Abstract

We study the effects of component-wise relative perturbations of a symmetric
matrix on its eigenvalues and of a general matrix on its singular values. We
characterize a class of matrices whose eigenvalues or singular values incur small
relative changes under such perturbations. Up to a small constant factor,

our results are optimal and agree with those of Barlow and Demmel for the

eigenvalues of a scaled diagonally dominant matrix, and those of Demmel and
Veselic for the eigenvalues of a symmetric positive definite matrix. Our results
are asymptotically optimal and are more general than those of Demmel and
Veselic for the singular values.
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1. Introduction

Let H and H + 6 H be real symmetric matrices with A; and A} being the i-th eigeﬁvalue
of H and H + 6H, respectively. The standard perturbation result [3] is

= Al < l6H|2 - (1.1)

This bound is attainable in that for any given H, for any of its eigenva.lues, and for any
n > 0, there exists a perturbation éH with ||§H||2 = 5 such that equality holds.

Inequality (1.1) gives an upper bound on the absolute perturbation of each eigenvalue of
H under the perturbation §H. To measure the relative perturbation of each eigenvalue, (1.1)
can be rewritten as

M=l _ 6H]s

25 I Y
This inequality is attainable in the same sense as (1.1). It predicts that the relative pertur-
bation is small for large eigenvalues but can be large for small eigenvalues.

(12)

However, inequality (1.2) can be quite conservative since it relates the relative perturba-
tion in A; to the absolute perturbation in H. If we restrict § H to be a component-wise relative
perturbation of H, then (1.2) is not necessarily attainable. Indeed, when elements of H have

very different magnitudes, (1.2) can be a severe over-estimate of the relative perturbation
for small eigenvalues.

For a general symmetric matrix H, if we assume that H = DAD and §H = D(§A)D for
some diagonal scaling matrix D and symmetric matrices A and 6A, then a component-wise
relative perturbation of H is a component-wise relative perturbation of A. Thus we are
interested in an error bound of the form

A= N

e P (1.3
il

where « is independent of §A. « can be chosen to be roughly ||A~!||» when A is diagonally

dominant or positive definite [1, 2]. In these two cases (1.3) can be significantly better

than (1.2) when D is badly scaled.

In this paper we establish error bounds similar to (1.3). In a well-defined sense, our
‘results are optimal up to a small constant factor. In the case where A is either diagonally
dominant or positive definite, our bounds agree with those in [1, 2] within a factor close to
2. We also generalize the relative perturbation theory for eigenvectors in [1, 2] to a general
symmetric matrix’. '

We also consider the relative perturbation theory for the singular values of a general real
matrix. Given G = DBF, where D and F' are diagonal scaling matrices, we consider the
relative perturbation of the singular values of G under the perturbation G = D(6B)F. In

! Veseli¢ and Slapnicar [5] have established error bounds similar to (1.3) using a very different approach.
In the case where A is either diagonally dominant or positive definite, these bounds also agree with those
in [1, 2] within a factor related to the matrix size.




a well-defined sense, our results are again optimal up to a small constant factor. In the case
where F is the identity matrix and G is fat, our results agree with those in [2] asymptotically.

Section 2 introduces some notation and preliminaries; Section 3 presents our relative
perturbation results for eigenvalues and eigenvectors; Section 4 presents our relative pertur-
bation results for singular values.

2. Notation and Preliminaries

A, H and W are symmetric matrices. B, G and K are general matrices. D, F, J and S
are diagonal matrices. I is the identity matrix. u, v, z, y and z are vectors.

R and R are index sets, i.e., subsets of the set of positive integers. § is the empty index
set. |R| denotes the size of . Ay denotes the principle submatrix of A such that the (z,7)
element of A is an element of Ay if and only if ¢,5 € .

Amin(A) denotes the smallest eigenvalue of A in magnitude. Define
kx(A) = min{|Amin(Az)] : R2 N and R # 0.}

In particulé.r, kg(A) is the absolute value of the smallest eigenvalue in magnitude among all
principle submatrices of A; and kp(A) < kx(A4) for any X.

LEMMA 1. Let 6A be a symmetric perturbation of A, and let R be an index set. Then

rx(A+8A4) > kx(A) — ||6A]l2

Proof: By definition, there exists a non-empty index set ® D R such that xy(A + 6A) =
[ Amin(Ag + 6Ag)|. Using (1.1), we have

k(A + 6A4) = |Amin(An + 6A48)| > [Amin(Ar)| — |6AR]l2 = &x(A) — ||[6A]l2
n

We say that an m X n matrix B is fat if m < n and skinny if m > n. Omin(B) denotes
the smallest singular value of B. Define
x1(B) = min{omin(B1) : B is a square submatrix of B}

a.nd
. 1 <
XZ(B) — { O'mm(B) ifm n,

min{omin(B:) : B is an n X n submatrix of B} ifm>n.

In particular, X3(B) < Omin(B1) for any submatrix B; of B; and x2(B) < Omin(B2) for any
submatrix B, of B with column dimension n; and x1(B) < x2(B). When B is a square
matrix, X2(B) = Omin(B). The following lemma is similar to Lemma 1.

LEMMA 2. Let 6B be a perturbation of B. Then
x1(B+6B) 2 x1(B) = ||6Bllz and x2(B+6B) > x2(B) — ||6B]2




3. Relative Perturbation Theory for Symmetric Eigenproblems
3.1. Relative Perturbation Theory for Eigenvalues

" The following theorem is the basis for the results that follow. The case where A is
diagonally dominant is proved in [1].

THEOREM 3. Let H = DAD, and let §H = nDED be a symmetric perturbation of H
withn > 0 and ||E||; = 1. Assume that A(£) # 0 is the i-th eigenvalue of H(§) = H+{DED
with unit eigenvector z(€) for 0 < ¢ < . If there exists a continuous function f(£) such that

1Dz(I7 < £(&) IME)I

oo (- [10%) 3B sen([f008) . @D

Proof: Suppose first that A(¢) is simple for 0 < ¢ < . Then A({) is analytic, and it follows
from standard perturbation theory [3] that

for0 < €<, then

d
2 \©) = (" DEDa(¢)

Thus
z(¢) TDED:L'({)‘
- A < f¢
0|5 ©
for 0 < £ < n, which implies that _
2 g M) < £(6)
e ¢ =
Integrating ¢ over the interval [0,7] yields (3.1). A continuation argument similar to that
in [1] shows that (3.1) is still valid even when A(§) is a multiple eigenvalue. ]

To estimate the function f(£) in Theorem 3, we use the following lemma.

LEMMA 4. Let W be a symmetric matriz and let S = diag(sy,...,sn) be a positive
diagonal matriz. Assume that a unit vector z and a positive scalar X satisfy the relation
Wz = ASz. Also assume that there exists an index set R such that ||Sy|l2 < 1. Then we have

Wz > (W) = (VE+ 1)) (32)




and in the special case where R = 0, we have?

TWz> %K@(W) . (3.3)

Proof: We assume without loss of generality that Wy is the |R®| x |R| upper left block of W.
We consider the problem of finding the infimum ¢ of 2YWz over z and {s;};>x, under the
constraints

2Tz=1, Wz=ASz and ;>0 for j>|¥ , (3.4)

where A and {s;};<y| are fixed parameters with 0 < s; < 1. The infimum ¢ exists because
2TWz=X2TS5z> 0.

Let {(2®, S®)} be a sequence satisfying (3.4) such that

lim 20T W2® = ¢

t—00
Let Z = ((1,...,6q)T be a limit point of {®}. Then z2TWz = ¢. For any j > [R|, if {; is
non-zero, then the j-th diagonal element of S® converges to a finite number (Wz);/(A\(;);
and if ; is zero, then we can reduce the size of the problem by dropping the j-th column
and row of W and the j-th equation in the constraint Wz = ASz. When the problem size
is reduced, the value of 2ZZW# does not change; neither do the remaining constraints. The
infimum of the reduced problem is no larger than ¢.

By repeating this reduction as needed, we can bound ¢ below by the solution of the
following minimization problem over Z and S, which must achieve its infimum at a finite
point:

minimize  3TW3 subject to Ws= /\§§, T5=1,8>0 ,

where
. Woo Wor Wo So Zo
W = W10 Wu ng ; S = 0 , and Z= Z )
Wao Wor Woy S 22

Woo and Sp are the upper-left |R| x |R]| blocks of W and S, respectively; W and S are principle

submatrices of W and S, respectively, up to a symmetric permutation (this permutation is
~ chosen such that no component of S, is zero); and % is a subvector of z up to the same
permutation (no component of Z; or Z, is zero).

2 When W is positive definite, x3(W) = Amin(W) and inequality (3.3) can be improved to
2TWz > k(W)




The minimum is a stationary point of the Lagrangian

L(3,8) = —"TWz + T (W2 — A53) - -[l( Tz 1)

T

with v = (vo ,oF vI)T and 1 p being Lagrange multipliers. The only term in £(Z, S) involving
Sy is V5 T5,%,. Since 8L£/85, = 0 and each component of Z, is non-zero at the minimum, we

must have v = 0. On the other hand, since 0£/0% = 0, we must have

W(z+v) — ASv = u3

Putting together these equations and those in the constraints, and disregarding equations

that involve S,, we have

?oo :th Eoz Zo+ vo govo
Wi Wi Wi Zitv | —A 0 =p

W20 W21 Wzg 22 0

:WZOO Em ﬁoz ?1) — SoZo
Wio Wiy Wy, 3 0

These equations can be rewritten as

and

2o + vo b2)
Z+un Z
C(N) 22 =M 22 ’
Vo 20
V1 21

where

Woo Wor Wor =25
, Km Eu fVKm
CR) = W{go Wa Wae N o
ASo Woo —2)Ss Wor
Wi  Wu

We also have

p=piTi=T(W(E+v) = ASv) = 5TWs+ 0T (Wz - A55) = TW: >0

and so 4 is a lower bound on ¢.

(3:5)




Taking norms on both sides of (3.5), we have

Zo + vo Zo
z1+n %
omin(C(R)) Za Sel] Z - (3.6)
Vo 20
v ) % .

On the other hand, since # is a unit vector,

Zo + vo Zy

21 + (. El
% >1/v2 and % <V2
Vo EO
m 2 51 9

Combining these relations,
1

Lo CO) < i (37)
To get (3.2), we note that
?oo ?01 Eoz 0 —-/\go
KV}OWKH E’Km 0
CR)=| Wa Wy W . + _ 0 N
Woo Wol ASO —2ASO
Wi Wn 0

On the right-hand side, the smallest singular value of the first matrix is no smaller than
xx(W), and the norm of the second matrix is no larger than (v/2 4+ 1)A. Thus

Tmin(C(R)) > rx(W) — (V2 +1)A

Plugging this relation into (3.7) we have
1
(W) = (V2+ 1)) <

Since p is a lower bound on ¢, this relation implies (3.2).
To prove (3.3), we set ® = @ in (3.5). Then all the entries in C(R) with subscript 0
disappear, and
?11 ?12
CO)=| Wn War _ ;
Wu

whence omin(C(0)) > xg(W). Thus (3.7) simplifies to

1
Eﬁﬂ(W) <we o,




which implies (3.3). , n
Example 1 illustrates the tightness of (3.3).
EXAMPLE 1. Let W be any symmetric matrix with kg(W) > 0. Then, up to a symmetric
permutation,
Wn Wi )
W = ,
( War Wa

where |Amin(Wa2)| = k¢(W). Let H = DW D, where D = diag(dI;, I,) is blocked conformally
with W.

Assume that Amin(Wa2) > 0; if Apin(Wa2) < 0 then we consider the matrix —W. Then
there exists a unit vector z, such that Wiz, = xg(W)z,. According to [4], H has an-

eigenvalue w satisfying
0 O _ dW12$2
H<$2)‘n°(w)(xz>2_|l( 0 )

Thus for d > 0 sufficiently small, we have
w > kg(W) —=d||W]|2>0

|w — re(W)] < < d|W];

2

For any unit vector y = (y7,y¥)7 satisfying Wy = wD~2y, we have

w
Wiy + Whaye = Y9

whence
L W

w

ol = v Wiy (%)

2

Thus

w

d 2
YWy =uwy" Dy <w (1 + (H—W—“i) )

As d goes to zero, w goes to xg(W) as does the upper bound for yTWy. Thus equality
in (3.3) can be achieved for some y, A and K = D=2 up to a factor close to 2.

COROLLARY 5. Let H = DAD with kg(A) > 0. Let §H = D(6A)D be a symmetric
perturbation of H with ||6A|; = n < kg(A). Let \; and X! be the i-th eigenvalue of H and
+ H + §H, respectively. Then®

_n2re(A) —m) A -\ _ n(2re(A) —n)

< < (3.9)
K2(A) i (ro(A4) — n)?
8 When A is positive definite (3.9) can be improved to
n_ Aok n (38)

TR@A SN Sm@) -7




Proof: Assumethat A; > 0; if \; < 0, then we consider the matrix —H. Let E = §A/||6 A2,
let H(§) = D(A+£E)D, and let \;(£) be the i-th eigenvalue of H(¢) with corresponding unit
eigenvector z;(€) for 0 < ¢ < 7. Then A;(0) = X; and XA;() = M. According to Lemma 1,
we have ky(A + EE) > kg(A) — € > 0. It follows that X;(£) is positive for 0 < ¢ < 7.
Applying (3.3) in Lemma 4 with W = A+ ¢E, S = D72, 2 = Dz;(¢)/||Dz:(6)||2 and Xi(€),

we have

Sra(A+EE) < e

| Dz:(E)|I3
or
2
. 2=
DO < oy MO S oy MO

Theorem 3 then gives

no(A)—n> X (no(A) )

(att) <3<(E%)
which is equivalent to (3.9). u

Inequality (3.9) gives lower and upper bounds on the ratio (A — );)/\; that are indepen-
dent of D. Because of the tightness of (3.3), the bounds in (3.9) are optimal up to a factor
close to 2 for 7 sufficiently small. Moreover, inequality (3.9) can be rewritten as

2 o (o))

EXAMPLE 2. Let A be positive definite. Demmel and Veselit [2] show that

M=\ i
L <
l Ai l ~ Amin(4)

Since £9(A) = Amin(A), inequality (3.8) agrees with this result asymptotically.

EXAMPLE 3. Let A = A + N, where A is diagonal with elements +1 and N has a
zero diagonal. Assume that A is diagonally dominant with respect to the 1-norm, 2-norm or
oo-norm; that is

INlp<v<1 ,
where p is one of 1,2 and oco. Barlow and Demmel [1] show that

X=X|__n
: <
l Ai l—l—"/

Since kg(A) > 1 — 4, inequality (3.9) agrees with this result up to a factor close to 2 for 7
sufficiently small.

We also have the following result.




COROLLARY 6. Let H = DAD with ||Dg'|l2 £ 1 and sx(A) > 0 for some R. Let
OH = D(6A)D be a symmetric perturbation of H with 0 < ||6A||2 = n < xx(A)/10. Let X;
and X} be the i-th eigenvalue of H and H + §H, respectively. If |X;| < kx(A)/10, then

(3.10)

/\: - /\i < 107]
A - K,R(A)

Proof: Assumethat A\; > 0;if A; < 0, then we consider the matrix —H. Let E = §A/||6 A2,
let H(¢) = D(A+€E)D, and let A\;(¢) be the i-th eigenvalue of H(¢) with corresponding unit
eigenvector z;(§) for 0 < ¢ < 7. Then X;(0) = X; and A\i(n) = M. According to Lemma 1,
we have kx(A + (E) > kn(A) — € > 0. It follows that \;(€) is positive for 0 < ¢ < 7. As
in the proof of Theorem 3, we only consider the case where \;(¢) is simple for 0 < ¢ < 7.
Applying (3.2) in Lemma 4 with W = A+ ¢E, S = D=2, z = Dz;(£)/|| Dz (€)|l2, i(€) and
index set R, we have

1 _ Ai(€)
a4+ EE) = (V2+ DN S ypmram

or

2
wx(A+¢EE) — (VZ+1)Xi(€)

Thus as in the proof of Theorem 3, we have

[1Dz:()I <

A9l

2X:(¢)
r(A+EE) — (V2 + DN(8)

£ o

In the following we prove (3.10) by contradiction. Assume that there exists 0 < o < 7
such that

ME) < (1 s %) AMO) . 0<E<é (3.12)
| and
A(Eo) = (1 +—§%) YO (3.13)

Recall that X;(0) < xx(A)/10 and n < xx(A)/10. Then for 0 < ¢ < &,
| mn(A+EE) — (V2+ 1)X()
109 .
2 ()= €= (V2+1) (14 205 ) 2O
> kn(A) — £x(A)/10 — (V2 +1) - 2 - £y (A4)/10

K
2
gﬁn(A) |

v
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Thus (3.11) and (3.12) give

4. 2X:(6)
‘dﬁ Aﬁ(é)l = rx(A+EE) — (V2 + D)N(8)

5 109 )
< 1+ A (0
a1+ agg) MO
_5
rx(A)
10
= —— X\(0
for 0 < ¢ < &, which contradicts (3.13). Thus we must have

M(é)s(u%)&(@ . 0<é<n ,

which is equivalent to the upper bound in (3.10). A similar proof gives the lower bound. m

EXAMPLE 4. Consider the matrix H = DAD with

010
A=1111 )
011

and D = diag(1,1,107%). Let X = {1,2}. Then kx(A4) = |Am(A)| > 0.55. H has a tiny
eigenvalue of the order O(1071%). A small component-wise relative perturbatlon of H only
causes a small relative perturbation of this eigenvalue.

IA

-2 - X;(0)

3.2. Perturbation Theory for Eigenvectors

Following [1, 2], we define the relative gap of the i-th eigenvalue of H as
o = Al

relgapp(Xi) = W

The following is a generalization of the results in [1, 2] which deal with the special case
where A is diagonally dominant or positive definite.

THEOREM 7. Let H = DAD with xg(A) > 0. Let 6H = D(6A)D be a symmelric
perturbation of H with ||6A|ls =n > 0. Let \; and X; be the i-th eigenvalue of H and H+6H,
with corresponding unit eigenvector x; and x!, respectively. Assume that relgapg(X;) > 0 and

that
7 Km(A) relgapH(/\,-)
= 8(1 + relgapy (X))

Then
onvn —1
xp(A) relgapg(X;)

llz; — zill2 < (3.14)
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Proof: Since relgapy(A;) > 0, ); is a simple eigenvalue of H. Let E = §A/||6A]l2, let
H(¢) = D(A+EE)D, and let \;(€) denote the j-th eigenvalue of H({) with corresponding
unit eigenvector z;(§) for 0 < ¢ < 5. Then A;(0) = A, :i(0) = =4, Xi(n) = X} and z;i(n) = z!.

To estimate relgapy(X:i(€)), we note that Corollary 5 implies that

Xi(8) = X5(0)| _ E(2re(4) &) XO)| o (ro(A) —€)*
6O |7 (w(A) 5 ™ |%E 2( ro(A) )

for each j. We also have

O] + X (0] o [X:(0) = A;(0)]
(0 0)1F T (002

Thus
) = MO _ 104(0) = X:(0)) + (A4(8) = X5(0) — (Ma(€) —
NGNGE IA;(0)2:(0) X (€)X (E)
IX(0) = X(0)]  €(2ko(4) — €) A5(0) + |/\.-(0)|)
- l,\ X0z (ka(A) =€) XN0)X(0)7 /| [X(OX(€)

[\

_ £(2k0(4) =€) |A,~(o>—x,-<o>|_z«zno(A)—o) (fcw(A)—£>2
(ko(A) — 6)2 IX;(0)A:(0)]2 (ka(A) — &)? Ko(A)

_ ¢ MO =X 26 /¢
- (1 fw(A) no(A)>) A (0)N(0)F  xe(A) (2 no(A)>

12(0) = X(0)] _ _4€

e no(A>> POXNO)F  xo(4)

which implies that

relgapg (M(€)) > (1 = A)) relgapa(u0) - i 2 relaap(uO)/2 (19
for 0 <é<n.

Equation (3.15) implies that X;(¢) is a simple eigenvalue of H(¢) for 0 < ¢ < 7. From [3]
we have ;
d z; (§)DEDz;(£)
& 0= F@m-ne 9 -

J#
Using the Cauchy-Schwartz inequality, we have

1D2©)ll= D=6l |
l SVelmx s @ (310

Applying (3.3) of Lemma 4 with W = A+¢E, S = D%, z = Dzi(£)/|| Dzi(€)||2 and Ax(€),

we have

[Dzk(E)ll2 < V2IAe(€)l/50(A + EE)
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for each k. Plugging this relation into (3.16), we have

d V2N (O)1/ra(A + EE) /2N ()] ko(A + EE)
=@, < vi=Tm 2O — 5@
2W/n—-1
r9(A + £E) relgapy(Xi(£))
< 2v/n—1
= (xe(A) =€) relgapy(Xi(€))
< 5v/n—1
= 2r9(A) relgapy(Xi(€))
where we have used the fact that ¢ <7 < kp(A)/5. Plugging (3.15) into (3.17) and integrat-
ing over the interval [0, 7], we arrive at the conclusion. n

(3.17)

4. Relative Perturbation Theory for Singular Values

The following theorem parallels Theorem 3.

THEOREM 8. Let G = DBF, and let §G = nDEF be a perturbation of G with n > 0
and ||E||; = 1. Assume that o(£) is a non-zero singular value of G(§) = G + (DEF with
unit left and right singular vectors z(£) and y(¢) for 0 < ¢ < n. If there exists a continuous
function f(€) such that

[ Dz(E)l21Fy(E)ll2 < f(£) o(€)

oo (- [10) < WD <en([ 0 2) - (4.)

Proof: As in the proof of Theorem 3, we only consider the case where o(§) is simple for
0 < ¢ < 7. Then o(€) is analytic, and it follows from standard perturbation theory [3] that

d
3 a(€) = =(¢)" DEFy(¢)

for 0 < & <, then

Thus

(f>|

=(¢)T DEFy()
l 20 d I <10

for 0 < ¢ < 75, which implies that

< f(6)

Integrating ¢ over the interval [0, 7] yields (4.1). n

|d§ log o(¢)

The following lemma estimates f(¢) for a matrix K when there are scalings on both
sides.
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LEMMA 9. Let K be a general matriz. For any positive diagonal matrices J and S, and
unit vectors w and z satisfying Kz = Jw and KTw = Sz, we have

wiKz > -;—x1(K) . (4.2)

Proof: We assume that x;1(K) > 0; otherwise the result is trivial. Thus every submatrix of
K has full rank. Parallel to the proof of Lemma 4, we consider the problem of finding the
infimum ¢ of wT Kz over w, 2z, J and S, under the constraints

ww=1, 2Tz2=1, Kz=Jw, K'w=S8z, J>0 and S>0 . (43)

The infimum 4 exists because wT Sz = w? Jw > 0.
Let {(w®,2(), J® S} be a sequence satisfying the constraints (4.3) such that

}Hi}, w(t)T Kz® =1

Let (@, %) be a limit point of {(w®,z®)} with © = (@,...,5,)7 and z = ({1,--.,)7
Then w7 Kz = 1. For any j, if @; # 0, then the j-th diagonal element of J () converges to a
finite number (K 2);/@;; if @; = 0, then we can reduce the size of the problem by dropping
the j-th row of K and the j-th equation in the constraint Kz = Jw. Similarly, for any %,
if (¢ # 0, then the k-th diagonal element of S® converges to a finite number (KTw)/(; if
(x = 0, then we can reduce the size of the problem by dropping the k-th column of K and
the k-th equation in the constraint K@% = SZ. When the problem size is reduced, the value
of W7 K% does not change; neither do the remaining constraints. Thus the infimum of the
reduced problem is no larger than .

As in the proof of Lemma 4, we can bound ¢ below by the solution to the following
minimization problem over 1, Z, J, and S;, which achieves its infimum at a finite point:

~

minimize W K3
subject to ww=1, FTz=1,71,>0, 5,>0, Kz=Jw, KTv=5% ,

where

£ 1?11 1?12 - 0 ~ 0 ~ < 7171 > ~ ( 21 )
K = ~ ~ = ~ S = ~ s = ~ ’ = ~ )
( K21 K22 ) ’ J ( Jg ) ’ ( Sg ) @ Wo g 29

K is a submatrix of K up to a row permutation and a column permutation (the row per-
mutation is chosen such that no component of J is zero; and the column permutation is
chosen such that no component of S, is zero); and W and Z are subvectors of w and z up to
the same row and column permutations (and no component of @ and % is zero).
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The minimum is a stationary point of the Lagrangian
L(®,2,J,8) = 67Kz +uT(Kz — Jo) + vT (BT — 55) — —-p( 7T —1) — -y(~T~ -1 ,

where u = (uf,u3)7, v = (v],v 03)T, b and v are Lagrange multipliers. The only terms in
L(w, %, J, S) involving Jz and S, are uj T Joiy and v; ngz, respectively. Since 3£/8J2 =0
and 0L/ 85, = 0, and since each component of 1, and #; is non-zero at the minimum, we
must have u; = 0 and v, = 0. On the other hand, since £/8% = 0 and dL/dz = 0, we

must have
KE+v)—Ju=pb and KT (% +u)— Sv=1vz

= [0 up \ _ & 0~ v\ _
Ju—( ‘E)(())—O and Sv—( Sz)(())—(),

K(E+v)=pb and KT(o+u)=vi . (4.4)

But

so that

Putting together these equations and those in the constraints, and disregarding equations
that involve J; or S, we arrive at the following equations:

En K\ (a+w)_ (b RE KE (1.7)1+u1)=y<§1)
Ky K Z #\ @ ’ KL, K% o %
~  ~ P ~ D

(Kn Klz)(§:> =0, (K;q KT)(w:) =0

These can be rewritten as

Ky Ky \ Zit+wu Wy

I?gl I?zz 5’2 =pUu 'LZ72 (4.5)
I?n ) N "I’l

f{'ﬁ I?g; \ W + Uy %

RY, K%, ( B ) =v ( s;») . (4.6)
I?ﬂ/ Uy z

From (4.4) we also have
p = 0"KG+v) =" Ki+5Sv=0"Kz |,
v = K (@ +u)=7KTo+ 0 Ju= K o=p ,

where we have used the fact that the constraints are satisfied and that Ju = 0 and Sv = 0.
Thus g = v is a lower bound on .
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Similar to the proof of Lemma 4, we estimate a lower bound on g by taking norms in

equations (4.5) and (4.6). Note that Ky and K = KH Ifu are not necessarily square
Ky Ko
matrices, and so the coefficient matrices
Ky Ky KL KJ
Kz K and K K;;’;
K K%

in equations (4.5) and (4.6) can be structurally singular. Without loss of generality, we
assume that Kn is a fat matrix; otherwise we consider the matrix KT,

We first assume that K is fat. The coefficient matrix in (4.6) is skinny and has full rank. |
Its smallest singular value is no less than x;(K). Taking norms in (4.6), we have

wy + Uy Z
x1(K) g <plll 2 <V2u
Uy 2 21 2

But

wy + Uy
s >1/V2
Uy 2

Thus we have x;(K)/2 < p, which implies (4.2).
Now we consider the case where K is skinny. In this case the coefficient matrices in both

equations (4.5) and (4.6) are singular. There exists an orthogonal matrix @ = ( gl ) such
2

that f?n = (.[?11,0) ( g:

2 _ e 1 _ Q11
(52>_(Q251) and (f’z)—(szl)

vSubstituting Kiv, = R,1%, into the left-hand side of (4.5) we have

), where Kji; is a square matrix. Let

Ky Ki» Zi+um W,
Ky Ko Z3 =p| W
Ku '61 wl

The coefficient matrix of this equation is skinny, and its smallest singular value is no less
than x1(K). Taking norms on both sides, we have

Zi+n
x1(K) 5 <V . (4.7)

G
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On the other hand, from (4.6) we have

~

K'I;ul [.LZ] . » (48)

~ T -
QI{ﬂ=<K11> and Q,%l;(f‘) ,
0 29

applying Q to both sides of (4.8) we have

KT (&
( : )ul_#<5’2) ’

Since

whence 0 = pz,.

Note that

U= BTK3 = 0T Jib = Wy J2w2 =z, .5'222

Since the components of W, and 2, are non-zero, and since J; and S, are positive and
diagonal, u can be 0 only when ,, 2, J, and S, are all of dimension 0. But in this case the
constraints become K7 = 0 and K% = 0, which contradict the fact that K has full rank.
Thus g > 0 and hence 2, = 0.

Since
Z1+ v fli?l 21;-'01 ZH1+0
B2 =l 27" 1| = o2 > % >1/V2
n 22 22 N
0 A “ U1
2 9 , By \ 2
substituting this into (4.7) we have x1(K)/v/2 < v/2u, which implies (4.2). n

Example 5 illustrates the tightness of (4.2).

EXAMPLE 5. Let K be any matrix with x31(K) > 0. Then, up to a permutation,

K, Km)
K=
(Kn Ky

with omin(K22) = x1(K) > 0. Let G = DK F, where D = diag(dl,, I,) and F = diag(fI},I3)
are blocked conformally with K.

There exist unit vectors z; and y, such that Kaoys = x1(K)z2 and KLz2 = x1(K)ye.
According to [4], G has a singular value w satisfying

df Ky dKis 0 0
fI{n K22 T2 _ To

dKL, K% Y2 y2 /1l
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deyz

_ 0
= 1/v2 f212

R

Thus for d > 0 and f > 0 sufficiently small, we have

w > x1(K) - d2+f

x|l >

For any unit vectors z = (27,2%)7 and y = (y{ ,yT)T sa.tisfying Gy = wz and G¥z = wy, -
we have

df K1y + dKays = wz, and  fdKh iz + fKLz: =wyp

whence

R

2l <

for 0 < d <1 and 0 < f < 1. These relations imply that

[1Dzll2 2 [lz2]l2 2 \/1 - (ﬂf%_lz_‘%) and ||Fyll2 > ||y2llz > \/1 - (_____“Kcllzf>

Ds Py _wlDala ., o lFuls

~ Dz, ’ IFyll:> = IFyls [ Dzll2

Then w and z are unit vectors satisfying

Let

Kz=Jw and KTw=3Sz ,

and A
w : w

1Dzl TFols J (1_ ("—Iiu)) (1_ (I_u%u))

As d and f go to zero, w goes to x1(K) as does the last upper bound. Thus equality in (4.2)
can be achieved up to a factor close to 2.

COROLLARY 10. Let G = DBF with X1(B) > 0. Let 6G = D(6B)F be a perturbation
of G with ||6B||2 = n < x1(B). Let o; and o} be the i-th singular value of G and G + G,
respectively. Then

wiKz =

n(2x1(B) — 1) _ oi—0; _ 1(2x1(B)—1)
T X® S a S a® -1

(4-9)
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Proof: Let E = §B/||6B||2, let G(§) = D(B+EE)F, and let 0;(€) be the i-th singular value
of G(¢) with corresponding unit left and right singular vectors z;(§) and y;(€) for 0 < ¢ <.
Then 0;(0) = 0; and 0;(n) = o!. According to Lemma 2, we have x1(B+¢(E) > x1(B)—¢€ > 0.
It follows that o;(£) is positive for 0 < ¢ < 5. Applying (4.2) in Lemma 9 with

B _ Dzi(§) P 7i(9
K=B+eE, v=ipioh’ °~ TFu©h
and
_ ai(OIDzi(Ol2 s _ GiOIFy(Oll2 p-
=T Eeh T ™ 7T T D@l ’
we have

oi(£)
Mzl Fyi(€)ll2

1
P+ = e

Applying Lemma 2,

20i(§) . _20i(§)
x1(B+EE) ~ xi(B)—¢

(&) <2< (o)

which is equivalent to (4.9). u

1 Dzi(O)ll2ll Fyi( 2 <

Theorem 8 then gives

Inequality (4.9) gives lower and upper bounds on the ratio (¢} — 0;)/0; that are indepen-
dent of D and F. Because of the tightness of (4.2), the bounds in (4.9) are optimal, up to a
factor close to 2 for  sufficiently small.

Now we estimate the function f(¢) in Theorem 8 when there are scalings on only one.
side of K.

LEMMA 11. Let K be a general matriz. For any positive diagonal matriz J, positive
scalar ¢, and unit vectors w and z satisfying Kz = Jw and KTw = (z, we have

wl Kz > x2(K)

Proof: We assume that x,(K) > 0; otherwise the result is trivial. Parallel to the proof of
Lemma. 9, we consider the problem of finding the infimum % of w” K z, under the constraints

wlw=1, 2fz=1, Kz=Jw, Kfw=(z, J>0 and (>0
The infimum 1 exists because T Kz = w? Jw > 0.

As in the proof of Lemma 9, we can bound 3 below by the solution to the following
problem, which achieves its infimum at a finite point:
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minimize DT K3

subject to  wTw=1, Fi=1,J,>0,(>0, Ki=Jo, Ko = (%,

~_ 0 ~ 12?1 "‘_ I?] .
J-( 72) , w—(@z') and K—(Kz) ;

K is a submatrix of K up to a row permutation (this permutation is chosen such that no
component of J; is zero); and 1 is a subvector of w up to the same permutation (and no
component of W is zero).

where

The minimum is a stationary point of the Lagrangian
L(0,%,J,¢) =0T Kz +uT(Kz — Ji) + vT(KT% — ¢2) — —u(u": H—1)— —V(~T~ -1 ,
where u = (u3,u2)7, u and v are Lagrange multipliers.
We first show that ¢ must be non-zero. Indeed, if { were zero, then KT = 0 and thus
Wy J2w2 T Jio = oTKs =0

Since the components of f W, are non-zero and since J; is positive diagonal, this equation
holds only when %, and J2 are of dimension 0. But in this case the constraints would become
K% =0and KT% = 0, which would imply that K does not have full rank, contradicting the
fact that x2(K) > 0. Thus ¢ must be non-zero. '

The only terms in £(, 2, J ¢) involving ¢ and J, are Cv Z and u; T Jyiba, respectlvely
Since ¢ > 0, we must have £/8¢ = 0, which implies that vTZ = 0; and since 6[,/3J2 =0

and each component of @, is non-zero, we must have u; = 0. On the other hand, since

OL/0w = 0 and L/0% = 0, we must have
CK@E+v)—Ju=pi and KT(o+u)—(v=vE . (4.10)

(" 5) (3)

Using (4.10) with Ju=0,vT%= 0 and the equations in the constraints, we get the following
relations:

‘We also have

p o= poTo=a"K(E+0v)=TE+0)=C ,
v = viT5 =T (KT (w+u) — (v) = T KT (w+u) = (T2 + & Ju=(
Thus ¢ = g = v is a lower bound on . Further, the constraints and (4.10) imply that
KTo=(: and KE+v)=(d . (4.11)
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T

Since v* Z = 0, we have

I+ vll2 = /N2l + ll0llZ 2 1

One of KT and K is skinny. Taking norms from the corresponding equation in (4.11),
we arrive at our conclusion. n

With the techniques used in proving Corollary 10, we can easily prove the following
result by using Lemmas 2 and 11.

COROLLARY 12. Let G = DB with x2(B) > 0. Let 6G = D(6)B be a perturbation
of G with ||6Bl|2 = 1 < x2(B). Let o; and o} be the i-th singular value of G and G + 4G,
respectively. Then :

1 ol — 0 n ‘
— < 22 < ; 4.12
x2(B) T o T xo(B)—nm (#.12)

When G is scaled from the right, we can apply Corollary 12 to G7. Similar to (4.9), the
bounds in inequality (4.12) are asymptotically optimal.

EXAMPLE 6. Let G = DB with D diagonal and B fat. Demmel and Veseli¢ [2] show
that
o; — o; n
z <
~ x2(B)

Thus (4.12) agrees with this result asymptotically.

ag;
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