Supercomputers: Past and Future

S. Lennart Johnsson
YALEU/DCS/TR-778
March 1990

To appear in KOSMOS 1990.

Supercomputers: Past and Future
S. Lennart Johnsson

March 1990

Abstract

Progress in many fields of science and in engineering design is rapidly becomming
critically dependent upon supercomputers. The management of very large data sets,
including fast update and retrieval of information, is also becomming a very impor-
tant function in many non-manufacturing businesses, such as the transportation,
the securities, and financial industries, and in various parts of the government. The
goal for the designers of the next generation supercomputers is a computer with a
performance of a least a trillion operations per second, and a primary storage of a
hundred Gbytes. Such computers will be massively parallel, and are expected to be
commercially available by 1995.

1 A brief history

The term supercomputer refers to the most powerful computers available at any given
time. It is a relative measure of performance in a field where a products lifetime based
on price/performance is no more than three to five years. The performance of a Cray-1
computer, introduced in 1976 and often refered to as the first modern supercomputer,
occupied a volume of about 6 - 7 m3, required liquid nitrogen cooling with the cooling
system occupying at least as much space as the computer itself, and carried a price tag of
about $10 million in 1976. Today, a single chip' microprocessor that can be purchased for
about $1,000 has half the processing capacity of the Cray-1, and a handfull of state-of-the-
art memory chips also with a total price of about $1,000 can store as much information
as the primary storage of the Cray-1 computer. Even though the comparison is unfair in
terms of cost, since the quoted cost for the Cray-1 is a system cost including software, the
reduction in volume, price, and power consumption over a 13 year period is more than a

thousandfold.

Computers and communication systems are cornerstones of todays society. The bank-
ing, insurance, securities, transportation, real estate, and health care industries are ex-
amples of industries outside science and engineering that critically depend on modern
computer and communciation systems. The success of the computer is its ability to store
programs that allow the same piece of hardware to be used for a variety of tasks. Charles
Babbage’s Analytical Engine [36, 54] designed during 1833 — 1837 is considered the first
stored program computer. It was designed to store 1000 words, with 50 digits per word.
It was a mechanical computer, Figure 1. It was not until about 100 years later that new

LA chip is a piece of silicon less than 10 x 10 mm?.

Tt :lCONTROL ;;‘1“ -0
| I f |
[{ !
| |
(—'-—J ‘-—‘—— t
INPUT : MEMOR_Y-‘ | |ouTPuT
1
|
i
' [
! !

L o

——=«Dota/Instruction flow
-— — Control flow

Figure 2: The von Neumann computer.

designs emerged. In the decade 1930 - 1940 electro-mechanical devices were used for the
design of stored program computers at Bell Telephone Laboratories, Harvard University
(MARK I), and a few other places (see for instance [4]). Non-programmable devices,
such as calculators, existed long before the first stored program computer, and electro-
mechanical devices for sorting were developed before the electro-mechanical computer.
In 1946 Burks, Goldstine, and von Neumann [7] published a report on the design of an
electronic stored program computer. The basic elements of the design was a memory unit
for storage of data and instructions, a control unit, and an arithmetic unit as shown in
Figure 2. Most modern computers are refinements of this architecture known as the von
Neumann architecture. The path between the memory and the arithmetic and control
units is often refered to as the “von Neumann bottleneck”. Similar designs were being
pursued by a few other groups in the USA and England.

The development of the stored program computer has been, and still is critically de-
pendent upon the technology. It was not until electronic components became readily

Figure 3: Memory devices in early computers.

available that the development of the modern computer started to accelerate. The three
critical components in a digital computer are the logic devices used for the control unit
and arithmetic/logic units, the storage, and the interconnections between the parts and
the outside world. For the first 20 years of the electronic computer these elements were
all manufactured in different technologies, and the task of the computer architect was to
match the characteristics of these technologies with the needs. Vacuum tubes were used
to create devices for logical operations for about a decade. The transistor, discovered
at Bell Telephone Laboratories in 1947 became widely used in computers during 1955 —
1960. In 1966 the integrated circuit was introduced. Several devices and the interconnec-
tions between them could be manufactured in the same technology, and the space and
power requirements were drastically reduced. Early storage devices were acoustic delay
lines using mercury as the storage medium, or magneto-strictive effects in metals such
as nickel, and electro-static storage using cathod ray tubes, Figure 3. Magnetic films in
the form of drums were also used as early storage devices. Magnetic core store conceived
independently by Rajchman at RCA and Forrester at MIT in 1949 [34] was introduced at
about the same time as the transistor. By about 1970 core memory was replaced by stor-
age based on transistors. Though core memory is obsolete, the term “core” is still often
used for the primary storage of a computer. Today, MOS (Metal Oxide Semiconductor)
technologies dominate in computer design. State-of-the art chips contain several million
devices.

The increased level of integration has made possible a dramatic reduction in the vol-
ume of a sytem, its power consumption, and its cost, and equally dramatically increased
the complexity measured in terms of gates, or elementary devices like transistors. The
reliability is also vastly improved. The early computers consisted of a few thousand gates,
had a storage of a few thousand words, occupied a room of significant size, and required
an ample amount of power [28], Figure 4. A single chip of size say 5 x 5 mm? today can
store about 100 times more information than the entire storage of the early computers,
and costs about $50. Arithmetic operations such as addition and multiplication typically
required a few milliseconds in early computers. A single chip, floating-point, processor de-
signed in state-of-the-art MOS technologies can perform the same operation up to 100,000
times faster, and can be purchased for about $1,000. The Cray-1 introduced in 1976, Fig-
ure 5, had a primary storage of 8 Mbytes, and a peak floating-point capacity of about 160
Mflops/sec. Two state-of-the-art processor chips [40, 41] now have the same performance,

Figure 4: _The(EDSAC computer in 1949 with 3,000 valves and a 512 word storage.

Figure 5: The Cray-1 supercomputer with 8 Mbytes of storage.

and 16 state-of-the-art memory chips have the same storage capacity. The development
is indeed dramatic. The supercomputer of a little more than a decade ago easily fits on
a desk, and is affordable to almost any engineer and scientist. And it requires no liquid
nitrogen cooling system in the basement.

Todays supercomputers have a peak performance of 5 — 10 billion floating-point oper-
ations per second (64-bit), or about 50 times the performance of a Cray-1. A hundredfold
increase in performance is expected in the next several years. The trillion operations per
second supercomputer is expected to be a commercial reality by 1995. Who needs a com-
puter as powerful as all installed supercomputers today? Attempts to answer questions
of this type has failed miserably in the computer field. In the early days of computing
it was concluded that 10 to 20 machines, would satify all needs. A market study in the
early days of electronic pocket calculators (about 1970) concluded that the entire market

9
Or—T T 7T T T T T 7

s Trend in execution bandwidth
10— —
Cray-1
1
S 10— —
®
< 6
E 10 |~ —
£ s
2 10+ —
x
T
‘g 10 Mani —
aniac -t/20
e 22{1-
e 3 B=e 21-e)
5 10— —
[
=
w ot (t =06 193) -
1
10— Accounting 7
Machines
100 IS N D T SN B
1940 1950 1960 1970 1980

Figure 6: The evolution of peak computer performance.

would be a few thousand units. Both studies were useless at best. Our imagination to
find useful applications for information processing devices once they are affordable to a
large section of the population far exceeds our forecasting abilities.

2 Architecture - the past

Much of the increased performance in the past has come from technological innovations,
like the transistor, the integrated circuit, and enhancements in the manufacturing tech-
nologies for such circuits. However, architectural innovations accounted for a significant
portion of the performance enhancement during the first decade of the electronic com-
puter, and is expected to account for most of the performance enhancement of supercom-
puters in the next decade. Figure 6 shows a plot of the growth in performance during
the first 30 years of the electronic computer. During the first decade the performance
increased by more than two orders of magnitude per decade, but during 1970 to 1980 the
growth rate was less than one order of magnitude, and decreasing. Parallel architectures
are now breaking the trend in Figure 6.

One of the most critical issues facing a designer of a high performance digital computer
has been, and still very much is data motion. Different technological characteristics have
accounted for this fact. In the first 5 - 10 years of the digital computer memory was
in general faster than arithmetic units. Pipelining of logic operations was introduced
to limit the number of logic stages a signal had to propagate through during a clock
cycle. By diving an operation into several parts corresponding to logic stages, increased
throughput is achieved when several identical operations are performed on different sets
of data (operands). The rate at which operands can be accepted/delivered is determined
by the slowest stage in the pipeline rather than the time through the entire pipeline.
Pipelining of functional units is still widely used in high performance architectures. The

number of stages in arithmetic units is typically 5 + 3. The performance enhancement is
approximately proportional to the number of pipeline stages.

Pipelining was also introduced at a higher level. Memory operations, instruction
decoding, and arithmetic logic operations were pipelined through prefetching techniques.
Pipelining increases the required amount of logic somewhat, and was not commonplace in
early designs where the number of components dominated the volume, the cost, and the
power requirements. Today, pipelining is used at some level in most processor designs. The
increased hardware complexity is minimal compared to the potential performance gain.
The volume, cost and power requirements are dominated by the wires interconnecting the
devices (transistors) [51, 32]. The main drawback of pipelining is in increased complexity
of compilers, and/or programming.

Once the transistor, and in particular the integrated circuit, was used as elements of
computers, it quickly became an easier task to design a fast processor than to design a
fast memory unit. Today there exist several storage technologies, such as MOS circuits,
magnetic discs and tapes, and optical storage. Each of these technologies differ quite
significantly in price per bit, access time, and data transfer rate. In current high per-
formance computers the memory system constitutes a hierarchy several levels deep, with
registers being an integral part of a processor, and a fast but small memory called cache
acting as a buffer between the registers and the primary storage of the computer. A small,
fast memory, and a larger slow memory was used already in 1948 in the Mark I computer
of Manchester University. The smaller storage was a random access electro-static stor-
age (Cathod Ray Tube), and the larger storage electro-magnetic (drum). If most of the
references during the execution of a program are made to the faster storage, then all
of the storage appears to have the speed of the smaller storage. The Atlas computer,
comissioned in 1962, was the first computer to make use of paging techniques to move
blocks of instructions and data from a slow memory to a fast memory, thereby creating a
virtual storage with the size of the larger storage operating effectively at the speed of the
smaller storage for many applications. The success of this technique critically depends
upon the placement of instructions and data on the slower memory device, and on the
fetching mechanism being used.

Virtual memory techniques are indeed still key to the efficiency of modern computer
systems. Slightly different techniques are used to manage the cache, compared to the
virtual memory techniques used between primary and secondary storage. The differences
are motivated by the differences in speed and sizes of the memories. Even though regis-
ters, cache, and primary storage may be manufactured in the same technology, they are
designed to operate at different clock speeds. In MOS technologies it is feasible to design
a small storage unit for a higher clock rate than a big storage unit. MOS technologies are
charge transfer technologies [32]. Long wires require a large amount of power to drive the
signals at a high speed from one end to the other. The on-chip wires are often determining
the clock rate of many designs. Wire lengths are becoming more critical as the minimum
feature sizes of the technology continue to decrease. Accounting only for capacitance,

Model Opt. Delay L — %
Tw Tw l;l

Capacitive | const - T - log.(const - L) | 1, — 7,/ Tv — Tw
Resistive const /TL Tw — Tw/V/@ o v, /o

Model Opt. Delay L—>L

Tw Tw Z‘;l_u
Capacitive | const - 1 - loge.(const - L) | Ty — Ty /(1 + ﬁ%) Tw 5 Te(]4 @%)
3

Resistive const - /TL Tw = Twy/Q e — 2a3

Table 1: Scaling of wire delays in MOS technology with optimized drivers.

the wire delay is reduced in proportion to the reduction of the device features when all
dimensions are scaled, i.e., width, length, and thickness. However, if the length of the
wire is not scaled, as for instance might be the case for a bus interconnecting more devices
as the feature sizes are reduced, then the wire delay remains constant under scaling. Op-
timizing the driver for minimum delay, assuming minimum feature size logic on the input
side, yields a delay T, proportional to the switching time 7 of the technology and the
logarithm of the length L of the wire [32]. The effect of scaling the design by a factor a is
shown in Table 1. Accounting for wire resistance increases the wire delay, and degrades
its behavior under scaling. The length of the clock cycle may have to be increased.

A characteristic often even more critical in the design of a high performance computer
system in state-of-the-art technologies is the fact that the data transfer rate on a chip may
be two orders of magnitude higher than the rate at which data can be transfered between
a chip and its environment. Similarly, the rate at which information can be transfered
between various units on a printed circuit board may be up to two orders of magnitude
higher than the rate at which information can be transfered between boards. Locality of
reference is critical also in state-of-the-art computer systems.

Another remedy for the relatively low speed of memory compared to processing units
is to increase the number of storage units, or the width of the memory. This idea was
used already on the Atlas computer, which had four memory banks. The CDC 6600
introduced in 1964 had 32 memory banks. For processors and memory units built in
the same technology the difference in speed typically is less than a factor of 10, but if
different technologies are used then the speed difference may be much higher. For instance,
in the Cray-2 MOS technology is used for the primary memory, but the processors are
designed in bi-polar technology operating at a clock rate of about 250 MHz. The computer
has 256 memory units, or banks, for four processors. The processing capacity and the
memory bandwidth are balanced with this degree of interleaving. The memory system
was parallelised in a very early stage of the electronic computer.

Figure 7: The Connection Machine with 2048 floating-point processors and 2 Gbytes of
storage.

3 Supercomputers — parallel computers.

High performance computers have been designed to perform several operations concur-
rently through most of the history of computers. In general purpose computers parallelism
was first accomplished by allowing different functional units to operate in parallel. For
instance, the CDC 6600 had 10 functional units. Multiple units of the same type appeared
in the Star-100 by CDC in 1973. Traditional supercomputer architectures, such as the
Cray series of computers, are designed in the fastest (bi-polar) technology available at
the time. Cray computers are probably the most carefully designed of any computer. In
the next generation Cray computers (the Cray-3) light travels a about 4 dm during the
targeted clock cycle. The signal propagation time has influenced all designs by Seymore
Cray in a significant way from the CDC 7600 through the Cray-3. Data paths are very
carefully layed out. But, as the bi-polar technology has been approaching fundamental
speed limits parallelism has been employed to increase the performance. The most recent
Cray computers have up to 8 processors, and 64 processor systems are being designed. To-
day, supercomputers are also constructed out of high volume MOS technologies using up
to several thousand processors, such as the Connection Machine with 2048 floating-point
processors and 2 Gbytes of primary storage, Figure 7.

The idea of large scale parallelism for general purpose computing was explored in the
Iliac IV [20], the MPP [43], the Staran and the ICL DAP [18]. However, it is not until
the last five or so years that the integrated circuit technologies have evolved to a level of
integration where massively parallel, or data parallel architectures became a cost effective
alternative for supercomputers. Integrated circuit technologies are replication technolo-
gies. The manufacturing cost per chip is very small, but the design cost is substantial.
With complete processors on a single chip the cost per processor has fallen dramatically.

By 1995 the Tflop/s supercomputer is expected to be a commercial reality. At a

computational rate of a trillion operations per second, and a memory size of say 128
Gbytes, the operation code, the operand addresses, and the operands require 300 —~ 400
bits for a single instruction. The storage system at the register level must deliver 300-400
trillion bits per second, or about 8 million bits per cycle at a 50 MHz clock rate. Even
with a memory hierarchy in the form of registers and cache the memory will have to be
hundreds of thousands of bits wide. Assuming each processor can deliver two operations
per clock cycle, or 100 Mflops/s, a system with a total of 40,000 processors will have a
nominal capacity of four trillion floating-point instructions per second. With the required
storage bandwidth, and with tens of thousands of processing units, a network is the only
feasible alternative for passing data between processors and storage units in currently
used technologies. A bus would have to be a hundred thousand wires wide, or more.

The feasibility of the Tflop/s supercomputer with respect to nominal performance
and number of components is illustrated by the following calculations. With 2) denoting
the minimum feature size of the technology [32] a 64-bit RISC-like processor requires an
estimated chip area of 30 M)? [15, 16, 27, 31, 48, 47]. A floating-point unit requires at
most 100 MA2. A preliminary design of routing circuitry for the Fluent supercomputer
[45] suggests that 30 MA? is a realistic estimate for circuitry that supports arbitrary
communication in a network of processors. With 16 Mbits of memory per chip 40,000
chips contain 80 Gbytes of storage. Assuming 100 A* per bit [47], the estimate for the
total area for 16 Mbits of memory is 1600 M)2. With the floating-point processor, the
communication circuitry, and 16 Mbits of memory integrated on the same chip a total
area of 1800 M)? is required per chip. In 0.5 pm technology the chip size is 10 x 10 mm?.
The nominal processing and memory capacity can be furnished by a number of chips that
by experience can be made to work reliably in a system.

The data motion requirements for the Tflop/s computer mandates a massively par-
allel memory system, and a network for data motion between units. The speed of the
technology (whether MOS or gallium arsenide) also forces massive parallelism to be em-
ployed for the processing subsystem. With 10 - 10* channels per side of a chip, the
total data motion capacity of 40,000 chips is 100-1,000 TBytes/sec without sharing of on-
chip channels between different data paths. But, assuming current standard packaging
technologies of 100-300 pins per chip the data motion capacity at the chip boundary is
about 10 TBytes/sec. At the board boundary, assuming about 500 pins, the data motion
capacity for a 200 board system is about 0.16 TBytes/sec. The data transfer rate at the
chip boundary is at least two orders of magnitude less than on the chip, and the transfer
rate at the board boundary about two orders of magnitude less than on the board. The
data delivery rate at the functional units required to sustain a Tflop/sec processing rate
is about 40 TBytes/sec. Hence, with all references being on-chip the technology has the
capacity to support the processing rate, but with no locality of reference the data motion
capacity falls short by about three orders of magnitude. A substantial local memory is
required for each processor, and the program must exhibit locality of reference to achieve
a sustained performance close to the peak.

Computation | Registers | 4 Mbit 256 4 Mbit | 256 boards
only | chips | chips (board)

Mtx mpy 0.5 104 1600 26000
3-d Relaxation 0.17 4.27 26.7 170.7
FFT 1 18.8 28.8 38.8

Table 2: Number of operations per remote reference of a single variable.
4 Locality of reference.

The reduction in required bandwidth is a function of the computation, the data allocation,
and the size of the local storage. We demonstrate the potential reduction by consider-
ing three often used functions in scientific applications: matrix multiplication, nearest
neighbor communication in three dimensional grids, as in 3-D relaxation, and butterfly
based computations, as in the Fast Fourier Transform [9}, and bitonic sort [3]. In 3-D
relaxation on a regular lattice with k variables per lattice point, and two operations per

variable the number of operations per remote reference is 513(%)%, where M 1is the size of
the “local” storage. For d = 3 the number of operations per remote reference is %(%ﬁ
In Tables 2 and 3 k = 8. For a Navier-Stokes code a more realistic value of k is 100-150
[39]. If the variables form matrices, then the number of arithmetic operations per vari-
able is higher. Several linear algebra operations, including finite difference operators, and
iterative equation solvers for partial differential equations, have a ratio of operations to re-
mote references that follow the rule —i-(%)% for suitable values of a, and 7. For butterfly
based algorithms, such as FFT and sorting, the dependence is of the form alog(%). For

the FFT the ratio is 1.25l0g2(M/2) real operations per remote reference using a radix-M
algorithm, which is optimum [19].

Table 2 gives the ratio of local references to remote references as a function of local
memory (columns one and two), the number of references local or remote with respect to
a board, or the entire system. Optimum data allocation is assumed. Each chip has one
processing unit and a board has 256 processing units. Table 3 gives the number of bits
that have to cross the chip, board, and system boundaries during a single cycle, assuming
optimum locality, or no locality of reference. The estimates are based on single precision
variables.

Exploiting locality in the sample computations reduces the required communication
bandwidth by a factor of up to 300 at the chip boundary, a factor of up to 7,500 at
the board level, and by a factor of 160 — 10° at the I/O interface. To the extent these
sample computations captures the essence of real applications a sustained performance
of a Tflop/s is possible if locality is exploited, but only if that is the case. The value of
exploiting locality is apparent, but the techniques for accomplishing this task are not.

10

Computation | 4 Mbit, 1 proc. | 256 procs. | 256 boards

1 chip Board Machine
Mtx mpy 1 10 160
3-d relaxation 32 480 24600
FFT 3 1140 160000
no locality 300 76800 | 19660800

Table 3: Number of bits across the chip/board/system boundary per cycle.
5 Applications

Designing a computer for maximum performance requires careful attention both to tech-
nological realities and the computations to be performed. The demand for ultimate per-
formance has traditionally first ocurred in the sciences, and in engineering. The evolution
of technology is at the core of these fields, and the management of technological risks is
part of everyday life, and of being a leader. The history of high performance computing
is closley related to that of the computational sciences and engineering.

In several areas of science and engineering the cost and time involved in carrying out
experiments have become limiting factors to rapid progress. In fundamental physics the
cost of experimental facilities are now several billion dollars (the Supercollider). The cost
of windtunnels for entire aircraft is prohibitive. Many experiments have been replaced
by computer simulations even when experiments can be carried out. The experiments
that still are carried out have the nature of final verification. Below we consider four
applications: fluid dynamics, stress analysis, underwater acoustics, and lattice gauge
physics. The prupose of the examples is to illustrate the data interaction that takes place
in some typical large scale computations.

The success of pipelining depends heavily upon the ability to create a stream of sim-
ilar operations, vectorization, and the success of storage hierarchies depend on locality
of reference. A considerable improvement in software technology during the last 15 - 20
years has made the automatic vectorization of codes quite effective, and so called pageing
algorithms and cache replacement algorithms [50] are so successful that programmers even
for computationally very demanding applications rarely do their own memory manage-
ment. These techniques are a necessity in future supercomputers, but locality of reference
takes on new dimensions in a system consisting of a large number of processing units with
their own memories interconnected by a network. Locality is a function of the network
topology, and the data placement. In this section we review the nature of the locality of
reference inherent in a few computationaly demanding applications.

11

5.1 Navier-Stokes compressible flow

One of the main application areas for supercomputers today is fluid dynamics, where
computer simulations are replacing windtunnel experiments both for aircraft and auto-
mobile body design, as well as the design of jet and combustion engines. The accurate
modeling of an entire aircraft and simulation of its aerodynamic properties would require
at least 10*® floating-point operations. Todays supercomputers have contributed to a
much shorter design cycle by replacing many windtunnel experiments with simulations,
as well as to an improved design by allowing designers to explore more alternatives than
would otherwise be possible. Another area of fluid dynamics with great computational
demands is weather forecasting, and areas of growing concern such as ocean and atmo-
spheric modeling for the study of pollution and global warming. These areas require fairly
high geometrical resolution as well as accurate models of the chemistry involved. These
problems are barely tractable for todays supercomputers.

The prototypical fluid dynamics problem is the solution of Navier-Stokes equations,
which describe the balance of mass, linear momentum and energy. It models the turbulent
phenomena that occur in viscous flow. In three dimensions the equations are of the form

bq OF+F, 0G+G, OH+H,
o~ @ & 8¢ @

where the variable vector q(£,7,(,7) has five components: one for density, three for the
linear momentum in the three coordinate directions z,y and z, and one component for
the total energy. The coordinates of the physical domain is ©,y and z, whereas ¢,n and
¢ are coordinates in the computational domain. F,G and H are the flux vectors and
F,,G, and H, are the viscous flux vectors. The exact form of these functions is beyond
the scope of this article. Suffice it to mention here that they are functions of the vector q,
the transformation between the physical and computational domains, and the derivatives
of this transformation (for details see for instance [39]).

For regular domains the solution to the Navier-Stokes equations can be approximated
by computing the solution in points of the domain forming a three-dimensional lattice.
The spacing between these points along the normal to solid walls often need to be much
smaller closer to the boundary than in the interior, in order to compute the flow in the
boundary layer with sufficient accuracy. A stretched grid is one way to accomplish this
task. Such a grid is topologically equivalent to a regular grid. In solving the Navier-
Stokes equations by a finite difference method, the partial derivatives are approximated
by differences between computed values in neighboring lattice points. For a first order
accurate approximation, values from two neighboring lattice points suffice. The higher
the accuracy of the approximation the larger the number of points involved in the ap-
proximation. A few typical stencils in three dimensions are shown in Figure 8. Figure 9
shows a stretched grid for the computation of the channel flow illustrated in Figure 10.

For many solution methods and flows the stencils may need to be dependent on lo-
cation, upon the variable subject to differentiation, and time. In the case of the Navier-

12

Figure 9: A stretched grid for channel flow calculations.

Forward

3-D Viscous
Compregsible Flow Simulation

Figure 10: Forward and rotation velocities, and pressure for viscous flow in a channel.

13

Stokes equations artificial viscosity needs to be introduced to stabilize explicit numeric
methods. The artificial viscosity is introduced through a fourth order derivative, and
the difference stencil for this term includes five points in each dimension, centered at the
interior point for which the evaluation is desired. Hence, in the case of the Navier-Stokes
equations under very simple conditions there are two difference stencils being used in each
lattice point, and the stencils vary for interior points, points on or close to a boundary
surface, edge, and corner. Each difference stencil defines a combining operation on a set
of points. All stencils for all points can be applied concurrently.

5.2 The Finite Element Method

In the finite element method [56] the solution to a set of partial differential equations in
a domain is approximated by polynomial solutions over subdomains called elements. The
most typical shape of the elements in two dimensions are triangles and rectangles. In three
dimensions brick, prism, and tetrahedral elements are common. The order of the element
determines the order of the polynomial approximation. Each polynomial is specified by
the value of the polynomial itself, or its derivatives,in a number of points consistent with
its order. These points are the nodal points of the elements. The solution is computed
for the nodal points, each of which has a polynomial associated with it. The desired
solution is expressed as a linear combination of the polynomials. The displacements of
the nodal points as a function of the applied forces are obtained as the solution to a
set of equations defined by a stiffness matriz. Evaluation of the elements of the stiffness
matrix requires that products of the polynomials be integrated over the element. The
numerical integration, or quadrature, is performed by evaluating the product at a number
of locations on the element, and computing a weighted sum of these values.

There is a very high degree of concurrency in the computation of the elemental stiffness
matrices. Large problems contain millions of nodal points. Much of the computations can
be performed for each nodal point with a limited amount of communication [25]. For the
solution of the equilibrium equations the elemental stiffness matrices are often assembled
into a global stiffness matrix by introducing a global node ordering. For the elemental
stiffness matrices an ordering local to an element will suffice. If the matrix is assembled,
then every node couples to every node on every element that shares the node. For second
order elements in the form of bricks four different stencils describe the interaction between
nodal points. The number of points in the stencils are 27, 45, 75, and 125 respectively.
The stencils are considerably more complex than in a finite difference method of the same
order. Figure 11 illustrates the stencils in two dimensions, and Figure 12 the stresses in
a wrench subject to bending.

Most of the data interaction in the finite element method occurs in the solution of
the equilibrium equations. For an iterative method the communication requirements are
defined by the stencils at the nodal points. A direct method requires a global partial
ordering of all nodal points. Unless the union of the stencils for all nodal points define a

14

9 ¢ L -] p
4 P o q L
p o [] o 4 [] o q (] L
\
(] q 4 © 4 o

g -
v megies 159687
127231

§

Figure 12: Stresses in a wrench subject to bending.

perfect elimination graph fill-in will occur in the elimination. The communication pattern
is in general quite complex. '

5.3 Acoustic Field computation by an Alternating Direction
Method ‘

A problem of considerable interest to the Navy is the modeling of sound propagation in
the ocean. With the desired resolution this problem requires in the order of 10'¢ floating-
point operations. The forward propagation of acoustic waves by the so called Wide Angle
Wave Equation [29] implies the solution of an equation of the form

(14 20X - [Vt 4 A0 = 430+ + Vb))

where ko 1s a reference wave number, and n(r,6,z) = k(r,8,2)/ko § = tkoAr, and

18, L
X = _l%??-z—?+(n (r,8,z) — 1), and Y = TS

15

e ar ar

Figure 13: The grid obtained through the marching algorithm for underwater acoustics.

This equation is a parabolic approximation of the Helmholtz equation. The solution
to the equation above can be marched out in the range direction r with an Alternating
Direction Method [46, 26] Figure 13. Tridiagonal matrix-vector multiplications are per-
formed in the # and z directions, followed by the solution of tridiagonal systems in the
same directions. Both operations consist of a number of one-dimensional problems that
can be solved independently, and concurrently. Each system can be solved concurrently by
substructuring, pipelined Gaussian elimination, partial or complete transposition of equa-
tions, and odd-even cyclic reduction, or any combination thereof [23] (which for multiple
systems may be performed as balanced cyclic reduction). The communication pattern
(in one dimension) of odd-even cyclic reduction is given in Figure 14, and of balanced
cyclic reduction in Figure 15. The communication topology of balanced cyclic reduction
is known as a data manipulator network, or a PM2I [49] network.

Hence, in the case of the underwater acoustics problem communication as defined
by the difference stencil is required for matrix-vector multiplication, but for the solution
of the systems of tridiagonal systems of equations the communication depends on the
selected algorithm: for pipelined Gaussian elimination communication in the form of a
Hamiltonian path is required, for equation transposition every processor communicates
with every other processor, for balanced cyclic reduction communication is required in
the form of a data manipulator network.

5.4 Lattice Gauge Physics

In the study of the fundamentals of matter the interaction between the elements of an
atom, such as fermions, gluons, and quarks, is intensely studied in a formulation known
as quantum chromodynamics. This problem is computationally very demanding. One re-
search group consisting of collaborators from Los Alamos National Laboratories, Caltech,
Argonne National Laboratories, and Thinking Machines Corp. are just beginning to see
some new results after having performed computations equivalent to 100 trillion (10'*)
floating-point operations. It is estimated that several orders of magnitude more compu-

16

Figure 14: The communication topology of odd-even cyclic reduction.

»o?»ﬁ\»,lsl?‘%»'
SEENXA TN JIAN XX
SR ,,,,«\sa.sbfw AN
XXX AANANEXX
SSAKKXCRNHIAXGICXN
o».....ﬁ.....s.......s..n...ﬁu\

40404...4.,,2......3.:.. OO,
X XU NI AN/ X .f%u\
40«04...“.42\; MY/ N/ /XXX X
40&4.....§?§é§§&o«?
XXX/ XN\ ig«\\.»o%o
40&4\»/4., \.i :

Figure 15: The communication topology of balanced cyclic reduction.

17

UJ (n+v)

T
vm ¢ AU, (40)

Uu(")

Figure 16: The plaquette calculations

tations need to be expended for a thorough understanding of this particular problem.

Quantum chromo-dynamics computations are based on four-dimensional lattices. The
simplest formulation is the original due to Wilson [55], in which the action S for the gauge
fields U is local, involving only the product of the gauge fields around elementary squares,
called plaquettes, on the lattice. The action S is expressed as

S(U) = BE{U) = 52(1 - —}/_—ReTrUp)

with
Uy = Un(n)U, (n + @)U (n + 2)U (n),

and is illustrated in Figure 16.

The gauge fields U,(n) are represented by 3 x 3 complex matrices known as SU(3). A
matrix is associated with each link in the four dimensional lattice. U,(n) represents a link

in the direction f, i.e., from n to n+fi. Uj(n) is used if the link is traversed in the opposite
direction. The parameter 3 determines the interaction strength, or “temperature” of the
theory. The constant N is the dimensionality of the group (3 for QCD).

There are two classes of algorithms dominating the simulation of lattice gauge theo-
ries: stochastic and deterministic. The most popular stochastic algorithms are based on
the Metropolis algorithm [35]. Deterministic algorithms are usually of the microcanonical
type [8, 42]. The Monte Carlo algorithm changes the energy of a system while keeping its
temperature constant, whereas the microcanonical algorithm conserves the total energy
while allowing the temperature to vary. The two approaches may be combined as in [2],
where a Monte Carlo method is used to bring the lattice gauge theory into equilibrium at
a specified temperature (coupling), then a microcanonical algorithm is used to evolve the
system for measurements of its properties. The microcanonical algorithm is computation-
ally less demanding. During the latter phase it may be required to periodically switch
back to a Monte Carlo algorithm in order to obtain ergodicity [11].

18

e e
> -

Figure 17: Link updates in parallel Monte Carlo lattice gauge theories.

Monte Carlo algorithms [35] cycle through all the gauge field links of the lattice chang-
ing their values by a random procedure until they settle down into physically correct
configurations, C'. These are such, that when statistical equilibrium is reached, the prob-
ability of finding any one of them is proportional to its Boltzmann factor e=%(®), where S
is the action of the gauge theory. A sufficient condition for the statistical equilibrium to
be attained is that, at each step of the Monte Carlo algorithm, the probability of changing
a configuration (' into a new one (' is the same as the probability of changing C' back
to C'. This state is called “detailed balance”. In order to preserve detailed balance one
cannot simultaneously update gauge field links which interact with one another. As the
action involves interactions around plaquettes, one can therefore update only half the
links in any one dimension simultaneously and preserve detailed balance, Figure 17. On
a parallel computer full processor utilization is obtained by observing that there are two
plaquettes to be calculated for each dimension and link update, and scheduling half of
the processors to calculate the “positive plaquettes” and half to calculate the “negative
plaquettes”.

The edges of the four-dimensional lattice are directed, and the values associated with
the edges, or bonds, can be stored at for instance the node at the tail end of the edge.
The main quantity being computed for each bond in a step of the computation is its
contribution to the total action, which involves all bond values of the plaquettes of which
the given bond is a part. A bond is part of six plaquettes in four dimensions. With
the bond values stored at the tail end of the directed edges, the stencil defining the
communication in any plane is given in Figure 18.

5.5 Linear Algebra

We have already mentioned several techniques in numerical linear algebra, such as Gaus-
sian elimination, odd-even cyclic reduction, balanced cyclic reduction, and iterative tech-
niques like the conjugate gradient method. The multigrid method [5] is a technique for
solving partial differential equations based on a sequence of grid refinements. Interpola-

19

© -©

Figure 18: Communication stencil in a plane for quantum electro- and chromo-dynamics
computations.

tion is performed in the transition from a grid to the points of the one level refined grid,
and a smoothing operation is performed in going from a grid to the next level coarser
grid. The idea is that slow variations are resolved on coarse grids and fast variations
on fine grids. The communication in each dimension is similar to the case of odd-even
cyclic reduction in that every other grid point is excluded in moving to the next coarser
grid (and the communication distance doubles in the physical domain). With smoothing
by relaxation and a five-point stencil, the communication required for this operation in
the multigrid computation is indeed the same as for odd-even cyclic reduction. It is also
possible to formulate the multigrid algorithm such that instead of a single coarser grid
multiple coarse grids are used. All grid points are considered at every level [13]. In this
case, the communication in one dimension is similar to the communication of balanced
cyclic reduction.

Dongarra and Sorensen [10] have suggested a parallel algorithm for computing eigen-
values of tridiagonal systems by a divide-and-conquer method that is fully parallel. The
algorithm proceeds by tearing the tridiagonal system into two smaller tridiagonal systems
of approximately equal sizes, recursively. The computations start from the bottom level
of the recursion by computing eigenvalues for a large number of small tridiagonal systems.
Then, the tridiagonal systems are joined pairwise in the next step, such that eigenvalues
are computed on half as many systems of approximately twice the size. The eigenvalues
are computed as the roots of equations of the type

1+pzn: 5 =0
_‘[‘:15.‘1'_A

where n is the number of equations in a system. With the components of ¢ and § dis-
tributed the computations can either be organized with reduction and copy operations
within segments representing the independent systems, or by all-to-all broadcasting within
segments and concurrent computation in every processor at every step of the computation.
The data structure for the problem is preferably organized as a dynamic two-dimensional
array of elementary objects. During the course of computation the array is reshaped from
an array with few rows and many columns, to an array with a single column [6].

20

6 Data motion in distributed memory systems

In the above examples for the computation of approximations to solutions of partial
differential equations describing the fluid flow, the stresses and displacements in a solid
under pressure, the acoustic field, or the internals of matter, the discretization of the
domain was regular. A two-dimensionallattice was used for the acoustics problem, a three-
dimensional stretched grid for the Navier-Stokes equations, a deformed three-dimensional
lattice for the stress analysis problem, and a four dimensional lattice for lattice gauge
physics. The required communication for each processor was defined by difference stencils
in the Navier-Stokes equations solved by an explicit method, and for the right-hand side
(matrix-vector multiplication) in the acoustics problem. Solving the equilibrium equations
by a finite element method and an iterative solver also implies communication according
to a local stencil (defined by the elements). The lattice gauge physics example used only
local communication that could be modeled by a fairly simple stencil (11-points). In this
example a single stencil suffices for the entire domain, in part due to periodic boundary
conditions. Other boundary conditions cause a proliferation in the number of stencils that
are required, as was the case in the Navier-Stokes example, and not all interior points may
be equivalent, as is the case in the finite element method with higher order elements. The
stencils define combining operations in the form of a +-reduction on weighted variables.

Direct equation solvers require long range communication in the physical space. If the
problem is of full rank, then global communication is required for the solution [14]. The
iterative solvers accomplish this task in the iterative process. The balanced cyclic reduc-
tion algorithm require communication corresponding to a PM2I network, and odd-even
cyclic reduction requires commuication according to a subtree of this network. Conven-
tional multigrid algorithms requires communication similar to odd-even cyclic reduction,
and the super-convergent multigrid algorithm requires communication similar to that for
balanced cyclic reduction.

Algorithms making use of transposition of systems of tridiagonal equations, as might be
used in the acoustics problem, may use communication in the form of butterfly networks,
the ideal communications network for the Fast Fourier Transform. Many other functions,
such as sorting and permutations can also be performed well on a butterfly network,
Figure 19.

In addition to data motion as determined by computational algorithms there are also
a few well defined permutations that occur often, either in the context of the above
mentioned algorithms, or as data rearrangements between computations to improve load
balance, or in order to minimize communication during a particular computation. Familiar
permutations are matrix transposition and bit-reversal. These permutations with the rows
and columns being powers of two are examples of a class of permutations called dimension
permutations [37, 38, 12, 52, 17]. Such permutations are defined on the bits of the address
field. Conversion between the cyclic and consecutive [21] storage schemes, and many other
storage schemes are dimension permutations, and so are shuffle permutations.

21

//
<l
\d\d

===

K] PRK

1
=

Figure 19: A butterfly network on 8 nodes.

In summary, computations on domains with a regular discretization often have a data
interaction that can be modeled by

Lattices of arbitrary dimensionality and shape.

Butterfly networks.
PM2I networks.

Pyramid networks.
e Spanning trees, spanning graphs, and multiple instances thereof.

e Dimension permutations.

For complex data structures, and many dynamic data structures the data interaction is
often difficult to characterize in a simple manner. A shared memory model of computation
is often the only feasible solution, with an accompanying performance penalty. Recently, a
technique for optimal emulation of a shared memory programming model in a distributed
memory architecture has been proposed [44].

The challenge for the computer architect is to select a communications network such
that the potential for exploring locality is an option for the programmer, and the compiler
writer. The challenge for the programmer and the compiler writer is to determine a data
allocation that preserves locality of reference to the extent possible in the network. The
challenge for the communications software, or hardware is to route messsages such that the
time to cary out a given communication task is minimized given the constraints defined
by the network.

In order to further the understanding of these issues extensive research is currently in
progress. One direction of this research is to find networks that can emulate any other

22

network with a moderate slowdown, so called universal networks. Another direction is to
find the optimal address map and routing algorithms for emulation of a given network,
correpsonding to the communication needs, on another network, corresponding to the
physical network interconnecting processors. This approach is favored for relatively simple
data structures with well defined communication patterns. A third approach, appropriate
for complex and dynamic data structures, is to search for address maps and routing
algorithms that minimizes the routing time in the worst possible case. Rapid progress is
being made in all three areas.

7 Programming

Architectures in which tens of thousands of operations can be performed concurrently
are often referred to as data parallel to emphasize massive parallelism, and to distinguish
them from control parallel architectures, which usually offer a considerably lower degree of
concurrency. In a data parallel programming model, algorithms are designed based on the
structure and representation of the problem domain. It is considered to consist of sets of
elementary objects, where objects in the same set are subject to the same transformations
(at least most of the time). The objects in the same set can be operated upon concurrently.
Different sets of elementary objects are subject to different transformations, but may be
operated upon concurrently. An elementary object contains the object description, as
well as a description of the object state. An algorithm is expressed as a sequence of
transformations of the state of an elementary object, and interactions between elementary
objects. For instance, in the finite element method, the physical domain is discretized by
a set of finite elements. Apparent choices of elementary objects are finite elements, and
nodal points [25].

In data parallel programming languages, sets of elementary objects are represented by
a higher level data type, such as the vector data type in some Fortran dialects, the array
extensions of Fortran 8X [33], arrays in APL, the type poly in C* [1], and parallel variables
in *Lisp [53]. In Fortran 8X the computation defined by a 7-point stencil at every point
in a three dimensional grid can be expressed using the function csurFT, which defines a
circular shift. No explicit loops are required for the array axes.

23

subroutine psolve(phi, omega, inside, n, iter)
real phi(n, n, n), omega(n, n, n), factor
logical inside(n, n, n)
factor = 1.0/6.0
do 100 i=1,iter,1

where(inside)

phi = factor * (

1 CSHIFT(phi, dim=1, shift=-1) +
2 CSHIFT(phi, dim=2, shift=-1) +
3 CSHIFT(phi, dim=3, shift=-1) +
4 CSHIFT(phi, dim=1, shift=+1) +
5 CSHIFT(phi, dim=2, shift=+1) +
6 CSHIFT(phi, dim=3, shift=+1)) +
7 omega
endwhere
100 continue
return
end

The first argument for csHIPT is the variable to which the shift is applied, the second
defines the axis along which the shift takes place, and the third argument defines the
length and direction of the shift. If the where statement is omitted, then the code would
correspond to periodic boundary conditions.

Another example in which a large number of concurrent matrix-vector products are
performed is given next. The operation dominates the computation in the iterative solver
used in a three dimensional finite element computation for a domain discretized by first
order brick elements [24]. The state is represented by three displacements, z = (u,v,w).
The local interaction matrix, the elemental stiffness matrix, is a 1 x 8 vector of 3 x 3
matrices, i.e., a 3 X 24 matrix. In the particular finite element code from which the code
segment is extracted, the elemental stiffness matrices are not assembled into a global
stiffness matrix. Instead, a matrix vector product is performed for each element, and a
total product vector assembled.

CMF$LAYOUT K(:SERIAL, :SERIAL, , ,), R(:SERIAL, , ,), X(:SERIAL, , ,)
REAL K(3,24, 32, 32, 32), R(3,32,32,32), U(3,32,32,32), V(3,32,32,32), W(3,32,32,32), X(24,32,32,32)
CALL ALL-TO-ALL-ELEMENT-BROADCAST(U,V,W,X)
R == 0.0
DO 1I=1,24

DO J=1,3

R(J,:::)=R(3,5,5:)+KJ,I, 5, 5,) * X(T, 5, 3 2)

END DO J

END DO 1

24

(WHERE (.NOT. I-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 1, 1)
(WHERE (.NOT. I-LEFT-BOUNDARY)) R= EOSHIFT(R, 1, -1)
(WHERE (.NOT. J-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 2, 1)
(WHERE (.NOT. J-LEFT-BOUNDARY)) R= EOSHIFT(R, 2, -1)
(WHERE (.NOT. K~RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 3, 1)
(WHERE (.NOT. K-LEFT-BOUNDARY)) R= EOSHIFT(R, 3, -1)

I-RIGHT-BOUNDARY, I-LEFT-BOUNDARY, etc. are boolean arrays that define the right-
hand and left-hand boundaries of each finite element in the three dimensions respectively.
The code segment contains one compiler directive, SERIAL, which is not part of the pro-
posed Fortran 8X language. It is used in the version of the language implemented on the
Connection Machine system as a tool to control the data layout.

With higher-level data types present in data parallel languages operations on sets
are also natural parts of the language. Reduction, copy, parallel prefix operations, and
certain permutations are examples of such operations. In the proposed Fortran 8X sum
and SPREAD are examples of the first two operations. Scans in APL and *Lisp are
examples of parallel prefix operations, and reshape operations in APL and Fortran 8X are
examples of dimension permutations under certain restrictions on the array. The multi-
prefix instruction in the Fluent architecture [45] is a generalization of the parallel prefix
instruction.

8 Summary

The current generation supercomputers are all parallel computers, but the degree of con-
currency in the systems vary from a few processors to thousands of processors. The next
generation of supercomputers with performance of a trillion operations per second will all
be massively parallel. Many of the algorithms in use today for scientific and engineering
applications can be modified to exploit this degree of parallelism effectively. Program-
ming these massively parallel systems requires languages with a higher level of abstraction
than is typical in the traditional programming languages. The detailed management of
each variable is not feasible. Critical to the success of the trillion operations per second
architecture built in state-of-the-art technologies is the preservation of locality inherent
in many applications.

Key issues in determining the data allocation with the data structure distributed across
tens of thousands of storage modules interconnected by a network are communication and
load balance [22]. Much of the research in computer architecture and compiler technology
during the last decade has been aimed at developing an understanding and techniques for
determining optimal address maps, and path selection and scheduling for data routing for
a variety of networks and communication patterns. Significant progress has been made,
and some of these techniques are being implemented in state-of-the-art supercomputer

25

systems, like the Connection Machine system. Another research direction is the search
for universal networks, i.e., networks that can emulate all other networks with a loss in
performance that is independent of the network size. This type of research has led to the
invention of networks such as the fat-tree [30].

For applications with dynamic data structures, or complex access patterns, a shared
memory programming model may be preferable, even though such a model must be imple-
mented on a system with a physically distributed memory. A general routing algorithm
that provides a provably optimal shared memory emulation in a worst case sense was
recently proposed in [44]. This routing offers combining at a very low hardware expense,
and shows that prefix operations on multiple, arbitrary sets can be performed as a single
instruction, a multi-prefix instruction. The routing algorithm allows for single instruction
set operations, such as insertion, deletion, union etc., also at a very low hardware expense.
The routing algorithm indeed forms the basis for a very powerful programming model.

The understanding of how to effectively use massively parallel, network architectures
is progressing rapidly. The level of innovation in computer architecture and software tech-
nology is higher than in the past two decades, and perhaps as high as in the first decade
of computer design. The impact of massively parallel architectures with a peak perfor-
mance of several trillion operations per second, a primary storage of a hundred Gbytes,
and Tbytes of secondary storage will profoundly change how computational sciences, en-
gineering, and information intensive real-time applications are carried out in the next
decade. The availability of workstations with a performance of hundreds of millions of
operations per second will have an equally profound impact on what tasks are carried out
as routine engineering work, and high quality interactive color graphics will dramatically
change the human interface. This decade will be exciting for both designers and users of
computer systems at all levels.

References

[1] Programming in C*. Thinking Machines Corp., 1987.

[2] Clive Baillie, S. Lennart Johnsson, Luis Ortiz, and G. Stewart Pawley. QED on the
Connection Machine. In The Third Conference on Hypercube Concurrent Computers
and Applications, pages 1288-1295. ACM Press, January 1988.

[3] Kenneth E. Batcher. Sorting networks and their applications. In Spring Joint Com-
puter Conference, pages 307-314. IEEE, 1968.

[4] C. Gordon Bell and Allen Newell. Computer Structures: Readings and Ezamples.
McGraw-Hill, 1971.

[5] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics
of Computation, 31:333-390, 1977.

26

[6] Jean-Philippe Brunet, Danny C. Sorensen, and S. Lennart Johnsson. A data paral-
lel implementation of the divide-and-conquer algorithm for computing eigenvalues of
tridiagonal systems. Technical report, Thinking Machines Corp., 1989. in prepara-
tion.

[7] Arthur W. Burks, Herman H. Goldstine, and John von Neumann. Preliminary dis-
cussion of the logic design of an electronic computing instrument. Technical report,
U.S. Army Ordnance Department, 1946. Reprinted in Bell and Newell, Computer
Structures: Readings and examples, McGraw-Hill, 1971.

[8] D.J.E. Callaway and A. Rahman. Phys. Rev. Lett., 49:613, 1982.

[9] Jim C. Cooley, P.A.W. Tukey, and P.D. Welch. J. Sound Vibrations, 12(3):315-337,
1970.

[10] J.J. Dongarra and D.C. Sorensen. A fully parallel algorithm for the symmetric eigen-
value problem. SIAM J. Scientific and Statistical Computing, 8(2):s139-s153, 1987.

[11] S. Duane. Nucl Phys., B257:652, 1985.

[12] Peter M. Flanders. A unified approach to a class of data movements on an array
processor. IEEE Trans. Computers, 31(9):809-819, September 1982.

[13] Paul Frederickson and Oliver McBryan. Parallel Superconvergent Multigrid. Marcel
Dekker, 1988.

[14] W. Morven Gentleman. Some complexity results for matrix computations on parallel
processors. J. ACM, 25(1):112-115, January 1978.

[15] John L. Hennessey, N. Jouppi, Forrest Baskett, and J. Gill. Mips: A VLSI processor
architecture. In VLSI Systems and Computations, pages 337-346. Computer Sciences
Press, 1981.

[16] John L. Hennessey, N. Jouppi, S. Przybylski, and C. Rowen. Design of a high per-
formance VLSI processor. In Proc. of the Third Caltech Conference on VLSI, pages
33-54. Computer Sciences Press, 1983.

[17] Ching-Tien Ho and S. Lennart Johnsson. Optimal algorithms for stable dimension
permutations on Boolean cubes. In The Third Conference on Hypercube Concurrent

Computers and Applications, pages 725-736. ACM, 1988.
[18] Roger W. Hockney and C.R. Jesshope. Parallel Computers. Adam Hilger, 1981.

[19] J.W. Hong and H.T. Kung. I/O complexity: The red-blue pebble game. In Proc.
of the 13th ACM Symposium on the Theory of Computation, pages 326-333. ACM,
1981.

27

[20] R. Michael Hord. The ILLIAC IV: The first supercomputer. Computer Sciences
Press, 1982.

[21] S. Lennart Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel Distributed Comput., 4(2):133-172, April 1987.

[22] S. Lennart Johnsson. Optimal Communication in Distributed and Shared Memory
Models of Computation on Network Architectures. Morgan Kaufman, 1989.

[23] S. Lennart Johnsson and Ching-Tien Ho. Optimizing tridiagonal solvers for alter-
nating direction methods on Boolean cube multiprocessors. SIAM J. on Scientific
and Statistical Computing, 11(3), 1990.

[24] S. Lennart Johnsson and Kapil K. Mathur. Experience with the conjugate gradient
method for stress analysis on a data parallel supercomputer. International Journal

on Numerical Methods in Engineering, 27(3):523-546, 1989.

[25] S. Lennart Johnsson and Kapil K. Mathur. Data structures and algorithms for the
finite element method on a data parallel supercomputer. International Journal of
Numerical Methods in Engineering, 29(4):881-908, 1990. Department of Computer
Science, Yale University, Technical Report YALEU/DCS/RR-743, Technical Report
(CS89-1, Thinking Machines Corp., December, 1988.

[26] S. Lennart Johnsson, Yousef Saad, and Martin H. Schultz. Alternating direction
methods on multiprocessors. SIAM J. Sci. Statist. Comput., 8(5):686-700, 1987.

[27] M.G.H. Katevenis. Reduced Instruction Set Computer Architectures for VLSI. MIT
Press, Cambridge, MA, 1985.

[28] Simon Lavington. Early British Computers. Digital Press, 1980.

[29] Ding Lee, Yousef Saad, and Martin H. Schultz. An efficient method for solving the
three-dimensional wide angle wave equation. Technical Report YALEU/DCS/RR-
463, Department of Computer Science, Yale University, October 1986.

[30] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercom-
puting. IEEE Trans. Computers, 34:892-901, October 1985.

[31] Christoffer Lutz, Steve Rabin, Charles L. Seitz, and Donald Speck. Design of the
mosaic element. In Proceedings, Conf. on Advanced research in VLSI, pages 1-10.
Artech House, 1984.

[32] Carver A. Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley,
1980.

[33] Michael Metcalf and John Reid. Fortran 8X FEzplained. Oxford Scientific Publica-
tions, 1987.

28

[34]

[35]

36]

[37]

[38]

[39]

[40]

41)
42)
43)

[44]

[45]

[46]

[47]

(48]

N Metropolis, J Howlett, and Gian-Carlo Rota, editors. A History of Computing in
the Twentieth Century. Academic Press, 1980.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. J.
Chem Phys, 21:1087, 1953.

P. Morison and E. Morrison, editors. Charles Babbage and his Calculating Engine.
Dover, 1961.

David Nassimi and Sartaj Sahni. An optimal routing algorithm for mesh-connected

parallel computers. JACM, 27(1):6-29, January 1980.

David Nassimi and Sartaj Sahni. Optimal bpc permutations on a cube connected
simd computer. IEEE Trans. Computers, C-31(4):338-341, April 1982.

Pelle Olsson and S. Lennart Johnsson. A dataparallel implementation of explicit
methods for the three-dimensional compressible Navier-Stokes equations. Parallel
Computing. Department of Computer Science, Yale University, Technical Report

YALEU/DCS/RR-747, October 1989, Technical Report CS89-4, Thinking Machines
Corp., February 1989.

Carlton M. Osburn and Arnold Reisman. Challenges in advanced semiconductor
technology for high-performance and supercomputer applications. The Journal of
Supercomputing, 1(2):149-189, 1987.

Tekla S. Perry. Intel’s secret is out. IEEE Spectrum, 26(4):22-28, 1989.
J. Polonyi and H.W. Wyld. Phys. Rev. Lett., 51:2257, 1983.

J.L Potter, editor. The Massively Parallel Processor. MIT Press, Cambridge, MA,
1985.

Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University,
1988.

Abhiram G. Ranade, Sandeep N. Bhatt, and S. Lennart Johnsson. The Fluent
abstract machine. In Advanced Research in VLSI, Proceedings of the fifth MIT VLSI
Conference, pages 71-93. MIT Press, 1988.

R. Richtmyer and K.W. Morton. Difference Methods for Initial-Value Problems.
Wiley-Interscience, 1967.

Charles L. Seitz. Concurrent VLSI architectures. IEEE Trans. Comp., 33(12):1247-
1265, 1984.

Charles L. Seitz. Experiments with VLSI ensemble machines. J. VLSI Comput. Syst.,
1(4):311-334, 1986.

29

[49] Howard J. Siegel. Interconnection Networks for Large Scale Parallel Processing. Lex-
ington Books, 1985.

[50] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley, 1987.

[61] Ivan E. Sutherland and Carver A. Mead. Microelectronics and computer science. -
Scientific American, pages 210-228, September 1977.

[52] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197-210, 1987.
[53] Thinking Machines Corp. *Lisp Release Notes, 1987.

[564] Maurice V. Wilkes. Babbage as a computer pioneer. In Proceedings of the Babbage
Memorial Meeting, 1971. British Computer Society, 1972. Reprinted in Historia
Mathematica, vol. 4, pp. 415-440, 1977.

[65] Kenneth G Wilson. Phys. Rev, D10:2445, 1974.
[56] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, 1967.

30

[49] Howard J. Siegel. Interconnection Networks for Large Scale Parallel Processing. Lex-
ington Books, 1985.

[50] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley, 1987.

[51] Ivan E. Sutherland and Carver A. Mead. Microelectronics and computer science.
Scientific American, pages 210-228, September 1977.

[62] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197-210, 1987.
[53] Thinking Machines Corp. *Lisp Release Notes, 1987.

[54] Maurice V. Wilkes. Babbage as a computer pioneer. In Proceedings of the Babbage
Memorial Meeting, 1971. British Computer Society, 1972. Reprinted in Historia
Mathematica, vol. 4, pp. 415-440, 1977.

[55] Kenneth G Wilson. Phys. Rev, D10:2445, 1974.

[56] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, 1967.

30

