
Unifying Compositional Verification and Certified
Compilation with a Three-Dimensional Refinement Algebra∗

YU ZHANG, Yale University, USA
JÉRÉMIE KOENIG, Yale University, USA
ZHONG SHAO, Yale University, USA
YUTING WANG, Shanghai Jiao Tong University, China

Formal verification is a gold standard for building reliable computer systems. Certified systems in particular

come with a formal specification, and a proof of correctness which can easily be checked by a third party.

Unfortunately, verifying large-scale, heterogeneous systems remains out of reach of current techniques.

Addressing this challenge will require the use of compositional methods capable of accommodating and

interfacing a range of program verification and certified compilation techniques. In principle, compositional

semantics could play a role in enabling this kind of flexibility, but in practice existing tools tend to rely on

simple and specialized operational models which are difficult to interface with one another.

To tackle this issue, we present a compositional semantics framework which can accommodate a broad

range of verification techniques. Its core is a three-dimensional algebra of refinement which operates across

program modules, levels of abstraction, and components of the system’s state. Our framework is mechanized

in the Coq proof assistant and we showcase its capabilities with multiple use cases.

CCS Concepts: • Software and its engineering → Software verification; Correctness; Compilers; • Theory
of computation→ Program semantics; Abstraction; Program verification; Program specifications.

Additional Key Words and Phrases: Compositional Verification, Compositional Compiler Correctness, Game

Semantics, Refinement Convention

1 Introduction
Programming language semantics make formal verification possible by providing a mathematical ac-

count of program execution. In particular, operational semantics are often used as a trusted “ground

truth” of program behavior, because they closely mirrors the mechanical process of computation.

However, reasoning about programs directly in terms of their operational semantics is often

difficult because traditional operational semantics act on a global state. To reason about a given

program, we must examine for every possible program step its effect on every component of the

state. Without additional structure, this can rapidly become intractable.

Fortunately, many compositional proof techniques have been developed which break down proofs

into localized obligations. For example, program logics can be used to establish correctness against

Hoare-style specifications compositionally. Modern logics can deal with complex memory layouts,

concurrency, and sophisticated language features while supporting a high degree of automation.

This has allowed practitioners to verify increasingly complex algorithms and data structures.

∗
This extended version, published by the authors as Yale University Technical Report YALEU/DCS/TR-1572 [Zhang et al.

2024b], includes supplementary appendices after the References section.

Authors’ Contact Information: Yu Zhang, Yale University, Department of Computer Science, New Haven, USA, yu.zhang.

yz862@yale.edu; Jérémie Koenig, Yale University, Department of Computer Science, New Haven, USA, jeremie.koenig@

yale.edu; Zhong Shao, Yale University, Department of Computer Science, New Haven, USA, zhong.shao@yale.edu; Yuting

Wang, John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering, Shanghai

Jiao Tong University, Shanghai, China, yuting.wang@sjtu.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0009-1160-9851
HTTPS://ORCID.ORG/0000-0002-3168-5925
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0003-3990-2418
https://orcid.org/0009-0009-1160-9851
https://orcid.org/0000-0002-3168-5925
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0003-3990-2418
https://orcid.org/0000-0003-3990-2418
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

2 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

secret.s

1 .globl main
2 main: pushl $13
3 pushl $msg
4 call rot13
5 pushl $1
6 call write
7 addl $12, %esp
8 movl $0, %eax
9 ret
10 .data
11 msg: .string "hello,␣world!\n"

1 $ cc -o secret secret.s rot13.c
2 $./secret
3 uryyb, jbeyq!
4 $ cc -o decode decode.c rot13.c
5 $./secret | ./decode
6 hello, world!

rot13.c

1 void rot13(char *buf, int len)
2 {
3 for (int i = 0; i < len; i++)
4 if ('a' <= buf[i] && buf[i] <= 'z')
5 buf[i] = (buf[i] - 'a' + 13) % 26 + 'a';
6 }

decode.c

1 #include <unistd.h>
2 extern void rot13(char *, int);
3 int main()
4 {
5 char buf[100];
6 int n = read(0, buf, sizeof buf);
7 rot13(buf, n);
8 write(1, buf, n);
9 return 0;
10 }

Fig. 1. Two programs which use a common library are compiled and made to interact through a pipe.

1.1 The program logic paradigm misses crucial aspects of software development
Despite its success, the traditional approach to verification discussed above does not account for all

aspects of the software development process, nor does it fully describe the operation of a typical

software artifact. Concerns outside the scope of a typical program logic include the following:

• To be executed, verified program components must first be compiled and linked, and this

compilation process may compromise any correctness results obtained at the source level.

• Operational semantics and program logics are typically designed for a single language, but

many programs are built from components written in several different languages.
• Programs such as network servers and clients are algorithmically simple but conduct

complex external interactions, which program logics rarely model or take into account.

The following example illustrates some of these limitations.

Example 1.1. The code shown in Figure 1 consists of two different programs which use a common

C library and are designed to work together. As illustrated in the usage scenario we have shown,

the 32-bit x86 assembly program secret.s outputs a coded message to be deciphered by decode.c.
In particular, the programs together satisfy the following informal specification:

Suppose that, after compilation, secret.s and decode.c are each linked with rot13.c. If the
output of the first program is fed as input to the second, “hello, world!” will be displayed. (1)

The programs are simple; to verify that property (1) holds, a reader with the right background

can mentally execute the code step by step and convince themselves that the expected outcome will

occur. However, this task is complex in its own way because it mobilizes implicit knowledge and

assumptions regarding the C and x86 assembly languages, the compiler’s correctness with respect

to the calling convention in use, and some aspects of the Unix execution environment. Likewise,

any formal account of property (1) must involve these aspects of the problem as well, encompassing

all three of the challenges outlined at the beginning of this section. To our knowledge, there exists

no program logic or verification framework which can deal with this example.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 3

A fair amount of work has sought to address the limitations outlined above. For example, the

certified compiler CompCert [Leroy 2009] comes with a mechanized proof of correctness. Better yet,

the Verified Software Toolchain (VST) [Appel 2011] provides a separation logic which interfaces

with the correctness proof of CompCert, ensuring that properties obtained for C programs can be

formally transferred to the compiled assembly code. In a further experiment, a network server was

verfied by incorporating interaction trees into VST to model external interactions [Koh et al. 2019].

Operational semantics [Matthews and Findler 2007] and program logics [Guéneau et al. 2023]

have also been developed for multi-language programs. Another line of work uses the Bedrock2

framework to perform integration verification. For example, Erbsen et al. [2024] presents the end-

to-end verification of a minimalistic but sophisticated embedded system, which mediates access

to an external actuator (the opening mechanism for a miniature garage door replica) through

cryptographically-authenticated network commands. The top-level correctness statement asserts

that a certain model of the complete system satisfies certain constraints on its observable behavior.

These efforts show that overcoming the limitations of the program logic paradigm is possible,

but they constitute one-off adaptations to specific settings: a particular specification logic, set of

interaction patterns, combination of languages, etc. To apply this methodology to Example 1.1, we

would need to develop a semantics and logic tailored to the situation at hand. The result would be

unlikely to apply directly to another verification task.

By contrast, we envision a situation where future certified systems architects will build com-

plex systems by assembling off-the-shelf certified components, and obtain end-to-end proofs of

correctness with little additional effort. The experiments mentioned above represent important

progress toward this vision; we seek to build on these successes to deepen our understanding of

the underlying principles and distill them into new mathematical tools, which can then serve as a

foundation for the next round of ground-breaking challenges and research.

1.2 Compositional semantics offer a more flexible approach
To be sure, there exist mechanized semantics, program logics and certified compilers which can

deal with the C and assembly code used in Example 1.1. However, in our situation, the main story

is not what each program as such is doing. The programs are part of a larger context where they

are interpreted as interacting processes and used as building blocks in a larger system. At that level

of abstraction, the function calls and shared memory states which a typical program logic deals

with are no longer in the picture, having been replaced with forms of inter-process communication.

Indeed, the main difficulty with Example 1.1 is that formalizing property (1) requires adjustments

to the model within which we consider the behavior of the programs secret.s and decode.c. This
is difficult to achieve in many frameworks based on operational semantics because they use a

fixed model, of a closed universe, relying on compositional proof techniques. As illustrated in Fig. 2,

compositional semantics can be used to improve this state of affairs. By their nature, compositional

semantics focus on the way open components interact with each other. As a result, they are more

likely to be suitable building blocks for modeling complex, heterogeneous systems.

Recent work embracing this paradigm shows promising results. For example, whereas prior

CompCert research largely focuses on compositional proof techniques, the work on CompCertO

[Koenig and Shao 2021] shows that formulating the compiler’s correctness result directly in terms

of a compositional semantics is possible with a reasonable proof effort. Likewise, the DimSum

framework [Sammler et al. 2023] successfully employs this approach to tackle multi-language

semantics and verification: the framework can be used to stitch together independent semantics

for individual languages, and to reason about refinement within and across these languages.

4 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

program

logic

logical

relation

compositional

semantics

operational

semantics

manual

proof

compiler correctness

and related results

program

logic

compositional

semantics

compositional

semantics

environment

model

Fig. 2. Approaches to program verification. The system being verified is modeled using the facilities shown
below the line, and the techniques shown above are used to reason about its properties. Traditionally (left),
the whole universe in which the computation occurs must be modeled in a monolithic and closed operational
semantics. By using compositional semantics instead (right), both the model and reasoning techniques can
be constructed out of reusable building blocks and adapted to various contexts and situations.

At the same time, compositional semantics remains underdeveloped as a practical tool for

verification, and lack a proper treatments of many techniques which are routine in the context of

operational semantics and program logics.

1.3 Three dimensions of compositionality
We will distinguish between several kinds of compositionality which semantic models, program

logics, refinement frameworks and other formal reasoning tools can exhibit:

• Horizontal compositionality refers to the ability to decompose behaviors and proofs along

the structure of program. For example, denotational semantics are compositional in this

sense. Likewise, the sequence rule of Hoare logic is a horizontal composition principle.

• Vertical compositionality allows the kind of stepwise reasoning afforded by transitive refine-

ment and data abstraction mechanisms. Compiler correctness proofs make use of vertical

compositionality when they combine correctness proofs for individual compilation phases.

• Spatial compositionality operates across the system state. This is the kind of compositionality

enabled in separation logic by the separating conjunction ∗ and the associated frame rule.
One barrier to the use of semantics along the lines of Fig. 2b is that while horizontally compositional

semantics are a well-developed area of research, there is comparatively less work investigating

models which are vertically and spatially compositional, let alone the combination of all three.

1.4 Contributions
We seek to bridge this gap by introducing a generic semantic model—based on effect signatures

and formulated in the style of game semantics—which combines horizontal, vertical and spatial

composition principles. Our model is mechanized in the Coq proof assistant [Zhang et al. 2024a],

and is flexible enough to express the CompCertO semantics of C and assembly programs, and to

describe the kind of process interactions required to handle Example 1.1.

The multiple dimensions of compositionality allow us to account for sophisticated reasoning

techniques such as data abstraction and memory separation, and to capture—under a uniform notion

of refinement—properties as varied as program correctness results, the semantics preservation

theorem of CompCertO, the frame property of separation logic, and representation independence

for encapsulated state. These properties can then be combined to construct sophisticated refinement

proofs of statements such as (1).

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 5

𝐸1 𝐹1

𝜙

𝐸2 𝐹2

R

𝐿1

S

𝐿2

𝐿1 : 𝐹 ↠ 𝐺 𝐿2 : 𝐸 ↠ 𝐹
ts-⊙

𝐿1 ⊙ 𝐿2 : 𝐸 ↠ 𝐺

𝜙 : 𝐿1 ≤S↠T 𝐿′
1

𝜓 : 𝐿2 ≤R↠S 𝐿
′
2

sim-⊙
𝜙 ⊙𝜓 : 𝐿1 ⊙ 𝐿2 ≤R↠T 𝐿′

1
⊙ 𝐿′

2

R : 𝐸1 ↔ 𝐸2 R′
: 𝐸2 ↔ 𝐸3

sc-#
R # R′

: 𝐸1 ↔ 𝐸3

𝜙 : 𝐿1 ≤R↠S 𝐿2 𝜓 : 𝐿2 ≤R′↠S′ 𝐿3
sim-#

𝜙 #𝜓 : 𝐿1 ≤R#R′↠S#S′ 𝐿3

Fig. 3. Horizontal (⊙) and vertical (#) composition principles in our model.

We present a high-level overview in §2 and provide a formal description of the model in §3–4.

Spatial compositionality is treated separately in §5. We then showcase in §6 several applications:

• We explain in detail how CompCertO semantics and simulation proofs can be embedded,

and model the loading mechanism which turns an open program into a closed process;

• We use our model to define a framework for certified abstraction layers (CAL) [Gu et al. 2015].
Unlike the original work on CAL, our layer framework does not modify the underlying

compiler, and its meta-theory requires comparatively negligible effort.

• We define an extension of CompCert’s Clight language supporting encapsulated, module-

local private variables and provide a correctness proof for the erasure of private annotations.

We discuss related work in §7 and our conclusions in §8.

2 Compositional Semantics for Verification
Our framework consists of four kinds of objects, each subject to some or all of four different

composition principles (layered ⊙, vertical #, flat ⊕, spatial@). We start with a brief overview of

how these constructions fit together, then examine each one in more detail.

2.1 Overview
Our model is built around the notion of effect signature (𝐸, 𝐹 . . .). We use these signatures to describe

the interfaces between the components of a software system. Effect signatures serve as horizontal

endpoints for strategies and vertical endpoints for refinement conventions. Strategies (𝐿 : 𝐸 ↠ 𝐹)

describe the behaviors of program components. Refinement conventions (R : 𝐸1 ↔ 𝐸2) model

relationships between views of the system at different levels of abstraction. Finally, refinement
proofs (𝜙 : 𝐿1 ≤R→S 𝐿2) connect the three kinds of objects above in the shape of a square (Fig. 3).

Composition principles. Our framework uses refinement squares as the building blocks of compo-

sitional proofs. They are assembled in the manner of puzzle pieces alongside matching edges:

• Layered composition (⊙) acts horizontally. It connects strategies at a common endpoint

(i.e. effect signature) over which they are made to interact, and connects refinement squares

alongside a common vertical edge (i.e. refinement convention), which ensures that the

refinement properties are based on compatible abstractions and constraints.

• Vertical composition (#) combines successive refinement steps, connecting refinement con-

ventions alongside an intermediate signature, and refinement squares along a common

strategy, which serves as an intermediate specification.

This basic framework is made more expressive by the introduction of two additional forms of

composition, which coherently act on all objects from effect signatures to refinement squares:

• Flat composition (⊕) serves as an alternative form of horizontal composition where compo-

nents are laid out side by side instead of being made to interact.

• Spatial composition (@) is the core of our infrastructure for compositional state.

6 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

𝐿

𝑞 ∈ 𝐹

𝐹

𝑞1 ∈ 𝐸

𝐸

𝑟1 ∈ ar(𝑞1)
.
.
.

𝑞𝑛 ∈ 𝐸

𝑟𝑛 ∈ ar(𝑞𝑛)𝑟 ∈ ar(𝑞)

(a) General shape

𝐿1 𝐿2

𝐺 𝐹 𝐸

(b) Composition

id𝐸
𝑞 ∈ 𝐸

𝐸 𝐸

𝑞

𝑟 ∈ ar(𝑞)𝑟

(c) Identity

Fig. 4. Informal description of our strategy model under layered composition

2.2 Effect Signatures
Like interaction trees [Koh et al. 2019], our model uses effect signatures to describe interfaces

between the components of a system. An effect signature enumerates the external operations which

a component can invoke or implement, and describes for each one the set of possible outcomes.

Definition 2.1. An effect signature is a set 𝐸 of questions together with an assignment ar : 𝐸 → Set
associating to each question𝑚 ∈ 𝐸 a set of answers 𝑛 ∈ ar(𝑚). We will often present them together

as the set of bindings {(𝑚 : 𝑁) | 𝑚 ∈ 𝐸 ∧ 𝑁 = ar(𝑚)}.

Example 2.2. Consider the execution environment for the programs secret and encode shown in

Figure 1 and described in Example 1.1. Since our programs do not use any command-line arguments

or environment variables, we can model their invocation with a single question:

P := {run : N} .
The answer 𝑥 ∈ N is the exit status of the process. Moreover, in the course of its execution each

process can invoke the read andwrite system calls. We can describe this interface with the signature

S := {read𝑖 [𝑛] : Σ∗, write𝑖 [𝑠] : N | 𝑖 ∈ N, 𝑛 ∈ N, 𝑠 ∈ Σ∗} ,
where Σ := {0, 1}8 is the alphabet of possible byte values. In this formalism, the program secret
will invoke the operation write1 ["uryyb, jbeyq!\n"] ∈ S, where 𝑖 := 1 is the file descriptor

associated with the standard output; the outcome should be 14 ∈ N if the operation succeeds.

Example 2.3 (CompCertO language interfaces). The semantic model of CompCertO uses language
interfaces of the form 𝐴 = ⟨𝐴◦, 𝐴•⟩ as the basis for component interactions. These interfaces are

similar to effect signatures, but every question 𝑞 ∈ 𝐴◦
uses the same set of answers 𝑟 ∈ 𝐴•

.

For the C language, questions are function calls of the form 𝑓 (®𝑣)@𝑚, where 𝑓 identifies the

function to be called, ®𝑣 ∈ val∗ are the actual parameters, and𝑚 ∈ mem is the memory state at

the time of invocation; answers take the form 𝑣 ′@𝑚′
where 𝑣 ′ ∈ val is the value returned by the

function 𝑓 and𝑚′ ∈ mem is the new state of the memory. This is captured by the effect signature

C @mem = {𝑓 (®𝑣)@𝑚 : val ×mem | 𝑓 ∈ val, ®𝑣 ∈ val∗, 𝑚 ∈ mem} .
We will see that CompCertO language interfaces can be systematically mapped to effect signatures,

and will elucidate the structure of the spatial decomposition C @mem below.

2.3 Strategies
We use effect signatures to assign coarse types to program components and to their behaviors. We

use a game semantics approach where a strategy 𝐿 : 𝐸 ↠ 𝐹 models the behavior of a component

which uses operations of the signature 𝐸 to implement the operations enumerated in 𝐹 . The strategy

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 7

can specify actions taken by the component in response to the possible actions of the environment,

and is represented as a set of traces.

As depicted in Fig. 4a, the environment can activate 𝐿 by asking a question 𝑞 ∈ 𝐹 , which the

component 𝐿 is expected to eventually answer with a reply 𝑟 ∈ ar(𝑞). In the process, 𝐿 can perform

an arbitrary number of queries 𝑞𝑖 ∈ 𝐸, which the environment answers with a response 𝑟𝑖 ∈ ar(𝑞𝑖).
The process can then begin anew with a question 𝑞′ ∈ 𝐹 , and so on indefinitely. We will write

𝐿 ⊨
(
𝑞 ↣ (𝑚1 { 𝑛1) ↣ (𝑚2 { 𝑛2) ↣ · · · ↣ (𝑚𝑘 { 𝑛𝑘) ↣ 𝑟

)
{

(
𝑞′ ↣ · · · ↣ 𝑟 ′

)
{ · · ·

to mean that 𝐿 accepts an execution trace of this kind. Note that↣ denotes a part of the execution

where 𝐿 is in control, whereas{ denotes a part of the execution controlled by the environment.

Example 2.4 (Command specifications). We can use strategies Γsecret, Γdecode : S ↠ P to formulate

specifications for the commands secret and decode. The processes admit the execution traces

Γsecret ⊨ run ↣ (write1 ["uryyb, jbeyq!\n"] { 14) ↣ 0

Γdecode ⊨ run ↣ (read0 [100] { "uryyb, jbeyq!\n") ↣ (write1 ["hello, world!\n"] { 14) ↣ 0 .

Example 2.5 (CompCertO semantics). We explained in Example 2.3 that CompCertO language

interfaces can be translated to effect signatures, and described the signature C @mem used for

C-level function calls and returns. By the same token, CompCertO language semantics can be

translated to strategies as well. For example, the source language used by CompCertO is a simplified

version of C called Clight, and its semantics for a program𝑀 can be used to define:

Clight(𝑀) : C @mem ↠ C @mem .

The resulting strategies will exhibit traces such as:

Clight(decode.c) ⊨ main()@𝑚 ↣ (read(0, 𝑏, 100)@𝑚[𝑏 ↦→ unspecified] { 14@𝑚[𝑏 ↦→ "uryyb, jbeyq!\n"])
↣ (rot13(𝑏, 14)@𝑚[𝑏 ↦→ "uryyb, jbeyq!\n"] { ∗@𝑚[𝑏 ↦→ "hello, world!\n"])
↣ (write(1, 𝑏, 14)@𝑚[𝑏 ↦→ "hello, world!\n"] { 14@𝑚[𝑏 ↦→ "hello, world!\n"])
↣ 0@𝑚[𝑏 ↦→ deallocated]

This trace is more complicated than the one shown in Example 2.4; among other things it involves

low-level considerations regarding the C memory model. Nevertheless, we will eventually use the

CompCertO semantics of C and assembly as a building block to model the scenario in Example 1.1,

and connect them to the kind of high-level specifications we have seen so far.

Refinement Ordering. In our model, components can exhibit undefined behavior (⊥) and spaces

of strategies are equipped with a refinement ordering ≤. Refinement means that a strategy 𝐿2 is

more defined than 𝐿1, and admits at least the same behaviors and desirable properties. We will write

𝜌 : 𝐿1 ≤𝐸↠𝐹 𝐿2 , or 𝜌 : 𝐿1 ≤ 𝐿2 , or just 𝐿1 ≤ 𝐿2

when such a refinement holds, with 𝜌 understood as an elementary refinement proof term. While we

take a proof irrelevant approach and will treat refinement proofs of the same type as equal, using

explicit proof terms will allow us to construct formal refinement proofs from more elementary

properties, as a special case of our model’s compositional structure.

Example 2.6. We wish to show that the program decode satisfies the specification Σdecode given

in Example 2.4. This requires modeling the way in which decode.c and rot13.c behave together
as a process. Assuming that JdecodeK : S ↠ P, models the response of the combined program to

the trigger run ∈ P in terms of system calls performed over the interface S, our goal will be to
establish a refinement Σdecode ≤ JdecodeK. The model J−K will involve CompCertO semantics and

take into account the way the program is compiled, linked and loaded.

8 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

1 static int c1, c2;
2 static V buf[N];
3

4 int inc1() { int i = c1++; c1 %= N; return i; }
5 int inc2() { int i = c2++; c2 %= N; return i; }
6 V get(int i) { return buf[i]; }
7 void set(int i, V val) { buf[i] = val; }

(a) The translation unit rb.c

1 extern int inc1(void);
2 extern int inc2(void);
3 extern V get(int i);
4 extern void set(int i, V val);
5

6 void enq(V val) { set(inc2(), val); }
7 V deq() { return get(inc1()); }

(b) The translation unit bq.c

Fig. 5. Running example, adapted from Koenig and Shao [2020]. The component rb.c implements a ring buffer
of capacity 𝑁 by encapsulating an array and two counters. It is used by bq.c to implement a bounded queue.

2.4 Layered Composition
When a component 𝐿1 : 𝐹 ↠ 𝐺 uses an interface 𝐹 implemented by another component 𝐿2 : 𝐸 ↠ 𝐹 ,

we can direct the questions asked by 𝐿1 in 𝐹 to 𝐿2 (Fig. 4b). The result is the composite strategy

𝐿1 ⊙ 𝐿2 : 𝐸 ↠ 𝐺 . This is the main form of horizontal composition which we will be using.

Example 2.7 (Verifying a bounded queue). The code shown in Fig. 5 implements a bounded queue

with at most 𝑁 values of type𝑉 . This is done in two steps. The translation unit rb.c provides access
to a ring buffer in the form of an array as well as two counters which wrap around to stay in the

interval [0, 𝑁). The translation unit bq.c then uses that interface to implement the queue. We can

describe this situation using high-level specifications with the following types:

Γrb : 0 ↠ 𝐸rb , where 𝐸rb := {inc1 : N, inc2 : N, get[𝑖] :𝑉 , set[𝑖, 𝑣] : 1 | 𝑖 ∈ N, 𝑣 ∈ 𝑉 }
Σbq : 𝐸rb ↠ 𝐸bq , where 𝐸bq := {enq[𝑣] : 1, deq :𝑉 | 𝑣 ∈ 𝑉 } ,

and where 0 is the empty signature. The specifications Γrb and Σbq admit interaction traces such as:

Γrb ⊨ (inc2 ↣ 0) { (set[0, 𝑣] ↣ ∗) { Σbq ⊨ (enq[𝑣] ↣ (inc2 { 0) ↣ (set[0, 𝑣] { ∗) ↣ ∗) {
(inc2 ↣ 1) { (set[1, 𝑣 ′] ↣ ∗) { (enq[𝑣 ′] ↣ (inc2 { 1) ↣ (set[1, 𝑣 ′] { ∗) ↣ ∗) {
(inc1 ↣ 0) { (get[0] ↣ 𝑣) (deq ↣ (inc1 { 0) ↣ (get[0] { 𝑣) ↣ 𝑣)

Layered composition allows us to compute their behavior as they interact over 𝐸rb. The resulting

strategy Σbq ⊙ Γrb : 0 → 𝐸bq will admit traces like the following one:

Σbq ⊙ Γrb ⊨ (enq[𝑣] ↣ ∗) { (enq[𝑣 ′] ↣ ∗) { (deq ↣ 𝑣) .

2.5 Data Abstraction and Vertical Composition
The functionality implemented in Example 2.7 can be described at different levels of abstraction.

The user may rely on a specification Γbq : 0 ↠ 𝐸bq defined in terms of a queue state ®𝑞 ∈ 𝑉 ∗
.

However, the refinement Σbq ⊙ Γrb : 0 ↠ 𝐸bq might use a buffer state (𝑐1, 𝑐2, ®𝑏) ∈ N×N×𝑉 𝑁
more

closely related to the in-memory representation used by the actual code.

Data abstraction techniques can be used to connect these two views. For example, simulation

relations are a simple form of data abstraction which express the relationship between state

representations used in two different transition systems. If Γbq and Σbq ⊙ Γrb were defined as

transition systems, a simulation relation 𝜌bq ⊆ 𝑉 ∗×(N×N×𝑉 𝑁) could spell out the correspondence
between high- and low-level views. Since the interface 𝐸bq reveals no details about internal state of

either component, this would be enough to prove a refinement.

The situation is more complicated when a component’s interactions change across levels of

abstraction. For example, consider the code of decode.c in Fig. 1. Seen as a process, the program is

invoked with the question run ∈ P and relies on system calls such as read𝑖 [𝑛] ∈ S. However, at a

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 9

lower level of abstraction, the action run will take the form of a call to the main function in the

context of a carefully prepared initial memory state, and likewise calls to read and write will take
the form of C-level calls into the C standard library.

Refinement Conventions. To address this challenge, we adapt to the setting of effect signatures and
game semantics the notion of simulation convention used in CompCertO. A simulation convention

connects the ways an interface is viewed at different levels of abstraction. In CompCertO, the

compiler’s correctness theorem involves a simulation convention C : C ↔ A, which is used to

express the way in which C-level function calls (C) are encoded as assembly-level interactions (A).

We build on this idea and define a richer notion of refinement convention between effect signatures.
Then a refinement property 𝜙 : 𝐿1 ≤R→S 𝐿2 between 𝐿1 : 𝐸1 ↠ 𝐹1 and 𝐿2 : 𝐸2 ↠ 𝐹2 is parameterized

by two simulation conventions R : 𝐸1 ↔ 𝐸2 and S : 𝐹1 ↔ 𝐹2. The corresponding refinement

property assumes that incoming source- and target-level questions in 𝐹1 and 𝐹2 will be related

according to the convention S, and guarantees that outgoing questions in 𝐸1 and 𝐸2 will be related

according to R. Conversely, it assumes that the environment’s answers in 𝐸 will be related according

to R and guarantees that the components’ answers in 𝐹 will be related according to S.

Example 2.8 (Semantics preservation of CompCert). We will see in §6 that the correctness proof of

CompCertO can be put in the form of a refinement square:

CompCert(𝑝) = 𝑝′ =⇒ 𝜙cc
𝑝 : Clight(𝑝) ≤C↠C Asm(𝑝′)

where C : C ↔ A captures the calling convention used to represent C calls at the level of assembly.

2.6 Combining Effect Signatures
We now introduce a composition operation ⊕ operating on the effect signatures themselves, which

will act on all higher-dimensional objects as well.

Definition 2.9 (Sum of signatures). A family (𝐸𝑖)𝑖∈𝐼 of effect signatures can be combined into⊕
𝑖∈𝐼

𝐸𝑖 := {𝜄𝑖 (𝑚) : 𝑁 | 𝑖 ∈ 𝐼 , (𝑚 : 𝑁) ∈ 𝐸𝑖 } ,

which uses the set of operations 𝜄𝑖 (𝑚) ∈ ∑
𝑖 𝐸𝑖 and uses for each one the arity assigned to it in its

signature of origin 𝐸𝑖 . The binary case where 𝑖 ∈ {1, 2} will be written as 𝐸1 ⊕ 𝐸2.

The signature 𝐸 ⊕ 𝐹 contains the combined questions of 𝐸 and 𝐹 . Each question retains the same

set of answers. Many of the signatures we have seen can be decomposed using ⊕.

Example 2.10 (Per-file interfaces). We have seen that processes can be modeled as strategies of

type 𝑃 : S ↠ P, where the signature S contains questions for each file descriptor 𝑖 ∈ N. We can

decompose this signature asS =
⊕

𝑖∈N F , where F := {read[𝑛] : Σ∗,write[𝑠] : N | 𝑛 ∈ N, 𝑠 ∈ Σ∗}.
Since our examples focus on standard input (𝑖 = 0) and output (𝑖 = 1), we will simplify S := F ⊕ F .

The compositional properties of ⊕ are summarized in Fig. 6 and discussed below. The strategy

𝐿1 ⊕ 𝐿2 : 𝐸1 ⊕ 𝐸2 → 𝐹1 ⊕ 𝐹2 is straightforward and lets 𝐿1 and 𝐿2 operate independently. When a

question 𝑞 ∈ 𝐹1 is asked in the left-hand side component of 𝐹1 ⊕ 𝐹2, it is used to activate 𝐿1 which

executes until the question is answered. 𝐿2 handles the questions of 𝐹2 in a similar way. Additional

strategies can be defined in relation to ⊕, namely

Δ𝐸 : 𝐸 ↠ 𝐸 ⊕ 𝐸 , 𝛾𝐸,𝐹 : 𝐸 ⊕ 𝐹 � 𝐹 ⊕ 𝐸 , 𝜋
𝐸,𝐹
1

: 𝐸 ⊕ 𝐹 ↠ 𝐸 , 𝜋
𝐸,𝐹
2

: 𝐸 ⊕ 𝐹 ↠ 𝐹 .

The strategy Δ𝐸 passes along questions received in two independent copies of 𝐸 but consolidates

them into a single copy. The projections 𝜋
𝐸,𝐹
𝑖

can be used to “forget” the unused summand of the

signature 𝐸 ⊕ 𝐹 . These constructions are illustrated in the following example.

10 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

𝐿1 : 𝐸1 ↠ 𝐹1 𝐿2 : 𝐸2 ↠ 𝐹2
ts-⊕

𝐿1 ⊕ 𝐿2 : 𝐸1 ⊕ 𝐸2 ↠ 𝐹1 ⊕ 𝐹2

R : 𝐸1 ↔ 𝐹1 S : 𝐸2 ↔ 𝐹2
sc-⊕

R ⊕ S : 𝐸1 ⊕ 𝐸2 ↔ 𝐹1 ⊕ 𝐹2

(𝐿1 ⊙ 𝐿2) ⊕ (𝐿′
1
⊙ 𝐿′

2
) ≡ (𝐿1 ⊕ 𝐿′

1
) ⊙ (𝐿2 ⊕ 𝐿′

2
)

id𝐸 ⊕ id𝐹 ≡ id𝐸⊕𝐹
(R1 # R2) ⊕ (S1 # S2) ≡ (R1 ⊕ S1) # (R2 ⊕ S2)

id𝐸 ⊕ id𝐹 ≡ id𝐸⊕𝐹

𝜙 : 𝐿1 ≤R1↠S1 𝐿
′
1

𝜓 : 𝐿2 ≤R2↠S2 𝐿
′
2

sim-⊕
𝜙 ⊕𝜓 : 𝐿1 ⊕ 𝐿2 ≤R1⊕R2↠S1⊕S2 𝐿

′
1
⊕ 𝐿′

2

Fig. 6. Signature composition (⊕) for strategies, refinement conventions and simulation proofs.

Example 2.11 (Composing processes). We can define shell-like operators for composing processes.

Two processes 𝑃,𝑄 : S ↠ P can be combined into (𝑃 ;𝑄) : S ↠ P. To this end, we define the

scheduling component seq : P ⊕ P ↠ P which invokes one process, then the other:

seq ⊨ run · (run1 · 𝑛) · (run2 ·𝑚) ·𝑚
This component can be used to define:

𝑃 ;𝑄 := seq ⊙ (𝑃 ⊕ 𝑄) ⊙ (F ⊕ 𝛾 ⊕ F) ⊙ (Δ ⊕ Δ)
We could likewise model the shell operators && and || by replacing seq with different scheduling

policies. In addition, we can use a component fifo : 0 → F with behaviors such as:

fifo ⊨ (write["hello, "] ↣ 7) { (write["world!\n"] ↣ 7) { (read[100] ↣ "hello, world!\n")

With fifo to model a buffer, we can define:

𝑃 |𝑄 := seq ⊙ (𝑃 ⊕ 𝑄) ⊙ (F ⊕ (Δ ⊙ fifo) ⊕ F) .
Using this construction, we can express the relationship between the behaviors Γsecret and Γencode
to formulate a partial account of property (1). Specifically, we expect the behavior

Γ(1) ⊨ run ↣ (write1 ["hello, world!\n"] { 14) ↣ 0

to admit the refinement square 𝜙 (1) : Γ(1) ≤ Γsecret | Γdecode.
Note that since our model does not support concurrency, the construction 𝑃 | 𝑄 above can

only offer a sequential approximation of the corresponding Unix shell operator. We intend the

example shown in Figure 1 to illustrate the issues that come up when the horizon of verification

is pushed beyond the boundary of a fixed language or model, but providing a realistic account of

Unix processes remains beyond the scope of the present work.

Remark 2.12 (Morphisms in Context). Above we rely on the category theory convention by which

the same notation is used for a functor’s action on objects and morphisms. When functors are

combined and specialized, objects and morphisms may appear together in certain expressions. For

example, applying the functor𝑈 × − +𝑉 : Set → Set to a function 𝑓 : 𝑋 → 𝑌 yields

𝑈 × 𝑓 +𝑉 : 𝑈 × 𝑋 +𝑉 → 𝑈 × 𝑌 +𝑉 (also known as id𝑈 × 𝑓 + id𝑉)

Seeing id𝐴 as the morphism part of the nullary functor 𝐴, another interpretation is that objects can

simply denote their identity morphism. In any case, this idea generalizes to higher dimensions. For

example, given 𝐿1 : 𝐴 ↠ 𝐵, 𝐿2 : 𝐵 ↠ 𝐶 , R : 𝐴 ↔ 𝐵, S : 𝐵 ↔ 𝐶 and 𝜙 : 𝐿1 ≤R↠𝐵 𝐵, we can write

𝐿2 ⊙ 𝜙 : 𝐿2 ⊙ 𝐿1 ≤R↠𝐶 𝐿2 and 𝜙 # S : 𝐿1 ≤R#S↠S 𝐶 .

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 11

3 Strategy Model
We now turn to the task of formalizing the constructions we have outlined in §2.

3.1 Strategies
We have already informally described many strategies using interaction traces of the form

𝑞 ↣ (𝑚1 { 𝑛1) ↣ (𝑚2 { 𝑛2) ↣ · · · ↣ (𝑚𝑘 { 𝑛𝑘) ↣ 𝑟 { 𝑞′ ↣ · · · .

We will often write such traces more compactly as 𝑞𝑚1𝑛1𝑚2𝑛2 · · ·𝑚𝑘𝑛𝑘𝑟𝑞
′ · · · , where actions of

the component have been underlined and alternate with environment actions.

Definition 3.1 (Strategy). Consider an outgoing effect signature 𝐸 and an incoming effect signa-

ture 𝐹 . A play in the game 𝐸 ↠ 𝐹 is an element 𝑠 ∈ 𝑃𝐸,𝐹 in the set generated by the grammar:

𝑞 ∈ 𝐹 𝑠 ∈ 𝑃
𝑞

𝐸,𝐹

𝑞𝑠 ∈ 𝑃𝐸,𝐹

𝑚 ∈ 𝐸 𝑠 ∈ 𝑃
𝑞𝑚

𝐸,𝐹

𝑚𝑠 ∈ 𝑃
𝑞

𝐸,𝐹

𝑛 ∈ ar(𝑚) 𝑠 ∈ 𝑃
𝑞

𝐸,𝐹

𝑛𝑠 ∈ 𝑃
𝑞𝑚

𝐸,𝐹

𝜖 ∈ 𝑃𝐸,𝐹

𝑟 ∈ ar(𝑞) 𝑠 ∈ 𝑃𝐸,𝐹

𝑟𝑠 ∈ 𝑃
𝑞

𝐸,𝐹

𝜖 ∈ 𝑃
𝑞𝑚

𝐸,𝐹

𝑃𝐸,𝐹 𝑃
𝑞

𝐸,𝐹
𝑃
𝑞𝑚

𝐸,𝐹

𝑞∈𝐹 𝑚∈𝐸

𝑟 ∈ar(𝑞) 𝑛∈ar(𝑚)

and ordered by the prefix relation ⊑. Moreover, the coherence relation ¨ ⊆ 𝑃𝐸,𝐹 × 𝑃𝐸,𝐹 is defined by:

𝜖 ¨ 𝑠

𝑠 ¨ 𝜖

𝑞1 = 𝑞2 ⇒ 𝑠1 ¨𝑞1 𝑠2

𝑞1𝑠1 ¨ 𝑞2𝑠2

𝑠1 ¨ 𝑠2

𝑟𝑠1 ¨𝑞 𝑟𝑠2

𝑠1 ¨𝑞𝑚 𝑠2

𝑚𝑠1 ¨𝑞 𝑚𝑠2

𝑛1 = 𝑛2 ⇒ 𝑠1 ¨𝑞 𝑠2

𝑛1𝑠1 ¨𝑞𝑚 𝑛2𝑠2

𝜖 ¨𝑞𝑚 𝑠

𝑠 ¨𝑞𝑚 𝜖

Then a strategy 𝜎 : 𝐸 ↠ 𝐹 is a prefix-closed subset of 𝑃𝐸,𝐹 where any two 𝑠1, 𝑠2 ∈ 𝜎 satisfy 𝑠1 ¨ 𝑠2.

Example 3.2. The behavior of a queue with infinite capacity can be modeled as follows. For a

starting state ®𝑞 ∈ 𝑉 ∗
, the strategy 𝜎 ®𝑞 : 0 ↠ 𝐸bq is defined by the following rules:

𝜖 ∈ 𝜎 ®𝑞 𝑠 ∈ 𝜎 ®𝑞 ⇒ deq · 𝑣 · 𝑠 ∈ 𝜎𝑣 ®𝑞 𝑠 ∈ 𝜎 ®𝑞𝑣 ⇒ enq[𝑣] · ∗ · 𝑠 ∈ 𝜎 ®𝑞

Note that as expected, the strategy never performs any outgoing calls but only interacts over 𝐸bq.

The behavior of a queue which is initially empty is described by 𝜎𝜖 : 0 ↠ 𝐸bq.

Unlike 𝜎 ®𝑞 above, many strategies of interest are stateless in the sense that every incoming

question is handled in the same way regardless of any previous history.

Definition 3.3 (Regular Strategy). Consider a strategy 𝜎 : 𝐸 ↠ 𝐹 . Given two plays 𝑠, 𝑡 ∈ 𝑃𝐸,𝐹 the

play 𝑠 ▷ 𝑡 initially proceeds as 𝑠 but goes on to proceed as 𝑡 if 𝑠 ends with 𝜖 ∈ 𝑃𝐸,𝐹 when a question

𝑞 ∈ 𝐹 is expected. Formally, we can define ▷𝑥
: 𝑃𝑥

𝐸,𝐹
× 𝑃𝐸,𝐹 → 𝑃𝑥

𝐸,𝐹
as follows:

𝑞𝑠 ▷ 𝑡 := 𝑞(𝑠 ▷𝑞 𝑡) 𝑚𝑠 ▷𝑞 𝑡 :=𝑚(𝑠 ▷𝑞𝑚 𝑡) 𝑛𝑠 ▷𝑞𝑚 𝑡 := 𝑛(𝑠 ▷𝑞 𝑡)
𝜖 ▷ 𝑡 := 𝑡 𝑟𝑠 ▷𝑞 𝑡 := 𝑟 (𝑠 ▷ 𝑡) 𝜖 ▷𝑞𝑚 𝑡 := 𝜖

The regular closure 𝜎∗
: 𝐸 ↠ 𝐹 allows the strategy 𝜎 to start over with each new incoming question:

𝜖 ∈ 𝜎∗ 𝑠 ∈ 𝜎 ∧ 𝑡 ∈ 𝜎∗ ⇒ 𝑠 ▷ 𝑡 ∈ 𝜎∗

Moreover, a strategy is single-use when its plays are of the form 𝑞𝑚1𝑛1 · · ·𝑚𝑘𝑛𝑘𝑟 or prefixes thereof.

We say that 𝜎 is a regular strategy when it is the regular closure 𝜎 = 𝜏∗ of a single-use strategy 𝜏 .

In the previous section we described the behavior of various components by writing down

execution traces. We can use the constructions above to turn such descriptions into formal strategies.

12 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

3.2 Layered Composition
The layered composition of 𝜎 : 𝐹 ↠ 𝐺 with 𝜏 : 𝐸 ↠ 𝐹 allows the strategies to synchronize over the

signature 𝐹 . Their interaction over the intermediate signature is then hidden from the composite

strategy 𝜎 ⊙ 𝜏 : 𝐸 ↠ 𝐺 . Layered composition can be defined at the level of individual plays.

Definition 3.4 (Layered Composition of Strategies). The identity strategy id𝐸 : 𝐸 ↠ 𝐸 is defined as:

id𝐸 :=
(
{𝜖} ∪ {𝑚𝑚 | 𝑚 ∈ 𝐸} ∪ {𝑚𝑚𝑛𝑛 | 𝑚 ∈ 𝐸, 𝑛 ∈ ar(𝑚)}

)∗
.

In addition, two strategies 𝜎 : 𝐹 ↠ 𝐺 and 𝜏 : 𝐸 ↠ 𝐹 compose to yield a strategy 𝜎 ⊙ 𝜏 : 𝐸 ↠ 𝐺 .

Individual plays compose according to the relations:

⊙ : 𝑃𝐹,𝐺 × 𝑃𝐸,𝐹 → P(𝑃𝐸,𝐺) 𝜖 ⊙ 𝑡 := {𝜖}
𝑞𝑠 ⊙ 𝑡 := {𝑞𝑤 | 𝑤 ∈ 𝑠 ⊙𝑞 𝑡}

⊙𝑞
: 𝑃

𝑞

𝐹,𝐺
× 𝑃𝐸,𝐹 → P(𝑃𝑞

𝐸,𝐺
) 𝑟𝑠 ⊙𝑞 𝑡 := {𝑟𝑤 | 𝑤 ∈ 𝑠 ⊙ 𝑡}

𝑚𝑠 ⊙𝑞 𝑡 := {𝑤 | ∃𝑡 ′ · 𝑡 =𝑚𝑡 ′ ∧𝑤 ∈ 𝑠 ⊙𝑞𝑚 𝑡 ′}
⊙𝑞𝑚

: 𝑃
𝑞𝑚

𝐹,𝐺
× 𝑃𝑚𝐸,𝐹 → P(𝑃𝑞

𝐸,𝐺
) 𝑠 ⊙𝑞𝑚 𝑢𝑡 := {𝑢𝑤 | 𝑤 ∈ 𝑠 ⊙𝑞𝑚𝑢 𝑡}

𝑠 ⊙𝑞𝑚 𝑛𝑡 := {𝑤 | ∃𝑠′ · 𝑠 = 𝑛𝑠′ ∧𝑤 ∈ 𝑠′ ⊙𝑞 𝑡}
⊙𝑞𝑚𝑢

: 𝑃
𝑞𝑚

𝐹,𝐺
× 𝑃𝑚𝑢

𝐸,𝐹 → P(𝑃𝑞𝑢
𝐸,𝐺

) 𝑠 ⊙𝑞𝑚𝑢 𝜖 := {𝜖}
𝑠 ⊙𝑞𝑚𝑢 𝑣𝑡 := {𝑣𝑤 | 𝑤 ∈ 𝑠 ⊙𝑞𝑚 𝑡}

We can then define the layered composition of 𝜎 and 𝜏 as 𝜎 ⊙ 𝜏 :=
⋃

(𝑠,𝑡) ∈𝜎×𝜏 𝑠 ⊙ 𝑡 .

Theorem 3.5. Layered composition is associative and admits identity strategies as units.

3.3 Flat Composition
In addition to layered composition, strategies can also be combined side-by-side. Specifically, two

strategies 𝜎1 : 𝐸 ↠ 𝐹1 and 𝜎2 : 𝐸 ↠ 𝐹2 can be used to independently handle the two components

of an incoming effect signature 𝐹1 ⊕ 𝐹2.

Definition 3.6 (Flat Composition). The strategy 𝜋𝑖 : 𝐸1 ⊕ 𝐸2 ↠ 𝐸𝑖 can be defined as:

𝜋𝑖 :=
(
{𝜖} ∪ {𝑚 𝜄𝑖 (𝑚) | 𝑚 ∈ 𝐸𝑖 } ∪ {𝑚 𝜄𝑖 (𝑚) 𝑛 𝑛 | 𝑚 ∈ 𝐸𝑖 , 𝑛 ∈ ar(𝑚)}

)∗
.

Moreover, two strategies 𝜎1 : 𝐸 ↠ 𝐹1 and 𝜎2 : 𝐸 ↠ 𝐹2 can be combined into ⟨𝜎1, 𝜎2⟩ : 𝐸 ↠ 𝐹1 ⊕ 𝐹2.

Individual plays combine as follows:

⟨𝑞𝑠1, 𝑠2⟩ := {𝜄1 (𝑞)𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞
1
} ⟨𝑠1, 𝑞𝑠2⟩ := {𝜄2 (𝑞)𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞

2
}

⟨𝑟𝑠1, 𝑠2⟩𝑞
1
:= {𝑟𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩} ⟨𝑠1, 𝑟𝑠2⟩𝑞

2
:= {𝑟𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩}

⟨𝑚𝑠1, 𝑠2⟩𝑞
1
:= {𝑚𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞𝑚

1
} ⟨𝑠1,𝑚𝑠2⟩𝑞

2
:= {𝑚𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞𝑚

2
}

⟨𝑛𝑠1, 𝑠2⟩𝑞𝑚
1

:= {𝑛𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞
1
} ⟨𝑠1, 𝑛𝑠2⟩𝑞𝑚

2
:= {𝑛𝑤 | 𝑤 ∈ ⟨𝑠1, 𝑠2⟩𝑞

2
}

Then ⟨𝜎1, 𝜎2⟩ :=
⋃

(𝑠1,𝑠2) ∈𝜎1×𝜎2 ⟨𝑠1, 𝑠2⟩. In addition, for 𝜎1 : 𝐸1 ↠ 𝐹1 and 𝜎2 : 𝐸2 ↠ 𝐹2 we define

𝜎1 ⊕ 𝜎2 := ⟨𝜎1 ⊙ 𝜋1, 𝜎2 ⊙ 𝜋2⟩ : 𝐸1 ⊕ 𝐸2 ↠ 𝐹1 ⊕ 𝐹2 .

Theorem 3.7 (Properties of ⊕). The definitions above satisfy the rules and properties in Fig. 6.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 13

4 Refinement Conventions
The inclusion order induces a simple notion of strategy refinement. For example, consider the

strategies 𝜎 ⊆ 𝜏 : 𝐸 ↠ {∗ : ∅}. Ignoring the initial move ∗, plays of 𝜎 and 𝜏 take the form

𝑚1𝑛1𝑚2𝑛2 · · ·𝑚𝑘 . Operationally, inclusion induces the following coinductive simulation property,

where we write𝑚𝑛\𝜎 for the residual strategy {𝑠 | 𝑚𝑛𝑠 ∈ 𝜎}:

𝜎 ≤ 𝜏 :⇔ ∀𝑚 ·𝑚 ∈ 𝜎 ⇒𝑚 ∈ 𝜏 ∧
∀𝑛 · (𝑚𝑛\𝜎) ≤ (𝑚𝑛\𝜏) .

𝜎 𝑚 𝑛 (𝑚𝑛\𝜎)

𝜏 𝑚 𝑛 (𝑚𝑛\𝜏)

≤ ≤ (2)

In other words, any behavior prescribed by the specification 𝜎 must be mirrored by the refinement 𝜏 .

Refinement conventions and refinement squares generalize this notion of refinement to cover

situations where the source 𝜎 and target 𝜏 differ in their interactions with the environment.

4.1 Overview
Building on the example above, suppose 𝜎 : 𝐸1 ↠ {∗ : ∅} and 𝜏 : 𝐸2 ↠ {∗ : ∅} now differ

in the type of their outgoing interactions. To relate them, we will define a notion of refinement
convention R : 𝐸1 ↔ 𝐸2 establishing a correspondence between the questions and answers of 𝐸1
and 𝐸2. A refinement up to R, written in this case 𝜎 ≤R↠{∗:∅} 𝜏 , will correspond to the property

∀𝑚1 ·𝑚1 ∈ 𝜎 ⇒ ∃𝑚2 ·𝑚2 ∈ 𝜏 ∧ 𝑚1 R◦ 𝑚2 ∧
∀𝑛1 𝑛2 · 𝑛1 R•

𝑚1,𝑚2

𝑛2 ⇒(
𝑚1𝑛1\𝜎

)
≤R𝑛1,𝑛2𝑚

1
,𝑚

2
↠{∗:∅}

(
𝑚2𝑛2\𝜏

)
𝜎 𝑚1 𝑛1

(
𝑚1𝑛1\𝜎

)
𝜏 𝑚2 𝑛2

(
𝑚2𝑛2\𝜏

)≤R R◦ R•
𝑚

1
𝑚

2

≤R
𝑛
1
𝑛
2

𝑚
1
𝑚

2

(3)

Here, the refinement convention provides a relation R◦ ⊆ 𝐸 × 𝐹 between the questions of 𝐸 and the

questions of 𝐹 ; furthermore, for related question𝑚1 R◦ 𝑚2 the refinement convention provides a

relation on answers R•
𝑚1,𝑚2

⊆ ar(𝑚1) × ar(𝑚2) and an updated refinement convention R𝑛1𝑛2

𝑚1𝑚2
to be

used for the next question whenever the answers 𝑛1 R•
𝑚1𝑚2

𝑛2 are received.

As this example illustrates, one source of complexity is the alternating character of (3). While the

client is free to choose matching questions𝑚1 and𝑚2, it must be ready to accept for every answer

𝑛1 any related 𝑛2 which the handler could return. In other words, the kind of data abstraction

realized by refinement conventions involves demonic as well as angelic choices. While ≤R becomes

larger when R◦
relates more questions, the opposite is true of R•

, which introduces additional

constraints. Moreover, since our strategies simultaneously play the roles of a client and a handler

on their outgoing and incoming sides, general refinement squares involve two different refinement

conventions, again with opposite variances.

4.2 Refinement Conventions
Our construction of refinement conventions is similar in spirit to that of strategies. However, to

tackle the challenges outlined above, we must introduce an important technical novelty. Specifically,

to handle the alternating angelic and demonic choices which a refinement convention can perform,

we must go beyond the usual prefix ordering of plays.

Definition 4.1. Refinement conventions of type R : 𝐸 ↔ 𝐹 are constructed using plays of the form

𝑠 ∈ 𝑃𝐸↔𝐹 ::= (𝑚1,𝑚2)⊥ | (𝑚1,𝑚2) (𝑛1, 𝑛2) 𝑠 | (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤
(
𝑚1 ∈ 𝐸 , 𝑛1 ∈ ar(𝑚1)
𝑚2 ∈ 𝐹 , 𝑛2 ∈ ar(𝑚2)

)
.

14 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

As suggested by the notation, the plays are ordered by the smallest relation ⪯ such that

𝑠1 ⪯ 𝑠2 =⇒ (𝑚1,𝑚2)⊥ ⪯ (𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠1 ⪯ (𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠2 ⪯ (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ .

Then refinement conventions are elements of

𝑆𝐸↔𝐹 := D
(
𝑃𝐸↔𝐹 , ⪯

)
= {R ⊆ 𝑃𝐸↔𝐹 | ∀𝑠 𝑡 · 𝑠 ⪯ 𝑡 ∧ 𝑡 ∈ R ⇒ 𝑠 ∈ R} .

The plays of 𝑃𝐸↔𝐹 , interpreted as follows, allow more simulations to succeed as more and larger

plays are added to the convention:

• The play (𝑚1,𝑚2)⊥ allows the questions 𝑚1 and 𝑚2 to be related by R◦
. By default, all

possible pairs of answers (𝑛1, 𝑛2) are permitted by R•
𝑚1𝑚2

. However, no questions are allowed

beyond that point until plays of the following kind are added to the refinement convention.

• The play (𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠 extends the “next” convention R𝑛1,𝑛2

𝑚1,𝑚2
with the play 𝑠 . Importantly,

it does not modify the “answers” relation R◦
. As explained above, the pair (𝑛1, 𝑛2) ∈ R◦

𝑚1𝑚2

was already—and remains—permitted. However,

• the play (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ disallows the pair (𝑛1, 𝑛2) ∉ R◦
𝑚1𝑚2

as related answers. Since

this restricts the handler, simulations between client computations become easier to prove,

which is why plays of the form (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ are the “largest”.

Based on this interpretation, we could define the components 𝑅◦
, 𝑅•

and 𝑅
𝑛1𝑛2

𝑚1𝑚2
as follows:

𝑚1 R◦ 𝑚2 :⇔ (𝑚1,𝑚2)⊥ ∈ R , 𝑛1 R•
𝑚1𝑚2

𝑛2 :⇔ (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∉ R ,

R𝑛1𝑛2

𝑚1𝑚2

:= (𝑚1,𝑚2) (𝑛1, 𝑛2)\R = {𝑠 | (𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠 ∈ R} .
Note the negative involvement of (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ in the definition of R•

. When this play appears

in R, then by construction R must contain all plays of the form (𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠 as well. However,
they become meaningless as a simulation can never proceed in a way that they could influence.

4.3 Refinement Squares
We now use refinement conventions to express our general notion of a refinement square 𝜎 ≤R↠S 𝜏 .

Specifically, we will use R and S to translate each play of 𝜎 into a challenge for the strategy 𝜏 . Because
of the alternating nature of refinement, this challenge will involve nested ∀ and ∃ quantifiers over

the possible choices of questions and answers offered by the refinement conventions.

Definition 4.2 (Refinement Square). Consider two strategies 𝜎 : 𝐸1 ↠ 𝐹1 and 𝜏 : 𝐸2 ↠ 𝐹2 as well

as two refinement conventions R : 𝐸1 ↔ 𝐸2 and S : 𝐹1 ↔ 𝐹2. We say that there is a refinement

square when the proposition 𝜎 ≤𝑅↠𝑆 𝜏 defined below holds. To this end, we recursively define a

family of relations ⊴𝑥
R↠S between the possible plays of 𝜎 and the possible residuals of 𝜏 . Using the

short-hands R′
:= (𝑚1,𝑚2) (𝑛1, 𝑛2)\R and S′ := (𝑞1, 𝑞2) (𝑟1, 𝑟2)\S, we can write:

𝜖 ⊴R↠S 𝜏 :⇔ 𝜖 ∈ 𝜏

𝑞1𝑠 ⊴R↠S 𝜏 :⇔ ∀𝑞2 · (𝑞1, 𝑞2)⊥ ∈ S ⇒ 𝑠 ⊴𝑞1,𝑞2
R↠S (𝑞2\𝜏)

𝑟
1
𝑠 ⊴𝑞1,𝑞2

R↠S 𝜏 :⇔ ∃𝑟2 · (𝑞1, 𝑞2) (𝑟1, 𝑟2)⊤ ∉ S ∧ 𝑠 ⊴R↠S′ (𝑟
2
\𝜏)

𝑚1𝑠 ⊴𝑞1,𝑞2
R↠S 𝜏 :⇔ ∃𝑚2 · (𝑚1,𝑚2)⊥ ∈ R ∧ 𝑠 ⊴𝑞1𝑚1,𝑞2𝑚2

R↠S (𝑚2\𝜏)

𝜖 ⊴𝑞1𝑚1,𝑞2𝑚2

R↠S 𝜏 :⇔ 𝜖 ∈ 𝜏

𝑛1𝑠 ⊴𝑞1𝑚1,𝑞2𝑚2

R↠S 𝜏 :⇔ ∀𝑛2 · (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∉ R ⇒ 𝑠 ⊴𝑞1,𝑞2
R′↠S (𝑛2\𝜏)

Then we can formulate the existence of a refinement square as:

𝜎 ≤R↠S 𝜏 :⇔ ∀𝑠 ∈ 𝜎 · 𝑠 ⊴R↠S 𝜏 .

Refinement squares are compatible with strategy composition in the following sense.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 15

Theorem 4.3. Refinement squares compose horizontally as described by the rule sim-⊙ in Fig. 3.

Refinement squares are also connected to the inclusion ordering on both strategies and refinement

conventions. The relationship is formulated using identities.

Definition 4.4. The identity refinement convention id𝐸 associated with a signature 𝐸 is defined by:

(𝑚1,𝑚2)⊥ ∈ id𝐸 :⇔ 𝑚1 =𝑚2

(𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ id𝐸 :⇔ 𝑚1 =𝑚2 ∧ 𝑛1 ≠ 𝑛2

(𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠 ∈ id𝐸 :⇔ 𝑚1 =𝑚2 ∧ (𝑛1 = 𝑛2 ⇒ 𝑠 ∈ id𝐸)
Theorem 4.5. For all 𝜎, 𝜏 : 𝐸 ↠ 𝐹 and for all R, S : 𝐸 ↔ 𝐹 , the following relationships hold:

𝜎 ⊆ 𝜏 ⇒ 𝜎 ≤id𝐸↠id𝐹 𝜏 , R ⊇ S ⇒ id𝐸 ≤R↠S id𝐹 .

Remark 4.6. Refinement conventions enforce a 1-to-1 mapping between the moves of the source-

and target-level strategies, and require that their plays have similar structures. However, in some

cases the relationship between events in the high-level view of the system and their realization

in low-level terms is more complex; for example, the high-level view of a TCP/IP connection as

a stream of bytes could model the transmission of a block of data as a single event, whereas its

realization in terms of low-level packets may involve a complex interaction.

While the strict mapping enforced by refinement conventions is a limitation, situations like the

one described above can still be modeled within our formalism. Suppose 𝜎 : B ↠ 𝐸 uses the “byte

stream” interface B while its refinement 𝜏 : K ↠ 𝐸 is implemented in terms of a network packet

interface K . It remains possible to express their relationship as a refinement square 𝜎 ⊙ 𝑥 ≤R↠𝐸 𝜏

with the help of auxiliary constructions 𝑥 : X ↠ B and R : X ↔ K , proceeding in two steps:

• the effect signature X can provide a high-level, abstract representation of the packet inter-

action, and the strategy 𝑥 : X ↠ B explains how byte stream operations are expanded into

abstract packet interactions with more complex shapes;

• the refinement convention R : X ↔ K can then be used to express the data abstraction

component of the relationship, refining high-level abstract packets into their low-level

actual representations, and encapsulating details such as TCP sequence numbers.

4.4 Vertical Composition
Refinement conventions compose similarly to relations, in that 𝑅 #𝑆 relates two incoming questions

𝑚1 and𝑚2 when there exists an intermediate𝑚 such that (𝑚1,𝑚)⊥ ∈ 𝑅 and (𝑚,𝑚2)⊥ ∈ 𝑆 . However,

we take into account the history of the interaction and the mixed variance of questions vs. answers.

Definition 4.7 (Vertical composition of refinement conventions). For the refinement conventions

R : 𝐸1 ↔ 𝐸2 and S : 𝐸2 ↔ 𝐸3, the refinement convention R # S : 𝐸1 ↔ 𝐸3 is defined as follows:

(𝑚1,𝑚3)⊥ ∈ R # S :⇔ ∃𝑚2 · (𝑚1,𝑚2)⊥ ∈ R ∧ (𝑚2,𝑚3)⊥ ∈ S
(𝑚1,𝑚3) (𝑛1, 𝑛3)⊤ ∈ R # S :⇔ ∃𝑚2 · (𝑚1,𝑚2)⊥ ∈ R ∧ (𝑚2,𝑚3)⊥ ∈ S ∧

∀𝑛2 · (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ R ∨ (𝑚2,𝑚3) (𝑛2, 𝑛3)⊤ ∈ S
(𝑚1,𝑚3) (𝑛1, 𝑛3) 𝑠 ∈ R # S :⇔ ∃𝑚2 · (𝑚1,𝑚2)⊥ ∈ R ∧ (𝑚2,𝑚3)⊥ ∈ S ∧

∀𝑛2 · (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ R ∨ (𝑚2,𝑚3) (𝑛2, 𝑛3)⊤ ∈ S ∨
𝑠 ∈

(
(𝑚1,𝑚2) (𝑛1, 𝑛2)\R

)
#
(
(𝑚2,𝑚3) (𝑛2, 𝑛3)\S

)
.

This allows us to express the vertical composition property for refinement squares.

Theorem 4.8 (Vertical composition of refinement sqares). Refinement squares compose
vertically as described by the rule sim-# shown in Fig. 3.

16 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Remark 4.9 (Associativity of vertical composition). It should be noted that the vertical composition

of refinement conventions is not associative in general (although associativity holds in most

practical cases that we have encountered). We discuss this phenomenon and a counter-example in

Appendix A [Zhang et al. 2024b].

4.5 Flat Composition
Finally, we show that the flat composition operation ⊕ which we have defined for effect signatures

and strategies can be extended to refinement conventions and refinement squares as well.

Definition 4.10 (Flat composition of refinement conventions). The conventions R1 : 𝐸1 ↔ 𝐹1 and

R2 : 𝐸2 ↔ 𝐹2 compose into R1 ⊕ R2 : 𝐸1 ⊕ 𝐸2 ↔ 𝐹1 ⊕ 𝐹2, defined by:(
𝜄𝑖 (𝑚1), 𝜄𝑖 (𝑚2)

)
⊥ ∈ R1 ⊕ R2 :⇔ (𝑚1,𝑚2)⊥ ∈ R𝑖(

𝜄𝑖 (𝑚1), 𝜄𝑖 (𝑚2)
)
(𝑛1, 𝑛2)⊤ ∈ R1 ⊕ R2 :⇔ (𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ R𝑖(

𝜄1 (𝑚1), 𝜄1 (𝑚2)
)
(𝑛1, 𝑛2) 𝑠 ∈ R1 ⊕ R2 :⇔ 𝑠 ∈

(
(𝑚1,𝑚2) (𝑛1, 𝑛2)\R1

)
⊕ R2(

𝜄2 (𝑚1), 𝜄2 (𝑚2)
)
(𝑛1, 𝑛2) 𝑠 ∈ R1 ⊕ R2 :⇔ 𝑠 ∈ R1 ⊕

(
(𝑚1,𝑚2) (𝑛1, 𝑛2)\R2

)
Theorem 4.11. Flat composition of refinement conventions and squares obeys the rules in Fig. 6.

5 Compositional State
The model described so far adds a vertical dimension to the usual horizontal dimension of composi-

tional semantics. We now discuss how the model can be extended further by introducing a spatial
dimension, which serves as a foundation of our compositional treatment of state. We omit many

formal definitions in the interest of space and readability, but they can be found in Appendix B

[Zhang et al. 2024b].

5.1 Explicit State
Like the sum used by flat composition, the tensor product is another well-known operation on

effect signatures, which expects the client to simultaneously ask a question in each component:⊗
𝑖∈𝐼

𝐸𝑖 :=
{
⟨𝑚𝑖⟩𝑖∈𝐼 :

∏
𝑖∈𝐼 𝑁𝑖

�� ∀𝑖 . (𝑚𝑖 : 𝑁𝑖) ∈ 𝐸𝑖
}

Unfortunately, while the simulation convention R ⊗ S is straightforward to define, the tensor

product unlike ⊕ does not generalize easily to strategies. Defining 𝐿1 ⊗ 𝐿2 we have no reason to

expect that outgoing questions of 𝐿1 and 𝐿2 will synchronize to combine into questions of 𝐸1 ⊗ 𝐸2.

Although a general form of ⊗ does not apply in our framework, by restricting the right-hand side

to a form of passive components we obtain a form of spatial composition and a way to approach

compositional state. Specifically, for a set𝑈 we start from the effect signature construction

𝐸 @𝑈 := 𝐸 ⊗ {𝑢 : 𝑈 | 𝑢 ∈ 𝑈 } = {𝑚@𝑢 : 𝑁 ×𝑈 | (𝑚 : 𝑁) ∈ 𝐸, 𝑢 ∈ 𝑈 } ,
where𝑚@𝑢 is a stylized version of the pair (𝑚,𝑢). This construction will play an important role in

our treatment of spatial composition and state encapsulation.

Example 5.1. In CompCertO language interfaces, every question and answer includes a global

memory state𝑚 ∈ mem (Example 2.3). The decomposition C @mem allows us to separate

C = {𝑓 (®𝑣) : val | 𝑓 ∈ ident, ®𝑣 ∈ val∗} ,
which does not mention the memory state. This affords us more flexibility when describing the

ways in which C code can affect both the global memory and other forms of more abstract state.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 17

𝐿bq : 0 ↠ 𝐸bq @ 𝐷bq 𝐿bq ⊨ enq[𝑣]@®𝑞 ↣ ∗@®𝑞𝑣 ®𝑞 ∈ 𝐷bq := 𝑉 ∗, 𝑣 ∈ 𝑉

𝐿bq ⊨ deq@𝑣 ®𝑞 ↣ 𝑣@®𝑞
Σbq : 𝐸rb ↠ 𝐸bq Σbq ⊨ enq[𝑣] ↣ (inc2 { 𝑖) ↣ (set[𝑖, 𝑣] { ∗) ↣ ∗ 𝑖 ∈ N, 𝑣 ∈ 𝑉

Σbq ⊨ deq ↣ (inc1 { 𝑖) ↣ (get[𝑖] { 𝑣) ↣ 𝑣

𝐿rb : 0 ↠ 𝐸rb @ 𝐷rb 𝐿rb ⊨ inc1@(𝑏, 𝑐1, 𝑐2) ↣ 𝑐1@(𝑏, (𝑐1+1)%𝑁, 𝑐2) (𝑏, 𝑐1, 𝑐2) ∈ 𝐷rb := 𝑉𝑁 × N × N,

𝐿rb ⊨ inc2@(𝑏, 𝑐1, 𝑐2) ↣ 𝑐2@(𝑏, 𝑐1, (𝑐2+1)%𝑁) 𝑖 ∈ N, 𝑣 ∈ 𝑉

𝐿rb ⊨ set[𝑖, 𝑣]@(𝑏, 𝑐1, 𝑐2) ↣ ∗@(𝑏 [𝑖 := 𝑣], 𝑐1, 𝑐2)
𝐿rb ⊨ get[𝑖]@(𝑏, 𝑐1, 𝑐2) ↣ 𝑏𝑖@(𝑏, 𝑐1, 𝑐2)

𝑅bq ⊆ 𝐷bq × 𝐷rb ®𝑞 𝑅bq (𝑏, 𝑐1, 𝑐2) ⇔ (𝑐1 ≤ 𝑐2 < 𝑁 ∧ ®𝑞 = 𝑏𝑐1 · · ·𝑏𝑐2−1) ∨ (𝑏, 𝑐1, 𝑐2) ∈ 𝐷rb,

(𝑐2 ≤ 𝑐1 < 𝑁 ∧ ®𝑞 = 𝑏𝑐1 · · ·𝑏𝑁−1𝑏0 · · ·𝑏𝑐2−1) ®𝑞 ∈ 𝐷bq

Fig. 7. Abstract specifications for bq.c and rb.c, formulated as regular strategies using explicit state. The
overall specification Γbq describes the queue operations in terms of a sequence of values ®𝑞 ∈ 𝐷bq := 𝑉 ∗.
Verification can be decomposed using the intermediate specifications Σbq and Γrb for bq.c and rb.c.

Example 5.2 (Abstract specifications). The specification 𝐿bq shown in Fig. 7 gives an abstract

description of the code in Fig. 5 by representing the queue state as a sequence ®𝑞. Likewise 𝐿rb uses
the data (𝑏, 𝑐1, 𝑐2) to represent the contents of the buffer and the counter values. Finally, bq.c does
not use any state of its own and can be described by the simple specification Σbq : 𝐸rb ↠ 𝐸bq. We

hope to decompose a correctness proof along the following lines:

𝜙1 : 𝐿bq ≤0↠? Σbq“⊙” Γrb 𝜙2 : Σbq ≤?↠? Clight(bq.c) 𝜙rb : 𝐿rb ≤∅↠? Clight(rb.c)

However, the different types of states prevent the components from being composed directly.

To make the approach outlined above practical, we must turn @ into a proper composition

principle and establish its action on strategies, refinement conventions and refinement squares.

5.2 Passing State Through
We start by outlining how the construction −@𝑈 acts on strategies in the case of a fixed set 𝑈 .

Namely, given 𝐿 : 𝐴 ↠ 𝐵, the strategy 𝐿 @𝑈 : 𝐴@𝑈 ↠ 𝐵 @𝑈 transparently passes along a state

component of type𝑈 as follows:

𝐿 ⊨ 𝑞 ↣ (𝑞1 { 𝑟1) ↣ · · · ↣ (𝑞𝑛 { 𝑟𝑛) ↣ 𝑟

𝐿 @𝑈 ⊨ 𝑞@𝑢0 ↣ (𝑞1@𝑢0 { 𝑟1@𝑢1) ↣ · · · ↣ (𝑞𝑛@𝑢𝑛−1 { 𝑟𝑛@𝑢𝑛) ↣ 𝑟@𝑢𝑛
(4)

Here, the value 𝑢0 ∈ 𝑈 is initially received from the environment as part of the incoming question.

𝐿@𝑈 then mirrors the execution of 𝐿 but keeps track of this additional state component. The state

is attached to any outgoing question in 𝐴 and updated when the corresponding answer is received.

When 𝐿 terminates, the final value of the state is returned with the answer in 𝐵.

Example 5.3. We can use@ to interface Σbq : 𝐸rb ↠ 𝐸bq with the specification 𝐿rb : 0 ↠ 𝐸rb@𝐷rb.

The result (Σbq@𝐷rb) ⊙𝐿rb : 0 ↠ 𝐸bq@𝐷rb uses the construction Σbq@𝐷rb : 𝐸rb@𝐷rb ↠ 𝐸bq@𝐷rb
which allows Σbq to “pass through” the abstract data 𝐷rb on which 𝐿rb operates.

5.3 Transforming State
It is possible to generalize the construction 𝐿 @𝑈 to incorporate a lens 𝑓 : 𝑈 ⇆ 𝑉 with a more

sophisticated action on the state component than a simple pass-through. Lenses [Bohannon et al.

18 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

𝐿 : 𝐴 ↠ 𝐵 𝑓 : 𝑈 ⇆ 𝑉
ts-@

𝐿 @ 𝑓 : 𝐴@𝑈 ↠ 𝐵 @𝑉

R : 𝐴 ↔ 𝐵 S : 𝑈 ↔ 𝑉
sc-@

R@ S : 𝐴@𝑈 ↔ 𝐵 @𝑉

(𝐿1 ⊙ 𝐿2) @ (𝑓 ◦ 𝑔) ≡ (𝐿1 @ 𝑓) ⊙ (𝐿2 @ 𝑔)
id𝐴 @ id𝑈 ≡ id𝐴@𝑈

(R1 # R2) @ (S1 # S2) ≡ (R1 @ S1) # (R2 @ S2)
id𝐴 @ id𝑈 ≡ id𝐴@𝑈

𝜙 : 𝐿 ≤R1↠S1 𝐿
′ 𝜓 : 𝑓 ≤R2↠S2 𝑓

′
sim-@

𝜙 @𝜓 : 𝐿 @ 𝑓 ≤R1@R2↠S1@S2 𝐿
′
@ 𝑓 ′

Fig. 8. Spatial composition (@) for strategies, simulation conventions and simulation proofs.

2008] provides access to a field of type𝑈 within 𝑉 through functions:

get𝑓 : 𝑉 → 𝑈

set𝑓 : 𝑉 ×𝑈 → 𝑉

get𝑓 (set𝑓 (𝑣,𝑢)) = 𝑢

set𝑓 (𝑣, get𝑓 (𝑣)) = 𝑣

set𝑓 (set𝑓 (𝑣,𝑢1), 𝑢2) = set𝑓 (𝑣,𝑢2)
𝑓

𝑣 ∈ 𝑉

𝑉 𝑈

get𝑓 (𝑣)
𝑢 ∈ 𝑈set𝑓 (𝑣,𝑢)

⇄

Operationally, as illustrated above, we think of a lens as a component which behaves somewhat

like the identity strategy (Fig. 4c). When an incoming question 𝑣 ∈ 𝑉 activates the components,

the view get𝑓 (𝑣) ∈ 𝑈 is extracted and forwarded as an outgoing question. When this outgoing

question is answered with an update 𝑢 ∈ 𝑈 , the updated value set𝑓 (𝑣,𝑢) is returned to the caller.

As with 𝐿 @𝑈 , in the strategy 𝐿 @ 𝑓 : 𝐴@𝑈 ↠ 𝐵 @𝑉 , every question and answer consists

of a pair, with one component from 𝐴 or 𝐵 and one component from the sets 𝑈 or 𝑉 ; the first

component is handled by 𝐿 while the second one is just carried along. But now, when 𝐿 makes an

outgoing call, the second component first passes through the lens 𝑓 to be projected into𝑈 :

𝐿
...

𝑓

𝑓

𝑣1

𝑣𝑛−1

...

(𝑞, 𝑣0) (𝑞1, 𝑢0)
(𝑟1, 𝑢1)

(𝑞𝑛, 𝑢𝑛−1)
(𝑟𝑛, 𝑢𝑛)(𝑟, 𝑣𝑛)

In practice, two kinds of lens turn out to be especially useful. First, every bijection is a lens, and

this can be used to define structural isomorphisms such as 𝛾𝑈 ,𝑉 : 𝑈 ×𝑉 � 𝑉 ×𝑈 . Secondly, the

trivial lens ⟨𝑉] : 1 ⇆ 𝑉 where get⟨𝑉] (𝑣) = ∗ and set⟨𝑉] (𝑣, ∗) = 𝑣 can act as a “terminator”, which

does not propagate any part of the state in𝑈 but instead returns it unchanged to the caller.

The@ construction can be further extended to act on refinement conventions and refinement

squares to obtain the compositional structure shown in Fig. 8. The composite refinement convention

R@S simply requires that the two fields within the questions and answers of the composite language

interfaces be independently related by the corresponding simulation conventions. Moreover, a

relation 𝑅 ⊆ 𝑈 ×𝑉 can be promoted to a simple simulation convention. See the appendix for details.

Example 5.4. Building on Example 5.3, consider the relationship between the overall specification

𝐿bq : 0 ↠ 𝐸bq @ 𝐷bq and its partial refinement (Σbq @ 𝐷rb) ⊙ 𝐿rb : 0 ↠ 𝐸bq @ 𝐷rb. To establish

a simulation between them, we use the abstraction relation 𝑅bq ⊆ 𝐷bq × 𝐷rb given in Fig. 7. The

refinement property can then be formulated as 𝜙1 : 𝐿bq ≤0↠𝐸bq@𝑅bq (Σbq @ 𝐷rb) ⊙ Γrb.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 19

5.4 State Encapsulation
To go beyond the realm of regular strategies, in our model a component 𝑓 : 𝑈 ⇆ 𝑉 allows a hidden

persistent state component 𝑃 to be incorporated into the incoming data 𝑉 × 𝑃 used by the lens 𝑓 .

Encapsulation Primitive. This allows us to define an encapsulation primitive [𝑢⟩ : 𝑈 ⇆ 1, which

can be composed in front of a strategy to turn an explicit state component into a private one.

The component [𝑢⟩ uses 𝑃 := 𝑈 for its persistent state. When it is first activated by an incoming

question ∗ ∈ 1, the initial state 𝑢 ∈ 𝑈 is used on the outgoing side. Whenever an updated 𝑢′ ∈ 𝑈 is

received, the component stores 𝑢′
as its next persistent state.

Example 5.5. The component Γbq :=
(
𝐸bq @ [𝜖⟩

)
⊙ 𝐿bq : 0 ↠ 𝐸bq describes the behavior of an

initially empty bounded queue. The set of abstract states 𝐷bq is used to define it, but is not exposed

as part of its interface, so that client code will only observe call traces where state is implicit:

Γbq ⊨ (enq[𝑣1] ↣ ∗) { (enq[𝑣2] ↣ ∗) { (deq ↣ 𝑣1) { (enq[𝑣3] ↣ ∗) { (deq ↣ 𝑣2) { · · ·

Likewise, we can use 𝑑0 := ({. . .}, 0, 0) ∈ 𝐷rb to define Γrb :=
(
𝐸rb @ [𝑑0⟩

)
⊙ 𝐿rb : 0 ↠ 𝐸rb as an

encapsulated specification for the ring buffer data structure.

Representation Independence. Two components may use different representations for their explicit

state, but otherwise exhibit identical behaviors. In this case, encapsulating their state will yield

identical strategies. Within our framework, this follows from the property:

𝜁 : 𝑢 𝑅 𝑣 =⇒ [𝜁 ⟩ : [𝑢⟩ ≤𝑅↠1 [𝑣⟩ (5)

Indeed, to establish that 𝐿1 : 𝐸 ↠ 𝐹 @𝑈 and 𝐿2 : 𝐸 ↠ 𝐹 @𝑉 exhibit similar behaviors, we can

define a relation 𝑅 ⊆ 𝑈 ×𝑉 between their explicit states and prove the simulation

𝜙 : 𝐿1 ≤𝐸↠𝐹@𝑅 𝐿2 .

This shows that when invoked in related states, 𝐿1 and 𝐿2 behave similarly and the updated states

they eventually return are related as well. Per (5), the primitives [𝑢⟩ and [𝑣⟩ establish this invariant

for the initial states and preserve it across successive calls. This allows us to show that:

(𝐹 @ [𝜁 ⟩) ⊙ 𝜙 : (𝐹 @ [𝑢⟩) ⊙ 𝐿1 ≤ (𝐹 @ [𝑣⟩) ⊙ 𝐿2 .

Proving the simulation in both directions would allow us to conclude that the behaviors are equal.

Example 5.6. Following up on Example 5.5, we can use the fact 𝜁bq : 𝜖 𝑅bq 𝑑0 that the initial states

are related to prove the following property:

𝜙 ′
1
:= (𝐸bq @ [𝜁bq⟩) ⊙ 𝜙1 : Γbq ≤ Σbq ⊙ Γrb .

That is, encapsulation not only makes it easier to interface Σbq : 𝐸rb ↠ 𝐸bq with Γrb : 0 ↠ 𝐸rb, but

it also means the simulation 𝜙 ′
1
can be stated in terms of the identity refinement convention.

5.5 Implementing Encapsulated State
Ultimately, our goal is to connect a high-level specification such as Γbq which uses encapsulated

state to a low-level implementation like the one shown in Fig. 5b where state is explicit and stored

as part of the concrete C memory. To construct refinement conventions which can capture this

concretization process, we can use vertical versions of our encapsulation primitives.

Definition 5.7. We say that a strategy 𝐿 : 𝐴 ↠ 𝐵 or lens 𝐿 : 𝐴 ⇆ 𝐵 has:

• a companion 𝐿∗ : 𝐴 ↔ 𝐵 when 𝐿△
: 𝐴 ≤𝐴↠𝐿∗ 𝐿 and 𝐿▽ : 𝐿 ≤𝐿∗↠𝐵 𝐵;

• a conjoint 𝐿∗ : 𝐵 ↔ 𝐴 when 𝐿△ : 𝐵 ≤𝐿∗↠𝐵 𝐿 and 𝐿▽ : 𝐿 ≤𝐴↠𝐿∗ 𝐴.

20 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Table 1. Components of our Coq artifact, with corresponding lines of code counted by coqwc.

Component Definitions Proofs Application Definitions Proofs

coqrel library 2,382 959 CompCertO embedding (§6.2) 1,000 1,743

CompCertO 124,217 95,187 Bounded queue example (§6.3) 1,572 2,606

Other support code 271 491 Process example (§6.4) 1,414 2,621

Our framework (§2–5, §6.1) 2,198 3,252 CAL (§6.5) 262 667

ClightP (§6.6) 1,656 2,126

Concretely, these properties mean that for certain refinement squares, we can choose whether a

particular component should appear horizontally or vertically. This makes it possible to decompose

proofs along non-rectangular boundaries, and generally affords us additional flexibility. In practice,

companions and conjoints are especially useful for lenses, which satisfy the following property.

Theorem 5.8. Every lens 𝑓 : 𝑈 ⇆ 𝑉 has a companion 𝑓 ∗ : 𝑈 ↔ 𝑉 and a conjoint 𝑓∗ : 𝑉 ↔ 𝑈 .

In particular, the conjoint [𝑢⟩∗ : 1 ↔ 𝑈 can be used to formalize state “deencapsulation”.

Concretely, [𝑢⟩∗ requires the first target question to carry the value 𝑢. When the question is

answered with a new state 𝑢′
, this new state replaces 𝑢. The next question is expected to carry

the value 𝑢′
, and so on. In other words, [𝑢⟩∗ requires the target system to be provided with a state

component of type𝑈 , maintained across successive activations and initially set to the value 𝑢.

6 Evaluation and Applications
Having described our formalism, we discuss its mechanization in the Coq proof assistant and

several possible applications. This is demonstrated in the companion artifact [Zhang et al. 2024a],

whose components are outlined in Table 1 and discussed below.

6.1 Mechanization in the Coq Proof Assistant
Our code uses a library called coqrel [Koenig 2024] for relational reasoning and the relevant parts

interface with CompCertO as well. In addition, our goal is eventually to incorporate our model

into a broader library for compositional semantics and heterogeneous system verification
1
, and we

rely (“other support code”) on this library’s formalization of downward-closed sets.

With these dependencies, the definitions and theorems given in §2–5 can be mechanized in

2,198 lines of Coq definitions and 3,252 lines of proofs, as counted by coqwc. The mechanization is

straightforward and closely follows the definitions we have given.

Use of Dependent Types. One interesting aspect of our development is its use of dependent types

to capture combinatorial aspects of strategy interaction.

As suggested by the inductive grammar given in Definition 3.1, we use dependent types to enforce

the structure of plays, defining play 𝐸 𝐹 : position 𝐸 𝐹 → Type and strat 𝐸 𝐹 : position 𝐸 𝐹 → Type
as families indexed by the type:

Variant position E F := ready | running (q : op F) | suspended (q : op F) (m : op E).

This way, rather than defining plays as simple lists of moves and separately demanding that they

satisfy some validity criterion, we can use the type system to enforce their expected shape and

avoid having to deal with a proliferation of side-conditions.

At the same time, under this approach, definitions and proofs which involve plays and strategies

in different positions require a way to express the combinatorial constraints which tie them together.

1
https://github.com/CertiKOS/rbgs

https://github.com/CertiKOS/rbgs

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 21

Our solution is to define a new position type for each of these constructions, with fully unbundled

projections onto the corresponding positions of their components. For example, our formalization

of layered composition (Definition 3.4) involves the type:

Variant cpos : position F G -> position E F -> position E G -> Type :=
| cpos_ready : cpos ready ready ready
| cpos_left q : cpos (running q) ready (running q)
| cpos_right q m : cpos (suspended q m) (running m) (running q)
| cpos_suspended q m u : cpos (suspended q m) (suspended m u) (suspended q u).

where the first two parameters specify compatible positions for the strategies or plays being

composed, and the third specifies the position for the result. The same principle is applied for

higher-level constructions; for example the proof of

(𝜎1 ⊕ 𝜎2) ⊙ (𝜏1 ⊕ 𝜏2) = (𝜎1 ⊙ 𝜏1) ⊕ (𝜎2 ⊙ 𝜏2) (6)

involves a position type whose parameters project onto the four simple positions for the strategies

involved, as well as the ⊙ and ⊕ composite positions for each intermediate expression. The fully

unbundled approach allows us to use the type system to encode the complex synchronization

constraints involved. In fact, for many proofs of that nature, laying down those constraints was the

most complex part of the job, and once the cases were enumerated the proof itself became more

or less self-evident. It would be interesting to compare them with the definitions and proofs that

would be obtained under a more traditional approach.

Note that for high-level reasoning, the user will usually only manipulate strategies and use

properties such as (6) above in the context of trivial ready positions, so that they are not exposed

to the internal complexity associated with the combinatorial constraints.

6.2 CompCertO semantics
As mentioned in Examples 2.3 and 2.5, the language semantics and correctness properties defined

by the certified compiler CompCertO can be used within our model.

Open Transition System. CompCertO uses a notion of open transition system to describe interac-

tions across component boundaries. These boundaries are specified using language interfaces of

the form 𝐴 := ⟨𝐴◦, 𝐴•⟩, which translate to effect signatures J𝐴K := {𝑞 : 𝐴• | 𝑞 ∈ 𝐴◦}.
A CompCertO transition system 𝐿 : 𝐴 ↠ 𝐵 is a tuple 𝐿 = ⟨𝑆,→, 𝐼 , 𝑋, 𝑌 , 𝐹 ⟩ consisting of:

• a set 𝑆 of states and a transition relation→ ⊆ 𝑆 × 𝑆 ;

• a relation 𝐼 ⊆ 𝐵◦ × 𝑆 which assigns possible initial states to each question of 𝐵;

• a relation 𝐹 ⊆ 𝑆 × 𝐵•
which specifies final states together with corresponding answers in 𝐵;

• a relation 𝑋 ⊆ 𝑆 ×𝐴◦
which identifies external states and corresponding questions of 𝐴;

• a relation 𝑌 ⊆ 𝑆 ×𝐴• × 𝑆 , which identifies resumption states.

Writing (𝑠, 𝑟, 𝑠′) ∈ 𝑌 as 𝑟 𝑌 𝑠 𝑠′, executions take the form

𝑞 𝐼 𝑠0 →∗ 𝑠1 𝑋 𝑞1 { 𝑟1 𝑌
𝑠1 𝑠′

1
→∗ 𝑠2 · · · 𝑠𝑛 𝑋 𝑞𝑛 { 𝑟𝑛 𝑌 𝑠𝑛 𝑠′𝑛 →∗ 𝑠𝑓 𝐹 𝑟 ,

corresponding to an interaction trace 𝑞 ↣ (𝑞1 { 𝑟1) ↣ · · · ↣ (𝑞𝑛 { 𝑟𝑛) ↣ 𝑟 .

To describe the strategy associated with a CompCertO transition system, we first formalize the

set of plays generated by an internal state 𝑠 ∈ 𝑆 as follows:

𝑠 →∗ 𝑠′ 𝑋 𝑚 { 𝑛 𝑌 𝑠′ 𝑠′′ 𝑠′′ ⊩ 𝑤

𝑠 ⊩𝑚𝑛𝑤

𝑠 →∗ 𝑠′ 𝐹 𝑟

𝑠 ⊩ 𝑟

22 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

For an invocation on the transition system, the play 𝑞𝑤 will then result when 𝑞 𝐼 𝑠 ⊨ 𝑤 . To handle

subsequent invocations, the process is iterated using the regular closure operator defined in §3.1:

J𝐿K :=

(⋃
𝑞∈𝐵◦

{𝑞𝑤 | ∃𝑠 · 𝑞 𝐼 𝑠 ∧ 𝑠 ⊩ 𝑤}
)∗

.

Simulation Convention. The simulation conventions used in CompCertO can likewise be trans-

lated to our richer notion of refinement convention.

Definition 6.1. A simulation convention R : 𝐴 ⇔ 𝐵 := ⟨𝑊,𝑅◦, 𝑅•⟩ between the CompCertO

language interfaces 𝐴 and 𝐵 is specified by a set𝑊 of worlds, a Kripke relation 𝑅◦ ⊆𝑊 ×𝐴◦ × 𝐵◦

between questions and a Kripke relation 𝑅• ⊆𝑊 ×𝐴• × 𝐵•
between answers.

Kripke worlds are used to ensure that questions and answers for a given call are related consis-

tently. However, every pair of calls is related in isolation, independently of any past or future calls.

Thus, the following refinement convention embeds the simulation convention R : 𝐴 ⇔ 𝐵:

(𝑚1,𝑚2)⊥ ∈ JRK :⇔ ∃𝑤 ·𝑚1R◦
𝑤𝑚2

(𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ JRK :⇔ ∃𝑤 ·𝑚1R◦
𝑤𝑚2 ∧ ¬𝑛1R•

𝑤𝑛2

(𝑚1,𝑚2) (𝑛1, 𝑛2)𝑠 ∈ JRK :⇔ ∃𝑤 ·𝑚1R◦
𝑤𝑚2 ∧ (𝑛1R•

𝑤𝑛2 ⇒ 𝑠 ∈ JRK) .

Simulations. Using the embedding above, simulations between CompCertO transition systems

and simulation conventions induce refinement squares between the corresponding strategies

and refinement conventions within our model. In particular, CompCertO’s compiler correctness

corresponds to the following refinement:

J𝜙cc
𝑝 K : JClight(p.c)K ≤JCK↠JCK JAsm(p.s)K .

Composition. To model linking CompCertO introduces an operator ⊕𝐴 : (𝐴 ↠ 𝐴) × (𝐴 ↠ 𝐴) →
(𝐴 ↠ 𝐴). This operator allows mutual recursion: in 𝐿1 ⊕ 𝐿2, both outgoing calls of 𝐿1 to functions

of 𝐿2 and outgoing calls of 𝐿2 to functions of 𝐿1 become internal calls and are hidden from the

environment. It is known that the syntactic linking of assembly programs implements ⊕:

ℓ : Asm(𝑝1) ⊕ Asm(𝑝2) ≤ Asm(𝑝1 + 𝑝2)

The embedding is compatible with the ⊕ operator in CompCertO in the following sense:

e : J𝐿1K ⊙ J𝐿2K ≤ J𝐿1 ⊕ 𝐿2K ∀ 𝐿1, 𝐿2 ∈ 𝐴 ↠ 𝐴

This is no surprise because ⊙ only permits calls from one direction, and therefore under-approximates
the ⊕ combinator where mutually recursive calls can happen. In the rest of this section, we will

omit J−K for brevity when the context is clear.

6.3 Memory Separation
Spatial composition allows us to separate complex states into different fields; we can then reason

about components independently of the fields which they do not access, and use@ to connect these

components with the rest of the system. However, eventually this abstract description must be

refined into a concrete program acting on a global memory, where all state has been consolidated.

To achieve this in a way which preserves compositionality, we use a partial commutative monoid
over the CompCert memory model. This provides an operation • which can be used to decompose

a memory state𝑚 into a number of shares𝑚1 • · · · •𝑚𝑛 . This construction is similar in spirit to the

algebraic memory model of Gu et al. [2018]; its construction is explained in Appendix C [Zhang

et al. 2024b].

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 23

The properties of • and its interaction with memory operations ensure that CompCert semantics

satisfy a frame property, meaning that they are insensitive to additional memory shares:

𝐿 ⊨ 𝑞@𝑚0 ↣ (𝑞1@𝑚1 { 𝑟1@𝑚′
1
) ↣ · · · ↣ (𝑞𝑛@𝑚𝑛 { 𝑟𝑛@𝑚′

𝑛) ↣ 𝑟@𝑚′

𝐿 ⊨ 𝑞@(𝑚0 •𝑤0) ↣
(
𝑞1@(𝑚1 •𝑤0){ 𝑟1@(𝑚′

1
•𝑤1)

)
↣ · · ·

· · · ↣
(
𝑞𝑛@(𝑚𝑛 •𝑤𝑛−1){ 𝑟𝑛@(𝑚′

𝑛 •𝑤𝑛)
)
↣ 𝑟@(𝑚′ •𝑤𝑛)

(7)

The similarity of (7) with the behavior (4) of the transition system 𝐿 @𝑈 (§5.2) is no coincidence.

Reading • as a join relation Y ⊆ (mem ×mem) ×mem, we can state one in terms of the other.

Theorem 6.2 (Frame property for Clight). The Clight semantics satisfies

FP(𝑀) : Clight(𝑀) @mem ≤𝐴@Y↠𝐵@Y Clight(𝑀) , where (𝑚1,𝑚2) Y𝑚 :⇔𝑚1 •𝑚2 =𝑚 .

It will often be the case that the join relation is applied to the target of simulation convention

components R : 𝑈 ↔ mem and S : 𝑉 ↔ mem. In this case, we will use the notation:

R ⊛ S : 𝑈 @𝑉 ↔ mem R ⊛ S := (R@ S) # Y .

Example 6.3. To show that rb.c faithfully implements Γrb, we establish a correspondence between

the operations of the signature 𝐸rb and their representation as C calls by defining a refinement

convention Erb : 𝐸rb ↔ C. In addition, we explain how the abstract states of 𝐷rb are realized in the

concrete memory using the relation 𝑅rb ⊆ 𝐷rb ×mem defined by:

(𝑏, 𝑐1, 𝑐2) 𝑅rb [buf ↦→ {𝑏0, . . . , 𝑏𝑁−1}, c1 ↦→ 𝑐1, c2 ↦→ 𝑐2] .
At the implementation level, the memory state passed to rb.c will contain buf, c1 and c2, whose
values must match the high-level abstract state and will be updated according to the specification.

Also, the initial memory share𝑚0 := init_mem(rb.c) associated with rb.c satisfies 𝜁rb : 𝑑0 𝑅rb 𝑚0.

The remaining part of the memory should not be changed by rb.c. This can be expressed as

𝜙rb : Γrb ≤∅↠Erb@⟨𝑚0 ⟩ Clight(rb.c) (8)

where the refinement convention component ⟨𝑚0⟩ := ⟨mem]∗ ⊛ [𝑚0⟩∗ : 1 ↔ mem expresses the

idea that the memory state introduced at the target level is split into two halves. One half will

contain buf, c1 and c2; it must be initialized to𝑚0 and preserved by the environment from one call

to the next. The other half is unconstrained but is guaranteed to be left unchanged by rb.c.

Verifying rb.c. To establish (8) above, it suffices to show 𝜙min
rb : 𝐿rb ≤∅↠Erb@𝑅rb Clight(rb.c). In

other words, we can prove the correctness of rb.c in the context of a minimal memory share which

contains only the variables buf, c1 and c2.
On one end, the program must manage all the memory shares passed from the client. To achieve

this, we can use the Clight frame property for rb.c and the absorption property 𝑧 : ∅ ⊑ ∅⊛ ⟨mem]∗
to derive 𝜙 ′

rb : 𝐿rb ≤∅↠Erb@⟨mem]∗⊛𝑅rb
Clight(rb.c) as follows:

𝜙 ′
rb :=

(
𝜙min
rb @ ⟨mem]∗ # FP(rb.c)

)
⊙ 𝑧

On the other end, we transform the explicit state passing specification 𝐿rb to its encapsulated

counterpart Γrb using the auxiliary property𝜓rb, where

𝜓rb :=

(
Erb @ ⟨mem]∗ ⊛

(
[𝜁rb⟩ # [𝑚0⟩▽

))
: 𝐸rb @ [𝑑0⟩ ≤Erb@⟨mem]∗↠Erb@⟨𝑚0 ⟩ C @mem .

With these ingredients, the desired property 𝜙rb can be derived as:

𝜙rb := 𝜓rb ⊙ 𝜙 ′
rb : Γrb ≤∅↠Erb@⟨𝑚0 ⟩ Clight(rb.c) .

This process of deriving the full-blown property from a minimal one can be easily streamlined.

24 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Verifying bq.c. In Example 5.2, we were unable to state the relationship between the specification

Σbq : 𝐸rb ↠ 𝐸bq and the corresponding implementation Clight(bq.c) : C@mem ↠ C@mem due

to their difference in type. We can now formulate the requirement

𝜙 ′
bq : Σbq @mem ≤Erb@mem↠Ebq@mem Clight(bq.c)

which expresses that bq.c makes the outgoing calls prescribed by Σbq but does not modify the

global memory state. To interface with the property 𝜙rb, its incoming simulation convention ⟨𝑚0⟩
can easily be incorporated into the property as follows:

𝜙bq := (Σbq @ ⟨𝑚0⟩) # 𝜙 ′
bq : Σbq ≤Erb@⟨𝑚0 ⟩↠Ebq@⟨𝑚0 ⟩ Clight(bq.c)

Revisiting the challenge articulated in Example 5.2, we now give the complete proof:

𝜙 ′
1

#
(
(𝜙bq # 𝜙cc

bq) ⊙ (𝜙rb # 𝜙cc
rb) ⊙ 𝑧

)
e # ℓ : Γbq ≤∅↠(Ebq@⟨𝑚0 ⟩)#C Asm(bq.s + rb.s) .

Remark 6.4 (Allocation permission). Defining a partial commutative monoid • which satisfies the

properties above is largely straightforward, but some subtleties arise when it comes to memory

allocation. In a real-world scenario, memory is a finite resource and calls tomalloc can fail contingent
upon the amount of memory available. Under an accurate model of memory as a finite resource,

this would have to be taken into account by our notion of memory share and the definition of

•. For example, memory states (𝑚,𝑘) could incorporate a number of bytes 𝑘 ∈ N which remain

to be allocated (or perhaps the size of the largest contiguous memory region available, to take

fragmentation into account), and malloc would trigger an undefined behavior when the program

attempts to allocate a region of size greater than 𝑘 . In this case the partial monoid • could be defined
along the lines

(𝑚1, 𝑘1) • (𝑚2, 𝑘2) := (𝑚1 ◦𝑚2, 𝑘1 + 𝑘2) .
In this setting, incorporating an additional memory share could only increase the amount of memory

available; the behavior of malloc on the larger, composite share would refine that of the original

one, validating the frame property.

Since in CompCert, memory is modeled as an infinite resource and malloc always succeeds,
this was not an issue in our implementation. However, CompCert memory states maintain a

nextblock counter which is used to assign identifiers to newly allocated memory blocks. Since this

counter increases as the program executes, in order to enable the frame property we must allow

the nextblock counters of the two shares𝑚1 •𝑚2 to become out of sync. But in this case, allocating

a new block in the “stale” share would result in a naming conflict.

To work around this, we model memory allocation as a permission, such that at any given time,

only one of the two shares is able to allocate new blocks and carries the up-to-date nextblock
counter. This requires a slight modification to the CompCert memory model to incorporate this

permission flag and allowMem.alloc to fail when the flag is not set. This flag is subject to ownership
transfer reasoning and similar techniques used in the context of separation logic—in our framework

this can be accommodated by the refinement convention Y, which allows partial memory shares to

migrate between the two source-level branches at any time.

6.4 Modeling loading and the execution environments
Verifying functionalities of library code substantially benefits from CompCertO’s open semantics.

However, the openness hinders reasoning on the behavior of executables. For the executables, it is

desirable to model them in terms of the process behavior ; the behaviors are self-contained, and can

be characterized by the sequence of system calls they perform. To bridge the gap between the open

semantics of the process behavior, we introduce the notion of a loader.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 25

On one end, the loader launches the component as a process by using the entryA : A → P to

invoke its main function:

entryA ⊨ run ↣ (®𝑟𝑠0 [PC ↦→ main,RA ↦→ null,RSP ↦→ null]@𝑚0 { ®𝑟𝑠 [RAX ↦→ 𝑟]@𝑚) ↣ 𝑟 .

The registers ®𝑟𝑠0 and the memory𝑚0 are initialized that the program counter PC holds a pointer

value that points to themain function, and the static variables are properly initialized in the memory.

The return address RA and the stack pointer RSP are initialized to null according to CompCertO’s

simulation convention. At the end, the value stored in RAX is returned.

On the other end, the runtime : S → A acts as the conduit for runtime libraries to interface

the program with the operating system. In our scenario, the programs only use read and write
functions from unistd.h to perform I/O operations. Thus, we implement the minimalist runtime:

runtimeA ⊨ ®𝑟𝑠 [PC ↦→ read,RDI ↦→ 0,RSI ↦→ 𝑏,RDX ↦→ 𝑛]@𝑚[𝑏 ↦→ 𝑢𝑛𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑒𝑑]

↣ (read0 [𝑛] { 𝑠) ↣ ®𝑟𝑠′ [RAX ↦→ len(𝑠)]@𝑚[𝑏 ↦→ 𝑠]
runtimeA ⊨ ®𝑟𝑠 [PC ↦→ write,RDI ↦→ 1,RSI ↦→ 𝑏,RDX ↦→ 𝑛]@𝑚[𝑏 ↦→ 𝑠]

↣ (write1 [𝑠 [0 : 𝑛]] { 𝑛′) ↣ ®𝑟𝑠′ [RAX ↦→ 𝑛′]@𝑚[𝑏 ↦→ 𝑠]

Following the x86 conventions, arguments are passed via the RDI, RSI, and RDX registers. The

read function loads a sequence of bytes from the standard input, stores them into the memory

where the pointer value 𝑏 points to, and returns the length of the byte sequence. Conversely, the

write function writes the first 𝑛 bytes of the byte sequence 𝑠 to the standard output, and the return

value 𝑛′ indicates the number of bytes that are successfully written.

The assembly loader can be obtained from:

loadA (𝐿) := entryA ⊙ J𝐿K ⊙ runtimeA .

With the assembly loader, we then formally formulate the property (1) as follows:

Γ(1) ≤ loadA (secret.s + rot13.s) | loadA (decode.s + rot13.s) .

Verifying Loaded Programs. Reasoning about the process behavior directly at the level of assembly

programs is intricate because of the large abstraction gap between the strategy-level specifications

and the assembly semantics. Therefore, we also introduce a loader for the Clight semantics to

divide the proof into manageable pieces. Furthermore, the loaders must transport the C-related
CompCertO simulations into simulation relations between process behaviors:

loadC (−) : (C@mem ↠ C@mem) → (S ↠ P)
𝜙 : 𝐿1 ≤C→C 𝐿2

𝜙 ℓ
: loadC (𝐿1) ≤ loadA (𝐿2)

Example 6.5. Revisiting the task articulated in property (1), we first define the program-level

specifications Σsecret, Σdecode : C@mem ↠ C@mem, and prove they meet the strategy-level

specifications via the loader:

𝜙decode : Γdecode ≤ loadC (Σdecode) 𝜙secret : Γsecret ≤ loadC (Σsecret) .
Then, the rest of the proof only involves the CompCertO semantics. In particular, the following

properties state that the programs correctly implement their corresponding specifications:

𝜋secret : Σsecret ≤ 𝐿secret ⊕ Clight(rot13.c) 𝜋 ′
secret : 𝐿secret ≤C→C Asm(secret.s)

𝜋decode : Σdecode ≤ Clight(decode.c) ⊕ Clight(rot13.c) .
where 𝐿secret is a transition system defined in terms of the C language interface that captures the

behavior of the assembly program secret.s. Combining the above simulations with CompCertO’s

26 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

compiler correctness, we obtain:

𝜓secret := 𝜋secret # (𝜋 ′
secret ⊕ 𝜙cc

rot13) # ℓ : Σsecret ≤C→C Asm(secret.s + rot13.s)
𝜓decode := 𝜋decode # (𝜙cc

decode ⊕ 𝜙cc
rot13) # ℓ : Σdecode ≤C→C Asm(decode.s + rot13.s) .

Note the ⊕ operator here is CompCertO’s linking operator, which should not be confused with the

flat composition on strategies. Eventually, the property (1) is witnessed by the following proof:

𝜙 (1) # (𝜙secret #𝜓 ℓ
secret | 𝜙decode #𝜓 ℓ

decode) : Γ(1) ≤ loadA (secret.s+rot13.s) | loadA (decode.s+rot13.s)

The definitions of the Clight loader and the Clight level specifications, and the detailed proof of

directly proving simulation between 𝐿secret and Asm(secret.s) can be found in Appendix G [Zhang

et al. 2024b].

6.5 Certified Abstraction Layers
The bounded queue example in §2 was ad-hoc and relied on our framework as a versatile glue.

However, in many contexts additional structure is preferable. The methodology of Gu et al. [2015]

divides the code of a large system into standardized certified abstraction layers. The functionality
exposed to client code at each layer is specified in a layer interface. Within the terms of our formalism,

a layer interface is a set 𝐷 of abstract states together with a specification 𝐿 : 0 ↠ C @mem@ 𝐷 .

The semantics of client code then takes this underlay interface as a parameter:

𝐿 : 0 ↠ C @mem@ 𝐷 ⊢ Clight𝐿 [𝑀] : 0 ↠ C @mem@ 𝐷 . (9)

A certified abstraction layer involves an underlay interface 𝐿1, an overlay interface 𝐿2, a program

module𝑀 and an abstraction relation 𝑅 ⊆ 𝐷2 × (𝐷1 ×mem). They must satisfy the property:

𝐿1 ⊢𝑅 𝑀 : 𝐿2 :⇔ 𝐿2 ≤∅↠C@�̂� Clight𝐿1 [𝑀] ,

where 𝑅 ⊆ (mem × 𝐷2) × (mem × 𝐷1) extends 𝑅 to a relationship between the entire states of the

source and target programs. The main challenge is then to prove the vertical composition property

𝜓12 : 𝐿1 ⊢𝑅 𝑀 : 𝐿2 𝜓23 : 𝐿2 ⊢𝑆 𝑁 : 𝐿3

𝜓13 : 𝐿1 ⊢𝑅 ·𝑆 𝑀 + 𝑁 : 𝐿3
(10)

Implementing Layers. This methodology is implemented in CompCertX, a modified version of

CompCert where every language semantics and correctness proof has been updated to take into

account the abstract state and underlay interface. A complex memory injection is used in 𝑅 to

express the embedding of the source memory into the target, alongside the concretized abstract

state of the overlay. Finally, the proof of vertical compositionality is complex and largely monolithic,

involving aspects of our frame property, CompCertO’s linking theorem, and more.

By contrast, the toolbox provided by our framework makes it straightforward to formulate a

comparable theory of certified abstraction layers. A layer-aware semantics can be defined as:

Clight𝐿 [𝑀] := (Clight(𝑀) @ 𝐷) ⊙ 𝐿

and does not require any compiler change. Our memory join relation can be leveraged to define:

𝑅 := (mem@ 𝑅) ⊙ (Y@ 𝐷1) 𝑅 · 𝑆 := 𝑆 # (mem@ 𝑅) # (Y@ 𝐷1)

such that the composition property 𝛼 : (𝑆 # 𝑅) � 𝑅 · 𝑆 holds by associativity of the join operation •.
Finally, the vertical composition property (10) can be established with the single-line proof term:

𝜓13 := 𝛼 ⊙
(
𝜓23 #

(
(Clight(𝑁) @ 𝑅) # (FP(𝑁) @ 𝐷1)

)
⊙𝜓12

)
.

We provide additional details in Appendix D [Zhang et al. 2024b].

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 27

6.6 Clight with Module-Local State
Beyond verification-oriented applications, incorporating state encapsulation into CompCert seman-

tics opens the door to new language features. As an example, we have defined a language called

ClightP which supports encapsulated module-local state and can be soundly compiled to Clight.

Semantics. In ClightP, global variables can be declared private. Private variables cannot be

accessed from other translation units and are stored in a separate private environment 𝑝 ∈ penv.
The semantics of a ClightP program𝑀 are defined using an underlying transition system of type:

ClightP(𝑀) : C @mem ↠ C @mem@ penv

We can then extract from the program𝑀 the initial private environment 𝑝0 = init_penv(𝑀) and
obtain the encapsulated semantics ClightP⟨𝑀⟩ : C @mem → C @mem as:

ClightP⟨𝑀⟩ := (C @mem@ [𝑝0⟩) ⊙ ClightP(𝑀) .

Note that the resulting type means that ClightP semantics in this form can be composed directly.

Compiling to Clight. We have defined a simple transformation𝑀 ′
:= ClightUnP(𝑀) which turns

a ClightP program𝑀 into a regular Clight program𝑀 ′
by erasing the private annotations from all

variables. We can then show the associated correctness property:

ClightP⟨𝑀⟩ ≤C@mem⊛⟨mem]∗↠C@mem⊛[m0 ⟩∗ Clight(𝑀 ′) ,

where𝑚0 is a memory share computed from𝑀 containing the initial values of its private variables.

The incoming simulation convention mem ⊛ [𝑚0⟩∗ requires𝑚0 to be added to the target global

memory state. The outgoing convention mem ⊛ ⟨mem]∗ allows the target program to include this

additional memory region into its outgoing calls, with a guarantee that it will not be changed.

Composition. One challenge is that the correctness property depicted above is not directly

compositional, because the incoming and outgoing simulation conventions are different. Fortunately,

the frame property for Clight ensures that the correctness properties for multiple ClightP translation

units can be combined in a meaningful way. See Appendix E [Zhang et al. 2024b] for more details.

7 Related Work
Finally, we briefly discuss past and future research relevant to the work and goals we have described.

Interaction Trees. As a “semantics toolbox” of sorts, interaction trees share some goals and

techniques with our model. In fact, an interaction tree 𝑡 : ITree𝐸 (𝑋) can be interpreted into our

framework as a strategy ⟨𝑡⟩ : 𝐸 ↠ {∗ : 𝑋 }. However, strategies generalize ITrees in several ways:

• Strategies are two-sided and encode incoming as well as outgoing interactions, forming the

basis for layered composition.

• By design, ITrees must be executable programs, whereas strategies can be described logically

using arbitrary Coq specifications.

• Strategies that exhibit the same external behavior are formally equal. By contrast, ITrees

are compared using bisimulation equivalences. Equational reasoning requires Coq’s setoid

support, which can be slower and more fragile than rewriting with eq.
• Our strategies come with built-in notions of partial definition, refinement and data ab-

straction, whereas similar notions for ITrees have to be defined and tailored to a particular

application.

28 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Game Semantics. The horizontal fragment of our framework is a particularly simple form of game

semantics. The framework’s novelty resides in the vertical and spatial fragments, for which, to our

knowledge, there exists no precedent in the game semantics literature. In particular, refinement

conventions involve alternations of angelic and demonic choices; we were surprised to find they

can be modeled using a fairly standard approach, although a rather unconventional ordering of

plays must be used. An interesting question for further research would be to investigate how far

this can be pushed and whether games more complex than effect signatures could admit their own

forms of refinement conventions.

Refinement Calculus. The refinement calculus [Back and Wright 1998] was a source of inspira-

tion for our framework. One defining feature of the refinement calculus is dual nondeterminism,

which provides very powerful abstraction mechanisms. At the same time, models like predicate

transformers do not deal with external interactions or state encapsulation.

CompCertO. The semantic model of CompCertO [Koenig and Shao 2021; Zhang et al. 2024c]

introduced simulation conventions and the associated idea of a full-blown, two-dimensional refine-

ment framework, so it is worth pointing out the ways in which our framework generalizes the

CompCertO model, especially when it comes to refinement conventions:

• CompCertO transition systems and simulation conventions use explicit states and Kripe

worlds in their definitions, whereas strategies and refinement conventions provide canonical

representations for the components’ observable behaviors.

• Effect signatures are more general than the language interfaces used in CompCertO, which

force all questions to use the same set of answers.

• CompCertO transition systems do not retain any history between successive incoming

questions; as such, they cannot support the kind of state encapsulation which our framework

enables. Likewise, simulation conventions only specify 4-way relationships between isolated

pairs of questions and answers, but unlike refinement conventions they cannot be sensitive

to the history of the computation.

Other CompCert-based Verification Frameworks. CompCertM [Song et al. 2019] is another project

which builds on CompCert to provide a compositional verification framework. Like CompCertO, it

introduces a better model of the interaction between C and assembly programs and more flexibility

in simulation conventions. However, while it permits some form of localized state, CompCertM still

does not support full-blown data abstraction and state encapsulation of the kind we have presented.

See Koenig and Shao [2021]; Zhang et al. [2024c] for a detailed comparison between Compositional

CompCert, CompCertM and CompCertO.

We have also touched on certified abstraction layers and CompCertX in §6.5. Subsequent work

has extended CAL to support concurrency [Gu et al. 2018]. There are more recent treatments of

CAL which, like our work, attempt to streamline the underlying theory [Koenig and Shao 2020;

Oliveira Vale et al. 2022], but this work has not been mechanized or interfaced with CompCert.

Separation Logic. For the most part, the frameworks discussed above do not provide program-

level verification facilities, but rather focus on a more coarse-grained, module-level “glue”. Likewise,

we have assumed that elementary module correctness properties such as 𝜙1, 𝜙2 and 𝜙min
bq were

provided by the user
2
and focused on the problem of connecting such proofs. Nevertheless, program

logics in general and separation logic in particular are relevant to our work in the following ways.

First, it would be beneficial to incorporate such program logics into our framework. For example,

Gu et al. [2015] provides a rudimentary Clight program logic which can be used to help prove

2
Our example is simple enough that, in our implementation, manual simulation proofs were sufficient.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 29

abstraction layers correct. It may be useful to investigate whether the Clight separation logic

provided by the Verified Software Toolchain [Appel 2011] could be interfaced with our model.

Secondly, spatial composition is in fact the defining feature of separation logic. Our treatment of

memory separation draws extensively from separation algebra [Calcagno et al. 2007], an approach to

building models of separation logic. More recently, Conditional Contextual Refinement (CCR) [Song

et al. 2023] combined (vertical) refinement and (spatial) separation logic into a unified, mechanized

framework. CCR however does not support state encapsulation or certified compilation.

Multi-language Semantics. We have demonstrated that our framework is able to reason across

languages through non-trivial examples such as the one in Fig 1. In Compositional CompCert

and CompCertM, assembly programs are given C-level semantics, making it possible to directly

reason about composite programs (but only for Asm code, which behaves according to the C calling

convention). CAL uses the opposite approach and can translate C-level layer specification into

assembly behaviors. Recent work on the DimSum framework [Sammler et al. 2023] attempts to

give a more general account of multi-language semantics by introducing wrappers to translate

between different languages.

These various approaches all attempt to represent horizontally what the simulation conventions

of CompCertO represent vertically. In our framework, the notions of companion and conjoint could

provide a natural way to formalize approaches of this kind, so that, for example, the CompCertO

calling convention C : C ↔ A would be in companion/conjoint relationships with adapter

components C∗ : A ↠ C and C∗
: C ↠ A. The complexity of CompCertO’s convention as

presently stated makes this challenging, but we do not believe it to be a fundamental issue.

Event-based Semantics. The DimSum framework [Sammler et al. 2023] employs a language-

agnostic, event-based semantics as a generic framework for multi-language semantics. Both the

DimSum framework and our strategy model feature rich compositional structures, and support

private states across function invocations. However, there are several key differences set DimSum

apart from our approach. First, DimSum introduces explicit angelic and demonic nondeterminism

alongside events. These nondeterministic structures facilitate the transformation and ordering

of event sequences at different abstraction levels. However, this also adds complexity due to the

intricate commuting properties between events and nondeterministic choices. In contrast, our

strategy model adheres to a transitional approach where plays solely consist of events. Here, dual

nondeterminism is concealed within the construction of refinement conventions and simulations,

activating only when necessary. Second, events in DimSum are not well-bracketed, allowing for

modeling complex interactions such as coroutines, which are challenging to implement within our

current strategy model. Generalization to asynchronous games semantics would be required to

accommodate such behaviors. Third, the DimSum framework does not support spacial composi-

tion. Instead, data abstraction must go through the semantics wrapper, which is a rather heavy

mechanism. Lastly, the DimSum framework features a four-pass compiler that translates idealized

source- and target-level programs. By contrast, our strategy model integrates a realistic optimizing

compiler that compiles C program into assembly.

8 Conclusion
Combining compositional semantics, abstraction, encapsulation and certified compilation is an

important step towards the construction of large-scale systems certified end-to-end. Moreover, we

believe that the underlying algebraic structures that we have uncovered in this process constitute

an elegant conceptual framework with applications beyond the present work, and may become an

important facet of future certified systems engineering work.

30 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Acknowledgments
We wish to thank the anonymous POPL 2025 reviewers, whose feedback significantly improved the

quality of this paper. This material is based upon work supported in part by NSF grants 2313433

and 2019285 and by the National Natural Science Foundation of China (NSFC) under Grant No.

62372290 and 62002217. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the funding

agencies.

References
Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the 20th European Symposium on Programming (ESOP

2011). Springer, Berlin, Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-19718-5_1

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus: A Systematic Introduction. Springer, New York.

https://doi.org/10.1007/978-1-4612-1674-2

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008. Boomerang:

Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York,

NY, USA, 407–419. https://doi.org/10.1145/1328438.1328487

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 366–378. https://doi.org/10.1109/LICS.2007.30

Robert Dockins, Aquinas Hobor, and AndrewW. Appel. 2009. A Fresh Look at Separation Algebras and Share Accounting. In

Programming Languages and Systems (Lecture Notes in Computer Science), Zhenjiang Hu (Ed.). Springer, Berlin, Heidelberg,
161–177. https://doi.org/10.1007/978-3-642-10672-9_13

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Samuel Gruetter, Clément Pit-Claudel, and Adam Chlipala. 2024.

Foundational Integration Verification of a Cryptographic Server. Proceedings of the ACM on Programming Languages 8,
PLDI (2024), 1704–1729.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 595–608.

https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Newman Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo,

and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 646–661.

https://doi.org/10.1145/3192366.3192381

Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A

program logic for verified interoperability between OCaml and C. Proceedings of the ACM on Programming Languages 7,
OOPSLA2 (2023), 716–744.

Jérémie Koenig. 2016–2024. Coqrel: a binary logical relations library for the Coq proof assistant. https://github.com/CertiKOS/

coqrel

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). ACM, New York, NY, USA, 633–647.

https://doi.org/10.1145/3373718.3394799

Jérémie Koenig and Zhong Shao. 2021. CompCertO: compiling certified open C components. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation. 1095–1109.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C Pierce, and Steve

Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM, 234–248.

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107–115. https:

//doi.org/10.1145/1538788.1538814

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.
Research report RR-7987. INRIA. http://hal.inria.fr/hal-00703441

Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics for multi-language programs. ACM SIGPLAN Notices
42, 1 (2007), 3–10.

Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered and Object-Based

Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (Jan. 2022), 32 pages. https://doi.org/10.1145/3498703

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381
https://github.com/CertiKOS/coqrel
https://github.com/CertiKOS/coqrel
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://hal.inria.fr/hal-00703441
https://doi.org/10.1145/3498703

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 31

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.

2023. DimSum: A Decentralized Approach to Multi-Language Semantics and Verification. Proc. ACM Program. Lang. 7,
POPL, Article 27 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571220

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.
2019), 31 pages. https://doi.org/10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571232

Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. 2024c. Fully Composable and Adequate Verified

Compilation with Direct Refinements between Open Modules. Proc. ACM Program. Lang. 8, POPL, Article 72 (Jan. 2024),
31 pages. https://doi.org/10.1145/3632914

Yu Zhang, Jérémie Koenig, YutingWang, and Zhong Shao. 2024a. Unifying compositional verification and certified compilation
with a three-dimensional refinement algebra (artifact). https://doi.org/10.5281/zenodo.14202535

Yu Zhang, Jérémie Koenig, YutingWang, and Zhong Shao. 2024b. Unifying compositional verification and certified compilation
with a three-dimensional refinement algebra (extended version). Technical Report YALEU/DCS/TR1572. Yale University.

https://doi.org/10.1145/3571220
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3632914
https://doi.org/10.5281/zenodo.14202535

32 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

A Vertical Composition of Refinement Conventions is not Associative
We have noted in Remark 4.9 that although the vertical composition # of refinement conventions

is associative in most practical cases, it is not associative in general. Below we provide a more

extensive discussion of this phenomenon.

A.1 The Space of Refinement Conventions
Simulation conventions in CompCertO [Koenig and Shao 2021] make use of a Kripke world, which

plays the role of a state for the constituent relations and evolves as the system executes. Kripe

worlds introduce the possibility for unobservable branching in their possible transitions as the

source and target executions proceed. In refinement conventions, another source of complexity

comes from the fact that both the client and handler repeatedly contribute interleaved choices

(successive questions and answers, respectively) so that possible world transitions and the semantics

of branching would have to take into account the polarity of these choices.

In the spirit of game semantics, we intend refinement conventions to eliminate branching and to

capture exactly the externally observable aspects of the relationship between source- and target-

level executions. This means that refinement conventions should be equal if and only if they relate

the same pairs of source and target strategies. In fact, the space of refinement conventions can be

described in terms of their operational “shape” as the sup-lattice:

𝑆𝐸↔𝐹 � 𝜇𝑆 ·
⊕

(𝑞1,𝑞2) ∈𝐸1×𝐸2

⇑ ¬
⊕

(𝑟1,𝑟2) ∈ar(𝑞1)×ar(𝑞2)
⇑ ¬𝑆 , (11)

where

⊕
designates the coinciding products and coproducts of sup-lattices, ⇑ : SupLat → SupLat

is the lifting comonad, often written as (−)⊥, which extends a sup-lattice with a new least element,

and ¬ : SupLatop → SupLat reverses the order in a given sup-lattice, exchanging

∧
for

∨
.

Operationally,

⊕
𝑖∈𝐼 𝑆𝑖 describes a choice of 𝑖 ∈ 𝐼 followed by a behavior in the corresponding 𝑆𝑖 ,

⇑ 𝑆 permits an undefined behavior in addition to those described in 𝑆 and ¬𝑆 swaps the roles the

client and handler before continuing as 𝑆 . The fixed-point construction 𝜇𝑆 · 𝐹𝑆 allows the process

describe by the expression 𝐹 to be iterated indefinitely in a history-sensitive manner.

This shows that Definition 4.1 can be motivated from first principles and that the resulting

space of refinement conventions can be given a reasonable abstract characterization. However, the

elimination of invisible branching introduces subtleties in the definition of vertical composition

compared to the comparable constructions of Kripke-style frameworks.

A.2 Why Associativity Fails
Suppose three refinement conventions are to be composed as R #S #T in the following configuration:

𝐸1 𝐸2 𝐸3 𝐸4
R S T

The result may differ depending on whether (R # S) # T or R # (S # T) are composed first, because

the choices of intermediate questions and answers in 𝐸2 and 𝐸3 involved in the computation can

interleave differently in each case. The following counter-example illustrates this issue.

Example A.1. Consider the following values for R, S,T, where only the first round of questions

and answers are related, with R and T offering no restrictions, but S accepting only one of the

answers in 𝐸3 depending on the question asked in 𝐸2:

𝐸1 := {∗ : 1} 𝐸2 := {q1 : 1, q2 : 1} 𝐸3 :=
{
q : {1, 2}

}
𝐸4 := {∗ : 1}

R := {(∗, q1)⊥, (∗, q2)⊥} S :=
{
(q1, q)⊥, (q2, q)⊥, (q1, q) (∗, 2)⊤, (q2, q) (∗, 1)⊤

}
T := {(q, ∗)⊥}

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 33

The composite R #S relates the questions ∗ ∈ 𝐸1 and q ∈ 𝐸3, however all combinations of answers

are disallowed. Per Definition 4.7, the answer ∗ in 𝐸1 can only be related to the answer 1 in 𝐸3 if the

relationship holds for all choices of intermediate question q𝑖 ∈ 𝐸2, but for 𝑖 := 2 this is disallowed

by S since (q2, q) (∗, 1)⊤ ∈ S. Similarly the case 𝑖 := 1 prevents the answer in 𝐸1 from being related

to 2 in 𝐸3. As a result the overall composite (R # S) # T cannot relate the unit answers in 𝐸1 and 𝐸4.

By contrast, when S # T are composed first, there is only a single possible intermediate question

in 𝐸3, and the unit answers to questions q1, q2 ∈ 𝐸2 both end up being related to the unit answers in

𝐸1 and 𝐸4 by R on the left and S # T on the right. As a result, R # (S # T) does relate the unit answers
in 𝐸1 and 𝐸4, and is therefore distinct from (R # S) # T.

In effect, in the example above the order of the (client) choice of question q𝑖 ∈ {q1, q2} of 𝐸2 and
the (handler) choice of answer 𝑗 ∈ {1, 2} = ar(q) in 𝐸3 depend on the order of composition. As a

result, the condition for outer answers in 𝐸1 and 𝐸4 to be related become either

∃ 𝑗 ∀𝑖 · (𝑖 = 𝑗) or ∀𝑖 ∃ 𝑗 · (𝑖 = 𝑗)
depending on the composition order.

Despite this counter-intuitive behavior, our definition of # validates our rule for vertical composi-

tion of refinement squares, and in most of the cases that we have encountered, associativity does

actually hold. To trigger the issue, the situation in Example A.1 had to be carefully constructed to

combine features which are rare in practical refinement conventions:

• the choice of question in 𝐸2 influences the later validity of answers in 𝐸3;

• the low-level question in 𝐸3 has multiple high-level counterparts in 𝐸2;

• the low-level answer in 𝐸4 has multiple high-level counterparts in 𝐸3.

Among our applications, only the CompCertO calling convention C : C ↔ A exhibits this kind

of behavior. In all other cases we consider, relationships are either lifted from simple, stateless

relations so that they have no effect on the future behavior of the refinement conventions, or

they operate consistently in a one-to-many or many-to-one fashion so that given a source- or

target-level move, the other becomes fixed. As a result, intermediate choices become trivial and

can therefore commute without difficulty. Choice ordering issues in the vertical composition proof

for refinement squares are likewise mitigated by strategy determinism.

A.3 Possible Remedies
Although the non-associativity of # can be circumvented in practice, it is still quite undesirable.

Working around it introduces unnecessary complexity, and by disrupting the formal consistency

of our framework, the issue makes it less intuitive and prevents the use of tools such as string

diagrams. Therefore we discuss possible solutions below.

Kripke Worlds. One option is to simply forego the game semantics approach for refinement

conventions, and to use some kind of state- or Kripke-world-based formalism instead. A refinement

convention would be defined using a set of states 𝑊 and transition relations along the lines

→ ⊆ 𝑊 × 𝐸1 × 𝐸2 ×𝑊 , which given an initial world relate two questions and transition to a

successor world. Similar relations would be provided for answers.

Note that this allows branching into multiple successor world at each step in the process. As

a result, the composite of two refinement conventions can simply use pairs of worlds and let

different intermediate questions transition to different target worlds. Further compositions would

simply offer more branches, but the resulting choices are synchronized over all components, and

no reordering occurs between questions and answers.

This the approach is used for simulation conventions in CompCertO and various other contexts.

It is straightforward but means that refinement conventions with the same behavior may not

34 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

be equal; they must compared up to some notion of simulation or bisimulation. In our context

an additional subtlety that need to be addressed is the type dependency between questions and

answers, both at the source and target levels.

Allowing Branching in the Space of Refinement Conventions. To reincorporate branching without

relying on Kripke worlds, an intermediate solution would consist in altering the space of refinement

conventions described by (11) above to incorporate branching into the shapes of refinement

convention behaviors. This should be possible using the downset construction D as a kind of

“power-sup-lattice” operator, as a replacement for the partial-definition comonad ⇑ used above:

𝑆branch𝐸↔𝐹 � 𝜇𝑆 ·
⊕

(𝑞1,𝑞2) ∈𝐸1×𝐸2

D ¬
⊕

(𝑟1,𝑟2) ∈ar(𝑞1)×ar(𝑞2)
D ¬𝑆 , (12)

It may be possible to achieve this by using more complex “plays” to define refinement conventions—

likely trees of some kind under an appropriate refinement ordering—but otherwise use a similar

approach to the one we propose.

B Compositional State
In this appendix, we provide a more detailed descriptions of the constructions described in §5.

B.1 Stateful Lenses
Definition B.1. A stateful lens between the sets𝑈 and 𝑉 , written 𝑓 : 𝑈 ⇆ 𝑉 , is given by a set 𝑃

of persistent states, an initial state 𝑝0 ∈ 𝑃 , and a lens 𝑓 from 𝑉 × 𝑃 to𝑈 .

The identity lens id𝑈 : 𝑈 ⇆ 𝑈 uses persistent states in 1 and is defined by:

getid𝑈 (𝑢, ∗) := 𝑢 , setid𝑈 (𝑢, ∗, 𝑢′) := (𝑢′, ∗) .
The composite 𝑔 ◦ 𝑓 of 𝑓 : 𝑈 ⇆ 𝑉 and 𝑔 : 𝑉 ⇆𝑊 uses pairs of persistent states of 𝑓 and 𝑔 and is

described by:

get𝑔◦𝑓 (𝑤, 𝑝, 𝑞) := get𝑓 (get𝑔 (𝑤, 𝑝), 𝑞) ,

get𝑓 (𝑤, 𝑝) = 𝑣 set𝑔 (𝑣, 𝑞,𝑢) = (𝑣 ′, 𝑞′) set𝑓 (𝑤, 𝑝, 𝑣 ′) = (𝑤 ′, 𝑝′)

set𝑔◦𝑓 (𝑤, 𝑝, 𝑞,𝑢) = (𝑤 ′, 𝑝′, 𝑞′) .
Theorem B.2 (Properties of Stateful Lens Composition). The composition of stateful lenses

is associative and admits identity lenses as units.

Definition B.3 (Strategy Interpretation of Stateful Lenses). A stateful lens 𝑓 : 𝑈 ⇆ 𝑉 with states in

𝑃 can be given a strategy interpretation [𝑓] : [𝑈] ↠ [𝑉] using simple effect signatures of the form

[𝑈] := {𝑢 : 𝑈 | 𝑢 ∈ 𝑈 }. For a state 𝑝 ∈ 𝑃 , the strategy [𝑓]𝑝 : [𝑈] ↠ [𝑃] is defined by

𝜖 ∈ [𝑓]𝑝
𝑣𝑠 ∈ [𝑓]𝑝 :⇔ 𝑠 ∈ [𝑓]𝑣𝑝

𝑢𝑠 ∈ [𝑓]𝑣𝑝 :⇔ get𝑓 (𝑣, 𝑝) = 𝑢 ∧ 𝑠 ∈ [𝑓]𝑣𝑢𝑝
𝑣 ′𝑠 ∈ [𝑓]𝑣𝑝 :⇔ 𝑣 = 𝑣 ′ ∧ 𝑠 ∈ [𝑓]𝑝

𝜖 ∈ [𝑓]𝑣𝑢𝑝
𝑢′𝑠 ∈ [𝑓]𝑣𝑢𝑝 :⇔ set𝑓 (𝑣, 𝑝,𝑢′) = (𝑣 ′, 𝑝′) ∧ 𝑠 ∈ [𝑓]𝑣′𝑝′

Notice that the definition above includes an angelic choice, after the lens is activated by an

incoming question 𝑣 , between returning 𝑣 unchanged or passing on the𝑢 component as an outgoing

questions and updating it based on the corresponding answer. This underlines that the interpretation

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 35

[𝑓] is not meant to be used as is but is expected to be combined with a “real” strategy from which

it will inherit these scheduling choices.

At the same time, the strategy interpretation is quite useful as an intermediate construction. In

particular, it allows us to reuse refinement conventions of type R : [𝑈] ↔ [𝑉] and refinement

squares of type [𝑓] ≤R↠S [𝑔] in order to complement the horizontal structure defined for stateful

lenses with the same vertical constructions we used for strategies. The following definition will be

useful in this context.

Definition B.4 (Refinement convention interpretation of relations). A relation 𝑅 ⊆ 𝑈 ×𝑉 defines a

refinement convention [𝑅] : [𝑈] ↔ [𝑉] given by:

(𝑢, 𝑣)⊥ ∈ [𝑅] :⇔ 𝑢 𝑅 𝑣

(𝑢, 𝑣) (𝑢′, 𝑣 ′)⊤ ∈ [𝑅] :⇔ 𝑢 𝑅 𝑣 ∧ ¬𝑢′ 𝑅 𝑣 ′

(𝑢, 𝑣) (𝑢′, 𝑣 ′) 𝑠 ∈ [𝑅] :⇔ 𝑢 𝑅 𝑣 ∧ (𝑢′ 𝑅 𝑣 ′ ⇒ 𝑠 ∈ [𝑅]) .

B.2 Spatial Composition
We will define spatial composition as a special case of tensor products, defined as follows.

Definition B.5. The tensor product 𝜎1 ⊗ 𝜎2 : 𝐸1 ⊗ 𝐸2 ↠ 𝐹1 ⊗ 𝐹2 of the strategies 𝜎1 : 𝐸1 ↠ 𝐹1 and

𝜎2 : 𝐸2 ↠ 𝐹2 is defined by pairing up their plays pairwise when they exhibit a similar structure, on

a move-by-move basis. The process can be described by the rules:

𝜖 ⊗ 𝜖 ∋ 𝜖

𝑠1 ⊗ 𝑠2 ∋ 𝑠

𝑟
1
𝑠1 ⊗𝑞1,𝑞2 𝑟

2
𝑠2 ∋ (𝑟1, 𝑟2)𝑠 𝜖 ⊗𝑞1𝑚1,𝑞2𝑚2 𝜖 ∋ 𝜖

𝑠1 ⊗𝑞1,𝑞2 𝑠2 ∋ 𝑠

𝑞1𝑠1 ⊗ 𝑞2𝑠2 ∋ (𝑞1, 𝑞2)𝑠
𝑠1 ⊗𝑞1𝑚1,𝑞2𝑚2 𝑠2 ∋ 𝑠

𝑚1𝑠1 ⊗𝑞1,𝑞2 𝑚2𝑠2 ∋ (𝑚1,𝑚2)𝑠
𝑠1 ⊗𝑞1,𝑞2 𝑠2 ∋ 𝑠

𝑛1𝑠1 ⊗𝑞1𝑚1,𝑞2𝑚2 𝑛2𝑠2 ∋ (𝑛1, 𝑛2)𝑠

The resulting strategy can be given as 𝜎1 ⊗ 𝜎2 :=
⋃

(𝑠1,𝑠2) ∈𝜎1×𝜎2 𝑠1 ⊗ 𝑠2.

A similar construction can be defined for refinement conventions and refinement squares.

Definition B.6. The tensor product R ⊗ S : 𝐸1 ⊗ 𝐹1 ↔ 𝐸2 ⊗ 𝐹2 of the refinement conventions

R : 𝐸1 ↔ 𝐸2 and S : 𝐹1 ↔ 𝐹2 is defined by the rules:

(𝑚1,𝑚2)⊥ ∈ R (𝑞1, 𝑞2)⊥ ∈ S(
(𝑚1, 𝑞1), (𝑚2, 𝑞2)

)
⊥ ∈ R ⊗ S

(𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ R ∨ (𝑞1, 𝑞2) (𝑟1, 𝑟2)⊤ ∈ S(
(𝑚1, 𝑞1), (𝑚2, 𝑞2)

) (
(𝑛1, 𝑟1), (𝑛2, 𝑟2)

)
⊤ ∈ R ⊗ S

(𝑚1,𝑚2) (𝑛1, 𝑛2)⊤ ∈ R ∨ (𝑞1, 𝑞2) (𝑟1, 𝑟2)⊤ ∈ S ∨ 𝑠 ∈
(
(𝑚1,𝑚2) (𝑛1, 𝑛2)\R

)
⊗
(
(𝑞1, 𝑞2) (𝑟1, 𝑟2)\S

)(
(𝑚1, 𝑞1), (𝑚2, 𝑞2)

) (
(𝑛1, 𝑟1), (𝑛2, 𝑟2)

)
𝑠 ∈ R ⊗ S .

The tensor product of strategies is not well-behaved in general, because layered composition

may affect how plays synchronize under the tensor product. However, the following special case

enjoys the expected properties.

Definition B.7. The spatial composition operator @ is defined:

• for an effect signature 𝐸 and a set𝑈 , as 𝐸 @𝑈 := 𝐸 ⊗ [𝑈];
• for a strategy 𝜎 and a stateful lens 𝑓 , as 𝜎 @ 𝑓 := 𝜎 ⊗ [𝑓];
• for the refinement conventions R and S as R@ S := R ⊗ S.

Theorem B.8. Spatial composition enjoys the properties described in Fig. 8.

36 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

C Memory Separation in CompCert
C.1 The CompCert Memory Model
In essence, a CompCert memory state assign to each possible memory address 𝑖 ∈ block × Z:

• a permission level 𝑝 ∈ option perm;

• a memory value 𝑣 ∈ memval.

In addition, a memory state contains a nextblock counter which keeps track of the next block

identifier to be allocated. We discuss these various components in more detail below.

C.1.1 Memory Addresses. The CompCert memory is divided in a number of blocks. As new blocks

are allocated, they are assigned a positive identifier 𝑏 ∈ N∗ in sequential order. As mentioned above,

the nextblock counter within each memory state keeps track of the smallest unallocated block

identifier. When a new block identifier is needed, nextblock is incremented and its previous value

is used for the new block.

Memory blocks represent independent address spaces. Within each block, a byte can be addressed

using an offset 𝑜 ∈ Z. When a new block is allocated, a range of addresses [lo, hi) must be provided;

this range determines which addresses within the block are valid. However, rather than storing the

range directly within the memory state, the allocation operation uses it to assign initial permissions

for each address within the new block.

C.1.2 Permissions. Each memory address within a memory state is assigned a permission level

among the following:

𝑝 ∈ option perm ::= ⊥ | nonempty | readable | writable | freeable
The permissions are listed above in increasing order, so that for example the permission level

writable represents the set of permissions {nonempty, readable,writable}. Permissions play an

important role in the memory separation relation we define.

When a block is first allocated, addresses within the provided range are assigned the permission

level freeable; all remaining addresses are assigned empty permissions ⊥. Further memory opera-

tions may then decrease the permission level, but can never increase it. Memory operations which

access a particular address will first check that this address has sufficient permissions, and fail if

that is not the case.

C.1.3 Memory Values. Each memory value represents the contents of exactly one byte of memory.

It may be stored as a concrete byte, or may be identified as a particular one-byte fragment within a

larger, more abstract value (for instance, the third byte of a given pointer).

The exact representation of memory values is not essential to the work discussed in this section.

Therefore we will not discuss the specifics further, but refer the interested reader to Leroy et al.

[2012] for more background on this topic.

C.1.4 Memory Transformations. The compilation passes of CompCert often transform the struc-

ture of the memory state: multiple blocks can merged into one; new blocks may be introduced in

the target memory and blocks may be dropped from the source memory. To express these trans-

formations, CompCert introduces memory extensions and memory injections as possible relations
between source- and target-level memory states.

In CompCertO, these memory transformations are generalized and consolidated into a notion of

CompCert Kripke Logical Relations (CLKRs), which play an important role in defining simulation

conventions. The underlying idea is that if two memory states are related by a CKLR, then memory

operations which succeed at the source level should also succeed on at the target level, and their

outcomes should in turn be related by the CKLR.

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 37

𝑚1 •𝑚2 ≡𝑚 ∧ 𝑚1 •𝑚2 ≡𝑚′ ⇒ 𝑚 =𝑚′

𝑚1 •𝑚2 ≡𝑚 ⇒ 𝑚2 •𝑚1 ≡𝑚

𝑚1 •𝑚2 ≡𝑚12 ∧ 𝑚12 •𝑚3 ≡𝑚 ⇒ ∃𝑚23 . 𝑚2 •𝑚3 ≡𝑚23 ∧ 𝑚1 •𝑚23 ≡𝑚

𝑚 • empty ≡𝑚

Fig. 9. Properties of separation algebras in relational form. See also Dockins et al. [2009].

Unfortunately, these memory transformations are difficult to use to express the relationships

between different fragments of a single memory state. The notion of separation relation introduced

below seeks to fill this gap.

C.2 Separation Relations
To express memory separation in CompCert, and define a join relation 𝐽 ⊆ (mem ×mem) ×mem.

We will write 𝐽 (𝑚1,𝑚2,𝑚) as:
𝑚1 •𝑚2 ≡𝑚 ,

understood to mean that the memory states𝑚1 and𝑚2 can be merged into𝑚. This relation satisfies

the properties listed in Fig. 9 and defines a separation algebra in the sense of Dockins et al. [2009].

In addition to these structural properties, the join relation must be compatible with CompCert’s

memory operations. If an operation which reads from the memory succeeds on a fragment, it

should succeed with the same result on a larger memory state:

op(𝑚1) = Some 𝑣 𝑚1 •𝑚2 ≡𝑚

op(𝑚) = Some 𝑣

Likewise, operations which updates the memory should be insensitive to additional fragments:

op(𝑚1) = Some𝑚′
1

𝑚1 •𝑚2 ≡𝑚

∃𝑚′ . 𝑚′
1
•𝑚2 ≡𝑚′ ∧ op(𝑚) = Some𝑚′

Together, these properties allow us to derive versions of the frame rule for CompCert languages:

if a program can successfully execute on 𝑚1 alone to yield a new memory fragment 𝑚′
1
, then

executing it on a larger memory state 𝑚1 •𝑚2 will succeed as well, and yield a memory state

𝑚′
1
•𝑚2 where the irrelevant portion𝑚2 has not been modified.

Moreover, executions which affect disjoint parts of the memory can be considered independently.

Specifically, from the rules above we can derive the property:

op
1
(𝑚1) = Some𝑚′

1
op

2
(𝑚2) = Some𝑚′

2
𝑚1 •𝑚2 ≡𝑚

∃𝑚′ . op
1
(op

2
(𝑚)) =𝑚′ ∧ 𝑚′

1
•𝑚′

2
≡𝑚′

As in separation logic, this facilitates reasoning about program components which affect the

memory state in independent ways.

Below we explain how a separation relation can be defined for the CompCert memory model.

C.2.1 Memory Contents. A CompCert memory state essentially defines a map of type

ptr → option perm ×memval ,

which assigns to every possible address a permission level and a memory value. Figure 10 shows

the definition of a simple separation relation for the contents of individual memory cells. This

relation can then be extended to the whole map in the obvious way.

38 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

𝐽contents

(𝑝, 𝑣) ∈ option perm ×memval

(⊥, undef) • (𝑝, 𝑣) ≡ (𝑝, 𝑣)
(𝑝, 𝑣) • (⊥, undef) ≡ (𝑝, 𝑣)

(a) Memory contents

𝐽nextblock

(nb, 𝑎) ∈ block × bool

max(nb1, nb2) = nb ¬(𝑎1 ∧ 𝑎2)
(nb1, 𝑎1) • (nb2, 𝑎2) ≡ (nb, 𝑎1 ∨ 𝑎2)

(b) Fresh blocks

Fig. 10. Basic ingredients for separation algebras of the CompCert memory model.

C.2.2 Block Validity. A more challenging issue is the treatment of nextblock. When a memory

state𝑚 is separated into𝑚1 •𝑚2 ≡ 𝑚, the fragments𝑚1 and𝑚2 will share a common view of

the address space. However, they each carry their own copy of the nextblock counter. As a result,

performing independent allocations in each fragment will break the separation property, because

the new blocks will be assigned conflicting names.

As a starting point, we solve this problem by making sure that new blocks can only be allocated

in one of the fragments. In addition to the nextblock counter, memory states carry a boolean flag

indicating whether allocations are permitted. When memory fragments are joined, this flag can

only be set in one of the fragments. Figure 10b shows the corresponding separation algebra for the

nextblock counter.

D Certified Abstraction Layers
We present the proof for layer composition step by step in this section.

Given the individual layer correctness:

𝜓12 : 𝐿1 ⊢𝑅 𝑀 : 𝐿2 𝜓23 : 𝐿2 ⊢𝑆 𝑁 : 𝐿3 ,

we can thread the abstraction relation 𝑅 through the program 𝑁

Clight(𝑁) @ 𝑅 : Clight(𝑁) @ 𝐷2 ≤C@mem@𝑅↠C@mem@𝑅 𝑝Clight(𝑁) @mem@ 𝐷1 , (13)

and use the frame rule to combine together the memory fragments

FP(𝑁) @ 𝐷1 : Clight(𝑁) @mem@ 𝐷1 ≤C@Y@𝐷1↠C@Y@𝐷1
Clight(𝑁) @ 𝐷1 . (14)

By vertically composing (13) and (14), we have the following self-simulation property

𝜓 := Clight(𝑁) @ 𝑅 # FP(𝑁) @ 𝐷1 : Clight(𝑁) @ 𝐷2 ≤C@�̂�↠C@�̂� Clight(𝑁) @ 𝐷1 . (15)

The simulation (15) can then be horizontally composed with the underlay correctness𝜓12

𝜓 ⊙𝜓12 : Clight(𝑁) @ 𝐷2 ⊙ 𝐿2 ≤⊤↠C@�̂� Clight(𝑁) @ 𝐷1 ⊙ Clight(𝑀) @ 𝐷1 ⊙ 𝐿1 . (16)

Finally, we put the overlay correctness on top of (16)

𝜓23 # (𝜓 ⊙𝜓12) : 𝐿3 ≤⊤↠C@(𝑆#�̂�) (Clight(𝑁) ⊙ Clight(𝑀)) @ 𝐷1 ⊙ 𝐿1 , (17)

and by applying the structural isomorphism 𝛼 : (𝑆 # 𝑅) � 𝑅 · 𝑆 , we obtain the conclusion in §6.5

𝛼 ⊙
(
𝜓23 # (𝜓 ⊙𝜓12)

)
: 𝐿3 ≤⊤↠C@𝑅 ·𝑆 (Clight(𝑁) ⊙ Clight(𝑀)) @ 𝐷1 ⊙ 𝐿1 .

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 39

E Clight with module-local state
We present the proof for composing the correctness of ClightP compilation in this section.

First of all, the frame property extends to the ClightP semantics:

FP′ : ClightP⟨𝑀⟩ ≤C@Y↠C@Y ClightP⟨𝑀⟩

Then given the correctness for𝑀 and 𝑁

𝜋𝑀 : ClightP⟨𝑀⟩ ≤R↠S(𝑚0) Clight(𝑀 ′) 𝜋𝑁 : ClightP⟨𝑁 ⟩ ≤R↠S(𝑛0) Clight(𝑁 ′) ,

where R and S(𝑚0) are shorthands for C @mem • [mem⟩∗ and C @mem • ⟨𝑚0]∗, we utilize the
following properties:

𝜙𝑀 : ClightP⟨𝑀⟩ ≤R↠R ClightP⟨𝑀⟩ := (ClightP⟨𝑀⟩ @ [mem⟩∗) # FP′

𝜙𝑁 : Clight(𝑁 ′) ≤S(𝑚0)↠S(𝑚0) Clight(𝑁 ′) := (Clight(𝑁 ′) @ ⟨𝑚0]∗) # FP′

𝛼 : R ⊑ R # R 𝛽 : S(𝑛0) # S(𝑚0) ⊑ S(𝑛0 •𝑚0)
.

where the refinement between simulation conventions 𝛼 and 𝛽 follows the associativity of the •
operator. By composing together the properties, we obtain the composite correctness of ClightP
compilation:

𝛽 ⊙ ((𝜋𝑁 #𝜙𝑁) ⊙ (𝜙𝑀 #𝜋𝑀)) ⊙𝛼 : ClightP⟨𝑁 ⟩ ⊙ClightP⟨𝑀⟩ ≤R↠S(𝑛0•𝑚0) Clight(𝑁 ′) ⊙Clight(𝑀 ′) .

F Proof Details in BoundedQueue Example
We visually present the definition of 𝜙rb and𝜓rb from §6.3 here to faciliate understanding:

𝜙rb :=
(
𝜙min
rb @⟨mem]∗#FP(rb.c)

)
⊙𝑧 =

⊤ ⊤ C@𝐷rb

𝜙min
rb @⟨mem]∗

z C@mem@mem C@mem@mem

FP(rb.c)
C@mem C@mem C@mem

id

∅

C@⟨mem]∗@∅

Γrb

C@⟨mem]∗@𝑅rb
Clight(rb.c)@mem

C@Y C@Y

id
Clight(rb.c)

𝜓rb :=

C C
C@⟨mem]∗

C@mem C@mem

C@⟨mem]∗

id

C@⟨mem]∗

id

⊛

𝐷rb 1

𝜁rb

mem 1

[𝑚0 ⟩▽
mem mem

𝑅rb

[𝑑0⟩

[𝑚0⟩

[𝑚0⟩∗

id

:

C@𝐷rb C

𝜓rb

C@mem C@mem

C@⟨mem]∗⊛𝑅rb

C@[𝑑0⟩

C@⟨𝑚0⟩

id

.

G Proof Details in Rot13 Example
G.1 Definitions of fifo
Recall in Example 2.11 the pipe operator is defined with a component fifo : 0 → F to model the

buffer. We now give its definition:

fifo := 𝜎𝜖

𝑤 ∈ 𝜎𝑠1 ·𝑠2

write[𝑠2] · len(𝑠2) ·𝑤 ∈ 𝜎𝑠1

𝑠 = 𝑠1 · 𝑠2 len(𝑠1) = 𝑛 𝑤 ∈ 𝜎𝑠

read[𝑛] · 𝑠1 ·𝑤 ∈ 𝜎𝑠

40 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

G.2 Clight Loader
The auxiliary components entryC and runtimeC are defined as:

entryC ⊨ run ↣ (main()@𝑚0 { 𝑟@𝑚) ↣ 𝑟

runtimeC ⊨ read(0, 𝑏, 𝑛)@𝑚[𝑏 ↦→ 𝑢𝑛𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑒𝑑] ↣ (read0 [𝑛] { 𝑠) ↣ len(𝑠)@𝑚[𝑏 ↦→ 𝑠]
runtimeC ⊨ write(1, 𝑏, 𝑛)@𝑚[𝑏 ↦→ 𝑠] ↣ (write1 [𝑠 [0 : 𝑛]] { 𝑛′) ↣ 𝑛′@𝑚[𝑏 ↦→ 𝑠]

It is obvious that the Clight level questions and answers in entryC and runtimeC can be related

with their counterparts in the assembly loader with respect to the simulation convention C. Thus,
the loaders transport the C-related CompCertO simulations into simulation relations between

process behaviors in the following sense:

loadC (𝐿) := entryC ⊙ J𝐿K ⊙ runtimeC
𝜙 : 𝐿1 ≤C→C 𝐿2

𝜙 ℓ
: loadC (𝐿1) ≤ loadA (𝐿2)

G.3 Program Specifications
The program-level specifications Σsecret and Σdecode are defined as follows:

Σsecret ⊨ main()@𝑚[𝑏 ↦→ "hello, world!\n"]
↣ (write(1, 𝑏, 14)@𝑚[𝑏 ↦→ "uryyb, jbeyq!\n"] { 14@𝑚[𝑏 ↦→ "uryyb, jbeyq!\n"])
↣ 0@𝑚[𝑏 ↦→ 𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑]

Σdecode ⊨ main()@𝑚

↣ (read(0, 𝑏, 100)@𝑚[𝑏 ↦→ 𝑢𝑛𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑒𝑑] { len(𝑠)@𝑚[𝑏 ↦→ 𝑠])
↣ (write(1, 𝑏, len(𝑠))@𝑚[𝑏 ↦→ rot13(𝑠)] { 𝑛@𝑚[𝑏 ↦→ rot13(𝑠)])
↣ 0@𝑚[𝑏 ↦→ 𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑]

The program-level specification implements the strategy in the following sense:

𝜙decode : Γdecode ≤ loadC (Σdecode)
𝜙secret : Γsecret ≤ loadC (Σsecret)

S P
𝜙secret

S C C P

Γsecret

entry Σsecret runtime

S P
𝜙secret

C C

runtime∗

Γsecret

entry∗

Σsecret

It is worth mentioning that the components entryC and runtimeC can also be viewed as simulation

conventions that translates signatures S and P into the C language interface, as illustrated in the

diagrams above.

G.4 Simulation between C and Asm components
Consider an assembly program secret.s and its specification written in terms of the C language

interface 𝐿secret : C ↠ C, the goal is to prove:

𝐿secret ≤C↠C Asm(secret.s)
where C is the CompCertO simulation convention [Koenig and Shao 2021, Section 5]:

C := R∗ · wt · CA · vainj
The overall simulation convention C looks complicated. However, the proof can be significantly

simplified with the help of the parametricity of CompCertO’s Kripke logical relation(CKLR):

Theorem G.1 (Parametricity[Koenig and Shao 2021, Theorem 4.3]). For the languages 𝐿 ∈
{Clight,RTL,Asm},

∀ R ∈ CKLR. 𝐿(𝑝) ≤R→R 𝐿(𝑝)

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 41

We first show the goal can be achieved with the following the proof obligations:

𝐿secret ≤R↠R 𝐿secret (18)

𝐿secret ≤wt↠wt 𝐿secret (19)

𝐿secret ≤injp·CA↠inj·CA Asm(secret.s) (20)

By applying [Koenig and Shao 2021, Theorem 5.6] to (18), we get:

𝐿secret ≤R∗↠R∗ 𝐿secret (21)

At the same time, an immediate instance of the Theorem G.1 is:

Asm(secret.s) ≤vainj↠vainj Asm(secret.s) (22)

Vertically composing simulations (21), (19), (20), and (22) gives us:

𝐿secret ≤R∗ ·wt·injp·CA·vainj↠R∗ ·wt·inj·CA·vainj Asm(secret.s) (23)

By [Koenig and Shao 2021, Lemma 5.7, Lemma 5.8], we have the following refinement properties

between simulation conventions:

inj · CA ⊑ CA · inj injp · wt ⊑ wt · injp
These commutations allow the injp to be absorbed into R∗

, and inj to be absorbed into vainj, thus
complete the proof.

The proof obligations remain to be manually verified, but they are quite straightforward.

	Abstract
	1 Introduction
	1.1 The program logic paradigm misses crucial aspects of software development
	1.2 Compositional semantics offer a more flexible approach
	1.3 Three dimensions of compositionality
	1.4 Contributions

	2 Compositional Semantics for Verification
	2.1 Overview
	2.2 Effect Signatures
	2.3 Strategies
	2.4 Layered Composition
	2.5 Data Abstraction and Vertical Composition
	2.6 Combining Effect Signatures

	3 Strategy Model
	3.1 Strategies
	3.2 Layered Composition
	3.3 Flat Composition

	4 Refinement Conventions
	4.1 Overview
	4.2 Refinement Conventions
	4.3 Refinement Squares
	4.4 Vertical Composition
	4.5 Flat Composition

	5 Compositional State
	5.1 Explicit State
	5.2 Passing State Through
	5.3 Transforming State
	5.4 State Encapsulation
	5.5 Implementing Encapsulated State

	6 Evaluation and Applications
	6.1 Mechanization in the Coq Proof Assistant
	6.2 CompCertO semantics
	6.3 Memory Separation
	6.4 Modeling loading and the execution environments
	6.5 Certified Abstraction Layers
	6.6 Clight with Module-Local State

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Vertical Composition of Refinement Conventions is not Associative
	A.1 The Space of Refinement Conventions
	A.2 Why Associativity Fails
	A.3 Possible Remedies

	B Compositional State
	B.1 Stateful Lenses
	B.2 Spatial Composition

	C Memory Separation in CompCert
	C.1 The CompCert Memory Model
	C.2 Separation Relations

	D Certified Abstraction Layers
	E Clight with module-local state
	F Proof Details in Bounded Queue Example
	G Proof Details in Rot13 Example
	G.1 Definitions of fifo
	G.2 Clight Loader
	G.3 Program Specifications
	G.4 Simulation between C and Asm components

