feed forward net could be the ilgad
candidate for classification.

Currently in face recognition, the query image rsetxlbe
compared to each and every training image in thiitrg set
during classification. If there are a large numbeétraining
images, the large number of comparisons will sigaiftly
reduce the speed of recognition system. Instdasl,query
image should only need to be compared with eads dtathe
training set. For future studies in face recognitiinstead of
features describing each individual image, featalescribing
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each class or each individual person, should besiigated.
This will greatly speed up the classification prexe

In summary, face recognition could also be solvsthq
techniques in neural networks. But the iterativecpss of
neural networks needs a long time to converge. eNbeless,
there is potential in using neural network techa&un
classification to improve the performance of fageognition.
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Note Onset Detection in Audio Sources

Andreas Voellmy (andreas.voellmy @yale.edu)

Abstract— This paper presents the results of an investigation
into note onset detection methods, in particular a note detection
method using the high-frequency content of a signal and simple
peak detection. The performance of this method is evaluated
with sample audio in a variety of different musical styles. The
advantages and disadvantages of this method are discussed and
suggestions are made for further investigation into machine
listening algorithms.

Index Terms—machine listening, note onset detection, beat
tracking systems, audio.

I. INTRODUCTION

OTE onset detection, the temporal identification of note

locations in audio sources, is an essential component in
a variety of musical applications. Note detection is used in
automatic transcription systems and real time musical appli-
cations, such as beat matching software for DJs and interactive
performance of electronic music. Note onset detection is
typically used in beat estimating applications, which use note
onset events as inputs for the analysis of inter-note intervals
and tempo estimation.

A variety of methods exist for detecting events in audio sig-
nals, some of which use neural nets [3]. This paper examines
one such method, developed by Jensen and Anderson [2], that
uses a single audio feature, the high frequency content. The
simplicity of this method makes it suitable to real-time musical
applications. The following sections describe the method and
present the results of evaluating the method on a variety of
musical examples.

II. NOTE ONSET DETECTION ALGORITHM

Kristoffer Jensen and Tue Haste Anderson [2] developed
a method for estimating the beat interval of musical audio
which can be used in real-time musical applications to predict
locations of beats. They have used this method in DJ software
that automatically synchronizes two pieces of audio. In a
first phase, the method uses a note onset detection algorithm
to identify potential rhythmic markers in the audio source.
In a second phase, the detected note onsets are used in a
beat induction method that calculates the most probable beat
intervals. This paper describes the note onset method.

The note onset detection method of Jensen and Anderson
looks for peaks in the high frequency content of the audio
source. High frequency content is a measure that emphasizes
the higher frequencies, and is calculated by computing the
discrete Fourier transform of an audio signal. It is defined as,

B/2

hfc= Za,mz (D)
n=0

where B is the block size of the audio segment, i.e. the
number of samples in the audio segment, and a, is the

magnitude of frequency bin n. Jenson and Anderson define
a time-varying high frequency content by computing the high
frequency content over a window that slides over the audio
signal. This can be defined as,

B/2

hfe(ks) =Y angn® 2)

n=0

where kg is an index into the audio signal stepping by
S samples and a, ; is the magnitude of frequency bin n
computed over B samples centered at S X k, i.e. the samples
from S x k— £) to S x k+ £). Jensen and Anderson use a
block size B of 2048 samples and step size S of 1024 samples,
which they found to work optimally.

The time-varying high frequency content of the audio signal
is then peak filtered to identify potential note onsets. The set of
peaks is the set of block indexes, k, that satisfy the following
criterion:

Peaks = {k | hfe(k—1) < hfe(k) < hfe(k+1), hfe(k) > 0}
3)
where 6 is a threshold over which the peak must rise.

As an example, figure 1 shows an audio signal along with
the high frequency content and peaks computed from it. Note
that the audio signal and high frequency content are both
normalized to the range [—1,1]. The high frequency content
clearly tracks this simple percussive signal closely.

While many peaks identified with this method correspond
to appropriate rhythmic elements of the audio signal, others
are spurious, i.e. they do not correspond to any perceivable
note onsets. Such spurious peaks can be seen clearly in figure
2, which shows the analysis of a complex audio signal from
a string quartet. The threshold 6 helps to eliminate some of
these spurious peaks. Unfortunately, raising the threshold to
elimate spurious peaks often elimates real peaks.

Adding an event coalescing step significantly reduces the
number of spurious peaks. The coalescing method merges
peaks that occur within some time threshold § of each other.
The method replaces such pairs with the average of the pair
and iterates over the peak set until a fixed point is reached.
This can be described with more formally as,

Pairs(P) = {(i,j) | |P, - P;| < } 4

Au(P) = (5L | o) € Pairs(P)}) )
Spur(P) = {i| (i,a)or(a,i) € Pairs(P)} (6)

P, = Py U Av(Py_1) — Spur(Py-1)} (7
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Fig. 1. Audio signal with high frequency content and peaks shown. Sample taken from Daft Punk song “Da Funk”.
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Fig. 2. Audio signal showing spurious peaks. Audio taken from a performance of Satie’s Gymnopedies for solo piano.

IIT. RESULTS

I evaluated the note detection method with a set audio
signals from a variety of musical styles. The clips include
simple clapping and percussion clips, solo piano, solo guitar
and string quartet clips. In addition to the visual display (as
seen in figures 1 and 2, I developed an auditory display in order
to audition the quality of matching. This display creates a new
audio clip with short reference tones inserted at every match
point. This measure is very effective, because the human ear is
very good at detecting accurate timing. By listening alone, it
is clear that the note detection method is effective with simple
and highly percussive music and much less effective with non-
percussive music.

Furthermore, I developed a quantitative measure of success
that compares detected note events with reference note events
in audio clips. I manually analyzed a number of audio clips
and determined the timing of each significant note event. These
timings are not entirely precise and are assumed to have a
tolerance of £15ms.

The quality of note detections was judged on two criteria:

the percent of reference notes found, and the ratio of the
number of reference notes found to the total number of notes
found. These measures are important because consumers of
note event data will likely require a sufficient number of real
detections without too many spurious detections confusing the
signal. For example, Jensen and Anderson found that their
beat estimation method required approximately 75% of events
identified in order to perform adequately.

Because the performance generally depends on the value
of the threshold 6 used, we let Py be the set of detections at
some threshold 60, P,..; be the set of reference events, and ¢
be the error resolution of the reference events and formalize
these criteria as:

MatchingPy = {p | p € Py, 3j € Pres-1j —pl < ¢} (8)

MatchingP,
RefsFoundy = M 9)
|Pregl
RefsFound
NonSpuriousy = M (10)

| Pol
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I also define a measure of the most peaks matched, that is, the
number of peaks matched with zero threshold:

MaxMatched = |MatchingPy—o| (11)

These numeric measures can be used to confirm the result
that this note detection method works better for percussive
music than for non-percussive music, as can be seen in Table
L.

I found that note detection is highly sensitive to threshold
selection, though slightly less sensitive in simple, percussive
music. This can be seen in figures 3 and 4, which show
note detections as a function of threshold for clips of simple
percussion and solo guitar respectively. The method performs
more poorly on the solo guitar clip overall, and reaches 0
detections more quickly.

Figures 3 and 4 also show the effect of the coalescing step
of the algorithm, by showing NonSpuriousg for peaks with
and without coalescing. In figure 3 coalescing typically elimi-
nates all non-spurious detections, while in figure 4 coalescing
only eliminates non-spurious detections at very low threshold
levels.

IV. DISCUSSION

The note onset detection method of Jensen and Anderson
appears to perform better on simple percussive music and
worse on complex or non-percussive music. It also tends to be
very sensitive to the threshold parameter and generates many
spurious detections.

However, the performance may still be adequate for many
uses. For example, beat estimation methods may perform
adequately with many missed notes and spurious detections.
Jensen and Anderson’s beat estimation procedure involves the
construction of a probability vector of inter-onset intervals.
This probability vector may still tend to indicate a reasonable
tempo despite numerous missed events.

On the other hand, the performance is not sufficient for
automated music transcription purposes or other uses requiring
a high degree of accuracy and precision. Other methods, such
as the neural net-based approach used in Marolt, Kavcic, and
Privosnik [3], may perform better for such tasks.

Due to the limited number of reference audio clips used
in this investigation, these preliminary results can only be
interpreted as indications of performance. A much larger set
of reference clips should be used in order to fully evaluate
and quantify the performance of this, and other, note detection
methods. Producing high quality event timings on audio clips
is a time-consuming manual task. Further work should identify
a database of such reference clips or work to create such
a reference database. Such a database would be useful for
the quantitative comparison of the many published note onset
detection methods. Typically, no inter-method comparisons
are published, making it difficult for choose a method for a
particular use.

Further work should be done to compare the performance
of using high-frequency content with using simple audio
amplitude. Using amplitude is the simplest approach to note
detection and would establish a reference point for other
methods.
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A more serious problem with the general approach of note
onset detection lies in how to define a note onset or an
event. Though the definition of events in extremely simple
percussive music is fairly clear, such a definition is difficult
to make for most music. Most music has overlapping and
complex events, with multiple levels of detail. Human listeners
may have difficulty identifying individual events and may
require careful, repeated listening to perceive events. Different
listeners may interpret events differently, with expert listeners
identifying finer details of the music.

Despite these difficulties in detecting note onsets, humans
have no trouble tracking beat and tempo and precisely co-
ordinating their actions with musical audio. This suggests
that detecting note onsets is not essential to both temporal
coordination and beat perception, and it suggests that the
mechanisms may be somewhat independent. It also suggests
that detecting note onsets may be useful in only a small
number of cases, and that other methods of processing audio
are useful for most tasks. Indeed, a beat tracking system built
by Eric Scheirer [4] estimates beats without identifying note
onsets. The method processes audio directly, using resonant
filters to identify probable rhythmic pulses. This method draws
on psychoacoustic experiments that show that some audio
signal simplificationspreserve listeners perception of pulse and
rhythm. One example of such a transformation is “amplitude-
modulated noise” in which white noise is resynthesized with
the amplitude envelopes of an original signal in a few (4-6)
frequency bands.

V. CONCLUSIONS

Note onset detection can be performed adequately for
simple, percussive audio signals by applying a thresholded
peak detection algorithm to the time-varying high frequency
content of a signal. Note onsets are much more difficult
to define in most musical audio sources. Fortunately, for
most applications of machine listening, accurate note onset
are probably not required. I am interested in investigating
the neural mechanisms for the psychoacoustic properties of
rhythm and pulse. Such understanding may lead to more
effective algorithms for machine understanding of rhythm in
audio sources.
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TABLE I
EVENTS MATCHED BY REFERENCE CLIP

Clip Description MaxMatched
Clap3.aif monophonic clap 1.0
DaFunk-Short-1.aif simple percussive 1.0
DaFunkFill-Short-1.aif simple percussive, high-pass filtered 0.67
Starobin-Short-1.aif solo guitar 1.0
Satie-Gymno-Short-1.aif solo piano, chords 0.5
Schiff-Goldberg-Short-1.aif | solo piano, two voice counterpoint 0.77
Kronos-Glass-Short-1.aif string quartet 0.67
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Fig. 3. Detection quality as a function of threshold for a simple percussive audio clip.
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Starobin-Short-1l.aif

—®&—— % found

A - % non spur

—-—%-—-— % non spur after merg

Fig. 4. Detection quality as a function of threshold for a solo guitar audio clip.
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