Abstract Advanced high resolution methods for real-time signal processing require fast multipro-
cessor architectures, realized as Very Large Scale Integrated systems, for their implementation. A
class of parallel architectures, ‘systolic arrays’, fulfills the demands of signal processing and at the
same time conforms to the limitations of VLSI technology. :

The design of efficient systems of systolic arrays is an iterative process in which the infor-
mation gathered from mapping algorithms onto hardware is influential in the development of the
algorithms. Presently, the absence of mapping tools makes it extremely difficult to find good
systolic implementations for many important problems. Often, one cannot do better than im-
plementing structurally simple but numerically inferior algorithms, which is undesirable for most
signal processing tasks.

A methodology is proposed that automates the mapping of recurrence equations to processor
arrays. Two aspects distinguish our methodology from extant work : (1) complex coupled sys-
tems of recurrence equations can be systematically treated and (2) the resulting systolic systems
are optimal. The methodology takes as input recurrence equations describing the algorithm, along
with certain desirable hardware features. A sophisticated optimization procedure is then applied to
generate the description of optimal arrays that implement the algorithm. If there is no satisfactory
implementation, the algorithm will have to be revised, in order to improve pipelinability, without
sacrificing numerical stability. Several classes of applications will significantly benefit from this ap-
proach : fast analysis of parallel algorithms, efficient partitioning of algorithms, and determination
of optimal architectures for the implementation of multiple algorithms.
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1. Introduction

Systems for such applications as radar and sonar detection and identification, robot vision,
medical imaging and geophysical exploration have to extract features from or make decisions based
on large amounts of data. Such systems can typically be decomposed into two parts, a front-end and
a classification subsystem. The front-end collects the data and performs filtering and parameter
estimation to extract useful information from the measurements; the classification sub-system infers
from the information forwarded by the front-end the occurrence and nature of certain events.

In order to minimize the decision time or to reduce storage by orders of magnitude, data often
must be processed in real time. In order to keep up with the acquisition rate of the uncompressed
data, the front-end has to be able to perform several hundred million operations per second, and
therefore has to consist of many processors. The cost of such systems is minimized when the desired
throughput is attained on the smallest number of processors. This is accomplished by implementing
‘fast’ pipelinable algorithms which allow a minimal operation count as well as chaining of operations
in a high efficiency pipeline.

The processors themselves should be fast enough and hence must be special purpose arithmetic
computers. For reasons of reliability, cost, size, weight and power consumption, they are presently
realized as VLSI chips. Because of their impact on the whole system, some limitations of the VLSI
technology must be taken into account at the outset of the design process. The most important
are the high design cost for developing novel processor architectures and the limited Input/Output
capabilities of chips due to small pin counts (on the order of one hundred) [59]. These constraints
combined with the desire for efficient pipelining have led to the concept of ‘systolic arrays’ [36, 42].

Systolic arrays consist of a few types of processors that perform elementary operations (such
as additions or multiplications) selected by a simple control unit. The pattern of interconnections
among processors is regular and each processor is connected to only a few other processors. Since
the types of operations performed are data independent, the processors can be made to operate
synchronously without affecting the global performance; this simplifies the control of the processors
and reduces the area needed to implement them in silicon.

The process of front-end design can be decomposed into three steps :

e Development of signal processing techniques. Modern techniques optimize a given criterion
(for instance to minimize some error norm) and exploit prior information (often through the
choice of a particular statistical model for the incoming signals).

o Development of fast, stable and pipelinable algorithms that perform the optimization. It will
often be necessary to increase the number of operations (by introducing redundancy for exam-
ple) in order to increase stability (permitting simpler processors) and pipelinability (resulting
in higher efficiency).

e Mapping of the algorithms onto minimal cost systolic architectures that deliver the desired
throughput and comply with the current technological constraints. The best architecture may
be a combination of several systolic arrays with different processors or interconnection pat-
terns. :

Clearly the three design steps are not completely independent and the best designs will be
obtained through an iterative procedure; if there is no satisfactory implementation of an algorithm
it will have to be revised. To make such iterations practically feasible the time consuming mapping
process must be automated and minimal cost mappings must be determined at every iteration.

Recently there have been many attempts to formalize the usual trial-and-error procedure for
the mapping of computations onto an array. (These are surveyed in the Appendix.) Generally
these mappings are unduly restricted and, at best, the designs are enumerated; the corresponding
techniques do not guarantee the determination of a minimal cost design. However, we believe
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that it s possible to find optimal mappings within a reasonable amount of time, even for complex
algorithms that are mapped onto a collection of systolic arrays or for algorithms that require several
passes on the same array.

The class of algorithms implemented on front-ends is large. If the optimization criterion
consists of minimizing summed squared errors, the algorithms call either for matrix inversions and
factorizations, or for matrix eigenvalue or singular value decompositions, depending on the model
for the signals [69]. The processing techniques may also require the evaluation of correlations or
convolutions. All these algorithms can be expressed as systems of recurrence equations. Due to
the wide variety of these systems the goal of the proposed mapping method is to find the optimal
mappings for eny system of recurrence equations.

2. Motivation for a Design Methodology

Up to now most of the time and effort in systolic array design has gone into finding an array
that performs the desired computation (the terminology ‘systolic array’ should be understood in
the wider sense as including collections of systolic arrays). If an algorithm had what seemed to be
‘too complex’ a structure to be mapped on an array, an ‘easier’ method that appeared to have a
better chance of being implementable had to be chosen. Consequently, the numerical performance
of the algorithm had to be sacrificed in order to obtain a processor array, frequently one which
would execute a numerically inferior, possibly even unstable, method. For most signal processing
tasks this kind of inaccurate and unreliable information is unacceptable. Increasing the precision
(the number of bits used to represent a numerical value) is usually no remedy : it slows down
the computation, increases the area of each processing element, may also render the computation
Input/Output bound, and, after all, still does not lead to satisfactory numerical results.

Application of our design methodology will allow the designer of systolic systems to concentrate
on the algorithm development, particularly on modifications for improved numerical behavior or
pipelinability, rather than on the mapping process. Besides reducing the design time, this will
give the designer confidence in the hardware, since the resulting systolic array will be correct by
construction. Consequently, no @ posterior: verification process, as described in [10, 12, 38, 39, 51,
52, 53, 70], will be necessary.

Automatic design of systolic arrays has been addressed from different points of view : algebraic
manipulations with a time delay operator [13, 26, 27, 28, 34, 37, 71, 72], iterative improvement
of a given design by retiming, [33, 40, 41, 42, 44, 45, 46], inductive construction from first order
recurrence equations [11], and determination of linear transformations applied to a geometric rep-
resentation of the recurrence equations [2, 6, 7, 8, 9, 17, 19, 18, 30, 31, 32, 49, 50, 54, 55, 56, 57,
58, 66, 67, 68]. This latter approach determines systolic designs as follows. Taking advantage of
the regularity in the recursions, the partial order of the operations in the algorithm is summed
up through ‘dependence vectors’. There are many ways of evaluating recursions consistent with
the partial order. The ones which are systematic and regular can be represented by projecting
on a single ‘time direction’, i.e., there is a global time arrow. Constraints on the possible time
directions are easily deduced from the dependence vectors. A similar notion of ‘processor direction’
allows the projection of operations onto processors in a regular fashion. The only constraint on
the processor directions is linear independence with the time direction (which means that no two
computations can be performed on the same processor at the same time). By expanding these
ideas, our methodology is the only one [18] capable of systematically handling coupled systems of
recurrence equations as well as being able to generate provably optimal systolic arrays.

Optimal designs can be found for various user-specified constraints on the architecture; these
may include restriction of Input/Output to boundary processors, specified ordering and timing of
input data, avoidance of broadcasting or a limit on the number of processors. Optimality of the
mapping is critical, since an inaccurate assessment of the parallelism inherent in an algorithm can

2




lead the designer to make unnecessary modifications to the algorithm. An array is defined to be
optimal if, among all designs satisfying some user-specified hardware constraints, it best meets a
hierarchy of selected criteria. A hierarchy of objectives to be satisfied in sequence is introduced
to precisely delineate the implementation since there are generally many designs that attain the
optimum for a single objective. In a real-time implementation, for example, given throughput is
a constraint and a minimal number of processors would be a primary objective, while minimal
latency and storage could be secondary and tertiary objectives. The use of such a cascade of
objectives permits a precise formulation of the designer’s desiderata, avoids long and overwhelming
enumerations of possible solutions, and reduces the computation time needed to find the final
design. Still, in most cases these multiple objectives and constraints will not uniquely specify an
optimal design, and application of the methodology will result in a succinct description of a elass of
systolic arrays. The information about the members of the class can then be employed for further
refinement of the details and ‘fine tuning’ of the systolic array specifications, such as number of
registers per processors, or complexity of control.

3. Applications of the Design Methodology

An important and direct application of the methodology is the determination of architectures
on which to implement multiple algorithms. Three more classes of applications for which the design
methodology can be most beneficial are illustrated in this section : improvement of algorithm design
and analysis, application to complex problems, and problem partitioning.

3.1. Improvement of Algorithm Design and Analysis

Since the methodology will automate the mapping to hardware, more time and effort can
be spent on the design and analysis of numerical algorithms. An example is the solution of linear
systems of equations with symmetric positive definite Toeplitz coefficient matrix. An algorithm due
to Levinson [47] exploits the Toeplitz structure and is routinely used on single-processor machines.
Although it consists of only two simple coupled recursions, one to update partial solutions to the
system and the other to compute certain inner products, the algorithm does not readily lend itself
to a systolic array implementation.

The methodology first establishes that the algorithm cannot admit to an efficient systolic array,
because the same vector is used from both ends in the recursion for the partial solution update,
thus leading to highly restrictive dependences. This difficulty is resolved by working with two
copies of the vector instead of just one [29]. This repetition duplicates certain computations and
increases the total operation count by fifty percent, but eliminates some of the more constraining
dependences. However, the methodology shows that the modified algorithm still does not admit to
an efficient systolic implementation because of the nature of the interdependence between partial
solution update and inner product recursions.

Further analysis indicates a way of drastically improving the pipelinability of the Levinson
algorithm. This modification of the algorithm takes advantage of the Toeplitz structure when
evaluating the inner products (and increases the Levinson operation count by another fifty percent).
At this point, one notices that the twice modified Levinson algorithm resembles Schur’s algorithm,
except for some extraneous computations. This is the reason why Schur’s method is used instead
of Levinson’s, see [1, 4, 5, 14, 35, 62].

Schur’s algorithm is a fast way of performing the factorization of the Toeplitz coefficient matrix.
To solve a system of equations two more steps are necessary, a forward and a backward substitution.
In [15] recursions are derived for these two steps that closely resemble the Schur algorithm and
minimize the number of intermediate quantities to be stored. Numerical experiments show that
the stability and round-off errors are competitive with those of the best, currently available methods.
In [16] the methodology is applied to find efficient systolic arrays for that algorithm under various
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user-specified hardware constraints. This example is presented in the next section to illustrate our
methodology.

3.2. Application to Complex Problems

Recent years have witnessed the development of a family of multichannel exact least-squares
adaptive algorithms [20, 21, 63] and their application to important problems such as the estimation
of time-differences of arrival for target tracking, noise cancelling or adaptive equalization. These
recursive algorithms exhibit excellent performance and are ideally suited for real-time processing.
However, their implementation is not an easy task. The difficulty stems from the fact that they are
expressed in terms of matrix operations (the order of the matrices being the number of channels) and
that pipelinability requires the proper choice of algorithms for decomposing the matrix operations
into scalar operations. This implementation problem displays a tight coupling between algorithm
design and mapping of steps. Our methodology will allow fast evaluation of the maximal efficiency
inherent in the algorithms and will guide us in exploring alternative decompositions of matrix
operations.

3.3. Problem Partitioning

Most algorithms A are formulated in terms of a small number of parameters on which their
computation time and hardware requirements depend. For instance, the Gaussian elimination
process on a square matrix of size n takes time n3 on a single processor, or can be implemented in
time n on a systolic processor grid of size proportional to n? [3].

Of interest here are those problems A(n) whose resources depend on the maximal number n
of iterations in a system of recurrence equations (for matrix problems this would be equivalent
to dealing with a matrix of order no larger than n). Partitioning the problem A(n) then means
to break its equations down and possibly reorder them, so that the resulting problem A can be
partitioned into p independent and similar subproblems A(z) which can then be solved p times
faster. Partitioning is used, for example, when the number of processors p is strictly smaller than
the dimension n of the problem or not all of the input parameters can be input at the same time;
it is also of fundamental interest when the hardware is used for problems of differing sizes.

For example, in [25] Gaussian elimination is discussed when each of the p < n processors
performs eliminations on n/p (not necessarily adjacent) rows or columns of a n X n matrix. Heller
[23] discusses the decomposition of recursive filters for linear systolic arrays while Moldovan et al.
[58] sketch a way of mapping the unshifted QR algorithm for symmetric matrices onto a fixed size
rectangular array. In [24] partitioned algorithms and corresponding systolic systems are derived for
LU-decompostion, matrix multiplication, triangular system solution and matrix inversion. Priester
et al. [64, 65] rearrange the data for banded matrix vector multiplication to fit a fixed size systolic
array of [36]. A general survey of partitioning methods and their influence on systolic processor
design is discussed in [22] for some basic matrix methods.

On account of the dependence vector concept, the methodology can first determine the possible
partitionings A(7) compatible with p processors. Each partitioning A(7) is then treated like a set
of coupled steps by the optimization algorithm, with the constraint that the resulting array may
consist of only p processors.

4. Illustration of the Design Methodology

In order to illustrate our approach an example is given which shows how to systematically
derive optimal systolic arrays for the solution of Toeplitz linear systems. The algorithm consists
of several steps and hence is complex enough to provide the main ideas for dealing with general
systems of coupled recurrence equations.

Our design methodology consists of several tasks; each of the following sections is devoted to
one such task. Within each section, the necessary notions and terminology are introduced and the
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Step 1

Figure 1: Dependence Graph for Steps 1, 2 and 3.

nature of the task is illustrated by means of the example. We will start with a short description of
the algorithm.




Figure 2: Acyclic Graph Obtained from the Directed Cut-
Sets of the Dependence Graph.

4.1. Description of the Toeplitz Hyperbolic Cholesky Solver
The Toeplitz Hyperbolic Cholesky Solver (THCS) [15] has been designed as an efficient, min-
imal storage, algorithm for the parallel solution of linear systems of equations,

where the n x n coefficient matrix A = (a;;) is a symmetric positive definite Toeplitz matrix,
aji-j| = a;5, that is, its elements are constant along each diagonal.

Several highly concurrent systolic architectures for the solution of Toeplitz systems have re-
cently been presented [4, 5, 14, 35, 62]. They start with the pipelined factorization of A via variants
of an old algorithm due to I. Schur (cf. [1, 60]) but differ in the way these results are used to de-
termine the solution vector. In [15] it was shown how to use the rotation parameters computed in
the Schur algorithm so that storage is minimized, and subsequent steps can be easily pipelined and
closely resemble the first step.

The first step, given in the recurrences below, computes the Cholesky factor U of A (such
that A = UTU) via an elimination procedure based on hyperbolic rotations. The quantities Tij
correspond to the elements of the Cholesky factor U, p; are the Schur parameters (hyperbolic
tangents of the rotations) and s;; are auxiliary quantities.
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Step 1:
1<:<n, fipg=ai_

2<i1<n, §o=ai-
1<5<n, pjo1=3§;,-1/F-1
J<i<n, 1o =Tijo1 - pi-18ij-1
Sij-1 = =Pj-1Tij-1 + 8ij-1
J+1<i<n, Fij=ri1;-1
8ij = Sijj-1
In essence, the first step performs a premultiplication of A by U~7. In the second step the same
operations are applied to the right-hand side vector b. The elements of y = U~Tb are the quantities
Yij-1-
Step 2 :

7<iLn, Yij-1=¥ij-1— pj-1Zij-1
Zij-1 = —Pj-1¥ij-1 + Zij-1
J+1<i<n, ¥j=yij
Zij = zi—1,5-1
During the last step, y is essentially premultiplied by U~!. Since U~! is the transpose of U~T, the
operations are the same hyperbolic rotations as in Steps 1 and 2 but performed in reverse order.
The solution vector x = U~ly is obtained as the sum of f and g. Note that of all the quantities

computed in Step 1 only the Schur parameters p;_; and the diagonal elements r; j_; of U, hence
just O(n) quantities, are used in later steps.

Step 3 : .
12520, fajt+1,j-1 = Un—jti,n-j/Tn-j+1n—j
gn,j-l =0
n—j+2<i<n, fij1=fij |
Ji-1,j = 9ij
n—j+1<i<n, fij=fij-1- pPn-jfij-1 !
9ij = —Pn-jfij-1 +Gij-1
1<i<n, ;= fx’,n + gin
Associated with the algorithm is a dependence graph whose nodes are the variables in the
algorithm and whose edges represent the dependences between variables, see Figure 1. The decom-
position of an algorithm into steps is determined from the directed cut-sets of this graph. Here,
the variables are decomposed into six groups, where the graph of the dependences between these
groups is acyclic, see Figure 2. These groups define six steps (the functional decomposition into
three steps used to present the example is a simplification). The dependences between variables
within a group are called internal dependences while the ones between groups are called ezternal
dependences.
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Figure 3: Dependence Graph for Step 1 Before (a) and After
(b) Removal of Redundant Variables.

Renaming occurs when a variable depends on exactly one other variable within the same group
(though it could depend on other variables outside the group). In Step 1, for instance, the variables
7 and § serve no other purpose but renaming and introduce unnecessary dependences, see Figure 3.
Upon their removal the equations of the first step are rewritten as
Step 1:

1<:<n, Ti-1,-1 = @
81,~-1 = 0
2<i<n, si1=aig
1<j<n, pj-1=sj-2/rj-1,-2
JSiSn, Tijo1=Tioyj-2 = Pj-1Sij-2
Sij-1 = —pj-1Ti-1,j-2 + Si,j-2

Similarly, the removal of redundant variables in the other two steps yields the equations below :

Step 2 :
1<i<n, yi-1=b
Zi—1,-1 = b;
1S7<n,3 <180, Yij-1=Y¥ij-2 = Pj-12i-1,-2
Zij-1 = —pj-1Y¥ij-2 T Zi-1,5-2
Step 3 :

1S5S0, famjirjo1 = Ynojbines/Tanjtin-;
In+1,5-1= 0
n—3+1<i<n, fi;=fij-1= Pn-ji+1,j-1
9ij = —Pn-jfij-1+ gi+1,j-1
1<i<n, ;= fi,n+gi,n
In general, the decomposition of an algorithm into steps and the detection of redundant variables
is a two-pass procedure on the graph of the dependences in the algorithm.
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Figure 4: Domains of Computation for Steps 1, 2 and 3.

4.2. Internal Dependence Vectors and Local Transformations

The first task of the methodology, a concise formalization of the input, is accomplished by
expressing the dependences within each step mathematically. All variables in the above recurrence
equations have at most two indices. If u;; is a variable on the lefthand side of a recurrence equation
then its computation can be visualized as taking place at coordinate (¢, ) in two-space. The set of
points corresponding to all the computed variables in Step k will be called its domain of computation
Dy, k=1,2,3.

In this case, the domains of computation Di take the form of triangles and are depicted in
Figure 4. Within each domain, computations occurring at the same point (¢,7) are performed in
the same processor during the same clock cycle while computations occurring at different points
(¢,5) will be executed in different processors or different cycles. In Figure 4 sides of the triangles
Dy are distinguished by labels corresponding to quantities computed or input at the sides. The
recurrence equations in Step k can be represented as a directed, regular acyclic computation graph.
The nodes of the graph are the points of D, its edges are called internal dependence vectors [55,
56]. The latter relate the indices of variables within the group of variables associated with Step k
as follows : for each variable u;; on the lefthand side of an equation the dependence vectors are
the vectors from point (7, 5) toward the indices of the quantities needed for that computation, i.e.,
of the variables on the right-hand side of that equation. In contrast to the more general notion of
‘dependence’ which is used to determine steps and detect redundant variables, dependence vectors
are derived from the indices of the variables. Internal data dependences define the valid orders of
evaluating the recurrence equations within a step. '

A vector 7 is a time vector for Step k if and only if any two points z and y in Dy for which
the computation at y precedes the computation at « satisfy y7r < zTr (here and in the sequel, all
vectors are column vectors). It can be shown that a time vector 7 satisfies

Tr <o

for all internal dependence vectors § (‘causality constraint’). Note the strict inequality in the above
characterization. If 677 = 0 for some § either broadcast or ‘rippling’, an O(n) number of operations
sequentially applied to the same datum in one clock cycle, would occur. With the strict inequality
the clock cycle is always on the order of the time needed to perform an elementary operation
(division, multiply-and-accumulate) and is essentially independent of the number of processors.

It follows from the causality constraint that the time vectors for Step k form a convex cone
Ci (the origin of this notion goes back to the theory of multi-dimensional systems [48]). The
‘wider’ the cone Cj, the more choices for the evaluation of the recurrences in Step k exist. Thus,
if one objective is to minimize computation time, the freedom in assigning operations to points in
Di should be exploited in order to obtain a time cone as wide as possible. Next, assignments of
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operations within the domains of computation for the three steps of THCS are derived in such a
way that the associated time cones are maximal.

It is important to observe that there are many ways of writing the recursions in each step. For
example, in Step 1 one could translate the indices of s while leaving unchanged the indices of r,
e.g., si,j—1 would become s;; and the inner recursion in Step 1 would take the form

Tij=1 = Ti-1,j-2 ~ Pj-1Si,j-1
8ij = —pj-1Ti-1,j-2 + Sij-1.

The dependence vectors change accordingly, and so does the time cone for Step 1. Since the coor-
dinates of the points in the domains of computations are integers, the vectors and transformations
considered now and in the sequel are all integer-valued. In general, if the recursions contain vari-
ables coupled through dependence vectors of length o(n), one should only consider ‘small’ relative
translations of o(n) for the indices of these variables. If the relative transformation were an affine
linear transformation that either is a translation of size O(n) or is not a translation the time cone
would actually become smaller. The relative translations of size o(n) on the indices of the variables
within a step are local transformations.

The local transformations yielding the largest time cone impose minimal constraints on the
data flow, and minimum time designs are obtained by assuming that such a transformation has
been selected. Since the boundaries of the domains of computation may differ slightly, by o(n), for
these various transformations, general area/time results are expressed up to additive terms of size
o(n) (the stated results hold for arbitrary, sufficiently large n). If there are specific constraints on
the data flow (e.g., limitations on interprocessor connections such as a fixed interconnection pattern
for all the steps) the local transformations will be selected to maximize the time cones under these
constraints.

For the recursions of Step 1, an example of a local transformation inducing minimal constraints
is one which leaves the indices of s unchanged (with respect to r) and assigns the computation of
- pj-1 to point (j,5 — 1), i.e., pj—; becomes p; ;). Alternatively, the computation of p;_; could be
assigned to (j,7 — 2), resulting in equivalent, least restrictive, constraints on the data flow.

The dependence vectors for Step 1 are then

-1 0 j—1i .
(). (5) (57), rsisisn

which can be summarized in the matrix

A1 0 0 -1 -2 ... 1-n
1"\-1 -1 0 0 0 ... o0 /°

The (0 0)T vector constitutes a constraint within a processor : the computation of rj j—1 requires
pj-1 (both quantities can actually be computed in parallel with a non-restoring division algorithm).
The (-2 0)T...(1-n 0)7 vectors all have the same orientation and direction as the (=1 0)7
vector and do not add more constraints to the optimization problem. Since the vector (-1 -1)T
is inside the convex cone spanned by the vectors (=1 0)7 and (0 ~—1)7T, the dependence vector
matrix for Step 1 may be further reduced to

-1 0

0 -1
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Figure 5: Examples of Dependence Vectors, (a) Internal, (b)
External.

for time optimization purposes. A similar treatment of the dependence vectors for Steps 2 and 3
results in dependence vector matrices

-1 0 1 0
AQ:(—I —1)’ A“‘:(—l —1)'

Local transformations influence the size of the time cone. A maximal time cone, i.e., one that
is as ‘wide’ as possible, induces minimal constraints on the data flow and hence results in designs of
minimal computation time. Finding the local transformations that result in a maximal time cone
constitutes an optimization problem. We believe that for general systems of recurrence equations,
this problem can be viewed as a particular graph problem similar to the one arising in optimal
placement for river routing [43] and hence can be solved efficiently.

4.3. External Dependence Vectors and Global Transformations

In order to jointly position all three domains Dy in space-time for the optimal realization of
THCS, separate global transformations are symbolically applied to each Dj. The purpose of these
transformations is to ‘stretch’ or ‘skew’ the domains of computation and pack them as tightly as
possible, so that the computation time and number of processors are kept to a minimum. In doing
so, one must take into account both ‘internal’ and ‘external’ dependences, the latter referring to
the dependences between steps, see Figure 5. In order to compute all steps along a certain time
direction without violating causality, that time direction should be inside the time cones of all
steps as well as inside the time cone defined by the external dependences. This establishes precise
constraints on the possible stretchings and skewings for the steps as well as on their respective
placements, and therefore on the parameters of the global transformations. Thus, the values of the
global transformations will be determined by an optimization procedure subject to these causality
constraints.

The global transformations for Step k are defined through

n(3)=(o @) (G)+ (%)
y cy dg y Vg
with axdy — bgcr # 0, as shown below. Nonsingularity is required to avoid mapping operations

corresponding to different points in the domain of computation onto the same processor at the
same time. The matrices of extreme internal dependence vectors A; are transformed to

A;c = Tr A,
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where ; ; ; ; ;
1 __ [ —a1 -0 t _ [ —a2—02 —02 r _ [ @3 —03 =03
AI"(-cl —dl)’ A _(—cz-—dg —dz)’ A3—(cs—d3 —d3)'

The domains of computation are mapped into

n\ _ (0 ain ain+bn
n) \O0 cn cin+din
n\ _(u2 an+uz agn+bon+ ug
n) \vy con+vy con+don+ vy

n\ _ [asn+uz bsn+us agn+ byn+ ug
n)  \csn+vs dan+vs can+dan+ v

&3

N

oo
S ©o o3 o3

where without loss of generality u; and v; were set to zero. The extreme external dependence
vectors between Steps 1 and 2 for the variable p,;_; are given by Af_ 2, between Steps 1 and 3 for
variables p;_; and rj;_; by A}_,, and between Steps 2 and 3 for the variables y; j—; by A}_,
where

Al o= [ TU —an—uz an + bin — asn — ban — ug
-2 —v3 —con—vy cin+din— con —dan — vy

+ _ [ —ban—u3z —asn-—-bgn—uz an+bn—azn - uz
Al g =
—d3an —v3 —cgn—dgn—v3 cyn+din—czn—vs3

Al = asn + bon + ug — azn — uz ug — bgn — ug
- con+den+ vy —can—v3y vy—dzn-—uvz/ "

Wlthout loss of generality the txme vector in the transformed domain may be selected as
7=[1 0]7. The causality constraints §'" 7 < 0 for all transformed dependence vectors §' are thus
summed up by requiring the first components in the dependence vector matrix

A= (A} AY AF A, Az AY)

to be negative :

(1) -a1 <0, -b <0

(2) —ag - bp<0, -=-by<O

(3) aa-—b3<0, -b3<0

(1-2) —u2<0, —am—u3<0, ayn+bn—ayn—byn—1us <0

(1-3) ~ban - uz3 <0, —agn—-bygn—u3<0, an+bn—azn—us3<0

(2-3) asn+bon+us —azn—uz <0, uy—ban—1uz <0

4.4. Optimization
The computation time for THCS is given by the difference of the times between the first and

the last computation,
tr= max {:} - in
T (!'J)EUDL{ } (t.J)GUD'{ ih

where UDj, is the union of the transformed domains of computation for Steps 1, 2, and 3. Systematic
manipulations of the above inequalities show that the total computation time amounts to

tr = max{bsn + ug, agn + bgn + ug}.
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Figure 7: Two Examples of Systolic Arrays with n Processors
and Computation Time 3n.

Further manipulation,
O<bin<ain+bin < agn+ bon+ ug

< agn + ug < azn + ban + uz
<tr,

and the fact that the transformations are integer-valued imply
tr 2 3n.

Thus, the total computation time is bounded below by 3n + o(n).

There are in general many transformations resulting in designs that achieve this lower bound
and hence minimize the computation time. They are characterized by solving for the parameters
ag, by, and ug, k = 1,2,3, the optimization problem

min {7 (4.1)
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subject to the causality constraints. Because the objective function ¢ is the maximum of two linear
functions and the constraints are linear, the optimization can be cast as a standard linear integer
programming problem. To fully determine the transformations T, the remaining parameters ¢y,
dr and v; are found subject to the conditions that no two computations from the same step are
performed in the same processor at the same time (‘nonsingularity constraint’), and that no two
computations from different steps are performed in the same processor at the same time (‘no-overlap
constraint’).

It is natural now to ask which of the arrays, among all those with minimal computation
time, possess the minimal number of processors. Clearly, the minimal number of processors is
n, assuming that no ‘problem partitioning’ is undertaken. It then follows that the transformed
domains of computation of all the steps must belong to a horizontal band of width n, as drawn in
Figure 6, leading to a set of constraints on the possible values of the parameters ci, dx and v :

(1) 0Lein<n,0<cin+din<n
(2) 0<v<n,0<cn+v2<n, 0<con+doan+v3<n
(8) 0<can+v3<n,0<dsn+v3<n, 0<Lczn+dzn+vz<n.

Solving the optimization problem (4.1) subject to these constraints combined with the causality
constraints for ag, b and ui, the condition that T; be nonsingular and the no-overlap constraint
results in thirty-two systolic arrays with minimal computation time 3n and minimal processor
count n :

either .
({1 1 0
[a, bl]_[l 1] [a2 by ug]__< (1 0 0]
e1 di| |0 1| ez do wo|l ) [-1 2 n
(-1 1 n]
or X
([1 10
ai bl - 11 as b2 UQ]_ =0 1 0]
c1d1*10’02d2v2_<—12n
L0 1 0
or . .
({1 1 0
-1 1 n]
(-1 2 n]
[al bl]_[l 1] [02 b2 ugjl__< _1 0 0
cp di| |1 -1}’ ca do wvo| (1 1 0]
1 -1 0]
(-1 2 n
(-1 0 n]
together with ) )
(1 0 1 2n
-1 -1 2n
(0 1 2n
az bz us _J -1 0 =
c3 dz va| 1[0 1 2n
10 0
(0 1 2n
(111 -n
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Figure 7 depicts the space-time representation for two such arrays. Note, that enforcing the
non-overlap of computations is more involved than just ensuring that the polygons which bound
the domains of computation are not superimposed.

The one characteristic shared by all of the above designs is that Input/Output, i.e., commu-
nication with the outside world, takes place in each processor. In case this is undesirable, the next
step then consists of determining the class of arrays with the minimal number of processors among
those of shortest computation time subject to the constraint that Input/Output may take place
on at most two processors. The requirement for a minimal processor count and the Input/Output
constraint reduce the set of possible choices for the parameters cx, dx and v to

[er di]=[0 1], [ca d2 v2]={{g ;lo]n], [ea da va]={{8 ;—10]71]

Solving the subsequent optimization problem demonstrates that the minimal computation time on
an array with n processors and Input/Output restricted to the two boundary processors comes to
5n + o(n) and is attained for the following thirty-two designs :

either

[a1 bl]__ [(1) i], [a2 ba ug]__ [(1) i 3]

g d cg dy v

or

ap b _[2 1 azbzug__{:-l'n
et di| |0 1|’ e dy wo| ™ —232n]

0 1 0
(-2 3 2n
(L0 -1 n
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together with

1 2 2n
[03 b3 us]_ 0 -1 n]
ca d3 wvs| (-1 1 4n
-

1 2 2n

(10 1 O]

A space-time representation for one possible design is given in Figure 8.

5. Summary

Our methodology extracts data dependences from the recurrence equations to summarize the
information about all possible ways in which these equations can be evaluated. The optimal design
is selected from these possibilities by symbolically applying linear (affine) transformations to the
computation graph of the equations and then determining the transformation parameters so that
the resulting array is optimal with respect to a hierarchy of objectives. Hardware regularity is
obtained by exploiting the regularity of the data dependences, that is, by taking advantage of their
invariance under translation in a geometric representation of the computations. The employed
transformations preserve the regularity and, in some cases, might even be used to enhance it.

When minimization of computation time is the main objective, decomposition of the optimiza-
tion problem into separate local and global optimization problems has parallels in the design of
MOS networks [61]. In both cases, the internal dependences within each step (equivalent to areas
of intraconnections within a cell) can be optimized with almost no consideration for the external
dependences between steps (equivalent to interconnections outside the cells). For other hierarchies
of objectives, the decomposition into separate optimization problems for local and global transfor-
mations may not be possible, which could translate into a guadratic programming problem. We
have come across techniques that solve these quadratic problems in an acceptable amount of time.

Although the methodology was illustrated by way of an example involving only two-index
variables, it should be clear that there is no conceptual difficulty in applying it to recursions on
more indices. The most general case involves several time and processor directions, where multiple
time directions are best understood as directions for scanning the operations and are mapped
accordingly onto the physical time.
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Appendix : Literature Survey

It has been recognized that the characterization of systolic arrays by graphical representations
of data flow is not sufficient to guarantee their correctness or explain their workings, see [11] for a
recent survey. Attempts at appropriate formalizations can be essentially divided into two categories,
verification of the correctness of systolic designs and systematic synthesis of systolic designs (which
are correct by construction).

Methods aimed at mere verification include

e [6, 8] Algorithms are expressed as recursive space-time programs and inductive techniques are
applied for their verification.

e [36, 37, 38] Data appearing at a processor interconnection at successive time instances are
represented as a data sequence. The computations performed by a processor are modeled as
causal sequence operators, the latter being difference equations which relate the input data
sequences to the output data sequences. The operation of the whole array is verified by solving

~ the systems of difference equations associated with all processors and showing that they comply
with the intended I/O description of the whole array. However, it is not always possible to
solve the systems of difference equations analytically. The model is applied to the verification
of a pipelined systolic system that performs the assembly of Finite Element stiffness matrices.

e [48] An induction proof is given for the correctness of an array that performs the QR decom-
position of a banded matrix [14].

e [25, 26] Based upon the wavefront concept (see below) space-time-data equations are used to
describe the movements of data elements. The operation of the hexagonal matrix multiplication
array [23] is then shown to be correct by basically ‘simulating’ the movement of all data elements
through the whole array. The approach is tedious if the geometry is not very regular or the
data flow patterns are complicated.

In all of the above approaches the notation becomes awkward and unwieldy when applied to
complex computations. The following methodologies aim at the synthesis of new systolic designs
which, by construction, are correct and do not need a posteriori verification.

¢ [9, 15, 16, 50] The storage elements in a systolic system are described via the so-called z-
operator, z[z(¢)] = z(i — 1), which models a time delay operator. On account of the correspon-
dence between mathematical expressions and systolic systems (consisting only of logical and
memory elements) the mathematical formulae can be manipulated to yield different systolic
arrays.

¢ [17, 22, 49] The uniform progression in time or space of a set of data elements, which do
not belong to the same data stream, can be viewed as a wavefront; the z-operator is used to
represent the delay or rotation in the direction of wavefronts.

e [2,3, 4,5, 18, 19, 20, 39, 46] Nested-loop algorithms are mapped onto systolic arrays, whereby
the computation is modeled as a ‘lattice’ whose nodes represent operations and whose edges
represent the computational data dependences. Geometric linear transformations are first ap-
plied to the lattice. The transformed lattice is then mapped onto the space-time domain, where
the coordinates of each node indicate at which time and in which processor the computation
is to be performed.

e [10, 11, 12, 40, 41, 42, 43] Extending the approach of [19, 20], nested-loop algorithms are
mapped onto systolic arrays. Linear transformations are applied to the matrix representing
the data dependences. The integer solution to this matrix equation yields a mapping from
algorithm to architecture. The software implementation of this method enumerates systolic
designs but contains no systematic way of reducing the search space of all systolic arrays
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associated with a given algorithm. The method is applied to the unshifted QR method for
calculating the eigenvalues of a symmetric matrix; one way of performing problem partitioning
is sketched.

e [1, 44, 45] The algorithm is expressed as a set of uniform recurrence equations whose indices
form a convex domain in the cartesian coordinate system. At first a timing function is de-
termined which specifies the execution time of a single computation and is compatible with
the data dependences of the algorithm. Then, an allocation function is found which maps the
algorithm onto a processor array. This appears to be one of the mathematically cleanest and
most powerful approaches.

 [33, 34] A highly mathematical theory is developed which combines and enhances the above
_concepts of data dependences and geometric linear transformations; it is illustrated for the
"basic linear algebra algorithms. The theory is extended to the process of hardware synthesis
where the outputs of the algorithm can be specified as a set of polynomials in some universal,
many-sorted algebra (which does not constitute a restriction, since it is shown that the output
of any algorithm performed by a Turing machine can be described by a set of polynomials).
Non-linear transformations are applied to increase hardware utilization. Together with [44],
this is the most mathematical and powerful approach.

¢ [29, 30, 31, 32] A general methodology is derived that eliminates broadcasting from a syn-
chronous circuit without changing its communication structure. Although it neither describes
nor synthesises systolic arrays, this method can be used to justify some of transformations that
replace global broadcasting with local signal propagation.

e [21] The algorithm is represented as a signal flow graph which is then converted to a systolic
array. After determining the set of operations to be executed by a single processor, the time
of computation of each operation is derived by using the techniques of the approach above
(considering cut-sets, inserting and scaling of delays).

e [24] Based on the example of finite and infinite impulse response filters, this approach uses an
algebraic representation to combine the notion of z-operator and ‘retiming’ techniques similar
to the ones in [29, 30, 31, 32}, leading to an algebra for deriving designs whose z-graphs have
systolic properties.

e [27, 28] A program takes as input a nested-loop algorithm and outputs a corresponding systolic
design after having performed the following bottom-up process : starting with the innermost
loops of the algorithm, the program allocates processors to particular operations (with help from
the user), schedules their computation and performs a small set of transformations (selected by
the user) to improve the design. The program relies heavily on user intervention and insight,
the sequence of applied transformations does not result in the optimal design, but constitutes
a ‘bag of tricks’ whose usefulness was determined by experience. It has been used to derive
basic systolic arrays for polynomial evaluation, matrix multiplication, dynamic programming
and greatest common divisor computation.

e [7] First, the algorithm is cast into a system of first-order recurrence equations, by adding and
substituting variables. Then it is mapped onto space-time recurrence equations, starting with
the initial conditions and proceeding inductively along a chosen time direction. On account of
the induction process, algorithms are allowed as input that do not necessarily lead to designs
with a repetitive structure or to data flows of uniform speed. However, already for simple
algorithms the notation becomes lengthy and awkward, while the restriction to first-order
recurrences may exclude important designs.
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e [35] Under considerable restrictions, the design of matrix multiplication arrays is attempted,
where systolic arrays are characterized through velocities of data flows, spatial distributions of

data and periods of computation.

e [47] Using a divide-and-conquer approach the efficiency of those designs is increased in which
each processor operates only every k-th time step; the approach is illustrated on convolution
and matrix multiplication.

o [13] The definition of functional operators for the expression of vector algorithms makes it pos-
sible to establish a correspondence between data flow models of MIMD computation and design
of systolic arrays. Conditions are specified under which a systolic version of a computational
graph can be executed asymptotically as fast as the fully concurrent version of the original

data flow graph.
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