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We introduce a fast algorithm for the numerical application to arbitrary vectors of
several special function transforms. The algorithm requires O(n log(n)) operations to
apply to an arbitrary vector any n×n matrix such that the rank of any p×q contiguous
submatrix is bounded by a constant times pq/n. These rank bounds are proven here
for the case of the Fourier-Bessel transform. Numerical experiments demonstrate a
much wider applicability. The performance of the algorithm is illustrated via several
numerical examples.
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1 Introduction

Special function transforms are a widely used and well-understood tool of applied mathe-
matics; they are encountered, inter alia, in weather and climate modeling [19], [20], [21],
tomography [14], [9], electromagnetics [13], and acoustics [6], [16]. Examples of such trans-
forms include the Fourier transform, the Fourier-Bessel transform, orthogonal polynomial
transforms, etc.

We present an algorithm for the numerical computation of several special function trans-
forms. Suppose that S is a change of basis matrix between the standard basis and a basis of
special functions. We begin by compressing each of the submatrices of S shown in Figure 1;
we refer to these submatrices as Level 0. Each subsequent level consists of submatrices ob-
tained from the previous level by merging horizontally and splitting vertically. Level 1 is
illustrated in Figure 2 and Level 2 is illustrated in Figure 3. In the last level, each submatrix
extends across an entire row of S, as illustrated in Figure 4. We compress each submatrix at
each level. We then use the compressed submatrices to apply the matrix S to an arbitrary
vector; this requires O(n log(n)) operations to apply any matrix such that the rank of any
p×q contiguous submatrix is bounded by a constant times pq/n. We prove the required rank
bounds for the case of the Fourier-Bessel transform in Theorem 4.3. Numerical examples
demonstrate a much wider applicability.

In addition to enabling the fast application of certain matrices, the algorithm of the
present paper can be used as a tool for matrix compression. The n × n matrices examined
are compressed using approximately O(n log(n)) memory.

Figure 1: Level 0

It should be pointed out that the algorithm of this paper is very similar to that of [12] and
has been motivated by the latter. In particular, the term “butterfly algorithm” is introduced
in [12], due to its similarity to the butterfly stage in the Fast Fourier Transform (FFT).

It is not the purpose of this paper to review the extensive literature on the subject of
algorithms for special function transforms. For a detailed survey of the literature we refer
the reader to [15], [17], [22], and the references therein. In brief, the algorithm described in
[17] handles associated Legendre functions, spheroidal wave functions of all orders, associ-
ated Laguerre functions, and the Fourier-Bessel transform. The algorithm described in [22]
handles associated Legendre functions, Hermite functions, associated Laguerre functions,
the Fourier-Bessel transform, and sums of Bessel functions of varying orders. The algorithm
described in [22] is much preferable to that of [17] in most circumstances.
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Figure 2: Level 1

Figure 3: Level 2

The algorithm of the present article is quite easy to implement, and, furthermore, applies
directly to Fourier-Bessel series, whereas the algorithms of [17] and [22] do not. The structure
of our algorithm is notably different. This paper illustrates our algorithm by treating the
example of the Fourier-Bessel transform in full detail. We also illustrate the application
of the butterfly algorithm to a wide range of special function transforms numerically, in
Section 6 below.

The present paper has the following structure: Section 2 sets the notation. Section 3
collects various known facts which later sections utilize. Section 4 provides the principal
lemmas which Section 5 uses to construct an algorithm. Section 5 describes the algorithm
of the present paper, providing details about its computational costs. Section 6 illustrates
the performance of the algorithm via several numerical examples. Section 7 draws several
conclusions and discusses possible extensions.

2 Notation

We define R to be the set of all real numbers. We define C to be the set of all complex
numbers. Throughout this paper, we use i =

√
−1.

For a real number x, we define ⌊x⌋ to be the largest integer n which satisfies n ≤ x.
For any positive integer l, we define we define 1 to be the real l × l matrix whose (j, k)

entry is 1 if j = k, and 0 if j 6= k, for integers j, k such that 1 ≤ j ≤ l and 1 ≤ k ≤ l. We
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Figure 4: The last level

refer to 1 as the identity matrix of size l.
Suppose that a and b are real numbers and that f(x) is a complex valued function,

defined for every real number x such that a ≤ x ≤ b. We define the L2[a, b] norm of f via
the formula

‖f‖[a,b] =

√

∫ b

a

|f(x)|2 dx. (2.1)

We define L2[a, b] to be the set of all complex valued functions defined on the interval [a, b]
such that ‖f‖[a,b] < ∞.

Suppose that a, b, u, and v are real numbers such that a < b and u < v. Suppose further
that A : L2[a, b] → L2[u, v] is an integral operator with kernel k(x, t) : [a, b] × [u, v] → C

given by the formula

(Af)(x) =

∫ b

a

k(x, t)f(x) dx. (2.2)

We define the spectral norm of the kernel k or the operator A via the formula

‖A‖2 = ‖k‖2 = sup
f∈L2[a,b]

‖Af‖[u,v]

‖f‖[a,b]

. (2.3)

If v is an n × 1 vector we define its norm ‖v‖ via the formula

‖v‖ =

n
∑

j=1

|vj |2, (2.4)

where vj is the jth entry in v, for every integer j such that 1 ≤ j ≤ n. If S is a n×m matrix,
we define its norm ‖S‖ via the formula

‖S‖ = max
06=w∈Rm

‖Sw‖
‖w‖ . (2.5)
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3 Mathematical preliminaries

3.1 Facts from numerical analysis

3.1.1 Numerical rank

Suppose that m is a postitive integer and that a, b, u, v, and ε are real numbers such that
a < b and u < v, with ε > 0. Suppose further that A : L2[a, b] → L2[u, v] is the integral
operator with kernel k : [a, b] × [u, v] → C, given by the formula

(Af)(x) =

∫ b

a

k(x, t)f(x) dx. (3.1)

The operator A in (3.1) is defined to have rank m to precision ε if m is the least integer
such that there exist 2m functions g1, g2, . . . , gm−1, gm and h1, h2, . . . , hm−1, hm satisfying
‖k(x, t) −

∑m
k=1 gk(x)hk(t)‖2 = ε.

3.1.2 The interpolative decomposition

The following lemma states that, for any m × n matrix A whose rank is r, there exist an
m× r matrix B whose columns constitute a subset of the columns of A, and a r × n matrix
P , such that

1. some subset of the columns of P makes up the r × r identity matrix,

2. P is not too large, and

3. BP = A.

Moreover, the lemma provides an analogous approximation BP to A when the exact rank
of A is not r, but the (r + 1)st singular value of A is nevertheless small. We refer to B as
a column skeleton matrix and to P as an interpolation matrix. We refer to the expression
BP = A as an interpolative decomposition of A. The lemma can be found, in a slightly
different form, in [11], [2], and [8].

Lemma 3.1 Suppose that m and n are positive integers, and A is a complex m× n matrix.
Then, for any positive integer r with r ≤ m and r ≤ n, there exist a complex r×n matrix

P , and a complex m × r matrix B whose columns constitute a subset of the columns of A,
such that

1. some subset of the columns of P makes up the r × r identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4r(n − r) + 1,

4. the least (that is, rth greatest) singular value of P is at least 1,

5. BP = A when r = m or r = n, and
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6. ‖BP − A‖ ≤
√

4r(n − r) + 1σr+1 when r < m and r < n, where σr+1 is the (r + 1)st

greatest singular value of A.

Remark 3.2 In this paper, we use the numerical scheme for the computation of the matrix
P described in [2]. The scheme is stable and requires O(rmn) floating point operations and
O(mn) floating point words of memory. The reader is referred to [11], [2], and [8] for a more
detailed description of matrix skeletonization and related techniques.

3.2 Special functions

3.2.1 Fourier series

The following information concerning discrete Fourier transforms on equispaced nodes can
be found, for example, in [3]. We also describe discrete Fourier transforms for nonequispaced
nodes, referring the reader to [4] and [5] for more information.

The functions einx, with integer n, are orthogonal on the interval [−π, π], that is, for any
integers m and n such that m 6= n,

∫ π

−π

eimxeinx dx = 0. (3.2)

The functions einx, with integer n, form a basis for L2[−π, π] so that for any square integrable
function f : [−π, π] → C, there exist real numbers c0, c1, c2, . . . such that

f(x) =
∞
∑

j=−∞
cje

ijx. (3.3)

In numerical applications, the series in (3.3) is truncated after n terms, for some appropriately
chosen integer n. The function f is thus approximated by the trigonometric polynomial
p : [−π, π] → ∞, given by the formula

f(x) ≈ p(x) =
n
∑

j=−n

cje
ijx. (3.4)

Formula (9.2.4) in [3] states that the complex number cj in equation (3.4) is given by the
formula

cj =
1

2n + 1

2n
∑

k=0

p(xk)e
−ijxk, (3.5)

where the real number xk is defined via the formula

xk =
2πk

2n + 1
, (3.6)

for integers j, k such that −n ≤ j ≤ n and 0 ≤ k ≤ 2n.
The discrete Fourier transform maps the 2n + 1 values p(xk) of the function p at the

nodes xk to the 2n + 1 coefficients cj in (3.4), for −n ≤ j ≤ n and 0 ≤ k ≤ 2n. The inverse
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discrete Fourier transform maps the 2n+1 coefficients cj in (3.4) to the 2n+1 values p(xk) of
the function p at the nodes xk, for 0 ≤ k ≤ 2n and −n ≤ j ≤ n. The fast Fourier transform
(FFT) algorithm for computing the forward and inverse discrete Fourier transforms is widely
known (see, for example, [3]). Note that the FFT and equation (3.5) rely on the facts that
x0, x1, . . . , x2n−1, x2n are equispaced and j is an integer between −n and n.

The algorithm described in Section 5 can be used to evaluate sums of the form

αj =
2n
∑

k=0

p(xk) e−iωjxk , (3.7)

where x0, x1, . . . , x2n−1, x2n are arbitrary real numbers between 0 and 2π and ω0, ω1,. . . ,
ω2n−1, ω2n are arbitrary real numbers between −n and n. If x0, x1, . . . , x2n−1, x2n are non-
equispaced, we refer to the sum in equation (3.7) as a discrete Fourier transform for nonequi-
spaced nodes. Calculation of a Fourier transform for nonequispaced nodes requires that we
apply to the vector (p(x0), p(x1), . . . , p(x2n−1), (x2n))⊤ the matrix TF defined by the formula

TF =







e−iω0x0 · · · e−iω0x2n

...
. . .

...
e−iω2nx0 · · · e−iω2nx2n






. (3.8)

Remark 3.3 If the nodes x0, x1, . . . , x2n−1, x2n are equispaced the use of the FFT to calcu-
late the forward and inverse Fourier transforms is faster than the algorithm of the present
paper. If the nodes x0, x1, . . . , x2n−1, x2n are not equispaced, the forward and inverse Fourier
transforms can be calculated via the application of the matrix TF defined in equation (3.8);
this is accelerated by the algorithm described in Section 5. However, the algorithms of [4]
and [5] are faster than the algorithm of this paper for computing nonequispaced Fourier
transforms. Unlike the methods of [4] and [5] the method of this paper works for many
transforms besides the Fourier transform.

3.2.2 Bessel functions

Following the standard practice, we will be denoting by Jm the Bessel function of the first
kind of order m and by H

(1)
m the Hankel function of the first kind of order m. Whenever m

is an integer, Jm is analytic in the whole complex plane, and Hm has a singularity at 0 and
a branch cut along the negative real axis. The properties of Bessel functions are extremely
well-known, and the reader is referred (for example) to [1] and [25].

The algorithm of Section 5 accelerates the evaluation of the Fourier-Bessel transform
as described in Sections 3.2.3 and 3.2.4. In addition, the algorithm described in Section 5
accelerates the evaluation of sums of Bessel and Hankel functions over varying orders. These
sums are analogous to expansions in orthogonal polynomials (see, for example, [24] and
[23]). For any non-negative real number x and complex numbers α0, α1,. . . ,αm−2, αm−1, we
consider the sums

g(x) =

m−1
∑

k=0

αk Jk(x), (3.9)
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and

w(x) =
m−1
∑

k=0

αk H
(1)
k (x), (3.10)

To evaluate the function g, defined in (3.9), at the real points x1, x2, . . . , xm−1, xm we must
apply to the vector (α0, α1, . . . , αm−2, αm−1)

⊤ the matrix EJ defined via the formula

EJ =







J0(x1) · · · Jm−1(x1)
...

. . .
...

J0(xm) · · · Jm−1(xm)






. (3.11)

To evaluate the function w, defined in (3.10), at the real points x1, x2, . . . , xm−1, xm we must

apply to the vector (α0, α1, . . . , αm−2, αm−1)
⊤ the matrix E

(1)
H defined via the formula

E
(1)
H =







H
(1)
0 (x1) · · · H

(1)
m−1(x1)

...
. . .

...

H
(1)
0 (xm) · · · H

(1)
m−1(xm)






. (3.12)

The algorithm described in Section 5 accelerates the application of the matrices EJ and E
(1)
H

defined in (3.11) and (3.12) respectively.
In this paper, we will need two identities connecting Bessel functions with Chebyshev

polynomials. Equation (3.13) is a reformulation of Formula 7.355.1 in [7] and equation (3.14)
is a reformulation of Formula 7.355.2 in [7].

Lemma 3.4 For any non-negative integer k and positive real number y,

(−1)k π

2
J2k+1(y) =

∫ 1

0

T2k+1(s) sin(ys)√
1 − s2

ds (3.13)

and

(−1)k π

2
J2k(y) =

∫ 1

0

T2k(s) cos(ys)√
1 − s2

ds. (3.14)

3.2.3 The Fourier-Bessel transform

We consider the two dimensional Fourier transform ĝ of the function g, defined via the
formula

ĝ(ξ, η) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
g(x, y) e−ixξ−iyη dx dy. (3.15)

We next express ĝ in polar coordinates, obtaining the function γ defined via the formula

γ(ρ, τ) = ĝ(ξ, η), (3.16)

where
ξ = ρ cos(τ) (3.17)

and
η = ρ sin(τ), (3.18)
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for any non-negative real number ρ and any real number τ such that −π ≤ τ ≤ π. For each
fixed non-negative real number ρ, we consider the Fourier series of the function γ(ρ, τ),

γ(ρ, τ) =

∞
∑

m=−∞
γm(ρ)eimt, (3.19)

where the Fourier coefficient γm(ρ) is given by the formula

γm(ρ) =
1

2π

∫ π

−π

γ(ρ, τ)e−imτ dτ, (3.20)

for every integer m. We next express g in polar coordinates, obtaining the function f defined
via the formula

f(r, t) = g(x, y), (3.21)

where
x = r cos(t) (3.22)

and
y = r sin(t), (3.23)

for any non-negative real number r and any real number t such that −π ≤ t ≤ π. It is well
known (see, for example, page 137 in [18]) that the Fourier coefficient γm(ρ) defined in (3.20)
satisfies

γm(ρ) = (−i)m

∫ ∞

0

rJm(rρ)fm(r) dr, (3.24)

where Jm is the Bessel function of the first kind of order m and fm(r) is the mth Fourier
coefficient of the function f(r, t) given by the formula

fm(r) =
1

2π

∫ π

−π

f(r, t)e−imt dt, (3.25)

for every integer m. The function γm(ρ) defined in (3.24) is known as the Fourier-Bessel
transform of fm(r).

3.2.4 Fourier-Bessel series

In this section, we continue to use the notation of Section 3.2.3. We now suppose that m is
a non-negative integer and that the functions f and g are zero outside of the disk of radius
R centered at the origin, where R is a positive real number.

We define the real function J̃m : [0,∞) → R via the formula

J̃m(ρ) = Jm(2πρR). (3.26)

We define the positive real numbers 0 < ρ1 < ρ2 < ρ3 . . . to be the zeros of the function J̃m

defined in (3.26), that is
J̃m(ρk) = 0. (3.27)
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We define the functions J̄m,1, J̄m,2, J̄m,3, . . . on the interval [0, R] via the formula

J̄m,k(r) =

√
2r Jm(2πρkr)

R Jm+1(2πρkR)
, (3.28)

for any positive integer k and non-negative integer m. The functions J̄m,1, J̄m,2, J̄m,3, . . . are
orthonormal, that is for any positive integers j and k such that j 6= k,

∫ R

0

J̄m,j(r) J̄m,k(r) dr = 0 (3.29)

and
∫ R

0

(

J̄m,j(r)
)2

dr = 1. (3.30)

The functions J̄m,1, J̄m,2, J̄m,3, . . . are dense in L2[0, R]; consequently there exist real
numbers β1

m, β2
m, β3

m, . . . such that

√
r fm(r) =

∞
∑

k=1

βk
mJ̄m,k(r), (3.31)

for any real number r such that 0 ≤ r ≤ R, where fm(r) is defined in (3.25). The sum on the
right-hand side of equation (3.31) is known as a Fourier-Bessel series. It follows from (3.29)
and (3.30) that the coefficient βk

m in equation (3.31) is the inner product of J̄m,k(r) and√
r fm(r), that is,

βk
m =

∫ R

0

√
r J̄m,k(r)fm(r) dr, (3.32)

for any non-negative integer m and positive integer k. The numbers β1
m, β2

m, β3
m, . . . defined

in (3.32) are known as Fourier-Bessel coefficients. It follows from (3.32) and (3.28) that

βk
m =

√
2

R Jm+1(2πρkR)

∫ R

0

rJm(2πρkr)fm(r) dr. (3.33)

It follows from (3.33) and the fact that f is zero outside the disk of radius R centered at
the origin that the Fourier-Bessel coefficients β1

m, β2
m, β3

m, . . . are a discretized version of the
Fourier-Bessel transform γm(ρ) defined in equation (3.24), that is,

βk
m =

√
2

R Jm+1(2πρkR)
imγm(2πρk). (3.34)

Remark 3.5 The integrand rJm(2πρkr)fm(r) in equation (3.33) has infinitely many contin-
uous derivatives, provided that the function fm(r) has infinitely many continuous derivatives.
We use the Gaussian quadrature based on the nodes of Legendre polynomials to approximate
the integral in (3.33) accurately. Specifically, we use the nodes yj on the interval [0, R] and
corresponding weights wj, defined in Formula 25.4.30 in [1].
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Remark 3.6 To ensure that we sample at the Nyquist rate or higher, we discretize at slightly
greater than two nodes per wavelength, using n nodes in the calculation of the Fourier-Bessel
coefficients β1

m, β2
m, . . . , β

n/2−m−C−1
m , β

n/2−m−C
m , where m is the order of the Fourier-Bessel

transform. C = 10 is sufficient when the precision ε of the computations is 10−10 and n ≥ 20.
In fact, C depends weakly on ε; it is easily shown that C must be of the order log(1/ε).

To calculate the Fourier-Bessel coefficients, it is necessary to evaluate the integral in (3.33).
As described in Remark 3.5, we evaluate the integral in (3.33) by using the Gaussian quadra-
ture with nodes yj and weights wj. We truncate the series in equation (3.31) after n/2−m−C
terms, where n is the number of nodes yj used to discretize the integral in equation (3.33),
m is the order of the Fourier-Bessel transform, and C is as described in Remark 3.6. The
function

√
rfm(r) is thus approximated by the function p : [0, R] → R given by the formula

√
rfm(r) ≈ p(r) =

n/2−m−C
∑

k=1

βk
m J̄m,k(r). (3.35)

We define the Fourier-Bessel series transform Un
m : Rn → R

n/2−m−C of order m and size n
via the formula

Un
m

(

fm(y1), fm(y2), . . . , fm(yn−1), fm(yn)
)⊤

= (β1
m, β2

m, . . . , βn/2−m−C−1
m , βn/2−m−C

m )⊤. (3.36)

For every integer k such that 1 ≤ k ≤ n/2 − m − C, we define the real number γk
m to be

the approximation of the real number βk
m given in (3.33) obtained by using the Gaussian

quadrature with nodes yj on the interval [0, R] and corresponding weights wj. That is,

γk
m =

√
2

R Jm+1(2πρkR)

n
∑

j=1

wjyjJm(2πρkyj)fm(yj) (3.37)

or
β ≈ γ = Un

mfm, (3.38)

where

Un
m =

√
2

R
Sn

mT n
mW n

m, (3.39)

β =
(

β1
m, β2

m, . . . , βn/2−m−C−1
m , βn/2−m−C

m

)⊤
, (3.40)

γ = (γ1
m, γ2

m, . . . , γn/2−m−C−1
m , γn/2−m−C

m )⊤, (3.41)

fm = (fm(y1), fm(y2), . . . , fm(yn−1), fm(yn))
⊤ , (3.42)

Sn
m =











1
Jm+1(2πρ1R)

0
1

Jm+1(2πρ2R)

. . .

0 1
Jm+1(2πρn/2−m−CR)











, (3.43)

T n
m =







Jm(2πρ1y1) · · · Jm(2πρ1yn)
...

. . .
...

Jm(2πρn/2−m−C y1) · · · Jm(2πρn/2−m−C yn)






, (3.44)
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and

Wn =











w1y1 0
w2y2

. . .

0 wnyn











. (3.45)

The algorithm described in Section 5 accelerates the application of the matrix T m
n in (3.44)

and thus accelerates the evaluation of the Fourier-Bessel series transform.
We define the inverse Fourier-Bessel series transform Qn

m : Rn/2−m−C → R
n of order m

and size n via the formula

Qn
m(β1

m, β2
m, . . . , βn/2−m−C−1

m , βn/2−m−C
m )⊤ =

(

p(y1)√
y1

,
p(y2)√

y2
, . . . ,

p(yn−1)√
yn−1

,
p(yn)√

yn

)⊤
, (3.46)

where β1
m, β2

m, . . . , β
n/2−m−C−1
m , β

n/2−m−C
m and p satisfy equation (3.35), and y1, y2, . . . , yn−1, yn

are real numbers. It follows from (3.35) and (3.46) that

fm ≈ Qn
mβ, (3.47)

where fm is the vector defined in (3.42), the vector β is defined in equation (3.40), and Qn
m is

the inverse Fourier-Bessel series transform defined in (3.46). It follows from (3.28) and (3.35)
that, in matrix notation, equation (3.46) becomes

Qn
mβ =

√
2

R
T n⊤

m Sn
m β, (3.48)

where β is the vector defined in (3.40), the matrix Sn
m is defined in (3.43), and T n

m is the
matrix defined in (3.44).

Remark 3.7 The matrix Qn
m defined in (3.46) is the right inverse of Un

m defined in (3.39),
that is

Un
mQn

m = 1, (3.49)

where 1 is the (n/2 − m − C) × (n/2 − m − C) identity matrix. Indeed, suppose that β1
m,

β2
m, . . . , β

n/2−m−C−1
m , β

n/2−m−C
m are real numbers and that fm is the real function defined via

the formula

√
y fm(y) =

n/2−m−C
∑

k=1

βk
mJ̄m,k(y). (3.50)

It follows from (3.50) and the definition of the function p in (3.35) that

√
y fm(y) = p(y). (3.51)

It follows from (3.46) and (3.51) that

Qn
m(β1

m, β2
m, . . . , βn−1

m , βn
m)⊤ = (fm(y1), fm(y2), . . . , fm(yn−1), fm(yn))

⊤. (3.52)

Finally, (3.49) follows from (3.36) and (3.52).
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4 Analytical apparatus

The algorithm of this paper relies on the observation that for certain n × n matrices the
rank to precision ε of any p × q contiguous submatrix is proportional to pq/n. The present
section contains a proof of this fact for the the Fourier-Bessel transform (see Theorem 4.3,
below). The principal tool used in the proof of Theorem 4.3 is Lemma 4.1.

The following lemma states that the rank of the normalized Fourier transform with
kernel eiγξτ/4 is bounded by a constant times γ, at any fixed precision ε. This lemma can be
found (in a slightly different form) in [10].

Lemma 4.1 Suppose that δ, ε, and γ are positive real numbers such that

0 < ε < 1. (4.1)

Suppose further that the operator F : L2[−1, 1] → L2[−1, 1] is given by the formula

(Fh)(τ) =

∫ 1

−1

eiγξτ/4h(ξ) dξ. (4.2)

Then, F has rank to precision ε at most

N = (1 + δ)

(

γ

2π
+

E

δ

)

+ 3, (4.3)

where

E = 2

√

√

√

√

2 ln
(4

ε

)

ln

( 6
√

1√
δ

+
√

δ

ε

)

. (4.4)

Remark 4.2 If the Fourier transform with kernel eixt is restricted to a rectangle in the (x, t)
plane then its rank is bounded by a constant times the area of the rectangle.

Indeed, suppose that the operator A : L2[a, b] → L2[u, v] is given by the formula

(Ag)(t) =

∫ b

a

eixtg(x) dx. (4.5)

Defining

ξ =
2(x − a)

b − a
− 1, (4.6)

τ =
2(t − u)

v − u
− 1, (4.7)

and
h(ξ) = g(x) (4.8)

yields that the operator A has the same rank as the operator F : L2[−1, 1] → L2[−1, 1]
defined in (4.2), with kernel eiγξτ/4, where γ = (b − a)(v − u) is the area of the rectangle
[a, b]× [u, v] in the (x, t) plane. It then follows from Lemma 4.1 that the operator A defined
in (4.5) has rank at most N , where N is defined in (4.3).
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The following theorem states that if the Fourier-Bessel transform with kernel x Jm(xt)
(see equation (3.24)) is restricted to a rectangle in the (x, t) plane, its rank at any fixed
precision ε is bounded by a constant times the area of the rectangle.

Theorem 4.3 Suppose that a, b, R, u, v, δ, and ε are real numbers such that R, δ, ε > 0
and u < v, with 0 < a < b < R. Suppose further that m is a non-negative integer and
Um : L2[a, b] → L2[u, v] is the integral operator given by the formula

(Umf)(t) = (−i)m

∫ b

a

x Jm(xt) f(x) dx. (4.9)

Then, the rank of Um to precision R2ε/π is at most

M = 2(1 + δ)

(

(b − a)(v − u)

2π
+

E

δ

)

+ 6, (4.10)

where E is the real number given by the formula

E = 2

√

√

√

√

2 ln
(4

ε

)

ln

( 6
√

1√
δ

+
√

δ

ε

)

. (4.11)

Proof.

We prove the theorem in the case where

m = 2k, (4.12)

for some non-negative integer k. The proof when m = 2k + 1, for some non-negative integer
k is similar.

We start by combining (4.9) and (3.14) to obtain

(U2kf)(t) =
2

π

∫ b

a

xf(x)

(
∫ 1

0

T2k(s) cos(xts)√
1 − s2

ds,

)

dx (4.13)

or

(U2kf)(t) =
1

π

∫ b

a

x f(x)

(
∫ 1

0

T2k(s)(e
ixts + e−ixts)√
1 − s2

ds

)

dx. (4.14)

Introducing the notation

x(ξ) =
α

2
(ξ + 1) + a, (4.15)

with
α = b − a, (4.16)

we rewrite (4.14) in the form

(U2kf)(t) =
α

2π

∫ 1

−1

x(ξ) h(ξ)

(
∫ 1

0

T2k(s) c(ξ, t, s)√
1 − s2

ds

)

dξ, (4.17)
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where
c(ξ, t, s) = eitsαξ/2+itsα/2+itsa + e−itsαξ/2−itsα/2−itsa (4.18)

and
h(ξ) = f(x). (4.19)

Now, introducing the notation
β = v − u, (4.20)

γ = αβ, (4.21)

τ =
2(t − u)

β
− 1, (4.22)

η(τ, s, ξ) = eiaβsτ/2eiγsτ/4eiasueiαsu/2eiγs/4eiβas/2eiαsuξ/2eiγsξ/4, (4.23)

we observe that the function c defined in (4.18) assumes the form

c(ξ, t, s) = eiγτsξ/4 η(τ, s, ξ) + e−iγτsξ/4 η(τ, s, ξ)−1 (4.24)

and that
(V2kh)(τ) = (U2kf)(t), (4.25)

where

(V2kh)(τ) = (4.26)

α

2π

∫ 1

−1

x(ξ)h(ξ)

(
∫ 1

0

T2k(s)
(

eiγτsξ/4η(τ, s, ξ) + e−iγτsξ/4η(τ, s, ξ)−1
)

√
1 − s2

ds

)

dξ.

Changing the order of integration in (4.26), we rewrite it in the form

(V2kh)(τ) = (X2kh)(τ) + (Y2kh)(τ), (4.27)

with

(X2kh)(τ) =
α

2π

∫ 1

0

T2k(s)√
1 − s2

∫ 1

−1

eiγτsξ/4h(ξ)x(ξ)η(τ, s, ξ)dξ ds (4.28)

and

(Y2kh)(τ) =
α

2π

∫ 1

0

T2k(s)√
1 − s2

∫ 1

−1

e−iγτsξ/4h(ξ)x(ξ)η(τ, s, ξ)−1 dξ ds. (4.29)

Finally, defining the operators A2k, B2k, and C2k via the formulas

(A2kg)(τ) =

∫ 1

0

T2k(s)√
1 − s2

g(s, τ) ds, (4.30)

(B2kh)(s, τ) =
α

2π

∫ 1

−1

eiγτsξ/4h(ξ)x(ξ)η(τ, s, ξ) dξ, (4.31)

and

(C2kh)(s, τ) =
α

2π

∫ 1

−1

e−iγτsξ/4h(ξ)x(ξ)η(τ, s, ξ)−1 dξ, (4.32)
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we observe that X2k is the composition of A2k with B2k, that is,

X2k = A2k ◦ B2k (4.33)

and that Y2k is composition of A2k with C2k, that is,

Y2k = A2k ◦ C2k. (4.34)

Due to Lemma 4.1 and the facts that 0 ≤ x(ξ) ≤ R, |η(τ, s, ξ)| = 1, and 0 ≤ α ≤ R the
ranks of the operators B2k and C2k are bounded by N to precision R2ε/(2π), where N is
defined in equation (4.3). Therefore (4.27), (4.33), (4.34), and (4.30) yield that the rank of
V2k is bounded by 2N to precision R2ε/π.

2

5 The butterfly algorithm

This section contains a description of an algorithm for the application of n × n matrices
which have the property that any p×q contiguous submatrix has rank to precision ε at most
a constant times pq/n.

5.1 Informal description of the algorithm

We now illustrate the algorithm in the particularly simple case of the Fourier transform of
size n = 2m. We define the function f via the formula

f(x) =
n
∑

k=1

αke
iωkx, (5.1)

where α1, α2, . . . , αn−1, αn ∈ C and the frequencies ω1, ω2, . . . , ωn−1, ωn ∈ [0, 2π] are
equispaced. Suppose that we would like to evaluate the function f at n equispaced nodes
x1, x2, . . . , xn−1, xn ∈ [a, b], that is we would like to apply to the vector (α1, α2, . . . , αn−1,
αn)⊤ the n × n matrix S defined via the formula

S =















eiω1x1 eiω2x1 . . . eiωn−1x1 eiωnx1

eiω1x2 eiω2x2 . . . eiωn−1x2 eiωnx2

...
...

. . .
...

...
eiω1xn−1 eiω2xn−1 . . . eiωn−1xn−1 eiωnxn−1

eiω1xn eiω2xn . . . eiωn−1xn eiωnxn















. (5.2)

For any pair of subintervals Ω ⊂ [0, 2π] and X ⊂ [a, b] we define S(Ω, X) to be the submatrix
of S given by the intersection of those columns corresponding to ωk ∈ Ω and those rows
corresponding to xk ∈ X.

In the precomputation stage of the present algorithm, we compress the matrix S. This
allows us, in the application stage, to evaluate f defined in (5.1) at the nodes x1, x2, . . . ,
xn−1, xn in O(n log(n)) operations.
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PRECOMPUTATION

Level 0 On level 0, we split the interval [0, 2π] into 2L subintervals of length 2π/(2L).
Specifically, we define the interval Ω0,k via the formula

Ω0,k = [2π (k − 1) 2−L, 2π k 2−L], (5.3)

for every integer k such that 1 ≤ k ≤ 2L. We observe that, due to Remark 4.2, if

L = log2(b − a) (5.4)

then the matrices S(Ω0,k, [a, b]) have constant rank; we will be referring to this rank as r, so
that

r = O(1). (5.5)

The matrices S(Ω0,k, [a, b]) are illustrated in Figure 5. We compute an interpolative de-
compostion (see Lemma 3.1) of every matrix S(Ω0,k, [a, b]). That is, for every matrix
S(Ω0,k, [a, b]), we compute a column skeleton matrix B0,k which contains ∼ r columns of
S(Ω0,k, [a, b]) and an interpolation matrix P0,k which contains coefficients expressing every
column of S(Ω0,k, [a, b]) as a linear combination of the columns of B0,k, that is,

S(Ω0,k, [a, b]) = B0,kP0,k, (5.6)

for 1 ≤ k ≤ 2L.

Figure 5: Level 0

Remark 5.1 The number of levels L defined in (5.4) is of the order log2(n), where n is the
number of nodes. Indeed, the number of nodes n is proportional to the length b − a of the
interval [a, b].

Level 1 On Level 1, we split the interval [0, 2π] into 2L−1 subintervals of length 2π/(2L−1).
Each of the subintervals on Level 1 is obtained by merging two neighboring intervals on
Level 0. Specifically, we define the interval Ω1,k via the formula

Ω1,k = [2π (k − 1) 2−(L−1), 2π k 2−(L−1)], (5.7)
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for every integer k such that 1 ≤ k ≤ 2L−1. Splitting the interval [a, b] in two, we denote
by X2,1 the first half of [a, b] and by X2,2 the second half of [a, b]. As described in Ob-
servation 5.2 the matrices S(Ω1,k, X1,j) all have rank ∼ r. The matrices S(Ω1,k, X1,j) are
illustrated in Figure 6. We compute an interpolative decomposition (see Lemma 3.1) of each
matrix S(Ω1,k, X1,j) on Level 1. Specifically, for each matrix S(Ω1,k, X1,j), we compute a
column skeleton matrix B1,j,k which contains ∼ r columns of S(Ω1,k, X1,j); together, these
columns span the range of S(Ω1,k, X1,j). Further, we compute an interpolation matrix P1,j,k

containing coefficients which express halves of columns in skeleton matrices on Level 0 as
linear combinations of columns in B1,j,k. Specifically,

(

B0,2k−1 B0,2k

)+
= B1,1,kP1,1,k (5.8)

and
(

B0,2k−1 B0,2k

)−
= B1,2,kP1,2,k, (5.9)

for 1 ≤ k ≤ 2L−1, where for any matrix X, the top half of X is denoted by X+ and the
bottom half of X is denoted by X−.

The interpolation matrices P1,j,k on Level 1 all have size ∼ (r × 2r) (see Remark 5.3)

Observation 5.2 All submatrices S(Ωl,k, Xl,j) on all levels have approximately the same
rank, namely ∼ r. Indeed, on each Level l such that 1 ≤ l ≤ L, we consider subintervals
Ωl,k ⊂ [0, 2π] obtained by combining two neighboring subintervals on the previous level l−1.
Moreover, on each Level l such that 1 ≤ l ≤ L, we consider subintervals Xl,j ⊂ [a, b] obtained
by splitting a subinterval on the previous level in half. Therefore, all rectangles on all levels
have the same area. Definitions (5.3) and (5.4) yield that the rectangles Ω0,k × [a, b] on
Level 0 have area 2π. Due to Remark 4.2, then, all the matrices S(Ωl,k, Xl,j) on all levels
have rank O(1). However, in practice, not all the matrices S(Ωl,k, Xj,k) have exactly the
same rank; their ranks are similar and are denoted by ∼ r.

Figure 6: Level 1

Remark 5.3 The interpolation matrices on Level l (for 1 ≤ l ≤ L) all have size ∼ (r × 2r).
Indeed all submatrices on all levels have the same rank ∼ r as the submatrices on Level 0
(see Observation 5.2). Each submatrix S(Ωl,k, Xl,j) on Level l is either the top half or the
bottom half of two adjacent submatrices on Level l − 1; we refer to these submatrices on
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Level l − 1 as the “parents” of S(Ωl,k, Xl,j). For each of the ∼ 2r columns in the skeleton
matrices corresponding to the parents of S(Ωl,k, Xl,k) the interpolation matrix Pl,j,k on Level l
contains coefficients expressing that column as a linear combination of the columns in the
skeleton matrix Bl,j,k.

Level 2 On Level 2, we split the interval [0, 2π] into 2L−2 subintervals of length 2π/2L−2.
Each of the subintervals on Level 2 is obtained by merging two neighboring intervals on
Level 1. Specifically, we define the interval Ω2,k via the formula

Ω2,k = [2π (k − 1) 2−(L−2), 2π k 2−(L−2)], (5.10)

for every integer k such that 1 ≤ k ≤ 2L−2. Splitting the interval [a, b] in four, we define
X2,1 to be the first quarter of [a, b], X2,2 to be the second quarter of [a, b], X2,3 to be
the third quarter of [a, b], and X2,4 to be the fourth quarter of [a, b]. As described in
Observation 5.2, the matrices S(Ω2,k, X2,j) all have rank ∼ r. The matrices S(Ω2,k, X2,j)
are illustrated in Figure 7. We compute an interpolative decomposition (see Lemma 3.1) of
each matrix S(Ω2,k, X2,j) on Level 2. Specifically, for each matrix S(Ω2,k, X2,j), we compute
a column skeleton matrix B2,j,k which contains ∼ r columns of S(Ω2,k, X2,j); together, these
columns span the range of S(Ω2,k, X2,j). Further, we compute an interpolation matrix P2,j,k

containing coefficients which express halves of columns in skeleton matrices on Level 1 as
linear combinations of columns of B2,j,k. Specifically, for 1 ≤ k ≤ 2L−2,

(

B1,⌊(j+1)/2⌋,2k−1 B1,⌊(j+1)/2⌋,2k

)+
= B2,j,kP2,j,k (5.11)

when j = 1 or j = 3, and
(

B1,⌊(j+1)/2⌋,2k−1 B1,⌊(j+1)/2⌋,2k

)−
= B2,j,kP2,j,k (5.12)

when j = 2 or j = 4, where for any matrix X, the top half of X is denoted by X+ and the
bottom half of X is denoted by X−. The interpolation matrices P2,j,k on Level 2 all have
size ∼ (r × 2r) (see Remark 5.3).

Figure 7: Level 2

Level L Continuing the process, we arrive finally at Level L. On Level L, we split the
interval [a, b] into 2L subintervals of length (b − a)/2L. Specifically, we define the interval
XL,j via the formula

XL,j = [a + (b − a) 2−L (j − 1), a + (b − a) 2−L j], (5.13)
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for every integer j such that 1 ≤ j ≤ 2L. As described in Observation 5.2, the matrices
S([0, 2π], XL,j) all have rank ∼ r. The matrices S([0, 2π], XL,j) are illustrated in Figure 8.
We compute an interpolative decomposition (see Lemma 3.1) of each matrix S([0, 2π], XL,j)
on Level L. Specifically, for each matrix S([0, 2π], XL,j), we compute a column skeleton
matrix BL,j which contains ∼ r columns of S([0, 2π], XL,j); together, these columns span
the range of S([0, 2π, XL,j). Further, we compute an interpolation matrix PL,j containing
coefficients which express halves of columns in skeleton matrices on Level L − 1 as linear
combinations of columns of BL,j. Specifically, for 1 ≤ j ≤ 2L,

(

BL−1,⌊(j+1)/2⌋,1 BL−1,⌊(j+1)/2⌋,2
)+

= BL,jPL,j (5.14)

when j is odd, and

(

BL−1,⌊(j+1)/2⌋,1 BL−1,⌊(j+1)/2⌋,2
)−

= BL,jPL,j (5.15)

when j is even, where for any matrix X, the top half of X is denoted by X+ and the
bottom half of X is denoted by X−. Because the matrices S([0, 2π], XL,j) on Level L and
the matrices S(ΩL−1,k, XL−1,j) on Level L − 1 all have rank ∼ r, the interpolation matrices
PL,j on Level L all have size ∼ (r × 2r) (see Remark 5.3).

Figure 8: Level L

APPLICATION

The inputs to this stage of the algorithm are n coefficients α1, α2, . . . , αn−1, αn and the
results of the precomputation described above. We would like to apply the matrix S defined
in (5.2) to the vector α = (α1, α2, . . . , αn−1, αn)⊤. That is, we would like to evaluate
the linear combination of the columns of S with coefficients α1, α2, . . . , αn−1, αn. This is
equivalent to evaluating the function f defined in (5.1) at each of the nodes x1, x2, . . . , xn−1,
xn. For any subinterval Ω ⊂ [0, 2π], we define α(Ω) to be the entries of α corresponding to
the frequencies ωk ∈ Ω.

Step 0 For each k = 1, 2, . . . , 2L−1, 2L, we apply the interpolation matrix P0,k, defined
in (5.6), to the vector α(Ω0,k) obtaining the vector β0,k. The vector β0,k consists of ∼ r
coefficients representing the effect at all the nodes x1, x2, . . . , xn−1, xn ∈ [a, b] of the n/2L

frequencies α(Ω0,k).
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Step 1 Applying the interpolation matrices P1,j,k defined in (5.8) and (5.9), we calculate
the vectors β1,j,k via the formula

β1,j,k = P1,j,k

(

β0,2k−1

β0,2k

)

, (5.16)

for each pair of integers j, k such that 1 ≤ k ≤ 2L−1 and 1 ≤ j ≤ 2, where the vectors
β0,2k and β0,2k−1 were computed in Step 0. The vector β1,j,k consists of ∼ r coefficients
representing the effect at the n/2 nodes xm ∈ X1,j of the n/2L−1 frequencies α(Ω1,k).

Step 2 Applying the interpolation matrices P2,j,k defined in (5.11) and (5.12), we calcu-
late the vectors β2,j,k via the formula

β2,j,k = P2,j,k

(

β1,⌊(j+1)/2⌋,2k−1

β1,⌊(j+1)/2⌋,2k

)

, (5.17)

for each pair of integers j and k such that 1 ≤ k ≤ 2L−2 and 1 ≤ j ≤ 4, where the vectors
β1,⌊(j+1)/2⌋,2k−1 and β1,⌊(j+1)/2⌋,2k were computed in Step 1. The vector β2,j,k consisits of ∼ r
coefficients representing the effect at the n/4 nodes xm ∈ X2,j of the n/2L−2 frequencies
α(Ω2,k).

Step L Continuing the process, we arrive at Step L. Applying the interpolation matrices
PL,j defined in (5.14) and (5.15), we calculate the vectors βL,j via the formula

βL,j = PL,j

(

βL−1,⌊(j+1)/2⌋,1
βL−1,⌊(j+1)/2⌋,2

)

, (5.18)

for every integer j such that 1 ≤ j ≤ 2L, where the vectors βL−1,⌊(j+1)/2⌋,1 and βL−1,⌊(j+1)/2⌋,2
were calculated in Step L−1. Finally, we apply the matrix BL,j to the vector βL,j obtaining
the product

BL,j βL,j = S([0, 2π], XL,j)α. (5.19)

Equation (5.19) states that the vector βL,j represents the effect at the n/2L nodes xm ∈ XL,j

of all n frequencies α1, α2, . . . , αn−1, αn ∈ [0, 2π]. In other words, linearly combining the
∼ r columns of BL,j with coefficients βL,j yields the same vector of length n/2L as linearly
combining the n columns of S([0, 2π], XL,j) with coefficients given by the entries of the vector
α. Thus, BL,jβL,j is the jth block of n/2L entries in the vector Sα.

Remark 5.4 The algorithm of the present paper exhibits the same performance when ap-
plied to the transposed matrix S⊤, since all relevant submatrices of S⊤ satisfy the requisite
bound on their ranks (see Remark 4.2).

Remark 5.5 We have described the algorithm in the illustrative case of the equispaced
Fourier transform of size n = 2m. The description is similar for other sizes of matrices and
other transorms; it is therefore omitted.
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5.2 CPU requirements

5.2.1 Precomputation

On Level 0, we compute the 2L interpolative decompositions of the n × (n/2L) matrices of
rank ∼ r on the left hand side of (5.6); this takes a total of O(rn2) operations. It then follows
from (5.5) that we require O(n2) operations on Level 0. On each Level l, for 1 ≤ l ≤ L, we
compute interpolative decompositions of the (n/2l)× ∼ 2r matrices

(

Bl,⌊(j+1)/2⌋,2k−1 Bl,⌊(j+1)/2⌋,2k

)+
(5.20)

and
(

Bl,⌊(j+1)/2⌋,2k−1 Bl,⌊(j+1)/2⌋,2k

)−
; (5.21)

these matrices have rank r. There are 2L such matrices on each level. In total this requires
of the order

2L
L
∑

l=0

2r2n

2l
≤ 2L+2r2n (5.22)

operations. It follows from (5.5) and Remark 5.1 that 2L+2r2n = O(n2); the precomputation
therefore takes O(n2) operations.

5.2.2 Application

In Step 0, for each integer k such that 1 ≤ k ≤ 2L, we calculate 2L vectors β0,k of length ∼ r
by applying the matrix P0,k of size ∼ r × (n/2L) to the vector α(Ω0,k) of length n/2L. For
integers l, k, and j such that 1 ≤ l ≤ L and 1 ≤ k ≤ 2L−l, with 1 ≤ j ≤ 2l, we compute the
vector βl,j,k of length ∼ r by applying the ∼ (r× 2r) matrix Pl,j,k to a vector of length ∼ 2r.
Finally, on level L, for each integer j such that 1 ≤ j ≤ 2L, we apply the column skeleton
matrix BL,j (see (5.19)) having size (n/2L)× ∼ r to the vector βL,j of length ∼ r. In total,
the time taken to apply the matrix S to an arbitrary vector is O(rn + r2L2L). Combining
Remark 5.1 and (5.5) then yields that we require O(rn + r2L2L) = O(n log(n)) operations
to apply the matrix S to an arbitrary vector α.

5.3 Memory requirements

5.3.1 Precomputation

On Level 0, we store 2L interpolation matrices each having size ∼ r × (n/2L). On each
Level l, for 1 ≤ l ≤ L, we store 2L interpolation matrices, each having size ∼ (r × 2r) (see
Remark 5.3). On Level L, we store an additional 2L column skeleton matrices, each having
size (n/2L)× ∼ r. The total memory requirement for the precomputation is therefore O(rn+
L2Lr2). Combining Remark 5.1 and (5.5) then yields that the total memory requirement for
the precomputation is O(rn + L2Lr2) = O(n log(n)).
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5.3.2 Application

During the application stage of the present algorithm, the interpolation matrices Pl,j,k (for
0 ≤ l ≤ L) and the column skeleton matrices BL,j on Level L must be kept in memory;
this requires O(n log(n)) memory, as described in Section 5.3.1. In addition, in Step 0, we
store 2L vectors β0,k of length ∼ r. On each Level l such that 1 ≤ l ≤ l, we store 2L vectors
βl,j,k (see (5.16), (5.17), and (5.18)) of length ∼ r. This requires O(rL2L) memory. Com-
bining (5.5) with Remark 5.1 then yields that the memory requirement for the application
stage is O(n log(n)).

5.4 Detailed description of the algorithm

This section contains a detailed description of the algorithm that was described informally
in Section 5.1. Given an integer n = 2m and an n × n matrix S, such that any p ×
q contiguous submatrix of S has rank bounded by a constant times pq/n, we compute
interpolative decompositions of submatrices of S. We then apply S to an arbitrary vector α
rapidly, yielding f = Sα.

In this section we denote by αL,k the kth block of n/2L entries in α. Similarly, we denote
by fL,k the kth block of n/2L entries in f .

Initialization Step

Choose principal parameters and create dyadic hierarchy

1. Choose a positive real number ε. All interpolative decompositions in this algorithm
are computed to precision ε.

2. Choose Cmax, the number of columns in each submatrix on Level 0.

Comment [In what follows, we assume that the value of Cmax chosen above is a
positive integer power of 2. If this is not the case, the algorithm is similar and its
description is therefore omitted.]

3. Choose the number of levels L in the hierarchy described in Section 5.1 according to
the formula L = log2(n/Cmax).

Comment [Create the dyadic hierarchy of subblocks of the matrix S. On each of the L + 1
levels of the hierarchy, there are 2L submatrices. Retain the structure created for use in
precomputation.]
do l = 0, 1, . . . , L − 1, L

do j = 1, 2, . . . , 2l − 1, 2l

do k = 1, 2, . . . , 2L−l − 1, 2L−l

Define S(Ωl,k, Xl,j) to be the submatrix consisting of rows (j−1)2m−l+1
through j2m−l of S and columns (k− 1)2m−L+l + 1 through k2m−L+l of
S.

end do

end do

end do
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Precomputation Step

Precomputation
Comment [In this stage, all submatrices S(Ωl,k, Xl,j) of S are compressed using the inter-
polative decomposition described in Section 3.1.2.]
do l = 0, 1, . . . , L − 1, L

do j = 1, 2, . . . , 2l − 1, 2l

do k = 1, 2, . . . , 2L−l − 1, 2L−l

if l = 0 then

1. Compute the interpolative decomposition

S(Ωl,k, Xl,j) = B0,k P0,k. (5.23)

2. Store P0,k.

if (l > 0 and j is odd) then

1. Compute the interpolative decomposition

(

Bl−1,⌊ j+1

2
⌋,2k−1Bl−1,⌊ j+1

2
⌋,2k

)+

= Bl,j,k Pl,j,k. (5.24)

2. Store Pl,j,k.

3. if l = L then store Bl,j,k.

if (l > 0 and j is even) then

1. Compute the interpolative decomposition

(

Bl−1,⌊ j+1

2
⌋,2k−1Bl−1,⌊ j+1

2
⌋,2k

)−
= Bl,j,k Pl,j,k. (5.25)

2. Store Pl,j,k.

3. if l = L then store Bl,j,k.

end do

end do

end do

Application Step

Application
Comment [Given an arbitrary vector α, we compute a vector f in this Step such that
f = Sα to precision ε, using the interpolative decompositions computed in Step P.]
do l = 0, 1, . . . , L − 1, L
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do j = 1, 2, . . . , 2l − 1, 2l

do k = 1, 2, . . . , 2L−l − 1, 2L−l

if l = 0 then calculate and store

β0,k = P0,k αL,k. (5.26)

if l > 0 then calculate and store

βl,j,k = Pl,j,k

(

βl−1,⌊ j+1

2
⌋,2k−1

βl−1,⌊ j+1

2
⌋,2k

)

. (5.27)

if l = L then calculate and store

fL,j = BL,j βL,j. (5.28)

end do

end do

end do

Comment [The vectors fL,1, fL,2, . . . , fL,2L−1, fL,2L are concatenated to form the vector f .
The vector f satisfies f = Sα to precision ε.]

5.5 An adaptive version of algorithm

In practice, any two different contiguous submatrices of S with the same number of entries
usually have slightly different ranks to precision ε (see Observation 5.2). It is possible to
modify the algorithm described in Sections 5.1 and 5.4 such that, for a given positive integer
paramter rmax, every submatrix for which we calculate an interpolative decomposition has
rank at most rmax. Specifically, if the submatrix S(Ωl,k, Xl,j) has rank to precision ε greater
than rmax, we do not compute the interpolative decomposition of S(Ωl,k, Xl,j) but partition
S(Ωl,k, Xl,j) into its top half and its bottom half. Similarly, if T is any contigous submatrix
of S encountered in the adaptive dyadic hierarchy such that the rank of S is greater than
rmax, we do not compute the interpolative decomposition of T , but partition T into its top
half and its bottom half. We compute the interpolative decompositions of those contiguous
submatrices encountered in the adaptive dyadic hieararchy whose numerical ranks are at
most rmax. Figure 9 illustrates one possible partition of the matrix A on Level 1 of the
adaptive algorithm.

Observation 5.6 With an appropriate choice of rmax, we have not yet encountered a case in
which the adaptive algorithm applies a matrix more slowly than the non-adaptive algorithm.
This appears to be due to a combination of more efficient CPU cache usage with decreased
complexity of the algorithm.

6 Numerical Examples

In this section, we describe the results of several numerical tests of the algorithm described
in Section 5. In the examples, we use the adaptive algorithm described in Section 5.5. We
perform all computations to precision ε = 10−10, unless specified otherwise.
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Figure 9: One possible partition of A on level 1 of the adaptive algorithm

We performed all computations using IEEE standard double-precision variables, whose
mantissas have approximately one bit of precision less than 16 digits (so that the relative
precision of the variables is approximately .2E–15). We ran all computations on one core of
a 2.66 GHz Intel E6750 Core Duo microprocessor with 4MB of L2 cache and 4GB of RAM.
We compiled the Fortran 77 code using the Lahey/Fujitsu Linux Express v6.2 compiler, with
the optimization flag --o2 enabled. The Lahey/Fujitsu Express v6.2 compiler can address
only about 2GB of RAM per array.

The columns labeled “n” in the following tables list the size of the matrix to which the
algorithm described in Section 5 was applied. All matrices in these examples are square,
unless specified otherwise. The columns labeled “Precomputation” list the times taken
in seconds for the initialization and precomputation steps of the algorithm described in
Section 5. The columns labeled “Direct evaluation” list the times taken in seconds for a direct
matrix-vector multiplication. For large matrices, the times taken for a direct matrix-vector
multiplication were estimated and are in parentheses. The columns labeled “Fast evaluation”
list the times taken to apply the matrix using the algorithm described in Section 5. The
columns labeled “l2 error” contain the relative errors between the solution obtained via
the algorithm described in Section 5 and the solution obtained via a direct matrix-vector
multiplication. The columns labeled “MB used” list the amount of memory in megabytes
required by the algorithm for precomputation and evaluation. In these examples, we apply
each matrix with n columns to the same vector w(n) = v(n)/‖v(n)‖, where v(n) is a vector
containing n independent random entries chosen uniformly at random from the interval [0, 1].

Remark 6.1 It should be noted that no effort has been made to optimize the running time
of the precomputations stage in the butterfly algorithm, either algorithmically or in the
implementation. Thus, while the times listed below under the heading “Fast evaluation” are
a reasonable indication of the algorithm’s behavior, those listed under “Precompuatation”
should be regarded as slower than necessary.
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .54E+00 .85E-04 .86E-04 .69E-11 .43E+00
512 .10E+01 .34E-03 .26E-03 .11E-10 .13E+01
1024 .30E+01 .17E-02 .76E-03 .10E-10 .34E+01
2048 .91E+01 .68E-02 .23E-02 .80E-11 .90E+01
4096 .31E+02 .27E-01 .58E-02 .82E-11 .22E+02
8192 .12E+03 .11E+00 .14E-01 .92E-11 .54E+02
16384 .51E+03 .44E+00 .33E-01 .93E-11 .13E+03
32768 .23E+04 (.17E+01) .79E-01 .92E-11 .30E+03
65536 .10E+05 (.70E+01) .18E+00 .11E-10 .70E+03
131072 .45E+05 (.28E+02) .43E+00 .13E-10 .17E+04

Table 1: Times, errors, and memory usage for the Legendre transform with rmax = 72.
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Figure 10: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the Legendre transform.
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6.1 The Legendre transform

Table 1 and Figure 10 display the results of applying the algorithm described in Section 5 to
the change of basis matrix TP from the standard basis to the basis of Legendre polynomials.
We chose the value rmax = 72 to optimize the running times in Table 1. The parameter rmax

is described in Section 5.5.

6.2 The Laguerre transform

Table 2 and Figure 11 display the results of applying the algorithm of Section 5 to the
change of basis matrix TL from the standard basis to the basis of Laguerre polynomials. We
chose the value rmax = 83 to optimize the running times in Table 2. The parameter rmax is
described in Section 5.5.

6.3 The Hermite transform

Table 3 and Figure 12 display the results of applying the algorithm of Section 5 to the
change of basis matrix TH from the standard basis to the basis of Hermite polynomials. We
chose the value rmax = 90 to optimize the running times in Table 3. The parameter rmax is
described in Section 5.5.

6.4 The non-equispaced Fourier transform

Table 4 and Figure 13 display the results of applying the algorithm described in Section 5 to
the matrix TF defined in equation (3.8), where the nodes xj are chosen uniformly at random
from the interval [0, 2π] and the frequencies ωj are chosen uniformly at random from the
interval [−n, n]. We chose the parameter rmax = 73 to optimize the running times in Table 4.
The parameter rmax is described in Section 5.5.

6.5 The Fourier-Bessel transform

Tables 5-10 and Figures 14-19 display the results of applying the algorithm described in
Section 5 to the matrix T n

m defined in equation (3.44) where the real numbers yj are the
Gaussian quadrature nodes associated with Legendre polynomials on the interval [0, 1] de-
fined in Formula 25.4.30 in [1]. The value of R used in the definition of the function J̃
in (3.26) is R = 1.

In Table 5, we chose the value rmax = 93 to optimize the running time of the algorithm
described in Section 5 for the application of the Fourier-Bessel series transform of order
m = n/4. This same value, rmax = 93, is used in Tables 5-10. The parameter rmax is
described in Section 5.5.
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .52E+00 .85E-04 .83E-04 .18E-10 .42E+00
512 .12E+01 .34E-03 .24E-03 .32E-10 .12E+01
1024 .40E+01 .17E-02 .70E-03 .13E-09 .33E+01
2048 .15E+02 .68E-02 .23E-02 .15E-09 .88E+01
4096 .66E+02 .27E-01 .56E-02 .17E-09 .21E+02
8192 .30E+03 .11E+00 .13E-01 .23E-09 .52E+02
16384 .14E+04 .44E+00 .32E-01 .31E-09 .12E+03
32768 .62E+04 (.17E+01) .75E-01 .39E-09 .29E+03
65536 .27E+05 (.70E+01) .17E+00 .58E-09 .68E+03
131072 .12E+06 (.28E+02) .42E+00 .80E-09 .16E+04

Table 2: Times, errors, and memory usage for the Laguerre transform with rmax = 83.
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Figure 11: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the Laguerre transform.
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .55E+00 .85E-04 .88E-04 .38E-11 .45E+00
512 .13E+01 .34E-03 .25E-03 .15E-10 .13E+01
1024 .42E+01 .17E-02 .71E-03 .22E-10 .34E+01
2048 .16E+02 .68E-02 .23E-02 .28E-10 .89E+01
4096 .70E+02 .27E-01 .57E-02 .33E-10 .22E+02
8192 .31E+03 .11E+00 .13E-01 .34E-10 .53E+02
16384 .15E+04 .44E+00 .32E-01 .38E-10 .13E+03
32768 .67E+04 (.17E+01) .75E-01 .46E-10 .30E+03
65536 .30E+05 (.70E+01) .17E+00 .51E-10 .69E+03
131072 .13E+06 (.28E+02) .40E+00 .58E-10 .16E+04

Table 3: Times, errors, and memory usage for the Hermite transform with rmax = 90.
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Figure 12: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the Hermite transform.
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .42E+00 .21E-03 .21E-03 .76E-09 .93E+00
512 .11E+01 .88E-03 .59E-03 .28E-09 .25E+01
1024 .36E+01 .38E-02 .18E-02 .17E-08 .64E+01
2048 .49E+02 .15E-01 .45E-02 .26E-09 .16E+02
4096 .50E+02 .61E-01 .11E-01 .10E-08 .38E+02
8192 .20E+03 .24E+00 .25E-01 .15E-08 .87E+02
16384 .86E+03 (.97E+00) .58E-01 .22E-08 .20E+03
32768 .36E+04 (.39E+01) .13E+00 .13E-08 .45E+03
65536 .15E+05 (.19E+02) .30E+00 .10E-08 .10E+04

Table 4: Times, errors, and memory usage for the non-equispaced Fourier transform with
rmax = 73.
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Figure 13: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the non-equispaced Fourier transform.
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n n
2
− m − C Precomputation Direct Fast l2 error MB used

evaluation evaluation
512 118 .10E+01 .77E-04 .58E-04 .61E-11 .28E+00
1024 246 .19E+01 .33E-03 .16E-03 .87E-11 .76E+00
2048 502 .45E+01 .17E-02 .44E-03 .13E-10 .21E+01
4096 1014 .11E+02 .69E-02 .13E-02 .15E-10 .52E+01
8192 2038 .29E+02 .28E-01 .33E-02 .17E-10 .13E+02
16384 4086 .91E+02 (.11E+00) .79E-02 .21E-10 .31E+02
32768 8182 .32E+03 (.45E+00) .18E-01 .22E-10 .73E+02
65536 16374 .13E+04 (.18E+01) .42E-01 .23E-10 .17E+03
131072 32758 .55E+04 (.72E+01) .95E-01 .28E-10 .41E+03

Table 5: Times, errors, and memory usage for calculating the first n/2−m− 10 coefficients
in the Fourier-Bessel expansion of order m = n/4, discretized at n nodes, that is, applying
the real n

2
− m − C × n matrix T n

m defined in equation (3.44) with rmax = 93 and C = 10.
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Figure 14: Comparison of the algorithm of Section 5 with direct calculation for evaluating the
first n/2−m− 10 coefficients in the Fourier-Bessel expansion of order m = n/4, discretized
at n nodes, that is, applying the real n

2
− m − C × n matrix T n

m defined in equation (3.44)
with rmax = 93 and C = 10.
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n n
2
− m − C Precomputation Direct Fast l2 error MB used

evaluation evaluation
512 246 .10E+01 .24E-03 .12E-03 .67E-11 .61E+00
1024 502 .21E+01 .73E-03 .35E-03 .68E-11 .17E+01
2048 1014 .56E+01 .34E-02 .11E-02 .35E-11 .47E+01
4096 2038 .16E+02 .14E-01 .30E-02 .46E-11 .12E+02
8192 4086 .53E+02 .55E-01 .72E-02 .66E-11 .29E+02
16384 8182 .20E+03 (.22E+00) .17E-01 .92E-11 .69E+02
32768 16374 .83E+03 (.88E+00) .39E-01 .76E-11 .16E+03
65536 32758 .37E+04 (.35E+01) .90E-01 .49E-10 .38E+03
131072 65526 .17E+05 (.14E+02) .21E+00 .10E-09 .89E+03

Table 6: Times, errors, and memory usage for calculating the first n/2 − 10 coefficients in
the Fourier-Bessel expansion or order m = 0, discretized at n nodes, that is, applying the
real n

2
− C × n matrix T n

0 defined in equation (3.44) with rmax = 93 and C = 10.
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Figure 15: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the first n/2 − 10 coefficients in the Fourier-Bessel expansion of order m = 0, discretized at
n nodes, that is, applying the real n

2
−m−C × n matrix T n

0 defined in equation (3.44) with
rmax = 93 and C = 10.
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n n
2
− m − C Precomputation Direct Fast l2 error MB used

evaluation evaluation
512 245 .13E+01 .24E-03 .12E-03 .46E-11 .60E+00
1024 501 .26E+01 .73E-03 .35E-03 .15E-10 .17E+01
2048 1013 .66E+01 .34E-02 .11E-02 .56E-11 .47E+01
4096 2037 .18E+02 .14E-01 .30E-02 .90E-11 .12E+02
8192 4085 .57E+02 .55E-01 .72E-02 .10E-10 .29E+02
16384 8181 .21E+03 (.22E+00) .17E-01 .10E-10 .69E+02
32768 16373 .85E+03 (.88E+00) .39E-01 .78E-11 .16E+03
65536 32757 .38E+04 (.35E+01) .90E-01 .79E-09 .38E+03
131072 65525 .17E+05 (.14E+02) .21E+00 .42E-09 .90E+03

Table 7: Times, errors, and memory usage for calculating the first n/2 − 11 coefficients in
the Fourier-Bessel expansion of order m = 1, discretized at n nodes, that is, applying the
real n

2
− 1 − C × n matrix T n

1 defined in equation (3.44) with rmax = 93 and C = 10.
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Figure 16: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the first n/2 − 11 coefficients in the Fourier-Bessel expansion of order m = 1, discretized at
n nodes, that is, applying the real n

2
−m−C × n matrix T n

1 defined in equation (3.44) with
rmax = 93 and C = 10.
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n n
2
− m − C Precomputation Direct Fast l2 error MB used

evaluation evaluation
512 146 .10E+01 .95E-04 .69E-04 .77E-11 .34E+00
1024 402 .22E+01 .54E-03 .27E-03 .13E-10 .13E+01
2048 914 .61E+01 .30E-02 .97E-03 .15E-10 .42E+01
4096 1938 .19E+02 .13E-01 .28E-02 .15E-10 .11E+02
8192 3986 .69E+02 .53E-01 .70E-02 .15E-10 .28E+02
16384 8082 .27E+03 (.21E+00) .17E-01 .22E-10 .68E+02
32768 16274 .11E+04 (.87E+00) .39E-01 .23E-10 .16E+03
65536 32658 .51E+04 (.35E+01) .90E-01 .17E-10 .38E+03
131072 65426 .22E+05 (.14E+02) .21E+00 .22E-10 .90E+03

Table 8: Times, errors, and memory usage for calculating the first n/2 − 110 coefficients in
the Fourier-Bessel expansion of order m = 100, discretized at n nodes, that is, applying the
real n

2
− 100 − C × n matrix T n

100 defined in equation (3.44) with rmax = 93 and C = 10.
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Figure 17: Comparison of the algorithm of Section 5 with direct calculation for evaluating
the first n/2− 110 coefficients in the Fourier-Bessel expansion of order m = 100, discretized
at n nodes, that is, applying the real n

2
− m − C × n matrix T n

100 defined in equation (3.44)
with rmax = 93 and C = 10.
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n n
2
− m − C ε Precomputation Direct Fast l2 error MB used

evaluation evaluation
8192 4086 10−4 .44E+02 .55E-01 .55E-02 .10E-04 .22E+02
8192 4086 10−6 .47E+02 .55E-01 .62E-02 .17E-06 .25E+02
8192 4086 10−8 .50E+02 .55E-01 .67E-02 .13E-08 .27E+02
8192 4086 10−10 .53E+02 .55E-01 .73E-02 .66E-11 .29E+02
8192 4086 10−12 .54E+02 .55E-01 .82E-02 .91E-13 .32E+02
8192 4086 10−14 .11E+03 .55E-01 .54E-01 .49E-14 .21E+03
8192 4086 10−16 .13E+03 .55E-01 .68E-01 .46E-14 .27E+03

Table 9: Times, errors, and memory usage for calculating the first n/2 − 10 coefficients in
the Fourier-Bessel expansion of order m = 0, discretizing at n nodes, that is, applying the
real n

2
−C × n matrix T n

0 defined in equation (3.44) with rmax = 93, C = 10, n = 8192, and
various precisions ε.
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Figure 18: Times and errors for calculating the first n/2 − 10 coefficients in the Fourier-
Bessel expansion of order m = 0, discretizing at n nodes, that is, applying the real n

2
−C×n

matrix T n
0 defined in equation (3.44) with rmax = 93, C = 10, n = 8192, and various

precisions ε.
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n n
2
− m − C ε Precomputation Direct Fast l2 error MB used

evaluation evaluation
16384 8182 10−4 .16E+03 (.22E+00) .13E-01 .11E-04 .22E+02
16384 8182 10−6 .17E+03 (.22E+00) .14E-01 .85E-07 .25E+02
16384 8182 10−8 .18E+03 (.22E+00) .16E-01 .92E-09 .27E+02
16384 8182 10−10 .20E+03 (.22E+00) .17E-01 .92E-11 .29E+02
16384 8182 10−12 .23E+03 (.22E+00) .26E-01 .13E-12 .32E+02
16384 8182 10−14 .52E+03 (.22E+00) .23E+00 .57E-14 .21E+03
16384 8182 10−16 .59E+03 (.22E+00) .27E+00 .55E-14 .27E+03

Table 10: Times, errors, and memory usage for calculating the first n/2 − 10 coefficients in
the Fourier-Bessel expansion of order m = 0, discretizing at n nodes, that is, applying the
real n

2
−C ×n matrix T n

0 defined in equation (3.44) with rmax = 93, C = 10, n = 16384, and
various precisions ε.
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Figure 19: Times and errors for calculating the first n/2 − 10 coefficients in the Fourier-
Bessel expansion of order m = 0, discretizing at n nodes, that is, applying the real n

2
−C×n

matrix T n
0 defined in equation (3.44) with rmax = 93, C = 10, n = 16384, and various

precisions ε.
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .32E+00 .85E-04 .42E-04 .17E-10 .21E+00
512 .65E+00 .34E-03 .99E-04 .40E-10 .50E+00
1024 .21E+01 .17E-02 .25E-03 .28E-10 .13E+01
2048 .97E+01 .68E-02 .59E-03 .42E-10 .30E+01
4096 .58E+02 .27E-01 .16E-02 .47E-10 .67E+01
8192 .42E+03 .11E+00 .36E-02 .47E-10 .15E+02
16384 .32E+04 .44E+00 .79E-02 .52E-10 .34E+02

Table 11: Times, errors, and memory usage for evaluating Bessel function expansions by
applying the matrix EJ defined in equation (3.11), with rmax = 86.
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Figure 20: Comparison of the algorithm of Section 5 with direct calculation for evaluating
Bessel function expansions by applying the matrix EJ defined in equation (3.11).
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n Precomputation Direct evaluation Fast evaluation l2 error MB used
256 .75E+00 .21E-03 .61E-04 .37E-10 .24E+00
512 .14E+01 .88E-03 .14E-03 .35E-10 .53E+00
1024 .34E+01 .38E-02 .32E-03 .38E-10 .12E+01
2048 .86E+01 .15E-01 .70E-03 .50E-10 .27E+01
4096 .28E+02 .61E-01 .18E-02 .62E-10 .62E+01
8192 .13E+03 .24E+00 .36E-02 .54E-10 .15E+02
16384 .77E+03 (.97E+00) .79E-02 .59E-10 .37E+02

Table 12: Times, errors, and memory usage for evaluating Hankel function expansions by
applying the matrix E

(1)
H defined in equation (3.12), with rmax = 38.
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Figure 21: Comparison of the algorithm of Section 5 with direct calculation for evaluating
Hankel function expansions by applying the matrix E

(1)
H defined in equation (3.12).

6.6 Sums of Bessel and Hankel functions

Table 11 and Figure 20 display the results of applying the algorithm described in Section 5
to the matrix EJ defined in equation (3.11) where

xj = n +
2π

3
(j − 1), (6.1)

for each integer j such that 1 ≤ j ≤ n. We chose the value rmax = 86 to optimize the running
times in Table 11.
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Table 12 and Figure 21 display the results of applying the algorithm described in Section 5
to the matrix E

(1)
H defined in equation (3.12), where the nodes xj are defined in (6.1). We

chose the value rmax = 38 to optimize the running times in Table 12. The parameter rmax is
described in Section 5.5.

7 Conclusions and further work

We have presented an algorithm for the numerical computation of several special function
transforms with asymptotic running time O(n log(n)), and asymptotic precomputation cost
O(n2). These running times have been proven in the case of the Fourier-Bessel transform.
Numerical examples demonstrate a much wider applicability; analysis of these cases is in
progress and will be reported at a later date. An implementation of the algorithm described
in Section 5 for the acceleration of spherical harmonic transforms is currently under devel-
opment.
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