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Chapter 1

Introduction

The Laplace transform L̃ is a linear mapping L2(0,∞)→ L2(0,∞); for a function f ∈ L2(0,∞),

it is defined by the formula:

(
L̃(f)

)
(ω) =

∫ ∞
0

e−tωf(t)dt. (1.1)

As is well-known, L̃ has a continuous spectrum, and L̃−1 is not continuous (see, for example,

[1]). These and related properties tend to complicate the numerical treatment of L̃.

In addressing these problems, we find it useful to draw an analogy between the numerical

treatment of the Laplace transform, and the numerical treatment of the Fourier transform F̃ ;

for a function f ∈ L1(R), the later is defined by the formula:

(
F̃(f)

)
(ω) =

∫ ∞
−∞

e−itωf(t)dt, (1.2)

where ω ∈ R.

In various applications in mathematics and engineering, it is useful to define the “truncated”

Fourier transform F̃c : L2(−1, 1)→ L2(−1, 1); for a given c > 0, F̃c of a function f ∈ L2(−1, 1)
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is defined by the formula:

(
F̃c(f)

)
(ω) =

∫ 1

−1
e−ictωf(t)dt. (1.3)

The operator F̃c has been analyzed extensively; one of the most notable discoveries, made by

Slepian et al. in 1960, was that the integral operator F̃c commutes with a second order differ-

ential operator (see [2]). This property of F̃c was used in analytical and numerical investigation

of the eigendecomposition of this operator, for example in [3] and [4].

For 0 < a < b <∞, the linear mapping La,b : L2(a, b)→ L2(0,∞), defined by the formula

(La,b(f)) (ω) =

∫ b

a
e−tωf(t)dt, (1.4)

will be referred to as the truncated Laplace transform of f ; obviously, La,b is a bounded compact

operator (see, for example, [1]) .

Bertero and Grünbaum discovered that each of the symmetric operators (La,b)∗ ◦ La,b and

La,b ◦ (La,b)∗ commutes with a differential operator (see [5]). These properties were used in the

analysis of the truncated Laplace transform (see [5], [6]).

Despite the result in [5], more is known about the numerical and analytical properties of

F̃c than about the properties of La,b.

In this dissertation, we introduce an algorithm for the efficient evaluation of the singular

value decomposition (SVD) of La,b, and analyze some of its properties. A more detailed analysis

of the asymptotic properties of La,b will be presented in a separate paper.

The dissertation is organized as follows. Chapter 2 summarizes various standard mathe-

matical facts and certain simple derivations that are used later in this dissertation. Chapter

2 also contains a definition of the SVD of the truncated Laplace transform and a summary of

some known properties of the truncated Laplace transform. Chapter 3 contains the derivation

of various properties of the truncated Laplace transform, which are used in the algorithms.
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Chapter 4 describes the algorithms for the evaluation of the singular functions, singular values

and associated eigenvalues. Chapter 5 contains numerical results obtained using the algorithms.

Chapter 6 contains generalizations and conclusions.

Remark 1.1. Some authors define the truncated Laplace transform as in (1.4), but allow

a = 0, or define the operator as a linear mapping L2(a, b)→ L2(a, b). See, for example, [7].
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Chapter 2

Mathematical preliminaries

In this chapter we introduce notation and summarize standard mathematical facts which we

use in this dissertation. In addition, we present a brief derivation of some useful facts which

we have failed to find in the literature.

2.1 Legendre Polynomials

Definition 2.1. The Legendre polynomial Pk of degree k ≥ 0, is defined by the formula

Pk(x) =
1

2kk!

dk

dxk
(
x2 − 1

)k
. (2.1)

As is well-known, the Legendre Polynomials of degrees k = 0, 1.... form an orthogonal basis

in L2(−1, 1). The following well-known properties of the Legendre polynomials can be found

inter alia in [8], [9]:

∫ 1

−1
(Pk(x))2dx =

2

2k + 1
(2.2)
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(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x) (2.3)

(1− x2) d

dx
Pk(x) = −kxPk(x) + kPk−1(x) (2.4)

d

dx

(
(1− x2) d

dx
Pk(x)

)
= −k(1 + k)Pk(x) (2.5)

(2k + 1)Pk(x) =
d

dx
(Pk+1(x)− Pk−1(x)) (2.6)

P0(x) = 1 (2.7)

P1(x) = x (2.8)

For all k ≥ 1,

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x) (2.9)

In this dissertation we will analyze functions in L2(0, 1); it is therefore convenient to use
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the shifted Legendre polynomials, which are defined on the interval (0, 1).

Definition 2.2. The shifted Legendre polynomial of degree k ≥ 0, which we will be denoting

by P ∗k , is defined via the Legendre polynomial Pk by the formula

P ∗k (x) = Pk(2x− 1). (2.10)

Clearly, the polynomials P ∗k form an orthogonal basis in L2(0, 1). The following properties

of the shifted Legendre polynomials are easily derived from the properties of the Legendre

polynomials by substituting (2.10) into (2.2-2.7).

∫ 1

0
(P ∗k (x))2dx =

1

2k + 1
(2.11)

xP ∗k (x) =
1

2

(
kP ∗k−1(x)

1 + 2k
+ P ∗k (x) +

(1 + k)P ∗k+1(x)

1 + 2k

)
(2.12)

x(1− x)
d

dx
P ∗k (x) =

k(1 + k)

2(1 + 2k)

(
P ∗k−1(x)− P ∗k+1(x)

)
(2.13)

d

dx

(
x(1− x)

d

dx
P ∗k (x)

)
= −k(1 + k)P ∗k (x) (2.14)

P ∗0 (x) = 1 (2.15)
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As is evident from (2.2) and (2.11), neither the Legendre polynomials nor the shifted Leg-

endre polynomials are normalized. In the discussion of the space of functions L2(0, 1), we will

find it convenient to use the orthonormal basis of the functions P ∗k (x).

Definition 2.3. We define P ∗k (x) by the formula:

P ∗k (x) = P ∗k (x)
√

2k + 1, (2.16)

where k = 0, 1, .....

Clearly, the polynomials P ∗k are an orthonormal basis in L2(0, 1).

Observation 2.4. P ∗0 is a constant

P ∗0 (x) = 1 (2.17)

Observation 2.5. The derivative of P ∗k is a linear combination of P ∗l , where l < k. The

following expressions for the derivative are easily verified using (2.6), (2.16) and (2.10) :

d

dx
P ∗2j(x) = 2

√
2(2j) + 1

j−1∑
l=0

√
2(2l + 1) + 1 P ∗2l+1(x) (2.18)

d

dx
P2j+1(x) = 2

√
2(2j + 1) + 1

j−1∑
l=0

√
2(2l) + 1 P2l(x) (2.19)

2.2 Legendre Functions of the second kind

Definition 2.6. The Legendre function of the second kind Qk(z) is defined by the formula

Qk(z) =
1

2

∫ 1

−1
(z − t)−1Pk(t)dt, (2.20)
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where Pk(t) is defined in (2.1).

The following identities can be found, for example, in [8], [9]:

Qk(z) = (−1)k+1Qk(−z), (2.21)

Qk(z) =

∫ ∞
0

dφ(
z +
√
z2 − 1 cosh(φ)

)k+1
. (2.22)

Having defined the shifted Legendre polynomials, we find it convenient to also define a

shifted version of the Legendre function of the second kind.

Definition 2.7. We define the shifted Legendre function of the second kind of degree k, which

we will be denoting by Q∗k, by the formula

Q∗k(z) = Qk(2z − 1) (2.23)

By (2.16), (2.20), (2.21) and (2.23),

∫ 1

0
(x+ y)−1P ∗k (x)dx = 2(−1)kQ∗k(y + 1)

√
2k + 1 y > 0 (2.24)

and

Q∗k(1 + δ/2) = Q∗k(1 + δ) =

∫ ∞
0

dφ(
(1 + δ) +

√
(1 + δ)2 − 1 cosh(φ)

)k+1
(2.25)

For a given x > 1, Q∗k(x) decays rapidly as k grows. The following lemma gives an upper

bound for |Q∗k(z)|, where z ≥ x, as k grows.
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Lemma 2.8. Let δ > 0. We introduce the notation δ̃ =
√

(1 + δ)2 − 1. Then, for all y ≥ 0,

|Q∗k(1 + δ/2 + y)| < 1(
1 + δ̃

)k+1

(
log

(
2

1 + δ̃

δ̃

)
+ 1

)
, (2.26)

where Q∗k is defined in (2.23).

Proof. By (2.25),

|Q∗k(1 + δ/2 + y)| =|Qk(1 + δ + 2y)| =

=

∫ ∞
0

dφ(
(1 + δ + y) +

√
(1 + δ + y)2 − 1 cosh(φ)

)k+1
.

(2.27)

Since (1 + δ + y) ≥ (1 + δ),

|Q∗k(1 + δ/2 + y)| =|Qk(1 + δ + 2y)| ≤

≤
∫ ∞
0

dφ(
(1 + δ) +

√
(1 + δ)2 − 1 cosh(φ)

)k+1
.

(2.28)

Clearly, δ̃ =
√

(1 + δ)2 − 1 > 0, and by (2.22),

|Q∗k(1 + δ/2 + y)| <
∫ ∞
0

dφ(
1 + δ̃ cosh(φ)

)k+1
. (2.29)

We define

ν = log

(
2

1 + δ̃

δ̃

)
, (2.30)
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and break the integral in (2.29) into integrals on the two intervals [0, ν) and [ν,∞):

|Q∗k(1 + δ/2 + y)| <
∫ ν

0

dφ(
1 + δ̃ cosh(φ)

)k+1
+

∫ ∞
ν

dφ(
1 + δ̃ cosh(φ)

)k+1
.

(2.31)

Clearly,

1(
1 + δ̃ cosh(φ)

)k+1
≤ 1(

1 + δ̃
)k+1

, (2.32)

and

1(
1 + δ̃ cosh(φ)

)k+1
≤ 1(

δ̃ exp(φ)/2
)k+1

, (2.33)

so that,

|Q∗k(1 + δ/2 + y)| < ν(
1 + δ̃

)k+1
+

∫ ∞
ν

dφ(
δ̃ exp(φ)/2

)k+1
.

(2.34)

Substituting (2.30) into the last inequality, we obtain

|Q∗k(1 + δ/2 + y)| < 1(
1 + δ̃

)k+1

(
log

(
2

1 + δ̃

δ̃

)
+

1

k + 1

)
, (2.35)

and from it, we obtain (2.26).
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2.3 Laguerre functions

Definition 2.9. The generalized Laguerre polynomial L
(α)
k (x) of order α > −1 and degree

k ≥ 0, is defined by the formula

L
(α)
k (x) =

k∑
m=0

(−1)m
(
k + α

k −m

)
1

m!
xm (2.36)

Definition 2.10. The Laguerre polynomial Lk(x) is the generalized Laguerre polynomial of

order 0:

Lk(x) = L
(0)
k (x) (2.37)

As is well-known, the Laguerre polynomials are an orthonormal basis in the Hilbert space

induced by the inner product

(f, g) =

∫ ∞
0

e−xf(x)g(x)dx (2.38)

The following well-known properties of the generalized Laguerre polynomials can be found,

inter alia, in [8]:

Lα−1k (x) = Lαk (x)− Lαk−1(x) (2.39)

d

dx
Lk(x) = −L(1)

k−1 (2.40)
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xLk(x) = −(k + 1)Lk+1(x) + (2k + 1)Lk(x)− kLk−1(x) (2.41)

∫ ∞
0

e−xtLk(x)dx = (t− 1)kt−k−1 (2.42)

Lk(0) = 1 (2.43)

L0(x) = 1 (2.44)

L1(x) = 1− x (2.45)

For all k ≥ 1,

(k + 1)Lk+1(x) = (2k + 1− x)Lk(x)− kLk−1(x) (2.46)

It is convenient to use functions which are orthonormal in the standard L2(0,∞) sense.

Therefore, we will use the Laguerre functions, as defined below, rather than the Laguerre

polynomials.

Definition 2.11. We define the Laguerre function, which we will be denoting by Φk, via the

12



formula

Φk(x) = e−x/2Lk(x). (2.47)

Clearly, the Laguerre functions Φk(x) are an orthonormal basis in the standard L2(0,∞)

sense.

Observation 2.12. The derivative of a Laguerre function of degree k is a linear combination

of Laguerre functions of degree k and lower. The following expression is easy to verify using

(2.40) and (2.47):

d

dx
Φk(x) = −1

2
Φk(x)−

k−1∑
l=0

Φl(x). (2.48)

2.4 The complete elliptic integral

Several slightly different definitions of the complete elliptic integral of the first kind can be

found in the literature. In this dissertation, we will use the following definition.

Definition 2.13. The complete elliptic integral of the first kind K(m) is defined by the formula

K(m) =

∫ π/2

0

(
1−m sin2(θ)

)−1/2
dθ. (2.49)

2.5 Singular value decomposition (SVD) of integral operators

The SVD of integral operators and its key properties are summarized in the following theorem,

which can be found in [10].

Theorem 2.14. Suppose that the function K : (c, d)× (a, b)→ R is square integrable, and let

13



T : L2(a, b)→ L2(c, d) be

(T (f)) (x) =

∫ b

a
K(x, t)f(t)dt. (2.50)

Then, there exist two orthonormal sequences of functions un : (a, b) → R and vn : (c, d) → R

and a sequence sn ∈ R, for n = 0, ...∞, such that

K(x, t) =
∞∑
n=0

vn(x)snun(t) (2.51)

and that s0 ≥ s1 ≥ ... ≥ 0. The sequence sn is uniquely determined by K. Furthermore, the

functions un are eigenfunctions of the operator T ∗ ◦ T and the values sn are the square roots

of the eigenvalues of T ∗ ◦ T .

Observation 2.15. The function K can be approximated by discarding of small singular values

(see [10]):

K(x, t) '
p∑

n=0

vn(x)snun(t) (2.52)

2.6 Tridiagonal and five-diagonal matrices

In this section, we briefly describe a standard method for calculating eigenvectors and eigen-

values of symmetric tridiagonal and five-diagonal matrices.

2.6.1 Sturm sequence for tridiagonal and five-diagonal matrices

The Sturm sequence is a method for calculating the number of roots that a polynomial has in

a given interval. In this dissertation, the Sturm sequence method for band matrices is used

to calculate the number of negative eigenvalues of a matrix. The following theorems can be

found, for example, in [11] and [12].

14



Theorem 2.16. Sturm sequence for tridiagonal matrices. Let A be a symmetric N ×N

tridiagonal matrix, and let Ak,k = a1 where k = 1..N , Ak,k+1 = Ak+1,k = bk+1 where k =

1..N − 1. All other elements of A are 0.

We define the sequences mk and qk as

m0 =1

m1 =a1

mk =a1mk−1 − b2kmk−2 , k = 2, 3, ..., N

(2.53)

The number of sign changes in the sequence mk is the number of eigenvalues of A that are

smaller than 0.

Theorem 2.17. Sturm sequence for symmetric five-diagonal matrices. Let A be a

symmetric N ×N five-diagonal matrix, and let Ak,k = a1 where k = 1..N , Ak,k+1 = Ak+1,k =

bk+1 where k = 1..N − 1 and Ak,k+2 = Ak+2,k = ck+2 where k = 1..N − 2.

We define the sequences mk and qk as

qk =0 , k ≤ 0

mk =0 , k < 0

m0 =1

qk−2 =bk−1mk−3 − ck−1qk−3 , k = 3, 4, ..., N

mk =akmk−1 − b2kmk−2 − c2k(ak−1mk−3 − c2k−1mk−4) + 2bkckqk−2 ,

k = 1, 2, ..., N

(2.54)

The number of sign changes in the sequence mk is the number of eigenvalues of A that are

smaller than 0.

Remark 2.18. In implementations of this method, some scaling of the sequence is sometimes

required in order to avoid overflows and underflows (see, for example, [13]).
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Suppose that we wish to calculate λn, the n-th largest eigenvalue of the tridiagonal or

five-diagonal matrix A. Let δ > 0. We observe that the n-th largest eigenvalue of the matrix

(A− (λn + δ)I) is negative. Therefore, the number of sign changes in the sequence mk for

the matrix (A− (λn + δ)I) is no smaller than n. Similarly, the n-th largest eigenvalue of the

matrix (A− (λn − δ)I) is positive. Therefore, the number of sign changes in the sequence mk

for the matrix (A− (λn − δ)I) is strictly smaller than n.

We set a search range (α1, α2); we use the Sturm sequence to verify that λn is in the range,

otherwise we extend the search range. We then use bisection to narrow the range (α1, α2) until

α2 − α1 is smaller than the desired precision. λn is contained within the range, so (α1 + α2)/2

is a sufficient approximation for λn.

2.6.2 The inverse power method for tridiagonal and five-diagonal matrices

Let B be a symmetric matrix, and let λn 6= 0 be eigenvalue of B with the largest magnitude.

Suppose that there is some δ > 0 such that for any other eigenvalue λm of B, we have |λn| >

(1 + δ)|λm|. The power method is a well-known method for calculating the eigenvector v and

the eigenvalue λn by iterative calculation of

v(k+1) = Bv(k). (2.55)

After a sufficient number of iterations,

Bv(k) ≈ λnv(k). (2.56)

Let A be a symmetric tridiagonal or five-diagonal matrix, and let λn 6= 0 be an eigenvalue

of A with multiplicity one. Then there exists δ > 0 such that for any other eigenvalue λm

of A, |λn|(1 + δ) < |λm|. The inverse power method is a well-known method for calculating

the eigenvector v and the eigenvalue λn, using the power method on B = A−1. Instead of
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computing B = A−1 explicitly, the power iteration v(k+1) = Bv(k) is computed by solving

Av(k+1) = v(k). (2.57)

2.6.3 Calculating an eigenvector and an eigenvalue of a tridiagonal or five-

diagonal matrix

Let A be a symmetric tridiagonal or five-diagonal matrix. Suppose that we would like to

calculate the n-th largest eigenvalue λn and the corresponding eigenvector v of A, such that

Av = λnv (2.58)

Assume that λn has multiplicity one.

First, we approximate the n-th eigenvalue λn using the Sturm sequence method described

in theorems 2.16 and 2.17. We require the approximation λ̃n to be close to λn compared to the

difference between λn and any other eigenvalue of A, but not equal to λn. In other words:

|λn − λ̃n| 6= 0 (2.59)

and

|λn − λ̃n| � |λn − λm| , ∀m 6= n (2.60)

Next, we consider the matrix (A − λ̃nI). We observe that the eigenvector v that we wish

to calculate is also an eigenvector of (A − λ̃nI), with the eigenvalue σn = λn − λ̃n 6= 0. We

observe that σn is smaller in magnitude than any other eigenvalue σm of (A − λ̃nI). We use

the inverse power method to calculate v.

Finally, we obtain a better estimate for eigenvalue λn using (2.58).
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2.7 The truncated Laplace transform

Definition 2.19. For given 0 < a < b < ∞, the truncated Laplace transform La,b is a linear

mapping L2(a, b)→ L2(0,∞), defined by the formula

(La,b(f)) (ω) =

∫ b

a
e−tωf(t)dt, (2.61)

where 0 ≤ ω <∞.

The adjoint operator of La,b is denoted by (La,b)∗. Obviously:

((La,b)∗(g)) (t) =

∫ ∞
0

e−tωg(ω)dω. (2.62)

The operators La,b and (La,b)∗ are compact and injective, the range of (La,b)∗ is dense in

L2(a, b) and the range of La,b is dense in L2(0,∞) (see, for example, [1]).

2.8 The SVD of the truncated Laplace transform

In this section, we present the SVD of the truncated Laplace transform, which is the main tool

we use to investigate the properties of this operator in this dissertation.

The kernel K : (0,∞)×(a, b)→ R of the integral operator La,b (defined in (2.61)) is defined

by the formula

K(ω, t) = e−ωt, (2.63)

so that

(La,b(f)) (ω) =

∫ b

a
K(ω, t)f(t)dt. (2.64)
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By theorem 2.14, there exist two orthonormal sequences of functions un ∈ L2(a, b) and vn ∈

L2(0,∞) such that

K(ω, t) =
∞∑
n=0

vn(ω)snun(t), (2.65)

La,b(un) = αnvn, (2.66)

and

(La,b)∗(vn) = αnun. (2.67)

We refer to the functions un(t) as the right singular functions, and to the functions vn(ω)

as the left singular functions. We refer to αn ≥ 0 as the singular values. The functions are

numbered n = 0, 1, .., and they are sorted according to the singular values, in descending order.

Observation 2.20. The multiplicity of αn in this decomposition of La,b is one (see [5]).

Observation 2.21. A simple calculation shows that (La,b)∗ ◦ La,b of a function f ∈ L2(a, b) is

given by the formula

(((La,b)∗ ◦ La,b) (f)) (t) =

∫ b

a

1

t+ s
f(s)ds. (2.68)

Clearly, (La,b)∗ ◦ La,b is a symmetric positive semidefinite compact operator. By theorem

2.14, the right singular functions un of the operator La,b are also the eigenfunctions of the

operator (La,b)∗ ◦ La,b, and the singular values αn are the square roots of the eigenvalues of
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(La,b)∗ ◦ La,b. In other words,

(((La,b)∗ ◦ La,b) (un)) (t) =

∫ b

a

1

t+ s
un(s)ds = α2

nun(t). (2.69)

Observation 2.22. Similarly, La,b ◦ (La,b)∗ of a function g ∈ L2(0,∞) is given by the formula

(((La,b ◦ (La,b)∗) (g)) (ω) =

∫ ∞
0

e−a(ω+ρ) + e−b(ω+ρ)

ω + ρ
g(ρ)dρ. (2.70)

By theorem 2.14, the left singular functions vn of La,b are the eigenfunctions of La,b ◦ (La,b)∗

and the singular values αn are the square roots of the eigenvalues of La,b ◦ (La,b)∗. In other

words,

((La,b ◦ (La,b)∗) (vn)) (ω) =

∫ ∞
0

e−a(ω+ρ) + e−b(ω+ρ)

ω + ρ
vn(ρ)dρ = α2

nvn(ω). (2.71)

2.9 A differential operator related to the right singular func-

tions un

It has been observed in [5] that the integral operator (La,b)∗ ◦ La,b (defined in (2.68)) commutes

with a differential operator.

Theorem 2.23. The differential operator D̃t, defined by the formula

(
D̃t(f)

)
(t) =

d

dt

(
(t2 − a2)(b2 − t2) d

dt
f(t)

)
− 2(t2 − a2)f(t), (2.72)

commutes with the integral operator (La,b)∗ ◦ La,b (defined in (2.68)) in L2(a, b).

It has also been shown in [5] that the eigenvalues of the operators (La,b)∗ ◦ La,b and D̃t have

a multiplicity of one. It follows from theorem 2.23, and the multiplicity of the eigenvalues, that
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the eigenfunctions of the integral operator (La,b)∗ ◦ La,b are the regular eigenfunctions of the

differential operator D̃t. By (2.69), these functions are the right singular functions un of La,b.

Furthermore, it has been shown that if the eigenfunctions of D̃t are sorted according to

the eigenvalues of D̃t, in descending order, the n-th eigenfunction of D̃t is the n-th singular

function of La,b. Therefore, un is both the n+ 1-th right singular function of La,b, the n+ 1-th

eigenfunction of (La,b)∗ ◦ La,b, and the n+ 1-th eigenfunction of D̃t.

We denote the eigenvalues of the differential operator D̃t by χ̃n. By theorem 2.23, un is the

solution to the differential equation

(
D̃t(un)

)
(t) =

d

dt

(
(t2 − a2)(b2 − t2) d

dt
un(t)

)
− 2(t2 − a2)un(t) = χ̃nun(t).

(2.73)

2.10 The function ψn associated with the right singular function

un

The right singular functions un of La,b (the operator defined in (2.61)) are defined on the

interval (a, b). It is convenient to scale and shift the interval (a, b) to (0, 1).

We define the variable x ∈ (0, 1) by the formula

x =
t− a
b− a

, t = a+ (b− a)x. (2.74)

The functions ψk are defined using the change of variables (2.74), as follows.

Definition 2.24. The function ψn(x) is defined via the corresponding right singular function

un, by the formula

ψn(x) =
√
b− a un(a+ (b− a)x). (2.75)
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Observation 2.25. Since the function un is normalized on (a, b), it is clear from (2.75) that

ψn is normalized on (0, 1)

∫ 1

0
(ψn(x))2 dx = 1, (2.76)

and that the sequence of functions ψn forms an orthonormal basis in L2(0, 1).

By (2.68) and (2.74), the functions ψn are the eigenfunctions of the integral operator T ∗◦T ,

where T ∗ ◦ T of a function f is defined by the formula

(
(T ∗ ◦ T ) f̃

)
(x) =

∫ 1

0

1

x+ y + β
f̃(y)dy, (2.77)

and where β is defined by the the formula:

β =
2a

b− a
. (2.78)

Clearly, T ∗ ◦ T has the same eigenvalues as (La,b)∗ ◦ La,b:

((T ∗ ◦ T ) (ψn)) (x) =

∫ 1

0

1

x+ y + β
ψn(y)dy = α2

nψn(x). (2.79)

Similarly, by (2.72) and (2.74), ψn are the eigenfunctions of the differential operator Dx,

which is defined by the formula

(Dx(f)) (x) =
d

dx

(
x(1− x)(β + x)(β + 1 + x)

d

dx
f(x)

)
−2x(x+β)f(x). (2.80)
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In other words,

(Dx(ψn)) (x) =

d

dx

(
x(1− x)(β + x)(β + 1 + x)

d

dx
ψn(x)

)
− 2x(x+ β)ψn(x) =

χnψn(x),

(2.81)

where χn are the eigenvalues of Dx.

2.11 A differential operator related to the left singular func-

tions vn

It has been observed in [5] that the integral operator La,b ◦ (La,b)∗ (defined in (2.70)) commutes

with a differential operator.

Theorem 2.26. The differential operator D̂ω, defined by the formula

(
D̂ω(f)

)
(ω) =

((
La,b ◦ D̃ ◦ (La,b)−1

)
(f)
)

(ω) =

− d2

dω2

(
ω2 d2

dω2
f(ω)

)
+ (a2 + b2)

d

dω

(
ω2 d

dω
f(ω)

)
+
(
−a2b2ω2 + 2a2

)
f(ω),

(2.82)

commutes with the integral operator La,b ◦ (La,b)∗ (defined in (2.70)). The left singular func-

tions vn are the eigenfunctions of D̂ω.

We denote the eigenvalues of D̂ω by χ∗k. By theorem 2.26, the function vn is the solution

23



of the differential equation

(
D̂ω(vk)

)
(ω) =

= − d2

dω2

(
ω2 d2

dω2
vk(ω)

)
+ (a2 + b2)

d

dω

(
ω2 d

dω
vk(ω)

)
+ (−a2b2ω2 + 2a2)vk(ω) =

= χ∗kvk(ω).

(2.83)

Observation 2.27. The eigenvalues of D̂ω are equal to the eigenvalues of D̃t:

χ̃n = χ∗n (2.84)

2.12 The functions (La,b)∗(Φk)

Having introduced the operator La,b in (2.61) and its adjoint (La,b)∗ in (2.62), we now discuss

the properties of the function generated by applying (La,b)∗ to the Laguerre function Φk (defined

in (2.47)). By (2.42), (2.47) and (2.61),

((La,b)∗ (Φk)) (t) =

∫ ∞
0

e−ωtΦk(ω)dω =

∫ ∞
0

e−ω(t+1/2)Lk(ω)dω =

=

(
t− 1

2

)k (
t+

1

2

)−k−1
.

(2.85)

In particular, at t = 1/2, (2.85) becomes

((La,b)∗ (Φk)) (1/2) =

∫ ∞
0

e−q/2Φk(q)dq =

 1 if k = 0

0 otherwise
(2.86)

Differentiating (2.85), we obtain

((La,b)∗ (Φk))
′
(t) = (8k − 8t+ 4)(2t− 1)k−1(2t+ 1)−k−2, (2.87)
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which, at t = 1/2, becomes

((La,b)∗ (Φk))
′
(1/2) =


−1 if k = 0

1 if k = 1

0 otherwise

(2.88)
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Chapter 3

Analytical apparatus

In this part of the dissertation, we discuss certain useful properties of the truncated Laplace

transform; we begin with a brief discussion of the scaling properties of the truncated Laplace

transform, and with a definition of a standard form of the truncated Laplace transform. We

proceed to define the transform Cγ and discuss various symmetry properties associated with

it. We then discuss the expansions of un and vn in orthonormal bases, and show that the

calculations of un and vn can be phrased as benign eigensystem calculations. This chapter is

concluded with brief discussions of several miscellaneous useful properties.

3.1 On the scaling properties of the truncated Laplace trans-

form

The truncated Laplace transform (as defined in (2.61)) can be generalized to the form

(La,b,c(f)) (ω) =

∫ b

a
e−ctωf(t)dt. (3.1)

with arbitrary 0 < c <∞, 0 < a < b <∞.
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Observation 3.1. The properties of the truncated Laplace transform are determined by the

ratio

γ = b/a > 1 (3.2)

(see, for example, [1]).

Observation 3.2. The particular choice

a =
1

2
√
γ
,

b =

√
γ

2
,

c =1,

(3.3)

yields several useful properties, which we will discuss in this dissertation.

Due to observations 3.2 and 3.1, in the remainder of this dissertation we will be assuming

without loss of generality that the values of a, b and c are as defined in (3.3). In other words,

we will restrict our attention to the following form of the truncated Laplace transform:

Definition 3.3. For a given 1 < γ < ∞, we will denote by Lγ : L2( 1
2
√
γ ,
√
γ
2 ) → L2(0,∞) the

operator defined by

Lγ = L 1
2
√
γ
,
√
γ

2

= L 1
2
√
γ
,
√
γ

2
,1
. (3.4)

The operator Lγ will be referred to as the “standard form” of the truncated Laplace transform.

Obviously, Lγ of a function f ∈ L2( 1
2
√
γ ,
√
γ
2 ) is defined by the formula

(Lγ(f)) (ω) = (L 1
2
√
γ
,
√
γ

2
,1

(f))(ω) =

∫ √
γ

2

1
2
√
γ

e−tωf(t)dt. (3.5)
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Where there is no danger of confusion, we write L instead of Lγ ,La,b and La,b,c, and we

denote the adjoint of L by L∗.

Remark 3.4. Combining (3.2) with (2.78), we observe that the quantity β (defined in (2.78))

is related to γ by the formula

β =
2a

b− a
=

2

γ − 1
. (3.6)

Remark 3.5. Let ũn, ṽn and α̃n be the n+ 1-th right singular function, left singular function

and singular value of Lã,b̃,c̃, such that

Lã,b̃,c̃(ũn) = α̃nṽn. (3.7)

Let γ = b̃/ã and let un, vn and αn be the n+ 1-th singular functions and singular value of Lγ .

Then, the SVD of Lã,b̃,c̃ is related to the SVD of the standard form Lγ by:

ũn(t) =

√
a

ã
un(ta/ã), (3.8)

ṽn(ω) =

√
ãc

a
vn(ωcã/a), (3.9)

and

α̃n = αn/
√
c. (3.10)
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3.2 The transform Cγ

In this section we define the transform Cγ which is useful in the discussion of certain symmetry

properties.

Definition 3.6. We define the new variable s ∈ R via

s = 2 log(2t)/ log(γ). (3.11)

For γ > 1, we define the transform Cγ of a function f by the the formula

(Cγ(f)) (s) = γs/4 f
(
γs/2/2

)
. (3.12)

Observation 3.7. A simple calculation shows that

∫ s(t2)

s(t1)
(Cγ(f)) (s) (Cγ(g)) (s)ds =

4

log γ

∫ t2

t1

f(t)g(t)dt. (3.13)

We are particularly interested in the case where a, b are as defined in (3.3). In this case, Cγ

becomes a mapping L2
(

1
2
√
γ ,
√
γ
2

)
→ L2 (−1, 1).

3.2.1 The functions (Cγ ◦ L∗) (Φk)

In this subsection, we discuss certain properties of the Laguerre functions Φk (defined in (2.47)),

related to the operator Cγ (defined in (3.12)).

A simple calculation shows that Cγ of the function L∗(Φk) (see (2.85)) is given by

((Cγ ◦ L∗) (Φk)) (s) = γs/4
(
γs/2 − 1

)k (
γs/2 + 1

)−k−1
. (3.14)
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Clearly,

|((Cγ ◦ L∗) (Φk)) (s)| = γs/4

γs/2 + 1

∣∣∣∣∣γs/2 − 1

γs/2 + 1

∣∣∣∣∣
k

, (3.15)

from which it immediately follows that

|((Cγ ◦ L∗) (Φk)) (s)| ≤ 1

2

∣∣∣∣∣γs/2 − 1

γs/2 + 1

∣∣∣∣∣
k

. (3.16)

Observation 3.8. For all 1 < γ <∞ and s ∈ R, we have
∣∣∣γs/2−1
γs/2+1

∣∣∣ < 1; it is therefore obvious

from (3.15) that | ((Cγ ◦ L∗) (Φk)) (s)| decays exponentially as k grows.

Observation 3.9. By (3.14),

((Cγ ◦ L∗) (Φk)) (s) = (−1)k ((Cγ ◦ L∗) (Φk)) (−s). (3.17)

In other words, for an even k, the function (Cγ ◦ L∗(Φk)) (s) is even; and for an odd k, it is

odd.

Observation 3.10. By (3.14), at the point s = 0,

((Cγ ◦ L∗) (Φk)) (0) =

 1/2 if k = 0

0 otherwise
(3.18)

Observation 3.11. By differentiating (3.14) and setting s = 0 we obtain:

((Cγ ◦ L∗) (Φk))
′ (0) =

 log(γ)/4 if k = 1

0 otherwise
(3.19)
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3.2.2 Cγ of the right singular function un

Definition 3.12. We introduce the function Un, which we define by the formula

Un(s) = (Cγ(un)) (s), (3.20)

where un is a right singular function of the operator La,b, and Cγ is defined in (3.12).

By (3.13), and since un is normalized on (a, b), the norm of Un on
(

2 log(2a)
log(γ) , 2

log(2b)
log(γ)

)
is:

∫ 2
log(2b)
log(γ)

2
log(2a)
log(γ)

(Un(s))2 ds =
4

log γ
(3.21)

Equation (3.21) holds for an arbitrary choice of a and b such that b/a = γ. In this dissertation

we assume a = 1
2
√
γ , b =

√
γ
2 (as defined in (3.3)). By substituting (3.3) into (3.21), the interval

s ∈
(

2 log(2a)
log(γ) , 2

log(2b)
log(γ)

)
becomes s ∈ (−1, 1).

In the case of Lγ (the standard form of the truncated Laplace transform, defined in (3.5)),

by (2.72) and (3.20), the functions Un are the eigenfunctions of the differential operator ˜̃Ds,

defined by the formula

(
˜̃Ds(f)

)
(s) = (log (

√
γ))−2

d

ds

(
γ2 + 1− 2γ cosh (2s log (

√
γ))
) d

ds
f(s)

−
(

3

2
γ cosh (2s log (

√
γ)) +

1

4
γ2 − 7

4

)
f(s).

(3.22)

A simple calculation shows that the eigenvalues of ˜̃Ds, which we denote by µn, are related to

the eigenvalues χ̃n (defined in (2.72)) by the formula:

µn = 4γχ̃n. (3.23)
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3.3 The symmetry property of un and Un

By [5], the right singular functions un of La,b (the operator defined in (2.61)) satisfy a form

of symmetry around the point
√
ab. In the case of the standard form Lγ , defined in (3.5), we

have
√
ab = 1/2, and the symmetry relation is:

un

(
1

4t

)
= (−1)n2tun(t) (3.24)

Observation 3.13. In the case of standard form Lγ , it follows from (3.20), that the functions

Un (defined in (3.20)) are even and odd functions in the regular sense:

Un(s) = (Cγ(un)) (s) = (−1)nUn(−s). (3.25)

In particular, at the point s = 0, we have:

U2j+1(0) = (Cγ(u2j+1)) (0) = 0, (3.26)

and

U ′2j(0) = (Cγ(u2j))
′ (0) = 0. (3.27)

Remark 3.14. The functions Un are even and odd functions around the point s = 0 in the

case of the standard form Lγ (as defined in (3.5)). Similar symmetry exists for Cγ of the

right singular functions of La,b (as defined in (2.61)), however the center of symmetry is not

necessarily s = 0.
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3.4 The differential operator Dx and the expansion of ψn in the

basis of P ∗k

In this section we consider the expansion of functions f ∈ L2(0, 1) in the orthonormal basis of

the polynomials P ∗k (defined in (2.16)):

f(x) =

∞∑
k=0

hkP
∗
k (x). (3.28)

Lemma 3.15 describes the operation of Dx (defined in (2.80)) on a basis function P ∗k . The

result is used to express the functions ψn (defined in (2.75)) via a five-terms recurrence relation

or a solution to a benign eigensystem, specified in theorem 3.16.

Lemma 3.15. Applying the differential operator Dx to the polynomial P ∗k yields a linear com-

bination of P ∗k−2,P ∗k−1,P ∗k ,P ∗k+1 and P ∗k+2:

(
Dx(P ∗k )

)
(x) =

= − (k−1)2k2
4
√
2k−3(2k−1)

√
2k+1

P ∗k−2(x)

− k3(1+β)√
2k−1

√
2k+1

P ∗k−1(x)

− (−4−6β−2kβ(2+3β)+k2(7+12β+2β2)+(2k3+k4)(7+16β+8β2))
2(2k−1)(2k+3) P ∗k (x)

− (k+1)3(1+β)√
2k+1

√
2k+3

P ∗k+1(x)

− (k+1)2(k+2)2

4
√
2k+1(2k+3)

√
2k+5

P ∗k+2(x),

(3.29)

where β = 2a
b−a = 2

γ−1 (as defined in 3.6).

Proof. By the definition of Dx (in (2.80)),

(Dx(P ∗k )) (x) =

=
d

dx

(
(β + x)(β + 1 + x)x(1− x)

d

dx
P ∗k (x)

)
− 2x(x+ β)P ∗k (x).

(3.30)
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Using the chain rule,

(Dx(P ∗k )) (x) =

=

(
d

dx
(β + x)(β + 1 + x)

)(
x(1− x)

d

dx
P ∗k (x)

)
+ (β + x)(β + 1 + x)

d

dx

(
x(1− x)

d

dx
P ∗k (x)

)
− 2x(x+ β)P ∗k (x) =

=(1 + 2x+ 2β)

(
x(1− x)

d

dx
P ∗k (x)

)
+
(
x2 + x(1 + 2β) + β + β2

) d

dx

(
x(1− x)

d

dx
P ∗k (x)

)
− 2x(x+ β)P ∗k (x)

(3.31)

Using identities (2.12), (2.13) and (2.14),

(Dx(P ∗k )) (x) =

−
(−1 + k)2k2P ∗k−2(x)

4(−1 + 2k)(1 + 2k)

−
k3(1 + β)P ∗k−1(x)

1 + 2k

− (−4+7k2+14k3+7k4−6β−4kβ+12k2β+32k3β+16k4β−6kβ2+2k2β2+16k3β2+8k4β2)

2(−1 + 2k)(3 + 2k)
P ∗k (x)

−
(1 + k)3(1 + β)P ∗k+1(x)

1 + 2k

−
(1 + k)2(2 + k)2P ∗k+2(x)

4(1 + 2k)(3 + 2k)
.

(3.32)

Finally, substituting (2.11) into (3.32) gives (3.29).

Theorem 3.16. Let the function ψn(x) be as defined in (2.75). Let hn = (hn0 , h
n
1 , ...)

> be the
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vector of coefficients in the expansion of ψn(x) in the basis of the polynomials P ∗k :

ψn(x) =

∞∑
k=0

hnkP
∗
k (x) (3.33)

Then, hn is the n+ 1-th eigenvector of M :

Mhn = χnh
n, (3.34)

where M is the five-diagonal matrix

Mk−2,k = − (k−1)2k2
4
√
2k−3(2k−1)

√
2k+1

Mk−1,k = − k3(1+β)√
2k−1

√
2k+1

Mk,k = −(−4−6β−2kβ(2+3β)+k2(7+12β+2β2)+(2k3+k4)(7+16β+8β2))
2(2k−1)(2k+3)

Mk+1,k = − (k+1)3(1+β)√
2k+1

√
2k+3

Mk+2,k = − (k+1)2(k+2)2

4
√
2k+1(2k+3)

√
2k+5

,

(3.35)

and where χn are the eigenvalues of the differential operator Dx, and k = 0, 1, 2....

Proof. By (2.81), ψn(x) is an eigenfunction of Dx, with the eigenvalue χn. Since the differential

operator is linear,

(Dx(ψn)) (x) =
∞∑
k=0

hnk
(
Dx(P ∗k )

)
(x) = χn

∞∑
k=0

hnkP
∗
k (x). (3.36)

Using lemma 3.15, (3.36) becomes (3.34).

Observation 3.17. Clearly, hnk is the inner product of ψn and P ∗k :

hnk =

∫ 1

0
P ∗k (x)ψn(x)dx. (3.37)
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3.4.1 The decay of the coefficients in the expansion of ψn

Since the functions ψn are smooth regular solutions of a differential operator, they can be

efficiently expressed using an orthogonal basis of polynomials. In other words, we expect the

coefficients in the expansion of ψn in terms of the polynomials P ∗k to decay rapidly. In this

subsection, we obtain a bound for this decay.

Lemma 3.18. Let 0 < β <∞ and 0 ≤ y ≤ 1. We introduce the notation

β̃ =
√

(1 + (2β)2)− 1 =
√

4β(1 + β). (3.38)

Then,

∫ 1

0

(∫ 1

0

1

x+ y + β
P ∗k (x)dx

)2

dy ≤

 2
√

2k + 1(
1 + β̃

)k+1

(
log

(
2

1 + β̃

β̃

)
+ 1

)
2

,

(3.39)

where P ∗k is defined in (2.16).

Proof. We recall from (2.24) that

∣∣∣∣∫ 1

0
(x+ y + β)−1P ∗k (x)dx

∣∣∣∣ = 2Q∗k(y + β + 1)
√

2n+ 1, (3.40)

where Q∗k is defined in (2.23). So, by lemma 2.8,

∣∣∣∣∫ 1

0
(x+ y + β)−1P ∗k (x)dx

∣∣∣∣ < 2
√

2k + 1(
1 + β̃

)k+1

(
log

(
2

1 + β̃

β̃

)
+ 1

)
. (3.41)

By squaring (3.41) and integrating over y, we obtain (3.39).

Lemma 3.19. Let hnk be the k + 1-th coefficient in the expansion defined in (3.33), of the
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function ψn (defined in (2.75)) in the basis of the polynomials P ∗k (defined in (2.16)). Then,

|hnk | ≤ α−2n
2
√

2k + 1(
1 + β̃

)k+1

(
log

(
2

1 + β̃

β̃

)
+ 1

)
(3.42)

Where

β̃ =
√

(1 + (2β)2)− 1 =
√

4β(1 + β) (3.43)

and β is as defined in (3.6).

Proof. We substitute (2.79) into (3.37) and change the order of integration:

hnk = α−2n

∫ 1

0

∫ 1

0

1

x+ y + β
P ∗k (x)ψn(y)dxdy =

= α−2n

∫ 1

0
ψn(y)

(∫ 1

0

1

x+ y + β
P ∗k (x)dx

)
dy.

(3.44)

By the Cauchy-Schwarz inequality,

|hnk | ≤ α−2n

√∫ 1

0
(ψn(y))2 dy

√∫ 1

0

(∫ 1

0

1

x+ y + β
P ∗k (x)dx

)2

dy. (3.45)

By (2.76) and (3.39),

|hnk | ≤ α−2n
√

1

 2
√

2k + 1(
1 + β̃

)k+1

(
log

(
2

1 + β̃

β̃

)
+ 1

) . (3.46)
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3.5 The differential operator D̂ω and the expansion of vn in the

basis of Φk

In this section we consider the expansion of functions g ∈ L2(0,∞) in the basis of the Laguerre

functions Φk (the functions defined in (2.47)):

g(ω) =
∞∑
k=0

ηkΦk(ω). (3.47)

Lemma 3.21 describes the operation of the differential operator D̂ω (define in (2.83)) on Φk.

This relation is used to express the expansion of the left singular function vn of the operator

La,b (the operator defined in (2.61)) via a five-terms recurrence relation, or as a solution to a

benign eigensystem described in theorem 3.22.

Remark 3.20. Lemma 3.21, theorem 3.22 and the discussion in section 3.5.5 apply to the

operators associated with La,b (defined in (2.61)) with an arbitrary choice of 0 < a < b < ∞.

Subsections 3.5.1 and 3.5.2 apply to the special cases of L1/2,γ/2 and L1/(2γ),1/2. Subsections

3.5.3 and 3.5.4 treat to the standard form of the truncated Laplace transform Lγ , as defined

in (3.5).

Lemma 3.21. Applying the differential operator D̂ω (defined in (2.83)) to the Laguerre func-

tion Φk (defined in (2.47)) yields a linear combination of the Laguerre functions Φk−2, Φk−1,
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Φk, Φk+1 and Φk+2:

(
D̂ω(Φk)

)
(ω) =

− 1

16

(
4a2 − 1

) (
4b2 − 1

)
(k − 1)kΦk−2 (ω)

+
1

4
k2
(
16a2b2 − 1

)
Φk−1 (ω)

+
1

8

(
k(k + 1)

(
−48a2b2 − 4a2 − 4b2 − 3

)
+
(
−16a2b2 + 12a2 − 4b2 − 1

))
Φk (ω)

+
1

4
(k + 1)2

(
16a2b2 − 1

)
Φk+1 (ω)

− 1

16

(
4a2 − 1

) (
4b2 − 1

)
(k + 2)(k + 1)Φk+2 (ω) .

(3.48)

Proof. Applying D̂ω to a Laguerre function Φk yields

(
D̂ω(Φk)

)
(x) =

= − d2

dω2
ω2 d2

dω2
Φk(ω) + (a2 + b2)

d

dω
ω2 d

dω
Φk(x) + (−a2b2ω2 + 2a2)Φk(ω)

(3.49)

A somewhat tedious derivation from (3.49), using identities (2.39), (2.40) and (2.41), yields

(3.48).

Theorem 3.22. Let vn(ω) be the n + 1-th left singular function of the truncated Laplace

transform. Let ηn = (ηn0 , η
n
1 , ...)

> be the vector of coefficients in the expansion of vn(ω) in the

basis of Laguerre functions Φk (the functions defined in (2.47)), such that

vn(ω) =

∞∑
k=0

ηnkΦk(ω). (3.50)
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Then, ηn is the n+ 1-th eigenvector of M̂ :

M̂ηn = χ∗nη
n (3.51)

where M̂ is the symmetric five-diagonal matrix

M̂k−2,k =− 1

16

(
4a2 − 1

) (
4b2 − 1

)
(k − 1)k

M̂k−1,k = +
1

4
k2
(
16a2b2 − 1

)
M̂k,k = +

1

8

(
k(k + 1)

(
−48a2b2 − 4a2 − 4b2 − 3

)
+
(
−16a2b2 + 12a2 − 4b2 − 1

))
M̂k+1,k = +

1

4
(k + 1)2

(
16a2b2 − 1

)
M̂k+2,k =− 1

16

(
4a2 − 1

) (
4b2 − 1

)
(k + 2)(k + 1),

(3.52)

and where χ∗n are the eigenvalues of D̂ω (defined in (2.83)), and k = 0, 1, 2....

Proof. By (2.83), the left singular function vn is an eigenfunction of the differential operator

D̂ω, and therefore

(
D̂ω(vn)

)
(ω) = χ∗vn(ω). (3.53)

Substituting (3.50) into (3.53) and using the linearity of the differential operator, we obtain:

∞∑
k=0

ηnk

(
D̂ω(Φk)

)
(ω) = χ∗

∞∑
k=0

ηnkΦk(ω). (3.54)

Using lemma 3.21 and (3.54), we obtain (3.51).
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Observation 3.23. Clearly,

ηnk =

∫ ∞
0

vn(ω)Φk(ω)dω. (3.55)

Remark 3.24. Expressing the left singular functions vn in a similar way, using Hermite polyno-

mials or parabolic cylinder functions, yields a similar framework, with a seven-diagonal matrix

M̂ .

3.5.1 A special case of theorem 3.22: a = 1/2

We observe that there are two special choices of a and b for which the matrix M̂ (defined in

(3.52)) becomes tridiagonal. We briefly describe these two cases in this subsection and in the

next subsection.

The substitution of a = 1/2, b = γ/2 into (3.52) yields the first tridiagonal case of M̂ :

M̂k−1,k = +
1

4

(
γ2 − 1

)
k2

M̂k,k = +
1

4

(
−γ2 − 2

(
γ2 + 1

)
k2 − 2

(
γ2 + 1

)
k + 1

)
M̂k+1,k = +

1

4

(
γ2 − 1

)
(k + 1)2

(3.56)

3.5.2 A special case of theorem 3.22: b = 1/2

A substituting of a = 1
2γ , b = 1/2 into (3.52) yields the second tridiagonal case of M̂ :

M̂k−1,k =−
(
γ2 − 1

)
k2

4γ2

M̂k,k =−
(
2
(
γ2 + 1

)
k2 + 2

(
γ2 + 1

)
k + γ2 − 1

)
4γ2

M̂k+1,k =−
(
γ2 − 1

)
(k + 1)2

4γ2

(3.57)
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3.5.3 A special case of theorem 3.22: the standard form of the truncated

Laplace transform, as defined in 3.5

We now consider theorem 3.22 in the case of the standard form Lγ (defined in (3.5)); in other

words, we set a = 1
2
√
γ and b =

√
γ
2 (as defined in (2.61)). We will show that in this case, the

even-numbered left singular functions v2j are expanded using only the even-numbered Laguerre

functions Φ2m, and that the odd-numbered left singular functions v2j+1 are expanded using only

the odd-numbered Laguerre functions Φ2m+1. Furthermore, we will show that the expansions

of v2j and v2j+1 can be obtained from two benign tridiagonal eigensystems.

Observation 3.25. We substitute a = 1
2
√
γ , b =

√
γ
2 (as specified in (3.3)) into (3.50). We

observe that the first off diagonal of M̂ vanishes, but the second off diagonal does not vanish:

M̂k−2,k = +
(γ − 1)2(k − 1)k

16γ

M̂k,k = +

((
−γ2 − 6γ − 1

)
k(k + 1)− γ2 − 2γ + 3

)
8γ

M̂k+2,k = +
(γ − 1)2(k + 1)(k + 2)

16γ

(3.58)

Let M̂i,j be an entry of M̂ that does not vanish. Then, we observe that both i and j must

be even or both must be odd. In other words, the non-zero elements can be found only in even-

numbered columns of even-numbered rows, and in odd-numbered columns of odd-numbered

rows of M̂ .

We split the matrix M̂ into two matrices; one of the matrices contains all the even rows of

all the even columns, and the other matrix contains all the odd rows of all the odd columns.
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These are the two tridiagonal matrices M̂ even and M̂ even, specified by the formulas:

M̂ even
j−1,j =

(γ − 1)2(2j − 1)2j

16γ

M̂ even
j,j =

((
−γ2 − 6γ − 1

)
2j(2j + 1)− γ2 − 2γ + 3

)
8γ

M̂ even
j+1,j =

(γ − 1)2(2j + 1)(2j + 2)

16γ

(3.59)

and

M̂odd
j−1,j =

(γ − 1)2(2j)(2j + 1)

16γ

M̂odd
j,j =

((
−γ2 − 6γ − 1

)
(2j + 1)(2j + 2)− γ2 − 2γ + 3

)
8γ

M̂odd
j+1,j =

(γ − 1)2(2j + 2)(2j + 3)

16γ
.

(3.60)

We introduce the notation ηeven,j and χ∗,evenj for the j + 1-th eigenvector and eigenvalue of

M̂ even, and ηodd,j and χ∗,oddj for the j + 1-th eigenvector and eigenvalue of M̂odd;

M̂ evenηeven,j = χ∗,evenj ηeven,j , (3.61)

and

M̂oddηodd,j = χ∗,oddj ηodd,j . (3.62)

Observation 3.26. Let χ∗ be an eigenvalue of M̂ . Then, χ∗ is either an eigenvalue of M̂ even,

or an eigenvalue of M̂odd. Any eigenvalue of M̂ even or M̂odd is an eigenvalue of M̂ .

Observation 3.27. The vector
(
ηeven,j0 , 0, ηeven,j1 , 0, ....

)>
is an eigenvector of M̂ with the

eigenvalue χ∗,evenj .

Observation 3.28. The vector
(

0, ηodd,j0 , 0, ηodd,j1 , 0, ....
)>

is an eigenvector of M̂ with the
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eigenvalue χ∗,oddj .

We introduce the notation vevenj (ω), voddj (ω):

vevenj (ω) =

∞∑
l=0

ηeven,jl Φ2l(ω) (3.63)

voddj (ω) =

∞∑
l=0

ηodd,jl Φ2l+1(ω). (3.64)

Observation 3.29. Each function in the sequences vevenj and voddj is a left singular function.

Each left singular function is either in the sequence of functions vevenj , or in the sequence voddj .

It remains to be shown which function, in which of the two sequences vevenj and voddj ,

corresponds to the n+ 1-th left singular function vn.

Lemma 3.30. Let ηeven,j be the j + 1-th eigenvector of M̂ even and let vevenj be as defined in

(3.63).

Let ηodd,j be the j + 1-th eigenvector of M̂odd (defined in (3.60)) and let voddj be as defined

in (3.64).

Then,

v2j(ω) = vevenj (ω)

v2j+1(ω) = voddj (ω).

(3.65)

Proof. By observation 3.29, vevenj is a left singular function. Let um be the corresponding right

singular function of the truncated Laplace transform L (the operator defined in (3.5)). By

(3.63) and (2.67),

um = α−1m

∞∑
l=0

ηeven,jl (Lγ)∗(Φ2l). (3.66)
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We multiply both sides of (3.66) by the operator Cγ (as defined in (3.12)), and use the definition

of Un in (3.20), to obtain

Um = α−1m

∞∑
l=0

ηeven,jl (Cγ ◦ (Lγ)∗) (Φ2l). (3.67)

By (3.17), the functions ((Cγ ◦ (Lγ)∗) (Φ2l)) (s) are even functions, so Um is an even func-

tion; therefore, by (3.25), m must be an even number. In other words, vevenj is the even-

numbered left singular function vm.

By a similar argument, voddj is an odd-numbered left singular function. In other words, the

sequence of functions vevenj is the sequence of even-numbered left singular functions vn and the

sequence of functions voddj is the sequence of odd-numbered left singular functions vn. Based

on these facts, it is a matter of simple bookkeeping to obtain (3.65) using observation 3.26.

3.5.4 Additional properties of vn in the case of the standard form of the

truncated Laplace transform

ηn0 and ηn1 , the first two coefficients in the expansion (3.50) of vn, are related to Un(0) (the

function defined in (3.20), at the s = 0) and to the value of the derivative U ′n(0).

Lemma 3.31. Let un and vn be the n+ 1-th right and left singular function of Lγ (defined in

(3.5)). Let ηn0 and ηn1 be the first and second coefficients in the expansion defined in (3.50), of

vn in the basis of Laguerre functions Φk (the functions defined in (2.47)). Let Un be Cγun, as

defined in (3.20). Then:

Un(0) = α−1n ηn0 /2, (3.68)
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and

U ′n(0) = α−1n ηn1 log(γ)/4. (3.69)

Proof. By (3.50) and (2.67),

un = α−1n

∞∑
k=0

ηnk (Lγ)∗(Φk). (3.70)

We apply the operator Cγ (defined in (3.12)) to (3.70), and use (3.20) to obtain

Un(s) = α−1n

∞∑
k=0

ηnk ((Cγ ◦ (Lγ)∗) (Φk)) (s). (3.71)

In particular, at the point s = 0,

Un(0) = α−1n

∞∑
k=0

ηnk ((Cγ ◦ (Lγ)∗) (Φk)) (0) (3.72)

We then use (3.18) to obtain (3.68).

We differentiate (3.71) and set s = 0;

U ′n(0) = α−1n

∞∑
k=0

ηnk ((Cγ ◦ (Lγ)∗) (Φk))
′
(0). (3.73)

We use (3.19) to obtain (3.69).

Remark 3.32. Similar relations for the value of the right singular function un(1/2) of Lγ (3.5)

at t = 1/2 and for the derivative u′n(1/2) are easy to obtain from lemma 3.31 or by a similar

construction.

Remark 3.33. In the other spacial cases of La,b, where a = 1/2 or b = 1/2, similar rela-

tions exist between the value of the function un at the ends of the interval [a, b] and the first
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coefficients in the expansion.

3.5.5 Decay of the coefficients in the expansion of vn in the basis of Φk

The left singular functions vn are smooth functions, and they are therefore efficiently expressed

using Laguerre functions Φk (the functions defined in (2.47)). In other words, we expect the

coefficients in the expansion (3.50) to decay rapidly. In this section we derive a bound for the

rate of decay of these coefficients.

Lemma 3.34. Given an arbitrary choice of 0 < a < b < ∞, we consider the SVD of the

operator La,b (defined in 2.61). Let ηnk be the k+ 1-th coefficient in the expansion of the n+ 1-

th left singular function vn in the basis of Laguerre functions (the functions Φk, defined in

(2.47)).

We define γ = b/a and introduce the notation

smax = max

(∣∣∣∣2log 2a

log γ

∣∣∣∣ , ∣∣∣∣2log 2b

log γ

∣∣∣∣) . (3.74)

Then,

smax ≥ 1 (3.75)

and

|ηnk | ≤ α−1n

√
2

log γ

∣∣∣∣∣γsmax/2 − 1

γsmax/2 + 1

∣∣∣∣∣
k

. (3.76)

In particular, in the case Lγ = L 1
2
√
γ
,
√
γ

2

(as defined in (3.5)),

|ηnk | ≤ α−1n

√
2

log γ

∣∣∣∣1− 2

1 +
√
γ

∣∣∣∣k . (3.77)
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Proof. By (3.55) and (2.66),

ηnk = α−1n

∫ ∞
0

(∫ b

a
e−ωtun(t)dt

)
Φk(ω)dω. (3.78)

Changing the order of integration and using (2.62),

ηnk = α−1n

∫ b

a
un(t) ((La,b)∗ (Φk)) (t)dt. (3.79)

A simple calculation using (3.11), (3.12) and (3.20) shows that

ηnk = α−1n

∫ 2 log 2b
log γ

2 log 2a
log γ

Un(s) ((Cγ ◦ (La,b)∗) (Φk)) (s)ds. (3.80)

By the Cauchy-Schwarz inequality,

|ηnk | ≤ α−1n

√√√√∫ 2 log 2b
log γ

2 log 2a
log γ

(Un(s))2 ds

√√√√∫ 2 log 2b
log γ

2 log 2a
log γ

((Cγ ◦ (La,b)∗) (Φk))
2

(s)ds, (3.81)

and by (3.21),

|ηnk | ≤ α−1n
2√

log γ

√√√√∫ 2 log 2b
log γ

2 log 2a
log γ

((Cγ ◦ (La,b)∗) (Φk))
2

(s)ds. (3.82)

We observe that smax is the supremum of |s|, where s ∈ (2 log 2a
log γ , 2

log 2b
log γ ). In other words,

smax is the largest magnitude of the variable s in the integration (3.82). It is easy to observe

that smax is no smaller than 1. By (3.16),

|((Cγ ◦ ((La,b)∗) (Φk))) (s)| ≤ 1

2

∣∣∣∣∣γsmax/2 − 1

γsmax/2 + 1

∣∣∣∣∣
k

. (3.83)

For a given ratio γ = b/a, it is easy to observe that the length of the interval (2 log 2a
log γ , 2

log 2b
log γ )
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in the integral (3.82) is 2. So, by (3.82) and (3.83),

|ηnk | ≤ α−1n

√
2√

log γ

∣∣∣∣∣γsmax/2 − 1

γsmax/2 + 1

∣∣∣∣∣
k

. (3.84)

In the case of the standard form of the truncated Laplace transform Lγ , where a = 1
2
√
γ , b =

√
γ
2 , this interval becomes (−1, 1), and smax = 1. So, for the standard form of the truncated

Laplace transform,

|ηnk | ≤ α−1n

√
2√

log γ

∣∣∣∣∣γ1/2 − 1

γ1/2 + 1

∣∣∣∣∣
k

= α−1n

√
2√

log γ

∣∣∣∣1− 2

1 +
√
γ

∣∣∣∣k . (3.85)

Observation 3.35. Let ṽn be the n+1-th left singular function of La,b (defined in (2.61)). Let

vn be the n+ 1-th left singular function of Lγ (the operator in the standard form, as defined in

(3.5)), where b/a = γ. Let the vectors ηn and η̃n represent the expansions, defined in (3.50),

of vn and ṽn.

In the case of Lγ , we have smax = 1, and it is easy to observe that the bound (3.77) for |ηnk |

decays faster than the bound (3.76) for the general |η̃nk |.
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3.6 A remark about the limit γ → 1

Throughout this dissertation we have assumed that the parameter γ = b/a in (3.5) is strictly

larger than 0. In this section, we describe some properties of the differential operator D̂ω

(defined in (2.82)) and its eigenfunctions vn at the limit γ → 1. Other aspects of this limit are

discussed in [6].

By substituting b = a into (2.82),

(
D̂ω(f)

)
(ω) = − d2

dω2
ω2 d2

dω2
f(ω) + 2a2

d

dω
ω2 d

dω
f(ω) +

(
−a4ω2 + 2a2

)
f(ω).

(3.86)

In particular, substituting a = b = 1/2 into (2.82) yields

(
D̂ω(f)

)
(ω) = − d2

dω2
ω2 d2

dω2
f(ω) +

1

2

d

dω
ω2 d

dω
f(ω) +

(
− 1

16
ω2 +

1

2

)
f(ω).

(3.87)

Theorem 3.22 provides a relation between the operator D̂ω and the matrix M̂ (see (3.52)). By

substituting a = b = 1/2 into (3.52), we obtain a diagonal matrix:

M̂k,k =− k(k + 1). (3.88)

Clearly, the eigenvalues of this matrix are

χ∗ = −k(k + 1), (3.89)

and the eigenvectors are simply (0, .., 0, 1, 0, ...)>. By theorem 3.22, this means that for γ = 1,

the n+ 1-th eigenfunction vn of the differential operator D̂ω, is the Laguerre function Φn (the

function defined in (2.47)), and the n + 1-th eigenvalue of D̂ω is χ∗n = −n(n + 1). In other
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words, the Laguerre function Φn is the solution of the differential equation

− d2

dω2
ω2 d2

dω2
Φn +

1

2

d

dω
ω2 d

dω
Φn +

(
− 1

16
ω2 +

1

2
+ n(n+ 1)

)
Φn = 0. (3.90)

3.7 A relation between the n+ 1-th and m+ 1-th singular func-

tions, and the ratio αn/αm

Lemma 3.36. Let un and um be right singular functions, and let αn and αm be the correspond-

ing singular values of La,b (defined in (2.61). Let ψn and ψm be the corresponding functions

defined in (2.75). Then:

α2
m

α2
n

=

∫ 1
0 ψ
′
n(x)ψm(x)dx∫ 1

0 ψn(x)ψ′m(x)dx
(3.91)

and

α2
m

α2
n

=

∫ b
a u
′
n(t)um(t)dt∫ b

a u
′
m(t)un(t)dt

, (3.92)

if the integrals are not 0.

Proof. We recall from (2.67) that

un(t) =
1

αn
(L∗(vn)) (t) =

1

αn

∫ ∞
0

e−ωtvn(ω)dω. (3.93)

Therefore, the derivative of un(t) is

u′n(t) =
1

αn

∫ ∞
0

(−ω)e−ωtvn(ω)dω. (3.94)

We multiply both sides of the expression by um(t), integrate both sides, and change the order
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of integration:

∫ b

a
u′n(t)um(t)dt =

1

αn

∫ b

a

(∫ ∞
0

(−ω)e−ωtvn(ω)dω

)
um(t)dt. (3.95)

By rearranging the result, we obtain

∫ b

a
u′n(t)um(t)dt =

αm
αn

∫ ∞
0

(−ω)vn(ω)vm(ω)dω. (3.96)

m and n are clearly interchangeable, so that

∫ ∞
0

(−ω)vn(ω)vm(ω)dω =
αm
αn

∫ b

a
u′m(t)un(t)dt. (3.97)

By substituting (3.97) into (3.96), we obtain (3.92). The identity (2.75) is used to obtain (3.91).

A similar relation exists for the left singular functions and their derivatives:

Lemma 3.37. Let vn and vm be left singular functions and let αn and αm be the corresponding

singular values. Then:

α2
m

α2
n

=

∫∞
0 v′n(ω)vm(ω)dω∫∞
0 vn(ω)v′m(ω)dω

, (3.98)

if the integrals are not equal to 0.

The proof is similar to the proof of lemma 3.36.

3.8 A relation between vn(0), hn0 and the singular value αn

The following lemma provides the relation between hn0 (the first coefficient in the expansion

(3.33) of un), vn(0), and the corresponding singular value αn.
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Lemma 3.38. Let vn(ω) be a left singular functions of Lγ (the operator defined in (3.5)). Let

uk be the corresponding right singular function, and let αn be the corresponding singular value.

Let ψn be as defined in (2.75) and let hn be the vector of coefficients defined in (3.33).

Then,

αn =

√
γ − 1

2
√
γ

hn0
vn(0)

(3.99)

Proof. By the definition of the SVD (2.66),

(L(un)) (ω) = αnvn(ω). (3.100)

In particular, at ω = 0:

αnvn(0) = (L(un)) (0) =

∫ b

a
un(t)dt (3.101)

Using the change of variables (2.74), and substituting (2.79) into the last expression, we obtain:

αnvn(0) = (b− a)

∫ 1

0
un(a+ (b− a)x)dx =

√
(b− a)

∫ 1

0
ψn(x)dx (3.102)

Expressing ψn using the expansion defined in (3.33):

αnvn(0) =
√

(b− a)

∫ 1

0

( ∞∑
m=0

hnmP
∗
m(x)

)
dx (3.103)

By (2.17), P ∗0 (x) ≡ 1, and since all the other polynomials P ∗k are orthogonal to it,

αnvn(0) =
√

(b− a)hn0 (3.104)
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Substituting the values of a and b, defined in (3.3) into (3.104), we obtain (3.99).

3.9 A closed form approximation of the eigenvalues χ̃n, χ
∗
n, χn

and singular values αn

The eigenvalues of differential operators D̃t, Dx and D̂, as the operators are defined in (2.72),

(2.80) and (2.82), and as they appear in equations (2.73) , (2.81) and (2.83), have closed form

asymptotic expressions; in the case of the standard form Lγ (the operator defined in (3.5)), the

eigenvalues of the differential operators are:

χn
4γ

(γ − 1)2
= χ̃n = χ∗n = −

2γ2 + 4γ +
π2(γ+1)2(n+ 1

2)
2

K
(

(γ−1)2

(γ+1)2

)2 − 6

16γ

(
1 +O(n−2)

)
,

(3.105)

where K(m) is the complete elliptic integral of the first kind (as defined in (2.49)) . These

eigenvalues are negative and roughly proportional to −n(n+ 1). The proof for this asymptotic

expression is involved, and it will be provided at a later date.

The singular values αn also have a closed form asymptotic expression; in the case of the

standard form Lγ , the singular values are:

αn =
√

2π exp

−
√

3− γ(γ + 8χ∗n + 2)K
(

4γ
(γ+1)2

)
√

2(γ + 1)

(1 +O(n−1)
)
, (3.106)

where K(m) is the complete elliptic integral of the first kind (as defined in (2.49)). The proof

for this asymptotic expression is involved, and it will be provided at a later date.
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Chapter 4

Algorithms

4.1 Evaluation of the right singular functions un

In this section we introduce an algorithm for the numerical evaluation of un(t), the n + 1-th

right singular function of Lγ (the operator defined in (3.5)).

We recall that un(t) can be easily calculated from the function ψn(x) using (2.75). We

also recall that ψn(x) is efficiently represented in the basis of P ∗k (the polynomials defined in

(2.16)) and that the expansion of ψn(x) in P ∗k is related to the n + 1-th eigenvector of the

5-diagonal matrix specified in theorem 3.16.

The algorithm for obtaining the right singular function un(t) is therefore:

• Compute hn, the n+ 1-th eigenvector of the matrix M , defined in (3.35).

• Compute the function ψn(x) from hn, using the expansion specified in (3.33).

• Obtain un(t) from ψn(x) using (2.75).

The calculation of the eigenvalues and eigenvectors is done using the Sturm sequence method

and the inverse power method, as described in section 2.6.
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4.2 Evaluation of the left singular functions vn

In this section we introduce an algorithm for the numerical evaluation of vn, the left singular

functions of Lγ (the operator defined in (3.5)).

We recall that vn(ω), is efficiently expressed in the basis of Laguerre functions as specified

in (3.50). We recall that the coefficients of even-numbered left singular functions of Lγ are

given by the eigenvectors of the matrix M̂ even, specified in (3.61). Therefore, the algorithm for

computing an even-numbered left singular function vn where n = 2j is:

• Compute ηeven,j , the j + 1-th eigenvector of the matrix M̂ even specified in (3.59).

• Compute the function vevenj (ω) from ηeven,j , using the expansion specified in (3.63).

• By (3.65), vn(ω) = vevenj (ω) .

Similarly, the algorithm for computing an odd-numbered left singular function vn where n =

2j + 1 is:

• Compute ηodd,j , the j + 1-th eigenvector of the matrix M̂odd specified in (3.60).

• Compute the function voddj (ω) from ηodd,j , using the expansion specified in (3.64).

• By (3.65), vn(ω) = voddj (ω) .

The calculation of the eigenvalues and eigenvectors is done using the Sturm sequence method

and the inverse power method, as described in section 2.6.

Remark 4.1. Clearly, the left singular functions of La,b (the operator defined in (2.61)) can

be computed directly, using the matrix M̂ described in theorem 3.22.

4.3 Evaluation of the singular values αn

In this section, we introduce two algorithms for computing the singular value αn of Lγ (the

operator defined in (3.5)).
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4.3.1 Calculating the singular value αn from αm, via lemma 3.36 or lemma

3.37

Lemma 3.36 provides a way to calculate αn+1 from a known αn using the right singular func-

tions. Suppose that we have the first singular value α0. Then, we calculate the functions ψ0

and ψ1 (the functions as defined in (2.75)) and use (3.91) to calculate α1 from α0. To obtain

the other singular values, we calculate every αn+1 from the previous αn, using ψn+1 and ψn.

There are several obvious methods for evaluating α0 via numerical integration; for example:

α0 =

√
((L∗ ◦ L) (u0)) (t)

u0(t)
(4.1)

and

α0 =
(L(u0)) (ω)

v0(ω)
. (4.2)

We use the relation provided in lemma 3.38 to evaluate α0; in section 4.3.2 we use lemma 3.38

to calculate arbitrary αn directly.

Remark 4.2. A similar algorithm, based on the left singular functions vn rather than the right

singular functions, is easy to construct using lemma 3.37.

Remark 4.3. Clearly, if ((L∗ ◦ L) (un)) (t) and un(t) are available at sufficient precision, re-

lations like (4.1) can be used to evaluate arbitrary singular values. However, in general, the

condition number of the problem does not allow high precision calculation of small singular

values using direct integration; and since αn decays exponentially (see (3.106)), only very few

singular values can be calculated by direct numerical integration. The method in section 4.3.2

provides an alternative way of evaluating the singular value αn.
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4.3.2 Calculating the singular value αn via lemma (3.38)

Let vn(ω) be the n + 1-th left singular function of Lγ (the operator defined in (3.5)). Let αn

be the n+ 1-th singular value. Let hn be the n+ 1-th eigenvector of the matrix M (the matrix

defined in (3.35)). By lemma 3.38,

αn =

√
γ − 1

2
√
γ

hn0
vn(0)

. (4.3)

The values of hn0 and vn(0) are obtained through the evaluation of the right and left singular

functions, as described in sections 4.1 and 4.2.

Remark 4.4. By (3.63), (3.64), (2.43) and (2.47), v2j(0) is simply the sum of the entries in

the eigenvector ηeven,j of M̂ even (the matrix defined in (3.59)) and v2j+1(0) is simply the sum

of the entries in the eigenvector ηodd,j of M̂odd (the matrix defined in (3.60));

v2j(0) =

∞∑
k=0

ηeven,jk , (4.4)

v2j+1(0) =

∞∑
k=0

ηodd,jk . (4.5)

Remark 4.5. It has been shown in [14] that in some band matrices, such as the matrix M in

(3.35), the first element of the vector hn can be computed to relative precision, and not just to

absolute precision. The analysis is somewhat involved, and it will be reported at a later date.
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Chapter 5

Implementation and numerical

results

Algorithms for the evaluation of the right singular functions un, left singular functions vn and

singular values αn of Lγ were implemented in FORTRAN 77. In this section, we present

examples of numerical experiments. The gfortran compiler, and double precision arithmetic

were used in all the experiments, except for the last experiment, where the Fujitsu compiler

and quadruple precision were used.

In figure 5.1 we present examples of right singular functions un and left singular functions vn

of Lγ (the operator defined in (3.5)), with the parameter γ = 1.1. The right singular functions

are plotted on the interval
(

1
2
√
γ ,
√
γ
2

)
. The left singular functions are plotted on a subset of

the interval (0,∞).

Figure 5.2 is the same as figure 5.1, but with the parameter γ = 10. Figure 5.3 is the same

as figure 5.1, with γ = 105, and a different selection of n.

The singular values αn of Lγ , over a range of n and a range of γ, are presented in table 5.1

and figure 5.4.

The eigenvalues χ∗ of the differential operator D̂ω (as defined in (2.82)) are presented in
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table 5.2 and figure 5.5.

In figure 5.6 we plot of un(a); the right singular function of Lγ , evaluated at the point

a = 1
2
√
γ . In figure 5.7 we plot vn(0); the left singular function, evaluated at the point ω = 0.

An analysis of the properties of un and vn at these endpoints will be presented at a later date.

In table 5.3 we present several singular values smaller than 10−1000.
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(a) Right singular functions un.

(b) Left singular functions vn.

Figure 5.1: Singular functions of Lγ , where γ = 1.1.
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(a) Right singular functions un.

(b) Left singular functions vn.

Figure 5.2: Singular functions of Lγ , where γ = 10.

62



(a) Right singular functions un.

(b) Left singular functions vn.

Figure 5.3: Singular functions of Lγ , where γ = 105.
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Figure 5.4: Singular values αn of Lγ .
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Figure 5.5: The magnitude of the eigenvalues χ∗n of the differential operator D̂ω (defined in
(2.82)).
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Figure 5.6: un
(
1/(2
√
γ)
)
. The right singular functions, evaluated at t = a = 1/(2

√
γ).
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Figure 5.7: vn(0). The left singular functions, evaluated at ω = 0 .
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Table 5.3: Examples of singular values αn smaller than 10−1000

γ n αn

1.1E + 0 520 8.70727E − 1002
1.0E + 1 1721 3.66934E − 1001
1.0E + 2 2797 5.29961E − 1001
1.0E + 3 3872 5.71146E − 1001
1.0E + 4 4946 9.44191E − 1001
1.0E + 5 6021 8.89748E − 1001
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Chapter 6

Conclusions and generalizations

In this dissertation we have introduced efficient algorithms for the evaluation of the singular

functions and singular values of the truncated Laplace transform.

Among the obvious generalizations of this work, is the Laplace transform in higher dimen-

sions. Another closely related object is the two-sided band-limited Laplace transform, ˜̃Lc; for

a given c ∈ C and a function f ∈ L2(−1, 1), the later is defined by the formula

(
˜̃Lc(f)

)
(ω) =

∫ 1

−1
e−ctωf(t)dt. (6.1)

As we will report in more detail at a later date, much of the analysis of F̃c (the operator defined

in (1.3)) has a natural extension to ˜̃Lc.

One of the results of this work will be the construction of interpolation formulas in the span

of right or left singular functions, as well as associated quadrature formulas.

In a future paper we will discuss asymptotic properties of the truncated Laplace transform

and of the associated differential operators, and the relations between all these operators.
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