Neural Network Applications

Willard L. Miranker
April 2006
TR-1357

Table of Contents

1. Effects of Variable Learning Rates
Erik Brown 1

2. A Modification of the Kohenen Learning
Algorithm to Model the “Perceptual Magnet Effect”
Haben Michael 11

3. Biasing Techniques in Genetic (Evolutionary)Algorithms
Semih Salihoglu 25

4. Exploring the Effects of Dataset Pollution on
Neural Network Model Complexity With Simulation
Andrew Smith 35

5. Language Identification from Written Text
Simon R. Spriinker 49

Effects of Variable Learning Rates

Erik Brown
Yale University, Computer Science
New Haven, CT 06520
Abstract .
We study the convergence behavior of neural networks as a model for long term human
learning and the effects of neural atrophy. The neural networks undergo supervised
learning in which the learning rate parameter, 1, is varied with each epoch of training, In
particular, the learning rate parameter is exponentially decreased over time to simulate
the effects of neural atrophy. The convergence properties of these nets are then '
compared to those of networks undergoing the same supervised training, but which have
a constant learning rate parameter for all of the epochs. We found that the networks with
- avariable learning rate generally took longer to converge to a final configuration;
however their output was more accurate.

1. INTRODUCTION

The topic of human learning has been at the forefront of cognitive science since its
infancy. There is something alluring about the many intriguing peculiarities in the
learning behavior of humans. For example, it is commonly known that learning new
cognitive tasks, especially linguistic tasks, is performed more quickly by children than
middle-aged and elderly adults. However, it is also widely hypothesized that elderly
adults make up for short comings in memory capacity and speed of information
processing by using contextual cues from the environment (Jerger & Martin, 2005). This
leads to the question why does the ability to learn new information tend to decrease with
age?

Past research using similar models has shown how various factors influence short
term development of learning tasks. These studies focused on factors such as other
children in the household and also age-weighting the instructions of different family
members (Barley, 2004; Logan, 2004). Since these studies attempted to understand short
term development of children, they only allowed the children to learn at one rate for all
training inputs. In this research we have developed a model of long term learning that
incorporates neural atrophy. In other words, as the learning process is continued
throughout a lifetime the ébility to learn new material decreases. This is modeled by
continually decreasing the value of the learning rate parameter, N, during the learning
process (see section 2.2). With this model we hope to test hypotheses of age-related
learning differences such as that mentioned above. :

: 2, THE MODEL
2.1 Roles
The experiments involve two agents, a student and a teacher. A student is a person
learning a new task while the teacher is the one responsible for providing feedback to the
students to aid in the learning process. Each student is represented as a neural network
and the training of that network corresponds to the student learning a task. Learning is
modeled as the student’s ability to recall information that the teacher has previously
presented. Namely, each student is trying to learn the correct association between an
input and its corresponding output supplied by the teacher. During the process the
teacher’s behavior never deviates: given the same stimulus at different times, the teacher
will always produce the same desired reaction. On the other hand, the behavior of the
student will change dramatically. Initially, the students are uninformed and know
nothing about what they will be learning. Over time, they will learn the task and start to
emulate the responses of the teacher. :

2.2 Neural Atrophy

Neural atrophy refers to loss of plasticity in the brain. As neurons age they lose the
ability to change their synaptic response to action potentials and hence learning of new
information is degraded. To model this behavior, we decrease the learning rate
parameter, 1, during the learning process. This simulates the onset of neural atrophy
since the smaller 1 is the léss the network changes its weight configuration. Since
atrophy is a process that takes years to set in, our research gives a long term model for
associative learning of new tasks.

3. SPECIFICATIONS
3.1 Network Configuration
Our work uses networks being trained to reproduce a desired output to model students
learning a task from a teacher. To keep the model as simple as possible, the neural
networks only have one hidden layer. The number of nodes in the hidden layer was
initially varied to find the configuration that was the most stable. We chose to use a
network with four binary input nodes, four nodes in the hldden layer, and one node in the
output layer. '

3.2 Training

The training of the neural networks uses the back propagation algorithm in which the
change in the weight vectors is proportional to the gradient of the error surface (Haykin,
1999). Furthermore, this algorithm uses credit assignment to calculate how much each
layer contributed to the total error of the output layer, and then changes the weights of

each layer accordmgly An anti-symmetric activation function with near unity gain at the
origin is used. Both the initial weights and the desired outputs are chosen to lie in the
linear portion of the activation function to avoid early saturation of the weights during the
learning process. Since we use four binary input nodes in this model, there are only 16
different inputs possible and therefore 16 different desired outputs that need to be chosen
for the one output node.
For each experiment, 100 trials with different student-teacher pairs are conducted
-and the quantities of interest are ensemble averaged to negate the effects of the randomly
sampled initial conditions. All of the different experiments are trained with the same set
of 100 student-teacher pairs so that comparisons can be made between experiments. We
use sequential training for all of the experiments, in which a student is able to learn from
each individual input. For each epoch of learning, the students are presented with a
random sequence of the 16 possible inputs.

3.3 Variable Learning Rate '
For the experiments conducted with a variable learning rate, it followed a set evolution as
the epochs of training progressed. Namely, it went by the equation:

. it
(t) = (fod M ded + i |)
where t is the epoch index, 1 is the initial value, 1 is the asymptotic value, and tis a
characteristic time constant. For these experiments, this equation was reduced to a one
parameter family by setting 1,=0.005 and t =2000, leaving only 1 to be varied.

3.4 Convergence

The criterion for convergence of an experiment is determined by measuring the running
standard deviation of the ensemble averaged error as a function of epochs of training.
Each run is limited in length to 10,000 epochs of training'regardless of the final error.
The running standard deviation is computed using a window size of 500 epochs. An
experiment is defined to be converged when its running standard deviation stays below
the threshold of 8x10™ for the remainder of the 10,000 epochs, The index of the last
epoch for which the running standard deviation goes below the said threshold is when
convergence is defined to occur. This definition requires that each run be continued for
the maximum number of epochs, and the epoch where convergence occurs will be
calculated after the run is conducted. In this way, for a net that cOonverges we can
associate to it the number of epochs to convergence as well as the ensemble averaged
error at convergence. The error is defined by:

, @

where y is the output from the student and d is the desired response given by the teacher.
If a run does not satisfy the convergence criteria, it is defined to have a convergence time -
of 10,000 epochs with its associated error at that point. -

4, EXPERIMENTS
4.1 Constant Learning
This group of experiment serves as the control group of the study. The learning rate is
kept constant, and the learning process is monitored. In particular, we record the
ensemble averaged error in the students’ responses compared to their teachers’ error as a
function of time (epochs). As stated above, the student-teacher interactions are continued
for 10,000 epochs. We conducted 13 experiments, each one utilizing a different learning
rate parameter in the interval [0.001, 0.2]. For learning rates above 0.2, convergence was
not attainable for any initial configuration tried. . .

4.2 Learning with Atrophy

- This group of experiments proceeds in a similar manner to the first, however this time the
learning rate of the students is varied as a function of time as defined in equation (1), with
parameters as defined in section 3.3. Again, we record the ensemble averaged error in
the students’ responses compared to their teachers’ as a function of time (epochs). We
conducted 12 experiments in which the initial value of the learning rate parameter was
varied over the interval [0.01, 0.2]. For initial learning rates above 0.2, convergence was
not attainable for any initial configuration tried.

4.3 Comparisons

Since the two groups of experiments are fundamentally different in that the learning rate
parameter is treated differently in each case, it is difficult to compare data from each
group. For our analysis, we have chosen to compare the two groups based on the initial
value of the learning rate parameter. Although other schemes for comparison can be
envisioned, such as the average value of the learning rate parameter, we believe that the
initial value is most in line with the aims of this study. Since we are trying to investigate
the effects of neural atrophy, it makes sense to look at two students who start with the

same learning rate and then let one of them undergo atrophy by way of the decreased
learning rate.

_ 5. RESULTS
5.1 Learning Time
One value of interest is the time in which it takes the two groups of experiments to reach
convergence. A natural hypothesis would be that the cases with atrophy would take
longer to converge than the corresponding case without atrophy since the students in the

atrophy group cannot reduce their error as fast. Figure 1 plots these results from all of the
experiments. For small values of the learning rate, the two groups of students tend to
learn the task in the same amount of time. However, as the initial leaming rate is
increased we do see that the atrophy group (those with a variable 1) does take
significantly longer to learn the task.

0.05: 0¥ PAB 0.2 O 25
Y.
Figure 1. This figure shows the ensemble averaged number of epochs to convergence
for the two groups constant and atrophied learning,

5.2 Learning Accuracy

Another variable of interest from the experiments is how accurately the students have
learned the task. This is reflected in the ensemble averaged error at the point of

~ convergence. Figure 2 shows these results from all of the experiments. Again, for small
initial learning rates, both groups perform about the same. However, the results at higher
learning rates are unexpectedly reversed — the students with neural atrophy actually learn
the tasks better. The average error for the atrophy group is significantly below that of the
control group.

Figure 2. This figure shows the ensemble averaged error at the time of convergence for
the two groups: constant and atrophied learning.

5.3 Algorithm Effects

For both figures 1 and 2, all of the curves have a minimum somewhere in the middle of
range of the learning rate. Since this effect shows up in both groups, it does not have
anything to do with the topic of neural atrophy. Rather, it is an artifact of the learning
algorithm being implemented. The back propagation algorithm is a gradient descent
method as described earlier. In this context, the learning rate parameter, 7, is acting as
the step size taken on the error surface. Convergence corresponds to the algorithm
finding a local minimum on the error surface. If njis too large, the algorithm can jump
back and forth between different sides of a valley and never find the minimum. On the
other hand, if 11 is too small the algorithm will head in the correct direction, but
convergence will be slower based on the fact that each step is only changing its position
by a small amount. This effect is responsible for the u-shaped curves seen in the
convergence data.

5.4 Staged Learning A _
Another interesting result from this study was the pronounced appearance of staged
learning in the atrophy group. As shown in figure 3, staged learning appears as a very
slow initial decrease in the error followed by a very abrupt large decrease, and then
another region of slower decrease or convergence. This effect is seen in a majority of the
atrophy group but rarely occurs in the control group. As a comparison, figure 4 shows a
representative graph of results from the control group. Although staging is frequent in
the atrophy group, the sharp drop in error occurs at different times. The staging effect is
only seen in data from individual student-teacher pairs, When the data is averaged over
the 100 different pairs, the staging behavior is effectively averaged out since the
characteristic sharp decline in the error occurs at different times for different pairs.

Figure 3. This figure shows the appearance of staged learning for one student-teacher
pair in the atrophy group.

Figure 4. This figure shows a typical learning curve for one student-teacher pair in the
control group.

Although humans are known to undergo staged learning, the results of this study do
not indicate a link between staged learning and neural atrophy. Again, this phenomenon
is most easily described as an artifact of the gradient descent. Ifthe initial learning rate
causes jumping between sides of a valley on the error surface, the learning is going to
proceed very slowly. For the atrophy group however, the decreasing learning rate is able
to stop that behavior abruptly as the step size goes below a threshold. After that point,
the learning will occur rapidly since the network can easily follow the bottom of the
valley down to a local mmlmum

_ REFERENCES
1. Jerger, J., & Martin J. (2005). Some effects of aging on event-related potentials
during a linguistic monitoring task. International Journal of Audiology, v.44, 321-
330.

2. Barley, W. (2004). Modeling child development with colony learning, Yale
University.

3. Logan, J. (2004). A game theoretic and genetic algorithm approach to modeling the
.emergence of mind in early child development with exposure to semi-developed
parents. Yale University.

4. Haykin, 8. (1999). Neural Networks: A Comprehensive Foundation. New Jersey:
Prentice Hall.

10

A Modification of the Kohonen Learning Algorithm to Mode] the
’ “Perceptual Magnet Effect” o

~ Haben Michael
Linguistics Department, Yale University
New Haven, CT 06512

Abstract : B o .

A self-organizing feature map (SOFM) is used to model the perceptual magnet effect, a
claim in the theory of learning sounds that a listener is more sensitive (in a sense to be
made precise) to sounds farther away from the most commonly occurring sounds. From
the standpoint of the feature map, the problem is to modify its associated learning al-
gorithm to capture this anti-Hebbian effect: neuron density is to be least around the

most frequently occurring input patterns, greatest around the least frequently occur- -

ring. On the other hand, the network still needs to categorize the sounds and organize
the resulting categories according to acoustic similarity. This is achieved-by the judi-
cious pruning of neurons: the Kohonen learning algorithm is modified so that a certain
number of neurons nearest to a certain number of the most-active neurons are removed.

1. INTRODUCTION

- When the vocal tract is articulated to produce a vowel, certain formants (fesonant,

frequencies) are associated with the. tract’s physical configuration. It has been shown
that the lowest three of these formants suffice for a listener’s identification of particular
vowels and allow differentiation among them; if a buzsz like the one originating from the
larynx is sent through a tube that is physically manipulated to resonate the same lowest
* three frequencies that are associated with a vowel, then the resulting sound at the other
end of the tube will usually be perceived as that vowel. Therefore, these formants are
often used to encode the vowels of a given language. (Borden, 2002; Stevens, 1972; In
fact, in most cases the first two formants suffice; see Fig. 1, for such a mapping of the
state of Canadian English vowels). ‘
"~ In a spoken language, there are continuous regions of formants that correspond to
(i.e., “sound like”) the vowels of the language. Somewhere near the center of each of
these regions is the point corresponding to the prototypical or most frequently heard
 quality of a vowel. Therefore, the space of possible formants can be thought of as being
divided into several regions, with the formants within a fixed region corresponding to
‘the possible articulations of s fixed vowel. American English is often said to possess 12
of these regions, or “phonemes,” whereas the example of Canadian English shown in
Fig. 1, using formant region mean values to specify the prototypical vowel points, has
. 10. The mapping of the continuous formant space into these partitions is an aspect of
what the experimental literature refers to as “categorical perception.” Given the many
environments that a vowel may occur in, and variations in its formants that a speaker
‘may produce, a fluent. listener almost without fail associates that production with the
intended phoneme (Estes, 1994; Lacerda, 1995; Kuhl, 1991). '

- 11

12

288 g & 8o o
$38888 8 8 Bsasssns
" 300
¢ 4 400
) o
LA '500
[
. - 600
4 LT = foo
AT T T
— 800
900

Figure 1: A graph of the space of formant pairs showing' the vowels of Canadian English. -
The vertical axis represents the first formant and the horizontal axis represents the second for-

‘mant (both in Hertz); the points represent prototypical values, or category centers, of the labeled

phonemes. (A scaling conventional in phonetics is used here, which makes the layout of vow-
els here approximate the layout of the positions of the tongue when articulating these vowels.)

‘http://www.ic.arizona.edu/ Isp/ Canadian /canphon2.html.

An observed effect of this categorization is that a listener is not equally sensitive to
all regions of the formant space, in the following sense. According as acoustic signals
(encoded by their formants) are nearer to a category centér (the prototypical value of
a vowel in the language), a listener is less likely to be able to differentiate between
them. This situation is referred to as the perceptual magnet effect. In the 3-formant
approximation the magnet effect makes the following testable implication. Let a and b
be a pair of points'a fixed distance ! from each other in formant space, and let ¢ and d
be another such pair, also separated by a distance [. Supposing that both members a, b
of the first pair occur closer to a category center than both members ¢, d of the second,
then a listener will be less likely to distinguish a from b and more likely to distinguish
c from d. It is claimed in the experimental literature that this effect is observable by

the age of 6 months (Kuhl, 1991; Sussman, 1995).

2. PROBLEM

The use of Kohonen or self-organizing feature maps to obtain a graphical represen-
tation of the categories of sounds (phonemes) of a language can be traced at least as
far back as (Kohonen, 1983). In the present case, the problem is to determine whether
an SOFM can perform the sort of learning required to exhibit the perceptual magnet
effect: in terms of the neural network, this means fewer weights nearer the centers of
the categories, and more near the periphery. This is the opposite of the typical behavior
of an SOFM. To develop this learning alorithm, the initial experiments were done on a

simplified input space. Rather than actual dats in the form of vowel forma,nt clusters, :

experiments were run on a set of six normally distributed clusters in 3-space centered at
(0,0,0), (0,1,0), (1,0,0), (1,1,0), (0,0,1) and (0,1,1) (gure 2(a)). The six points, treated
as means, replace prototypical vowel values, and the normal distributions replace the
' d1str1bution of vowel qualities within a region, as dlscussed in section 1. For the validity
of this approximation, see Lacerda, 1995,

There are two other considerations in which the empirical facts about lea.rnmg
. vowels are factors, in addition to the perceptual magnet effect. The first is in the
- selection of a feature map, as opposed to some othet neural network. There are various
network types that can learn patterns and with some noise in the input obtain the
nearest matching patterns; with the learned patterns correspondmg to prototyplcal

vowels and the varied input correspondmg to nearby vowel qualities, such a network

~would simulate categorial perception. The choices are, however, limited by the learning

method. A network using a supervised learning algorithm is undesirable since there -

is nothing in an infant’s learning the vowel space by 6 months that corresponds to
target or correct values, against. which outputs are checked for the correction of the
‘network. Second, it was a goal to preserve the general usefulness of the SOFM learmng

algorithm by modifying it as little as possible in modeling the magnet effect. It would-.

be possible, for instance, to have a typical SOFM learn the input space-(fig. 2(b)),
and ‘then attach code to invert the density distribution of neurons. Though this would

produce a model of the memory that demonstrated the perceptual magnet effect, it.

wouldn’t be “learned™ by the network, just directly organized by computation. To the
extent that a neural network is supposed to be a general model of learning, something

s0 specific as a routine. to invert the density distribution was undesirable. A direct

. modification to the learning algorithm, developing a new general algorithm, is the goal.

Similar problems have been discussed in the psychological literature on ezamplar
models of memory (Hintzman 1988). When these models are given sound samples as
inputs, each sample or “examplar” is stored in a multidimensional acoustic space and
phonemes are taken to be statistical modes in certain areas of this space. Category
effects do emerge from the clusterinig of examplars, and certain effects vaguely similar
to the perceptual magnet effect have been interpreted (Goldinger, 1998; Pierrehumbert,
2002). The magnet effect was not conclusively observed, however. -Moreover, these are
~ not learned networks, but “hard:coded” models of memory, dlrectly programmed to
exhibit these eﬂects

13

14

Voweis with variance = 0.03

e 04—

o065k !:‘ x < ;, i
of " =, T
NS
g < ol ” NS L\«“ ,fﬁ’
03sf _ ["i’ "&\ s@&){‘j PO
1Y
L - s

(b) A self-organizing feature map (Kohonen map) using the standard algorithm to learn the six
clusters of points shown in 2(a). The red points are neuron weights, the blue points are the orig-
inal input points, and the blue lines connect adjacent neurons. The axes and coordinates refer
to formant space; the space of fig. 2(a) is rotated for a direct view of the f2-f3 plane (the W(i,2)-
W(i,3) plane in terms of the weight matrix). Density of neuron weights increases/decreases with
the density of the input space. This does not exhibit the perceptual magnet effect, as “dis-
crimination” (neuron density) is greater nearer category centers. (10x10 neurons in a hexagonal
lattice.)

Figure 2: Test data and network trained using the Kohonen algorithm.

3. IMPLEMENTATION

An SOFM usually corresponds to a set of neurons organized on a line or in a two-
dimensional lattice, whose weights during the training phase come to approximate the
layout of data in the input space. Let w;(t), i = L..1, denote the weight vector of
neuron ¢ at time ¢, and let Zj, i = j...N, denote input vectors. The algorithm is a form
of competitive unsupervised learning and proceeds as follows

(Table 1: SOFM algorithm):
1. At time t, select an input vector ¢ at randpm.

2. Determine the‘argument iz(t) of the weight vector that best matches x:

i2(t) = arg min o ~ uy|| 1)

3. Update weights accofdihg to their proximity to i,(t):

wi(t+ 1) = wg(t) + n(6)hg 0 (8) (& - w5(4)) @)

where the neighborhood function hjie)(t) is monotonically decreasing in the dis-

tance [|7 — i, (¢)|| (e.g., the inverse exponentional function centered at iz(t)), and
7(t) is a learning-rate parameter '

4. Iterate ORDERING_PHASE times + rI;UNING‘_PHASE times.

The local effect is Hebbian, A winning neuron at time ¢ (determined in step 2) has its
. weights brought nearer to the the input z(t) (step 3), and is accordingly more likely to
be the best match in future iterations of inputs that are near z(t). Further, in step 3,
neurons that are near the winning neuron in the net configuration (be it line or lattice)
also have their weights updated to be nearer to the input neuron z(t), according to
their proximity to the winning neuron (the monotonicity of & in step 3). As indicated,
the neighborhood function and the learning rate parameter vary with time. During the
first ORDERING _PHASE iterations, the neighborhood function is usually modified to
decrease steadily so that it finally has a value of 1. Specifically, h(t) is the integer nearest
hyo (t/ORDERING_PH ASE) during the ordering phase, where hg is the initial size
of the neighborhood function (usually just large enough to cover the entire network)
and t is the current iteration. Therefore, only the neurons immediately adjacent to the
winning neuron are updated at all at step 3 during the subsequent tuning phase.
When studied analytically the input vectors are modeled by a continuous space X
with a probability distribution fx. The result proposed by Kohonen is,

The point density function of the weight vectors tends to approximate the proba-
bility density function fx of the input vectars, and the weight vectors tend to be
~ ordered according to their mutual similarity.

15

The second ¢ondition asserts that the layout of the input space is reflected in the layout
of vectors in the feature map (he phrases this in terms of “mutual similarity” because,
if there is a reduction of dimension in going to the output space, the actual physical
layout of the weights may look different from the input space, but still vectors that are
nearer each other in the input space will be represented by weights in the output space
that are nearer to each other, and conversely). The first condition asserts that, within
this layout, a denser area of the input space will correspond to a denser area of the
output space, and conversely. Figure 2(b) demonstrates these properties. In particu-
lar, the weights are denser according to their proximity to a category center. Earlier-

. work on SOFM’s sﬁpposed that the point density of the output space (of weights) is

directly proportional to fx (Kohonen, 1982); later analyses have suggested a distortion,
that the point density is actually proportional to f}{/ or)2(/ . modeling the per-
ceptual magnet effect, however, the point density must actually decrease as the input
probability distribution increases. 1 . - A

Initial attempts to invert the probability distribution involved manipulation of
the neighborhood function, but were unsuccessful. For instance, making hji. ()
monotone increasing in the distance ||j — i,(t)||, so that neurons nearer to the win-
ning neuron were updated less than those farther away, did not have the intended
effect but only delayed convergence. Next, to determine which neurons are firing most,
a running count is maintained for each neuron of how many iterations it won. A routine
is then added to the update mechanism, which looked at the “winningest” neurons at

~ each iteration of the tuning phase, and removed a neighborhood of the neareést (in the

neuron configuration) neurons from around them. This, however, only had the effect
(Fig. 3) of equalizing the density throughout the weight space, as one might expect,
since clustering occurs when neighboring neurons develop similarly.

The next and final attempt also involved a running count of each neuron’s wins as
an approximation to the density of the input space. After updating, a fixed number

. of neurons around a fixed number of the most active neurons were removed. This,

presumably, is close to the intuition behind the perceptual magnet effect. If a given
vowel point in the formant space has béen heard very frequently, when a vowel different
but near to it is encountered it is identified with the former vowel. Theé observed con-
sequence that discrimination is lower near the frequently heard vowel. The standard
SOFM algorithm given in Table 1 may be modified to incorporate the following step
3.5 between steps 3 and 4. Let [be the number of neurons, and let wins be a vector
of length [with wins() being the number of times neuron i has been selected:

3.5.
1. Update the counter of wins:

wins(is(8)) = wins(iz(t)) + 1 @)

(Lacerda, 1995) has in fact suggeéted an inverse proportion on the square or cube of the fx, though
I couldn’t find any justification for these values.

16

Qawed

42—

>3 B

Q.85 o]

Figure 3: The first attempt to modify the SOFM algorithm so that weight (red points) density
decreases with input point (blue points) density. Comparing this with Figure 3, the dense regions at
the centers of the six clusters are no longer present. The density distribution isn’ reversed however;
it is just somewhat more uniform over the formant space. (Initial parameters: 10x10 neurons in a
hexagonal lattice; using this algorithm there are typically fewer neurons in the final network.)

2. Setting k to each of the greatest N.-WINNERS(t) values in the wins vector, re-
move the N REMOVE(t) neurons whose weights are nearest to wg(t), i.e., remove
Jo = arg min Ju;(¢) ~ wi(t)] j=1.d

arg min fu;(¢) = wi (0] 5= {10} ~ i}

I

J1

I

INWINNERS = arg mjin llhwi () —we@l 7 = {L..0} = {jo--in - winNERS-1}

. 4. RESULTS
4.1 Using Test Clusters
Demonstrations are presented of feature maps trained on the developed algorithm

in figures 4(a)-5. As described in Section 3, two parameters are introduced into the
system by this algorithm, N.-WINNER being the number of the most active neurons

17

18

to treat as “magnets” and N REMOVE being the strength of these magnets, i.e., the
number of the neurons nearest to the magnets to remove. Appropriate values for these
parameters were determined empirically. Figures 4(a)-4(b) display results for the two
values of N.-WINNERS, 3 and 6. At the category centers (indicated in the figure by
the six greatest clusters of “x” marks), only one or a few neurons’ weights (indicated -
by filled circular dots) remain and to this extent the input space distribution has been
reversed. On the other hand, the size of the network (10x10 neurons) seems too small
for the value of N REMOVE, so that the distribution of weights is too sparse to really
see. the trends in-the distrbution. In figure 5 the number of neurons in the system has
been increased from 100 to 225, giving a more demonstrative picture. The effects are
particularly good at the middle two clusters, at each of which there is just one neuron
with weights at the center, while toward the denéity of neuron weights can be seen to
increase in the areas between the adjacent categories; consequently, any sounds in the

- region vacant region toward these category centers will all be identified with the single

central neuron, while sounds in the area between categories will be more likely to be
identified with different neurons (discussed further below). '

() 10x10 neurons in & hexagonal lattice, (b) 10x10 i
N_WINNERS=3,N REMOVE=]. N Wi o o b

exagonal lattice,

N.WINNERS=6, NREMOVE=1.

* Figure 4: Using the. modified Kohonen algorithm on tes:t data,

Wélght Vectors

065}

055}

05F

0454~

Wi.3)

o4l

0351

0.2}

0.15)-

Figure 5: Using a network with more neurons than figures 4(a),4(b). (15x15 neurons in a hexagonal
lattice, N WINNERS=6, N REMOVE=1) : :

4.2 Using English Vowel Clusters

The same network is trained on data, drawn from normal distributions around mean
formant values of the five English vowels /iy/ ,/ey/,/ae/,Jow/,/uw/, shown in figure
6(a). The results (figures 6(b), rotated and magnified) were similar to those in Fig. 4.
. One way to graphically interpret the perceptual magnet effect is given in figure 7. A
vowel of quality /uw/-is selected at the point labeled (816.9,1711,2496)in 7(a). Since,
according to the magnet effect, pairs of vowels a fixed distarice apart ought to be more
discriminable according as their formants are farther from a category center, vowels on
a sphere centered at the labelled point ought to be discriminated by the network when
they occur on the farther side of the category center. In other words, with the points
~ on a sphere equidistant from the center, the pairs consisting of the center with a point

19

20

on the surface can be taken ag the pairs in the test of the magnet effect described in

section 1: a pair consisting of the center with & point on the side of the region of the
sphere closest to the category center should be less likely to be discriminated (ie., the

-network should return the same output for both of them) than a pair consisting of the

center with a point on the region of the sphere farthest from the category center. This
in fact occurred, as shown in 7(b). A script is written to simulate the network on 225
points on a sphere centered at the labeled /uw/-like vowel, and to plot the points that
the network differentiated (i.e., returned different weights for) from' the vowel at the
center. The incomplete portion of the sphere corresponds to points that, in accordance
with the magnet effect, were not, differentiated, and as shown they all lie on the side of _
the sphere toward the category center. '

ACKNOWLEDGEMENT

The author would like thank Prof. ‘Willard Miranker for guiding this papef through
numerous revisions. ' . » "

REFERENCES
1. Borden, G, K. Harris and L. Raphael (2002). Speech Science Primer. Baltimore:
© Williams and Wilkins. » ' :
2. Estes, W. (1994). Classification and Cognition, Oxford University Press, New
York. : .

3. Goldinger, S. (1998). An Episodic Théory of Lexical Access. Psycholdgical Re-
view 1998, Vol. 105, No. 2. : ‘

4. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice
Hall : : '

5. Hintzman, D. (1988). Judgmenfs of Frequenéy and Recognition Memory in a
Multiple-Trace Model. Psychological Review 1988, Vol 95, No. 4.

6. thonen, T. (1983). Self-Organization and Associative Memory. Springer-Verlag.

7. Kuhl, PX. (1991). Human adults and human infants show a *perceptual magnet
effect’ for the prototypes of speech categories, monkeys do not. Perception &
Psychophyics, 50, 93-107.

8. Lacerda, F (1995). The Percep_tua,l-Ma,gnet Effect: An emergent consequence
of exemplar-based phonetic memory. In Elenius, K. and P. Branderyd, eds.,
Proceedings of the XIIIth Int’l Conference on Phonetic Science. 140-147.

9. Pierrehumbert, J. '(2002)‘ Word-specific phonetics. LabPhon Proceedings. Cam-
- bridge University Press. 102-139.

10. Stevens, K. (1972).' “The quantal nature of speech: Evidence from articulatory-

11.

. acoustic data”. in Denes, P. and David Jr, E. (Eds.), Human communicatipn:' A

unified view. McGraw-Hill, New York, 51-66.

'_Sussman, J. and Lauckner-Mora,no,‘.V. (1995). “Further tests of the perceptual
magnet effect in the perception of [i]: Identification and change/no-change dis- ,

crimination”, JASA 97, 539-552.

21

Vowels with varianoe « 50

(a) Clusters a.r_ouﬁd mean formant values for English /iy/,/ey/,/ae/,/aw/,/uw/.

————

Weigh! Vectors

T 300~
2300

3100

2700 —

250@\ '
200 —f

- 2600

1000 0w

Wiia)

(b) 15x15 neurons in a hexagonal lattice, N.WINNERS=6, N.REMOVE=1; rotated view

22 Figure 6: Using the modified Kohonen algorithm on clusters centered at the five mean
English vowel centers

Woelght Veotors

Wi 1)

2400

W2}

(a) A sample vowel of quality Juw/; the network is simulated on this vowel, and then on 400
vowels on a sphere of radius 200 centered here.) ’

3000 x X
x x x %
x x x
25900
x X yx
x
2800 - x X x
x x
x
x " x
2700 - _ x x x -
x
KX
2600 - L

-200 1200

(b) Sphere showing which vowels were distinguished from the vowel in figure 7(b). The incom-

plete portion of the sphere corresponds to vowel that were not distinguished, as a consequence
of the magnet effect. '

Figure 7: A graphical demonstration of the magnet effect, as exhibited by the developed 23
network.

24

Biasing Techniques in Genetic (Evolutionary) Algorithms

Semih Salihoglu
Yale University, CS Department
New Haven, CT

Abstract

A Genetic Algorithm (GA) is a search technique used to approximate solutions for
optimization and search problems. A GA maintains a population of individuals, which are
abstract representations of candidate solutions that evolve towards better solutions. The
conventional way of creating the initial population of a GA is to randomly select a set of
points from the solution space. If we know that a set of the dimensions of the solution
space are more important than another by some measure, we would prefer our initial
population to span as wide a range of these dimensions as possible. We call such a
population a “biased population”, in that certain genes of the individuals are favored. We
want to study the effects of three biasing methods (found in Neural Networks literature)
on the evolution of a GA: a) principal components analysis, b) sensitivity measure (Shin,
Yun, Kim, & Park, 2000), and c) saliency measure (Shin, Yun, Kim, & Park, 2000).
Although biased populations start off with fitter individuals, both biased and unbiased
populations yield similar solutions.

1. INTRODUCTION

1.1. Genetic Algorithms

Genetic Algorithms (GA) are a branch of evolutionary computing, a rapldly growing
area in artificial intelligence. GAs are inspired by Darwin’s theory of biological
evolution; by the idea of the “survival of the fittest”, in particular. They were initially
introduced by (Rechenberg, 1965) but studies in the area gained momentum only a
decade later through the extensive contributions of (John Holland, 1975).

A GA is a search technique used to approximate solutions for optimization and
search problems. GAs usually maintain a population of individuals, which are abstract
representations of candidate solutions. These solutions evolve to generate superior
solutions. GAs are intended to exploit the following idea stated by John Holland in his
introductory book (Holland, 1975): “Computer programs that ‘evolve’ in ways that
resemble natural selection can solve complex problems even their creators do not
understand.” Unlike deterministic methods of problem solving, such as brute force
enumeration of the solution space, GAs are randomized. While they may rapidly
converge, the limit may be suboptimal. (Holland, 1975) provides a more detailed -
discussion of GAs for the interested reader.

There are four main components of a GA: population, fitness function, reproduction
method and selection method. The population consists of individuals, which are
represented by virtual chromosomes. A chromosome is a pointer to a solution to the
problem. Each individual has an associated value calculated by the fitness function. This

25

value represents the fitness of the individual. Individuals that are better solutions to the
problem should get better fitness values. The population goes through a reproduction
phase in which a group of individuals are matched in a predefined way to produce new
individuals. Finally, weak (less fit) individuals from the population are replaced by fitter
offspring. The population evolves in this way until a set of stopping criteria are met, the

most popular of which are bounds on the number of reproductive phases the population
goes through.

initialize population;
while stopping criteria not met
. reproduce new generation

mutate individuals with certain probability
calculate fimess of individuals.
partially replace population by
offspring

end

Fig 1. A generic genetic algorithm.

In Fig. 1. a generic genetic algorithm is shown in pseudocode. The algorithm is
executed with the expectation that the new population will contain fitter individuals than
the old one. The fittest individual from the final generatlon represents the solution found
- by the algorithm.

Genetic Algorithms have been used to solve many different types of business
problems in functional areas such as finance, marketing information systems and
production operations. Within these functional areas GAs have been used in a variety of
applications, such as tactical asset allocation, job scheduling, machine-part grouping, and

- computer network design. An example of a real, practical application of a GA to aircraft
design is found in (Minga, 1986).

1.2. Using Neural Networks to Bias the Initial Population

The conventional way of creating the initial population of a GA is to randomly select
a set of points from the solution space (the set of possible solutions). If we know that a
subset of the dimensions of the solution space are more important to the solution by some
measure, then we prefer our initial population to span as wide a range of these
dimensions as possible. For example, suppose we have a 3 dimensional solution space (X,
y, Z). If we know that x is the most important dimension according to some measure, then
we would prefer our population to contain individuals that have as many different x
values as possible. In the extreme case when x is the only determinant of the solution, we
would want x to vary as much as possible to span a wider range of solutions. Our
hypothesis is that a GA initiated with a favorably biased population converges faster (in
fewer reproductive steps) to better solutions than a conventional GA.

This approach introduces the question of how to determine the important dimensions

of the solution space. In this paper, we introduce ideas from neural networks to measure
the importance of dimensions. We determine the importance of each dimension by PCA

26

(principal components analysis), and two network pruning methods introduced by (Shin,
Yun, Kim, & Park, 2000). We bias the initial population according to the most important
dimensions and compare results obtained between biased and unbiased populations.

2. MODEL

2.1, Optimization Problem: Multidimensional Knapsack Problem (MKP)

We will test our hypothesis on the multidimensional knapsack problem (MKP). We
will solve the MKP through implementation of a GA, and compare the results we get
from biased populations and unbiased. populations. (Chu, & Beasley, 1998), and
(Gottlieb, 2000) are some examples of research on GAs used on MKP.

The NP-hard 0-1 multidimensional knapsack problem is a generalization of the 0-1
simple knapsack problem. There are a set of n items, and m knapsacks. Each item has an
associated value v;. Each knapsack has a capacity and has an associated cost for each
item. The problem is to select a set of these n items, such that none of the knapsack
capacities is exceeded and the total value from the items is maximized. MKP can
formally be stated as follows:

Maximize }; vjx;
subject to Y ¢i%; < Ci fori=12,..,m
where x;€ {0, 1} forj=12,..,n

Fig. 2. Definition of MKP

n is the number of items. m is the number of knapsacks. x; is a binary variable that
indicates whether or not item j has been selected. vj represents the value from item j. C;
represents the i™ knapsack’s cost capacity, and ¢ij represents the cost incurred by
knapsack i when item j is selected.

2.2. Specifics of GA Implementation

2.2.1. Individual Representation

We represent an individual as a string of n bits, each of which is a 0 or a 1. 1 specifies a
selected item, 0 specifies an unselected item. So an individual is an encoding of the
selected items. A population consists of N individuals. N was set to 128, 64, 32 or 16 for
each problem instance. We tried various different sizes for n: 20, 40, 60 and 100.

2.2.2. Fitness .Function
The definition of the fitness function is given in Fig. 3.

27

- f(x) = (L v;x;) ~ (max(violation)max(value))/min(cost), j = 1,...,n where

- Yvjx; represents the total value of selecting the items represented by ones in X.
max(violation) = max(cv;), i= 1,...,m is the maximum constraint violation defined as;
cv; = max(0, C; - Ye;xy), j=1,...,n
max(value) = max (v;), j=1,..., n is the value of the most valuable item

min(cost) = min (c;3), i=1,...,m, j =1,...,n is the minimum cost of any item in any
knapsack. ' ’ -

Fig. 3. Definition of the fitness function.

While this fitness function is not guaranteed to yield negative results for an individual
violating at least one constraint of a knapsack, it almost always does. Our implementation
outputs the fittest individual that does not violate any constraints as its solution.

2.2.3. Selection and Reproduction Methods

The parents to be mated are selected by the conventional tournament -selection. In
tournament selection two pairs of individuals are randomly picked. The fittest of each
pair are then selected to form the parents to be mated.

We used the crossover reproduction method in mating selected parents. The method
generates a new individual by copying each gene of the individual from parentsa and b,
with 0.5 probability each. After the crossover is terminated, the child goes through a

mutation process, where each gene of the child is flipped with a mutation probability of
0.01. '

2.2.4. Replacement Method

For MKP problems, the common replacement method used is what is known as the
“steady-state” replacement algorithm. For each generation, only one new child is
reproduced. This child is compared against the least fit individual of the population and
the fitter of the two remains in the population. As a result, at each reproductive step, a
single individual may be replaced at most. '

The algorithm runs for 50,000 steps and at each step, the fittest individual that does
not violate any constraints is outputted. This is repeated for 50 times and the results of
each run are averaged.

3. PRUNING TECHNIQUES

3.1. PCA Based Dimension Weighting Method
One of the three methods we used to measure the importance of a dimension is based
on principal components analysis. We first generate a random 2000 individuals for the

- 28

given problem. An individual consists of n + 1 dimensions: n inputs and the fitness. The
input dimensions are random 0s or 1s, which collectively represent the chromosome of
the individual. The fitness dimension is the fitness of the chromosome, as specified by
the n input dimensions. We then do a PCA on this data set of size 2000, and take the
resulting principal component and project it on each of the dimensions 1 ,..., n. We then
take the ranking of the absolute values of these projections as the measure of dimension
importance. At times, the principal component was a vector of 0s followed by a 1 or -1.
The last dimension is the n+1st dimension (the fitness dimension). In such cases, we took
the second principal component in our method. Since we are only interested in the

- relative rankings of the input dimensions, we normalized the fitnesses to [0,1] before
doing the principal component analysis. The result for this analysis for the 20-10 MKP
(20 items and 10 knapsacks) was 21133 10167201718121915115684219 14.
The last dimension is the fitness dimension and obviously is the most significant one.

3.2. Sensitivity Measure :

, For the “Sensitivity” and the “Saliency” measures, we train a feed-forward net by
backpropogation. The net has n input nodes, 1 hidden layer consisting of M neurons and

a single output neuron. We set M to 10 or 30 depending on the size of the problem. The

training set consists of bit strings of size n, representing a random individual in the

population, and the fitnesses corresponding to these n-bit chromosomes.

- The “Sensitivity” measure was introduced by (Shin, Yun, Kim, & Park, 2000). 1t
measures how much the output changes with respect to a change in an input. It is
calculated by removing the input node from the trained network, and then taking the
difference in the network’s outputted value between the time the input node is removed

-and the time it is left in place: The node is removed by setting all the connected weights
to 0. The sensitivity S; of an input node x; is given by:
Si=QL Jp";opiu
P
n

Fig. 4. Formal definition of
“Sensitivity”

PY is the value the trained network outputs when node i is in place for a training instance.
P! is the corresponding value the network outputs when the input node i is removed. L is
the set of training data and n is the number of training data. We simply set the input node
to 0 to calculate P', The results for the 20-10 MKP were 3 716 10 17 18 1513 1 12.9 20
118564192 14,

33. Saiiency Measure o
This is the second measure proposed in [5]. The saliency of a weight is measyred by
estimating the second derivative of the error with respect to the weight. The saliency of

29

an input node is proportlonal value of the weight squared. It is formally specified as
follows:

Saliency; = ZMFI((wji)z'(wj)2)

where wj; denotes a connectmg welght from x; to to z;, where z is the j™ node in the
hidden layer. w; is the weight from the j™ hidden neuron to the output neuron. Proceeding
analogously from section 3.2., the results for the 20-10 MKP was 1673 10171518139
2081125114619142.

4.IMPLEMENTATION AND RESULTS

We used Java to implement the genetic algorithm specified in Section 2. The source
code files are on the Project CD, together with the relevant documentation. The PCA and
backpropagation are both implemented in Java as well, but because of its robustness and
simplicity, we preferred Matlab to do the actual computation.

We did the tests on multiple sample problems, (m —n) = 20-10, 40-5, 60-30, 100-10,
etc.. While we realize that this data set is insufficient to conclude for or against any
hypothesis, this paper is intended as an introductory engagement of the idea, rather than a
conclusive one. The graphs of the inputs can be found in Appendix A. The data sets are
on the Project CD.

When biasing a population, log;(population size) was used as the number of blased
dimensions. In order to bias the initial population, we would set the biased bits of the i -
individual to the binary representation of (i-1). For example, suppose that the PC ranked
1, 2, 3, 4, and 5 as the five most important dimensions. Then, when testmg the problem
for a population size equal to 2° = 32 individuals, we would set the i individual’s first
five bits to the binary representation of i-1. As a result, the first individual would start
with 00000, the second with 00001, the third with 00010, etc. This assures that all of the
combinations of these five dimensions are included in the population. The rest of the
dimensions would be set randomly.

The tests were run on all problems for initial populations of sizes: 16, 32, 64 and
128. Regular PCA was run over the 20-10 MKP and 40-5 MKP and the principal
component was taken to extract the importance of the ranks. The fitness dimension was
ignored, since it is not part of the input dimensions. For other MKP instances, we used
the second principal component for our analysis, for the reasons cited earlier. The
backpropagation algorithm used in training the feed-forward net was run for 10,000
epochs with a training function that updates weight and bias values according to the
Levenberg-Marquardt optimization, instead of using gradient descent. This decision was
taken upon experimenting on learning speed, rather than using theoretical reasoning. The
“Sensitivity” measure was calculated by setting the connecting weight of input node i to 0
* rather than setting the input to 0.

30

Aside from the 20-10 problem instance with 128 individuals, all biased populations
(PCA, activity, and saliency), start off with better solutions than an unbiased population.
Over the first 50 runs, the biased populations consistently produced better solutions. Over
50,000 runs, they all catch up and no single one dominates the other. Furthermore, it was
not the case that the biased populations converged to an optimum faster. There was no

~obvious trend in how populations converged to a solution. The only consistent trend was
that the biased populations started off with better initial fitness than the unbiased ones.

One interesting fact about smaller problem instances was that PCA, activity and
saliency measures yielded very similar rankmgs for the importance of dimensions. In
particular, for the test when the population size was 128 for the 20-10 MKP instance, 6
dimensions out of the 7 biased dimensions were overlapping. The activity and saliency
yielded input node 15 as one of the 7 dimensions, whereas PCA yielded input node 20 as
one of the 7 dimensions. This was the only case where the unbiased population started off
with individuals that were fitter. Yet as with the rest of the cases, they converged to
almost the same solution with similar convergence times.

5. CONCLUSIONS AND FUTURE WORK

" This was an introductory work on biasing techniques in genetic algorithms rather
than a conclusive research on the area. Although the results did not confirm our
hypothesis, we can say that our method positively biases the population in a consistent
manner. That is, the biased populations contain better initial individuals than the unbiased
one, as expected.

At this stage, however, there are many open questions. This approach has to be tested
on multlple problems and on different selection and replacement methods, with different
pruning techniques. It might be the case that biasing does not work well with a steady-
state replacement algorithm or a tournament selection method.

Furthermore, our input weighting methods are primitive in nature. It is likely that we

‘are not getting the actual information we want to extract from our analysis. For PCA, one

problem is that all the dimensions aside from the fitness dimension are made of randomly

selected Os and 1s. It is therefore very likely that the information extracted from the PCA

-is misleading. The fact that the projection of the principal component on a dimension is

higher than another may not imply a greater importance. There may exist a more
sophisticated analysis than mere vector projection to extract the information we want.

Also for the 100-10 and 60-30MKP instances, the backpropagation algorithm failed
to return consistent rankings. This may be a consequence of poor learning of the network.
Future work has to test the rankings on different network structures, epoch numbers, and
learning rates. We may have failed to teach the net the training set sufficiently. This was
definitely not the case for the 20-10 and 40-5 MKP instances, since the rankings were run
on 10 different training sets of size 2,000 and there was extreme consistency in the
outputted rankings. In particular for both activity and saliency measures, the first seven
and last four rankings were always the same in all 10 trials. The same was true for PCA.

31

PCA results were more consistent in the 20-10 MKP instance than the 100-10 MKP
instance.

The ultimate goal of the research should be to dynamically set the number of input
dimensions that need to be biased. Our approach was primitive in that we biased the
log(population size) dimensions irrespective of the actual importance of dimensions. The
fact that we can rank the input dimension does mot mean that we should bias all
log(population size). It may be the case that only a subset of these dimensions is
important. We need to be able to grade the inputs in addition to ranking them. Ultimately
we would want to have a dynamic way of biasing the actual important dimensions.

Future work that builds on this introductory research should focus on finding a
reliable measure of input weighting, and a better understanding of the problem types
where biasing could yield better solutions in a faster way. Although our initial results do
not confirm our hypothesis that a biased population would converge faster to better
solutions, the fact that we could actually bias the population should encourage further
research.

REFERENCES

1. Holland, J. (1975). Adoption in Natural and Artificial System.

2. Minga, A. K. (1986). Genetic Algorithms in Aerospace Design.

3. Chy, P.C., & Beasley J. E., (1998). 4 Genetic Algorithm for the Multidimensional
Knapsack Problem

4. Gottlieb, J. (2000).Permutation-based evolutionary algorithms for multidimensional
knapsack problems.

5. Shin, Yun, Kim, & Park. (2000). A Hybrid Approach of Neural Network and Memory-
Based Learning to Data Mining.

6. Rechenberg (1965). Cybernetic Solution Path of an Experimental Problem

32

APPENDIX A.

MKP 20-10 (Population Size = 16)

MKP 20-10 (Population Size = 16)

—— unbiased

—=s— bhiased
sensitivity
biased saliency

—»—— biased pca

1 7 131925313743 49 -
Generation number

—&— unbiased

—=— biased
sensitivity
biased saliency

—»—-biased pca

1 5 9 13 17 21 25 29
Generation number

MKP 20-10 (Population Size -

1 5 9 1317 21 25 29 33 37 41 45 49
Generation numbe

190
1850 ——UNBIASED (20-10)
[]
| £ 1800 ~a—BIASED (Activity an{
. E 175 Saliency)
BIASED (PCA
1700 SED ()
1 650 T ‘|' T ..l..:l ¥ ll T T
1 4 7101316192225283134374043 4649
Generation numb
MKP 20-10 (Population Size =
—+— UNBIASED
@
) —&— BJASED (Activity an
£ Saliency)
. BIASED (PCA)
1820 :Ll:‘lllll|il I.l.:ll|llT!Il| HHH l;:lil'l L O B N ll“!‘.

33

APPENDIX A.

1876 -
2070
1825
1970 -
— unbiased
1870 1725 —blmd:
—— biased pca
1770 4 1675
1670 1625
1570 1575 PRI A,
1 - 3651 7301 10951 14601 18251 21901 25551 26201 147 1013 16 19 22 25 28 31 34 37 40 43 46 49
MKP 20-10 (POPULATION SIZE = 32) NKP 20-10 (POPULATION SIZE = 32)
1859
1830
18104
~— UNBIASED (20-10)
17801 BIASED (Activity and e
JR— ivity an
Seliency) ’"::m“w
1770 1 BIASED (PCA)
1750
1730
1710 Lisis e NI £ SR
15 9 13 17 21 25 20 33 37 41 45 49
WKP 2010 (POPULATION SIZE 125) MKP 20-10 (POPULATION SIZE = 128)
2100 4=
1898
2050 :
1888 -
— UNBIASED : ——UNBIASED
o 1878
— BIASED (Activity and] —BIASED (Activity and
Saliency) Saliency)
: BIASED (PCA)
1850 + 1066 1 BIASED (PCA)
1900 1858
1 417 833 1240 1605 2081 2497 2019 3320 §745 4161 4577 4993 15 9 1317 21 25 20 33 37 41 45 49

34

Expldring the Effects of Dataset Pollution on Neural Network Model
Complexity with Simulation

Andrew Smith’
Department of Computer Science, Yale University
New Haven, CT 06520

Abstract

This study addresses t_hé problem of class pollution in dafasets, i.e. datasets to be used for
constructing multilayer perceptron (neural network) classifiers where some of the exemplars have
their class labels mislabeled, and how it could be reduced or eliminated to improve prediction
accuracy. The main result of the study is that it was empirically determined through simulation that
various complexity measures of multilayer perceptrons tend generally to i mcrease with increasing

~ levels of class pollution in a given dataset. If this can be shown to hold very generally, then the
complexity measures could be used as the basis of an optimizaﬁon procedure for de-polluting
datasets. The motivation for this work is a structural genomics dataset used for data mining which
exhibits the class pollution problem.

1. INTRODUCTION

The National Institutes of Health (NIH) funds several centers in the United States to do structural
genomics (i.e. high-throughput protein 3D structure determination) and to develop new methods
and technology to do it more efficiently’. Proteins (which are produced in cells by reading and
translating gené DNA sequences) are clustered into families based on evolution, and the main goal
of structural genomics is to solve one or a few representative 3D structures of each protein family,
Proteins in the same family are similar in sequence and generally have similar structures, and you

can model the other members reasonably well if you know one family member’s structure and

" andrew.smith@alum, mit.edu

35

sequénce alignments of the other thembers to that one with known structure. It is quite laborious
solving protein 3D structures (and hence the interest in developing techniques to make it more
“efficient), and a lot of it is still an art. Also note that ab initio protein structure prediction (i.e.
prediction of protein 3D structure based solely on sequence) is not currently feasible and is one of
the great opeﬁ probléms in computational biology --- modeling based on homology (i.e. sequence

similarity) to known structures of similar proteins is the best we can currently do reasonably well.

In structural genomics proteins go through a "pipeline" of different experimental steps, with
the main ones being cloning, expression, solubility testing, purification, cr)?stallizatibn, and crystal
structure determination (this is the main, protein crystallization path; there are other steps followed
for protein structures solved using nuclear mégnetic resonance (“NMR™)). The structural genomics
community records status tracking information at the TargetDB site® in a simple standard format.
One thing we want to do is to use the TargetDB dataset to try to determine the protein sequence
features associated with the success or failure of reaching the various pipeline stages of strﬁéture
determination, i.g. do data mining of TargetDB; we could then ho‘pé to predict which proteins are
tractable or not for sucsessful experimental structure determination and focus our attention on the
likely tractable ones (and thus hope to avoid wasting time and resources on likely dead end
proteins). In fact, previous analyses along these lines have been done using random forest and
decision tree algorithms trained on the TargetDB dataset'.

The important problem which is invesﬁgated in this study involves the natufe of the
TargetDB dataset. TargetDB does not contain any real negative information (i.e. knowledge of
failure of proteins at the various steps), but is simply a snapshot of current statlis (i.e. which
experimental stagé proteins are currently at). Thus, if a protein is at some stage X then that is valid
positive information, but you cannot conclude whether the protein failed to reach the next step after
X or is simply waiting in the queue to be worked on. The previous published analysis with random
forest / decision tree algorithms mostly ignored this problem and, for each experimental stage X (i.e.
Cloned, Expressed, Purified, etc.), simply used proteins at stage X as positive training data and
proteins at ﬂle stage just previous to X as negative data in constructing classifiers and rules to
distinguish "Can reach stage X". This is a rough approxiﬁxation but is .somewhat'valid in that it is
known that there is high attrition at each stage and the negative set will in fact be enriched for true

36

negatives, but it is not ideal. The structural genomics community has recognizéd the need for
negative data, and is starting to collect and report it, but this won't ramp up for a while, and any trhe
negative data that could be _obtai_ned now would just be a small fraction of the amount data
available in the TargetDB dataset (almost 100,000 proteins).

Finally, while this limitation may be a particular aspect of the TargetDB structural genomics
dataset, there might be other situations where it could arise. In general, genomics research is relying
more and more on high-throughput experiments (microarrays, yeast2hybrid, etc.) and many of
these techniques result in highly noisy datasets or lack of good positive or negative data. Also,
lugh-throughput experiments might not give negative or positive information about specific
mstances but only global percentages (e.g. in some high throughput experiment covering 10000
instances i imagine it was determined that 8000 were positive but it isn’t known which 8000). Thus,
solutions to the problem of lack of negative or positive data might be more generally useful.

2. ABSTRACTING THE PROBLEM TO BE INVESTIGATED

The core problem can essentially be conceptualized as follows. Say there are two underlying
populations, call them P and N, and you would like to determine what features distinguish P from
N and build classifiers to distinguish between them. However, the available dataset consists of a

reliable sample from P and another sample (which is the assumed N sample) that consists of a mix

from both P and N (but it is known that it is enriched for examples from N and a rough upper
bound on the percentage “pollution” by P might be given). In other words, the N sample is
corrupted to some e;(tent with samples from P that are mislabeled as N. There is also the symmetric
(and equivalent) case of the P sample being corrupted to some extent with samples from N that are
mislabeled as P. Finally, both the P and N samples could each be corrupted to some extent with
mislabeled members of the other, This study will consider the two symmetric types of pollution, i.e.
either the P or N sample is polluted to some extent.

In a previous project (unpublishéd) using logistic regression as the classifier of focus I
investigated through simulations how various measures of prediction performance, such as overall
accuracy, sensitivity, and specificity, degraded for classifiers constructed from artificial datasets as
more and more random poﬂution was added to one or both of two classes to be predicted. Key

results of this were that, up to about 40% random pollutibn in one class, prediction performance

37

- degraded by no more than about 15% to 20% on average. Interestingly, when both classes were
randomly polluted equally the same percentage the logistic regression classifier was very robust,
only showing signiﬁcaﬁt degradation in performance starting at around 45% pollution. The likely
explanation for this is that the symmetric pollution cancelled each other out leading essentially to
the classifier model that would have been created had there been no pollution. An interesting
corollary to this is that if it is known that one of 2 classes in a dataset is polluted and the percentage
pollution is known, one can aehieve close to the optimal, non-polluted classifier model by
randomly polluting the other class to the same percentage. Possi‘bly these. results for the symmetric
pollutlon case generalize beyond logistic regression to other classifiers such as decision trees or

* ‘neural networks, although more mvestlgatlon is needed.

In the project reported here, my goals were first to investigate the problem of dataset
pollutlon with a classifier model more general than logistic regressmn, namely multilayer
perceptrons (neural networks). Second, rather than just empirically determine how performance
degrades as pollution is added, I aimed to focus on coming up with solutions for how such polluted
datasets could be best handled for optimal accuracy in classification tasks. Specifically I am
interested in ways to de-pollute such pollufed datasets, in other words how can we determine
reasonably well which exemplars Have their class labels mislabeled so that we can flip them back to
their correct values and create more accurate classifiers from the de-polluted datasets. How can we
know which exemplars have incorrect class labels? Let us treat this as an optimization problem
where we want to maximize the number of correctly flipped exemplar class labels. The problem
then is that we need some function to optimize. We don’t know ahead of time which exemplars are
correctly labeled, s0 we can’t just use an obvious “number correct flips — number incorrect flips”

| measure --- this is the underlying problem we're trying to solve and we need some function which ‘
corfelates fairly well with this but which we can compute. The hypothesis of this project is that,

- motivated by Occam’s Razor which says to prefer the simplest model fitting the data, “model

complexity” (defined more precisely later) is such a measure and function we can optimize for the

purposes of de-polluting datasets. The key result of this project is to show that percent pollution in

a dataset seems to be correlated with model complexity, specifically increasing pollution of the

class 1 or 0 labels leads to increasing model complexity, which is evidence in favor of using model

" complexity as the function to optimize towards de-polluting datasets.

38

3. ARTIFICIAL DATASETS FROM RANDOM NEURAL NETWORKS

In my prévious project described briefly above I used logistic regression as the classifier mddel of
focus, both to generate artificial datasets (by sampling randomly from randomly generated logistic
regression models) for tésting and to determine accuracy drop-offs at increasing levels of pollution,
Logistic regression is basipally a perc_ej;tron with logistic activation at output, ﬁvhe;e the outputs are
interpreted as probabilities of class membership; it is in the class of linear models. The problem
with logistic regression, particularly for geﬁeraﬁng random artificial détasets, is that it is not
general in the sense that it is a simple model (linear) and many possible underlying functions (i.e.
nonlinear) could not be represented by it. Thus, in using artificial datasets sampled from random
logistic regression models, general results applicabie to “all possible functions” cannot be obtained.
Multilayer perceptrons do not suffer from this difficulty. In fact, it can be proven that any
continuous function can be approximated arbitrarily closely by a neural network with one hidden
layer_. Furthermore, any discontinuous function can be approximated arbitrarily closely by a neural
network with two hidden layers. Thus, artificial datasets sampled from randomly generated

_ multiiayer-perceptrons could be used to get statistics about classifier performance applicable
generally to any underlying function; i.e. random multilayer perceptrons could be used as a general
basis for generating random artificial datasets®. Thus, for this project I generated artificial datasets
by sanipling from randomly generated neural network models with one hidden layer.

More specifically, to generate f_andom neural networks with one hidden layer I would
choose a random number of inputs and hidden layer units (up to some maximum number -
practically, in order to finish the project on the computational resources available, i.e. é-lapbp, I
had to bound parameters such as this). Then, in order to consider the possibility of inputs being
categorical (i.e. discrete valued rather than continuous), I would choose a number uniformly
randomly from the interval [0,1] and the chosen number would be the fraction of the inputs that
were cafegorical, which would then be chosen randomly from among all the inputs. Then, for each
categoricai variable [would pick a random number between 2 and some maximum which would

represent the number of levels of that categorical variable. Categorical variables were encoded

¥ Another possibility is simply to generate completely random datasets, but it seems.more reasonable to work with
datasets that have in fact come from some underlying coherent, albeit artificial, model; also, neural networks are used
for modeling datasets with coherent structure, not random data, and we should try to best match our analysis to this.

39

using so-called “1 of C” encoding, e.g. three levels would be represented “100”,“010" and “0 0 o
BE respectively™. Logistic activation functions were used at hidden nodes and the single output

node, where the single output of the network is interpreted as the probability of membership in

class 1. The generated networks are fully connected (including bias units) and have random weights
 assigned uniformly on a specified interval. A random dataset is generated froma random neural
nétwork so consﬁ'uctéd by generatirlg raQn‘dom inputs and computirlg the network output, setting the
class label to 1 if the computed output is greater than .5, 0 otherwise. Some filters to this random
dataset generating procedure had to be applied, however. First, some datasets s0 generated might
contain all or almost all 0s or s, and classifiers cannot be constructed from such datasets (there
* needs to be a reasonable rrumber_ of examples from each class); thus, generated datasets were
checked to make sure that each class represented at least 20% of the generated exemplars. Second,
some randomly generated datasets seemed to suffer from some kind of numerical ill conditioning,
speciﬁéally neural networks constructed from them of increasingly larger number of hidden units
would all have very low prediction accuracy; thus, a second filter was to make sure that a highly
accurate neural network model colrld be reconstructed from them (at least 95% accuracy on the
dataset). Thus, random artificial dataséts were generated in this way and used in the experiments /
simulations described next. All experiments / simulations in this project were done using the R

statistical package®.

4. MINIMUM DESCRIPTION LENGTH PRINCIPAL

Providing some justiﬁcation for why model complexity could be an effective measure to optimize

~ in de-polluting datasets is the minimum description length principal (“MDL”) machine learning
paradigm. The essence of MDL is that the best theory (classifier) Tfora body of data E is one that
minimizes the size of the theory plus the amount of information necessary to specify exceptions

relative to the theory: o
| f =arg min L[} L[E|r]
T . :

See the Neural Net FAQ for reasons why categorical variables should be encoded this way:
. http://www.fags.org/faqs/ai-fag/neural-nets/part2/section-7.html

40

Here L stands for length in bits of the best éncoding of the theory and exceptions (the condition for
“best encoding” is where practical difficulties using MDL can arise, i.e. how can you know you

have encoded in the best possible way?) It can be proven using ideas from information theory that:

f -arg minZlr} L[Er arg maxPifrjE]

i.e. the theory T with the maximum a posteriori probability given the data E, is the one that
minimizes the 'size of the theory plus the amount of information necessary to spécify exceptions
relative to the theory ™. In other words, this is a kind of mathematical justification for Occam’s
Razor, which says to prefef the simplest model consistent with the data, The usefulness of MDL is
that it allows you to construct your classifier model uéing all of your data, rather than haviﬁg to
wastefully set aside parts of it for test and validation sets, and still be assured you have constructed
the best model. Note that in a real sense we cannot construct test and validation sets from our
polluted datasets. We only have polluted data to build a classifier model, and we want to use the -
constructed medel on real-world, unpolluted data, so testing and validating on independent test and
validation sets gotten from the poHuted data will not be an accurate measure of real-word accuracy.
We thus ideally would like not to have to construct indepencfent test and validation sets, and MDL
does not require these which thus makes it attractive as a basis for dealing with the problem of
polluted class labels.

The basic idea of MDL is that to find the best model you should minimize the size of the
model and exceptions relative to the model. While MDL is strictly meant to apply to assumed
unpolluted datasets, it was my motivation for this project and my hypothesis is that thebbasic MDL
idea can be extended for de-polluting datasets. Here, the addition to MDL is that an additional
parameter (beyond the usual classifier model parameters per se) can be optimized, namely the
dataset exemplars’ class labels (possibly input values too, but I didn’t investigate that possibility for
this project) --- the relabeling of class values in the exemplars that leads to the minimum sized
model (plus exceptions relative to it) is the correct relabeling, Clearly thi'sv optimization cannot be
taken to its extreme, however, for example we could simply label all exemplars with the same class
(or all but one) and then a simple hyperplane could easily be found to separate the classes --- we

will need to preclude such drastic, large-scale relabelings. However, if exemplar class relabelings

¥ Fora proof (and an overview of MDL) see¢ reference 11.

41

are restricted to small scale increments, such as one or a small number at a time, theﬁ the method -

should work ~- correct relabelings should lead to simpler models and incorrect ones to more

- complex models, The results of this project are not intended to and do not provide theoretical

» justification for why the MDL idea can be extended as described for de-polluting datasets; I feel
this could be an interesting research direction but it is beyond the scope of this paper. The purpose
here is to do exploratory analysis with simulations to try to obtain some suggestive evidence in
sﬁpport of further investigation. |

A more intuitive explanation for why model complexity goes up with class pollution is that
natural order in the dataset is d'eétroyed by the pollution requiring more complex models tofit. A
| key assumption of machine learning is that the world is not random and that there are in fact
organizing patterns to be found in data, and that exemplars with the same or similar class values
will have the same or similar values of their important predictive attributes, i.e. like-valued
exemplars will tend to cluster together in feature space (it is precisely these patterns that machine .
learning aigorithms aim to find). Thus, for example, whereas before pollution subsets of the
exemplars would have the same class values and beclustered in feature space, requiring only
simple boundaries such as bounding boxes to delineate, pollution will cause some of these clustered
exemplars to take on thé opposite, incotrect labeling, and will invalidate the simple boundaries of
the unpolluted dataset —- these will need to be partitioned finer to achieve the same level of
modeling accuracy and this finer partltlomng is precisely what is meant by increased model
complemty

5. NEURAL NETWORK MODEL COMPLEXITY MEASURES

Mddél complexity has been presented so far in fairly general terms, and this section will give .
precise definitions for model complexity for multilayer perceptrons. One definition I found was the
following: ' ' ‘

“One itportant quantity determining the appropriate network architecture is network complexity. Network
Complexity is determined (usually) by the number of adjustable weights and biasgs in the network, A simple
Network has fewer adjustable weights than a complex one.”'

42 b

I devised and tried three measures of model complexity for multilayer perceptrons motivated by
this definition. Let & be the vector of network weights and 7 the number of hidden layer nodes

(neurons). The three complexity measures are defmed as:

L
' 2 w} -i.e. magnitude of the weights vector.
1 .

wab: :

36

i

3. Let 0™ =abs(w). Let 0™ . Then complexity is

- 2 @™ -log(@?*"™) - i.e. entropy of normalized absolute value weights

All three measures v_vill in general increase with increasing numbers of adjustable weights and
biases if1 the network but are slightly different. The first measure is clear but is fairly coarse-
gramed The second and third measures are similar but differ in how they deal with the distribution
of total welght sum among all the adjustable weights. The third measure will tend to treat many
small weights as more complex than a set of weights with similar total weight sum but concentrated
in only a few weights (i.e. there is more information in finding out the value of something that can
take on many possible values each with some small probability than in finding out the value of
something that can take on a small number of values each with proportionally higher probability);
the second measure will generally not make this.distincﬁon as it simply sums up the sum of squares

of the weights and then square roots this.

Recall that in MDL, total complexity is the sum of the model complexity plus an encoding of
the exceptions to the model relative to the model. If this weren’t the cas‘e.and you could ignore the
exceptions, you could find the best model in MDL by giving the empty model - it doesn’t classify
anything correctly but takes up no space. So far, only the definitions of complexity of the
constructed multilayer perceptron models have been given but it is important to also add in the
co'mplexity of the exceptions. It is not clear how best to encode exception exemplars relative to the
constructed model (i.e. presumably the constructed model will give partial information towards the

exemplar’s correct classification, but it is not straightforward what this is or how to use it to more

43

~.compactly encode the exception eiemplam), so my approach is to try to try to eliminate or |
minimize misclassified exemplars so that only model complexity really matters; i.e. tradeoff
instance complexity for model complexity by building ever more complex models, stopping when'
you reach sufficiently large accuracy on the training set (e.g. 90% --- going much higher than this
makes the computation time excessive). Nevertheless, we should still try to consider the complexity
of the exceptions and this was done in this project by scaling relative to the accuracy of the model;
e.g. if the model achieved X% accuracy on the training set then overall complexity was defined as

Model;/omp lexity . This seems reasonable and it seems like it could underestimate the true
100

complexity (i.e. the remaining exception exemplars are the most difficult ones and should be at
least proportionally as hard to accommodate as the ones handled by the model). In any case, while
the neural nétwork models (and correction for the exceptions) per se are not necessarily as
compacted as possible (which is technically what MDL requires), they do seem to level the playing
field and provide a consistent measuring stick — if the measures of complexity given above do in
fact order the models in the same order the “true” measures 6f complexity would then that should
be sufficient for our purposes (i.e. optimization). '

- 6. SIMULATIONS

Again, the goal of this project is to provide empirical evidence that the complexity of multilayer
perceptrons constructed based on polluted datasets will increase with increasing levels of pollution.
The following simulation was done to try to obtain this evidence:

1. Generate a random multilayer perceptron model and random dataset sampled from it as
described previously. '
2. For pollution level = 0 to .4 by .05 4
a. Create class 0 or 1 polluted dataset at current pollution level.
b. For number of hiddén units = I.to large numBer
i. Repeat up to 3 times (to address local minima problem): generate multilayer
perceptron for polluted dataset with current number of hidden nodes. '
Measure accuracy on training set, exit loop if it is greater than .9.

44

C. Complexify at current pollution level = last generated multilayer perceptron
complexity / accuracy.

In other words, we are looping through a series of pollution levels and for each one we search for
the simplest model that gets 90% accuracy on the training data and compute its complexity
(correcting for exception exemplars by dividing by 'accuia_cy); we then compare these complexity
measures over the different levels of pollution and see if it increases with increasing pollution as
hypothesized. |

7. RESULTS

As stated previously, the simulations were performed using the R statistical package. I did not have
the time or computational resources to do many runs and get detailed results and statistics. I did,
howeVer, run the code for the above simulation a number of times (10 —20) and observed the
tendency of the results. In general, my hypothesis is borne out and my complexity measures do
increase with increasing levels of pollution, but not always perfectly (some runs show slight
decreases in compiexity measures for increasing pollution although the complexity of the most
polluted is always higher than the not polluted case). The entropy-based measure (number 3 above)
seems to be the best measure in that it seems to more reliably increase with increasing pollution;
number of hidde_n levels is also good but, again, coarse-grained. Also, the results worsen as you
lower the required accuracy threshold down from 90% (although smaller thresholds are quicker to
compute), i.e. as the accuracy of the complexity measures of the exbeption exemplars relative to the
model become more important. The following figure shows a typical result of a run of the

simulation;

45

z
]
8 3
o g °
N)
; i
v,
&
=
2
c
&
®
g
¢
8
| 3
& 5
o "0
o
0 ‘g ©
<
e o~

On all of the graphs, the x axis is the percentage of pollution added to the dataset. The upper left
graph shows the prediction accuracy on the training set of the first (simplest) models found to have
at least 90% accuracy versus pollution level. The upper right graph shows the number of hidden
nodes, and the two bottom graphs the entropy-based complexity measure and vector magnitude-
based cdmplexity measure respectively, versus the pollution level. Only' number of hidden nodes
monotonically increases versus pollution level; the entropy-based complexity measure almost
monotonically increases and seems visually slightly better than the vector magnitude-based

measure (less and smaller decreases in complexity as pollution level gets larger).

46

8. CONCLUSION AND POSSIBLE FUTURE DIRECTIONS

In this study I have empirically determined that various complexity measures of multilayer
perceptrons tend generally to increase w1th lncreasmg levels of class pollution in a given dataset. If
this can be shown to hold very generally, then the complexity measures could be used as the
functions / measures to optimize in trying to de-pollute datasets using an optimization procedure.
Future possible directions include the following;

Do more simulation runs in order to compute statlstlcs, confidence intervals, etc. and

- determine how general the result is.
Investlgate other interesting parameters of the problem; for example, does level of skew
in the class distributions of the training set have any effect?

Design and build detailed algorithms for de-polluting datasets based on the ideas from
this project; compare them to other competing methods (e.g. one basic thing that can be
done is to simply build a classifier with your training exemplars, and then remove any
‘exemplars that are misclassified by it; this has been shown to simplify niodels and

' marginally improve prediction accuracy®* %), For example, use the neural network
model complexity measures as the “fitness function” in de-polluting with genetic
algorithms.
Compare the performance of multilayer perceptrons optimized via MDL (using only
training set) versus traditional techniques (e.g. training-testing-validation set protocol or
10-fold cross-validation). .

Consider feature selection and how it affects the problem. In other words, in this project
I assumed we had knowledge of the exact set of relevant input features, but in reality
you wouldn’t (finding the right features is part of the art of data mining). Not using the
right features is like adding noise, and de-polluting procedures could be confused if the

_right features aren’t used; this argues for addressing feature selection and de-polluting in
an integrated way. '

47

48

BN Lo

%

10.

11

REFERENCES

. Goh C.S. et al. Mining the structural genomics pipeline: identification of protein

properties that affect high-throughput experimental analysis (2004). Journal of
Molecular Biology. Feb 6; 336(1):115-30. B ‘

Mitchell, T. (1997). Machine Learning. McGraw-Hill Science/Engineering/Math; 1st
edition, S

Muhlenbach, F., Lallich, S., and Zighed, D. A, Identifying and Handling Mislabeled
Instances (2004). J. Intell. Inf. Syst. 22, 1 (Jan. 2004), ’89-109,

Neural Network FAQ (2002). _fgp://f_’tp.sas,com/pub/neural/FAQ.'html

NIH Protein Structure Initiative (2005). hgp://www.nigmg.ni_h.Eov/Initiaﬁves/PSI

R Project for Statistical Computing (2005). http:/www.r-project.org/

Russell, $.J. and Norvig, P. (2002). Atificial Intelligenice: A Modern Approach.
Prentice Hall; 2nd edition

TargetDB structural genomics tracking site (2005). http://targetdb.pdb.org

Teng, C.M. Polishing Blemishes: Issues in Data Correction (2004). IEEE Intelligent .
Systems, vol. 19, no. 2, pp. 34-39, March/April, 2004,

University of Manchester UK CS2411 (2005). http://www.cs.man.ac.uk/~jls/CS2411/

. Witten, LH. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann; 2nd edition.

 Language Identification from Written Text

Simon R. Spriinker -
Yale University, Department of Computer Science

_ New Haven, CT 06520
Abstract
We build a self-orgamzmg map that is able to identify a natural language from written
text. We start training the net with Vietnamese and English and after successfully
building and testing this net with random examples of both languages, we turn our
attention to a net that can identify German and English, Training sets, built nets and
additional material can be found at (Spriinker, 2005). ‘

1. INTRODUCTION

With the growth of the Internet, access to information from almost every part of the
world is available. Many documents are not written in a comprehended language. But this
ought not prevent one from accessing information in a foreign language. The task is to
translate a given document, but in order to do that, one needs to know in which language
the text is written. So the user would want to have a service he transmits the text to, and
which then identifies the relevant language. Alternatively the translation service does the
identification, but at some point in time before translation the identification has to be |
done. - _ ‘ '

Another feature is that search engines that crawl the web have to determine the
language of a text in order to index it, So when a user performs a search, he can choose to
have displayed only texts in his native language.

1.1 Algorithms For Language Identification
~ If we want to identify languages we need to look at the distinguishing features of
languages. Some key features are
_+ the alphabet of the language
+ the combinations of characters a language uses and
+ the frequency of occurrence of these characters.

49

So an algorithm for identifying a language from these features wo_uld first build a
reference table, that for each language contains the alphabét of that language and for each
character of the alphabet the frequency of occurrence. To build a reference table that is
~ representative of a particular language, we would use large texts from different areas of

this language, such as novels, science books and newspaper articles. When presented an
unidentified text, the algorithm would compute the frequency of occurrence for all
characters in the given text and compare it to the reference table. It would then choose the
language, whose statistics are most similiar to the given text as an answer.
Since the frequency of occurrence of one single character can be very similiar in
' cognate languages, it is advisable to also take into account the relative frequency of so
called n-grams, character groups of size n. This is a common practice in cryptoanalysis
where n is typically 2 or 3 (Waetjen, 2004). The disad\}antage of this method is that due
to its statistical nature we need large texts for analyses, since otherwise the computed
. statistics are not useful. For example consider the text "A ball rolls down a hill", The
most common character in english is the "e", but in this sentence "¢" does not even occur!
If we take this method one step further, we could look at the words each language
~ has. We can build a database, in which we put all the words of every language and tag
each word with the language it exists in. Below is an algorithm using this information to
identify a text:

" Input: Unidentified text
Output: Set of most probable languages
set counter ¢ for each language i to ¢ = 0;
for each word in the unidentified text {
lookup word in database;
for each tag of wbrd {
c=ctl;

}
return {i | &2 ¢ j# i}

The diéadvantage of this method is that we need to build the databases with all
- words of every language in it, which requires a huge amount of space. Of course we can

‘combine the two methods preseﬂted and improve lookup times and the accuracy of

identification.

In this paper we build a Neural Network whose purpose is to detect the features of

every language with unsupervised learnmg, and based on that to 1dent1fy the language of
a text input to the net.

2. IMPLEMENTATION
2.1 Data RepresentaﬁOn ‘
Although a neural net could identify any number: of languages, we will start building a
net, that can distinguish between English and Vietnamese. We choose these two

languages, because the differences between them are greater than English and German for
example. |

The Vietnamese alphabet contains Latin characters and diacritical marks. The
characters f, w, j and z were not used originally, but they now appear in borrowed words,
Additionally Vietnamese has modified Latin characters not present in the English
language, such as ,,D*,

A

aifdeéiodouuy

Table 1 - Vietnamese vowels (http://en.wikipedia.org/wiki/V’ ietnamese_alphabet)

bcddghlmnprstvx

Table 2 - Vietnamese consonants (http://en.wikipedia.org/wiki/Vietnamese_alphabet)

Diacritical marks can only be used with vowels and different marks can be combined,

however not every combination is valid.

Adadoéda

Table 3 - Examples of valid [vowel-diacﬁtical-marks combinations

This is an example of a Vietnamese text: ,,Viét Nam c6 di¢n tich 331.688 km?, bao gém
khodng 327.480 kn? dat lién va hon 4200 km? bién.«
' We have to feed English and Vietnamese texts into the neural net, For this

purpose we will take the plain UTF-8 encoded text and convert it to its binary equivalent,

 as the net will only read binary. -

UTF-8 (8-bit Unicode Transformation Format) is a character encodmg like
ASCIL UTF-8 uses a variable length to encode characters. The most common characters
are encoded with eight bits, but other characters take up to 32 bits. The characters we use
have between eight and 16 bits.

We will 1mp1ement a converter that for each character ¢ of the input text performs the
function

conv:{c} - {bi| i element of {8,16,24,32}}
Where bi denotes a binary value with i bits.

2.2 Neural Net :

For the implementation of the neural net we use Joone (http://www joone. org), an open
source java framework for neural nets. Nets built with Joone require inputto be a
semicolon separated list of values. So the character ,,a*, whose binary Unicode

_ representation is 01101100, will look like this:

0.0;1.0;1.0;0.0;1.0;1.0,0.0;0.0

The net we build is a self-organizing map (SOM), meaning that it will adapt its synaptic
welghts according to the features it recogmzes in the input data. When we mput text into
the net, we need to make sure that the text contains enough statistical data to be analyzed
by the net, so that the mput text is characteristic for the language it is written in. To
achieve this, we need to make sure that the text we input is ,,Jong enough®, We will use
4496 input neurons. That accords to 562 characters of the english alphabet, because one
character is represented by eight bits as explained in section 2.1, and less than 562

- characters of the vietnamese alphabet, because one Vietnamese character can be

52

represented by eight or 16 bits depending on the character. '

Input Layer ~ Gaussian Layer WTA-Layer

Figure 1 — SOM, that identifies Vietnamese and English

The net we build is shown in Figure 1 and described in detail in the next paragraphs. The
input of the net is a vector ‘

X= [Xl, Xz, ey X4496]T,

where each x;is 0 or 1.

The next layer is a Gaussian Layer with two neurons, that produces a vector
y =1y yil"

where each y'i <= 1.0. In our case the Gaussian Layer is one-dimensional, but normally it
is two-dimensional. In a Gaussian Layer one neuron is the winning neuron. The winner is
determined by comparing the weight vector w; = [y, ..., Wiuse]", j = 1,2, to the input
vector X by computing the inner products w;'x, with j = 1, 2. The winning neuron i is the
one with the largest inner product, and locates the center of a fopological neighborhood
hy; of excited neurons, where a typical one of these neurons from the neighborhood is
neuron j. All neurons in the neighborhood hy; are excited with neuron i being excited the
most and the other neurons in decreasing order depending on their lateral distance d;,
which is the lateral distance betweén neuron i and neuron j. That means that the |
topological neighborhood h;; decreases monotonically with increasing lateral distance -
and time, A typical function for the fopological neighborhood is the Gaussian function

Bye(n) = expl-(dys)* / 2o*@)],

53

which is also used by the Jbone Network, where n is the discrete time. o(n) is called
Gaussian Size and controls the degree of excitement in the neighborhood and is chosen
according to (Haykin, 1999, p. 450) as:

o(n)=coexp(-n/7) n - 0,1, 2,

As output layer we choose a Winner-Takes-All-Layer, meanmg that only y; ory,
but not both will fire. So the output of the net will be either

y =[1.0, 0.0] or y =[0.0, 1.0TF,

where each element of vector y is one bit.

2.3 Training the net
To train the net we need to select a training set of Vietnamese and English text. To get
representative texts wikipedia is very helpful, because there is a Vietnamese and an
English version, the texts are already encoded in UTF-8 and the texts are representative
since they are ,real life“ examples of both laxiguages. We choose 20 pieces of text of each
language of at least 562 Bytes length, and convert them to binary as described above.

| Now that we have a training set, we need to choose the parameters of the net. In a

SOM the weights of the synapses is set randomly in the beginning. The Joone Framework
does this automatically for us.

As explained in the previous section Joone uses the same Gaussian size
om)=cpexp(-n/1). n=0,1,2,..
and Gaussian neighborhood function

bya(n) = exp[-(dy)* / (20°(n))]

~ as (Haykin, 1999, p. 452). We set o, to 1.0, which is the radius of the vector y', and the

54

time constant 7, to 200. This is the default in Joone, and it works for our problem.

The adapt1ve process, in which the synaptic welghts of the SOM are adjusted
consists of two phases the ordering phase and the convergence phase. In the ordering
phase the main adjustment of the synaptic weight vectors wj, j = 1, 2, takes place by using
this formula:”

wi(n + 1) = wy(n) + n(@)hyo()(x(n) - win)),

whiere n(n) is the learning rate which is described below, and n is the time in iterations.

The initial learning rate 7, is set to 0.7 and the ordering phase will last 1000
iterations, which both are default start values set by Joone. During the ordering phase
learning rate decreases with the number of iterations as follows:

Nm) = neexp(-n/t) n=0,1,2,..

where n is the number of the current iteration. We choose 1,= 1000, so that n(n) remains
‘above 0.01 (Haykin, 1999, p. 452).

In the convergence phase the feature map is fine tuned. This is done by setting the
learning rate n(n) to 0.01 (Haykin, 1999, P. 453). Haykin states that as a general rule, the
number of iterations in the convergence phase should ,)be at least 500 times the number
of neurons in the network®, We have 4500 neurons in our net, resulting in at least
2,250,000 iterations. S

3. RESULTS
3.1 English and Vietnamese _
If the trained net is supplied with the training set, such that the first 20 pieces of text are
Vietnamese and the second 20 pieces of text are English, we want to the 40 _resu_lts of the
~ Gaussian layer from Figure 1 to look like:
¥'1 = [0.8824969025845955;1.0]" ¥'t = [1.0;0.8824969025845955]"
¥'20=[0.8824969025845955;1.0]" or ¥'20 =[1.0;0.8824969025845955]"
¥'n=[1.0;0.8824969025845955]" Yau= [0.882496902_5845955;1.0]T

'w=[1 .0;0.882496902584595'5]T ¥'« = [0.8824969025845955;1.0]"

Then the 40 results from the Winner-Takes-All-Layer should look like:

55

y1 =[1.0;0.0]7 - - n=[0.0;1.0]"

ya=[1.0;0.0]" o ¥ = [0.0;1.0]°

yn=[00;1.0" ' ya = [1.0;0.0]
yao=[0.0;1.0]° 4 » yao=[1.0;0.0T"

We trained ten hets with 20 examples per language. Five nets were trained in
10,000 epochs and five nets with 5,000 epochs. All ten trained nets computed one of the
above results, when presented with the training set. In addition all trained nets were
presented with a test set, which contained 20 examples per language, but none of these
examples were in the training set. They were taken randomly from Wikipedia. The nets
identified the languages of all examples correctly. Notice that if the ordering phase lasts
for 1000 iterations, then the convergence phase in this training lasts only 9,000 and 4,000
epochs, which is much less than the recommended 2,250,000 iterations from the previous
sections. ‘

| Now 'one‘ may ask, why we need the Gaussian Layer. Why not remove the

Gaussian Layer and only have the WTA-Layer, since all we want is a clear answer? With
clear we mean that we rather want to have an answer that looks like y =1, 0] T which is
produced by the WTA-Layer rather than an answer that looks like y =
[1.0;0.8824969025845]" which is produced by the Gaussian Layer. The reason is that in
Joone the Gaussian Layer and the WTA-Layer behave differently when the net is in the
ordering phase. When we remove the Gaussian Layer, we get the effect that the net is not
able to leam the training set. It will always produce the same output regardless of the
input. This might be due to a maloperation by the author or an error in the Joone

~ Framework.

56

3.2 German and English .
The results in section 3.1 are very promising, but we made the task easy for the net by
choosing long texts and by choosing two languages that have a great difference regarding
the alphabet and the word stems, Now we will make it more difficult by choosing similiar

languages. _
Languages more similiar to each other are German and English. Lots of words
have the same stem and the alphabet is almost the same. German only has the additional

umlauts &, 8, i and the character 8, whereas English has the add1t10na1 character i, which
is however rarely used and often replaced by i.

We trained the following nets:
of nets trained # of examples per # of epochs used for
language used for training - training
5 | 20 5,000
5 200 10,000
3 2| 20,000
5| - 10 , 5,000
5 - 10 10,000
5| 10 20,000
5 5/ | 5,000
5|, 5 10,000
5 5 20,000
5 2 5,000
5 2 10,000
5 2 20,000

Table 4 — Networks trained

The results of the net when presented with the trammg set were purely random.
The nets were not able to identify the language of an example from the training set.

The reason why these nets do not work may be that we ignored the rule of thumb’
that we should have at least 2,250,000 iterations in the convergence phase as described in
- section 2.3. The problem with this much iteration is that the training of the net is
excessively. For example: It takes 4 hours to train a net with 2 examples per language on
a 3 GHz Intel Pentium 4, with 20 examples it takes 40 hours. To bring the training time to
a feasible level we cut down the length of the examples to 400 mput neurons, The
trammg of five nets with 20 examples per language, five nets with 10 examples per
_laﬂguage, five nets with 5 examples per language and five nets with 2 examples per
language each with 2,250,000 epochs training leads to the same result, that is a purely
* random result when presenting a training example to the net.

57

4, CONCLUSION

There are statistical differences between German and English and we showed, that the net
can learn to dlstmgulsh these differences. So is there a way to change the net with the
result that it identifies German and English?

The fact that the results of the net trained with German and English were purely
random suggests the interpretation, that the statistical features of examples from one
langixage might be greater or equal to the statistical features from examples of the other

language. In this case we would need to precompute the input, so that the differences

between examples in one class are smaller than the ones between examples from both
classes. Such methods exist, but we would need to evaluate the applicability of these
methods.

REFERENCES
1. Spriinker, Simon. (2005), hitp:/simon.spruenker.de/files/nnetliftzip
2. Waetjen, Dietmar. (2004), Kryptographie. Heidelberg: Spektrum Akademischer

Verlag GmbH

3. Haykin, Simon. (1999), Neural Networks. A comprehenszve foundaaon New Jersey:
Prentice Hall

4. http://en.wikipedia.org/wiki/Vietnamese_alphabet

- 58

