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1. Introduction

The difficulty of evaluating integers and poly-
nomials has been studied in various frameworks
ranging from the addition-chain approach [5] to
integer evaluation to recent efforts aimed at
generating polynomials that are hard to evaluate
[2,8,10). Here we consider the classes of integers
and polynomials that can be evaluated within given
complexity bounds and prove the existence of proper
hierarchies of complexity classes. The framework
in which our problems are cast is general enough to
allow any finite set of binary operations rather
than just addition, subtraction, multiplication,
and division. The motivation for studying com-
plexity clesses rather than specific integers or
polynonials is analogous to why corplexity classes
are studied in automata-based complexity: (i) the
immense difficulty associated with computing the
complexity of a specific integer or polynomial;
(ii) the important insight obtained from discov-
ering the structure of the complexity classes.
Thus, we are able to prove that under mild re-
strictions if

f(n) > g(n) a.e.

where f and g are monctone functions, then there
are an infinite number of integers (respectively
polynomials) that can be evaluated in f(n) steps
but not g(n) steps.

The model used here for polynomial evaluation
differs from the model used in Strassen [10] and
Paterson and Stockmeyer [8]. The difference lies
in their allowing scalar multiplications by con-
stant a at a cost of zero or one, while we charge
an amount that is a function of a. This amount
essentially reflects the complexity of integer a.
The motivation for our model is similar to that
of Cook [3]: 1In a '"real" machine model it is
realistic to say that the cost of ae p, where a is
an integer and p is some term, is dependent
at least on the cost associated with "naming" a.
That is, the cost must be at least the amount of
information needed to state that the scalar is a
and to apply the operation ae to p.

The difference between our model and that of
Strassen and Paterson and Stockmeyer is most
dramatic when one compares the following results:
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1) [Strassen) There are polynomials that take
~n/log n steps to evaluate.t They have

3
n

coefficient ~22 in size.

2) [Paterson and Stockmeyer] There are 0,1

coefficient polynomials that take ~/n steps to

evaluate. LV

3) [Theorem 7, section 4] There are 0,1 coefficient

polynomials that take ~n/log n steps to evalu-
ate. o

" Thus our result would be an improvement of both (1)

and (2) if we had assumed that scalars are of cost
1. An open question is: How much dees our as-
sumption affect the complexity of polynomial
evaluation?

Since our results are proved for any finite
set of binary operations it is not surprising that
they follow by counting type arguments. The basic
counting tools we use are a . number of powerful
results from number theory on the density of
sequences of integers [7]. These tools allow us
to establish our hierarchy results. Moreover, they
allow us to refine them so that we can show not
only that there are, for example, 0,1 polynomials
that take ~n/log n steps to evaluation but that
"almost all" polynomials take this number of steps.

2. Upper and Lower Bounds

We define an addition chain as a sequence of
integers 85875+ 458, such that ag = 1 and, for

each i, a, = a, + ay, for some j,k < i. If a =mn,

i b

the chain is said to realize the integer n. We

define C{+}(n) to be the length of the shortest

addition chain realizing n. Brauer [1] obtained

the upper bound of

log n 1oz n
log n + log log n o(log log n)
on C{+}(n) and Erdos [4) showed that for most large

n the lower bound of

log n + _dog n
log log n

} n = degree of the polynmpmial.
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~is valid. 1In the current paper we extend addition

chains to B-chains as follows:

Definition: Let B be a finite set of binary opera-

tions over N. A B-chain is a sequence a,,...,a
—_— 0’ m

= 1 and for each i a, = a, o a, where

0 i 3 k
j,k < i and o is an operation of B, If a =n, the

The length of the

such that a

B-chain is said to realize n.
shortest B-chain for n is denoted by CB(n). By

convention, CB(O) and CB(l) are defined as zero.

We shall denote the operations addition, subtrac-
tion, multiplication, division, and exponentiatﬁon
by +, -, x, i, + in the current paper, where

a*b-= l%j. For thislnotation, the following

lower bounds are obtained.

Theorem 1: TFor all n,

8) Cryy(r) 2 Gy y(n) > log n *

b) C{+’_’x’%}(n) > log log n

©) Cryox,z,4) @) > log (G(n)) . _

where G(n) is the number of times the logarithm of n
must be taken to yield a value less than or equal

to 1.

Proof':

largest number achievable in n steps. 0O

In each case, it suffices to consider the

Extensions of Theorem 1 to other basis sets is
possible and fairly standard. For example, if for
41l operations o € B there exists k such that, for
all x and y, x o y is of order xkyk, then CB(n)
grows asymptotically at least as fast as log log n.

We can also obtain the upper bounds.

Theorem 2: For all n, .
C{_,_’_,x’%,”(n) < C(_‘_,_’x’%)(n) < C{+,x}(n)

2 log n
log log n

log n
g log n

+ o(lo ).

. m )
Let n= I A ai be the expansion of n in
i=0 *

base a for some a; then n can be found by computing

Proof:

2,...,0-1,0 and using Hormer's rule to evaluate for
n. Thus,

C{+3x}(n) Sa-1l+2m=a -1+ 2[logan].

The choice of a = —logn yields the desired
(log log n)

result. O

Next, we study cumulative lower bounds. Rather

* Throughout this paper, all logarithms are base 2.

than consider the complexity of reaching n by a
B-chain, we define as HB(n) the maximum value of
CB(k) for any k § n. This measure is actually more

natural than CB(n) since CB(n) may fluctuate

greatly. Then we can achieve the surprising result
that HB(n) is asymptotically independent of B if
+,x € B, -
Theorem 3: For any choice of B,
log n
-3 —_—
HB(n) O(log log n)' ¥
Proof: A simple counting argument shows that the

number of B-chains of length < m is
< IBIm((m—l)!)z. By the definition of HB(n), we

see that a growth rate asymptotic to

—logn 4 necessary, 0
log log n

Let h(n) = _logn and observe that, for all
log log n
B, HB(n) = h(n).

3. Complexity Classes on N

The results of the previous section pave the way
for some interesting questions. We observe that
there are constants Kl and K2 such that for each n
CB(n) < th(n) and, for some p < n, CB(p) > th(n).
This leads to interesting questions on the com-
plexity classes into which the integers can be
partitioned by B-chains for varied bases B. Before
studying such questions, we make contact with some

results from elementary number theory.

€

Definition: For A a subset of N such that 0,1 € A,
the Schnirelmann density d(a) 1is
d(A) = inf éﬁﬂl

n21

where A(n) is the number of elements of A less than

or equal to n.

We observe that d(A) = 1 if and only if A=K
and present the following result on d(A).

Theorem 4: (a—f Theorem [7])

A
IfcC=A+B={a+b]| aca,beB), then
d(c) 2 min[1,d(A) + d(B)].

As a corollary to this theorem, we have the result

that if A is any set of positive density then, if

,t £(n) = g(n) if there exist constants.m,M such that
0<m<M < = yith mf(n) < g(n) < ME(n) for all n.



1
; = i =
C is the sum of aA) copies of A, C = K. Now we

define complexity classes and prove our hierarchy

results.
Definition: 1f f: ¥ = Y is a monotone function,
then CfB, the Eomplexity class of f with respect

to B, is defined as {n ¢ ¥ I CB(n) < £(n)}.
We will not define CfB if f is not monotone.

Recall that h(n) is defined as _Jog n . The -
log log n

following lemma yields the hierarchy theorem.

f (n)

Lemma: 1If + ¢ B, f is monotone, and lim =0,
h(n)
B e
then d(Cf )y = 0.
Proof: Suppose that d(CfB) > 0 and lim f(n) _ 0.
e h(n)

Then, since every integer can be expressed as the
sum of at most r1/d(CfB)1 integers, )
Hy(n) < 2r1/d(cf3))f(n) for all n, contradicting
theorem 3. [

Thus,

Theorem 5: (Hierarchy Theorem)

Supposc that + ¢ B and f and g are monotone
integer-valued functions such that

1) f(n) > g(n) a.e.

h(n)

2) lim 2 ()

nre

= o (i.e. ch € ¥ and

3) g pgrows sufficiently fast such that CgB is

infinite. Then ch - ch is infinite.

Proof: It is clear that CgB has zero density singe
g grows asymptotically more slowly than h. Also,
there is an integer NO such that for all x 2 No

1+ g(x) s £(x).

B
Nl > No such that Nl € Cg and Nl

Furthermore, there is a choice of

+1¢ ch. Now,

cyN +1) 51 +»cB(N1) S 1+ g(N) € £(N))

< f(N1 + 1)

and hence Nl +1le¢ CfB. We may extend this method
to form a sequence {Ni) such that N, > N, , and each

B B
N, 4+ lece - Cg . 0

Typical of the applications of this hierarchy

result are

Corollary 1: 1f Bl = {+,-,%,%}, then

B c By c

1 : s
C1og log n + c(1og log n)G(n) e d
B c c Bl 2C (=
C(log log n)Gk(n) toae d C(log log n) o +
By c By '
Chn) /6(n) T Chn)
= N.

Corollary 2: .If B2 = {+,-,x,%,%}, then

B c B c

2 [ [ =4
+ ... ¥+ C 2 + ...t
€10g(6(n)) 1og2(G(n))
0.2 S ... 502 $...%
log...log n " Clog logn °°°
.2 S 62
h(n)/G(n) h(n)
= m.

These results make contact with some inter-

esting results in number theory.

Fact 1: (Landau [6])
Every integer can be expresscd as. the sum of 67 or

fewer primes.

Fact 2: (Waring's problem [7])
For each integer k, there is a number g(k) such
that every integer can be expressed as the sum of

g(k) or fewer kth powers.
Using these results, we obtain

Corollary 3: For any B, there is an infinite

subsequence {Pi} of the sequence of primes such

Athat CB(Pi) grows as O(log Pi/log log Pi)'

Corollary 4: For any B and each integer k, there
is an infinite scquence {xik) such that @B(xik)
grows as

0(log xikllog log xik) = 0(klog xillog(klog xi)).

4. Polynomial Evaluation

The difficulty of polynomial evaluation has been
studied in a variety of settiﬁgs. Lately, a number
of authors have focused on finding polynomials that
are difficult to evaluate rcgardless of how much
preconditioning of coefficicnts is allowed [2,8,10].
The results of these studies are hard to evaluate
polynomials that have extremely large coefficients.
For example, Strassen [10] shows that the evaluation
of d 26d2 s
Pl(x) = E 2 X

§=0



requires either d/2 - 2 non-scalar multiplication/
divisions or at 1eas€-d2/1032d total arithmetics
and that the evaluation of
Pz(x) = g 226x6

6=0 -
requires at least AIT(SIEE‘ET arithmetics. In the
terminology of this paper, however, the computation,
from a basis of +,-,x,t, of single coefficients of
Pl(x) (respectively PZ(X)) requi;es d3 (respec-
tively d) operations, and thus the evaluation cost
is unimportant relative to this cost. In this
manner, we shall diverge from the methodology of
previous studies of polynomial evaluation. We
shall try to find the chain requiring the least
number of operations from a basis B that, starting
from inputs 1 and xqs generates the value of a
polynomial p(x) at the point Xq- We have chosen
this model because we feel that it addresses some
of the issues not considered in previous studies of
this problem. A positive result of lower bounds
using this model is that such bounds give lower
bounds on the sizes of scalars that must be used in

previous models. That is, we define

Definition: 1f p(x) € W(x), then GB(p) is the

length of the shortest sequence a_l,...,uk (i.e.
the least k) such that a_
1<1icx<k, oy = aj

1° 1, @y = X, and, for

o ¢, where o € B and j,k < 1.

k
The following theorem i§ then immediate.

Theorem 6: 6B(p) > CB(p(n)) - CB(n) for any integer

n.

Proof: 1t is obvious that 5B(p) + CB(n) is an upper
bound for CB(p(n)). g

Within our measure, we have the cost for Strassen's

polynomials as

Corollary: For B = {+,-,%,},
2

d id
xi) 2 d4/2

1) 6,( £ 22
1=0

d i
2) s,(z 2% xh) 2 d%2
1=0
We now wish to ask how hard the hardest poly-
nomials are to evaluate in our complexity measure.
By defining complexity classes of polynomials, we

obtain an extension of a result due to Savage [8]

‘then D

on the complexity of polynomial evaluation.

Theorem 7: Let DFB = {p ¢ ¥[x] | 6,(p) < F(deg(p))}
be a complexity class for polynomials and suppose
that DFB contains all polynomials with 0,1

coefficients and + is in B; then F(n) 2 n/log n.

Proof: Since DFB contains all 0,1 polynomials, we
observe that the set {p(2) | GB(p) < F(deg(p))}
contains all of ®. Now, we define

g(k) = F(llog ky) + 1 for integer k and claim that
Cg = N. The proof of this fcllows since any
integers k can be written as pk(2) where pk(x) is a
polynomial with 0,1 coefficients of degree [log kj

and the result of Theorem 6 implies that

Cy(k) = Cp(p, (2)) S Cu(2) + 8,(p,) S 1+ 85(p)

<1+ F(tlog k}) = g(k)

for all integers k, Thus, Cg = B. By Theorem 3,

however, g(n) 2= h(n) and hence F(n) 2 n/log n. O

The result of this theorem is somewhat
surprising, since we have shown the existence of
polynomials with 0,1 coefficients whose evaluation
by an algorithm using any finite set of basis
operations requires at least 0(n/log n) of these
operations. For example, as a corollary to this

theorem, we have

Let b, = + and b

1 greees
binary operations. Then there is a family {qn(x)}

Corollary: b_ be any set of
of polynomials with 0,1 coefficients such that the
complexity of evaluating qn(x) by any algorithm using

using the operations bl,...,br grows asymptotically

with 0(n/log n).

While we have shown the existence of such a
family, we leave its construction as an open problem.
We can extend this result to a hierarchy result

analogous to Theorem 5.

Theorem 8: (Hierarchy Theorem for Polynomials)

Suppose that {+,x} € B and F and K are functions

such that
1) F(n) > K(n) + 1 a.e.
K(n) B .

2) 1lim ——— 21 (i.e. D, 1is infinite)

v log n K )

. K(n) B S 7

3) lim /log n " 0 (i.e. D + HIx])

nre

B B f e
F ~ DK is infinite.

Proof: Define p(x)x and p(x)x+l to be the successors



of p(x). We claim that for any No there is a

Py (x) € DKB such that one of the successors of
0

Py (x) is not in D B and such that p, (x) is of

No G No

degree at least NO. Assume not and consider the

tree T(r(x)) hrsmer@)ebs

r (x)
r(x)x”’/”/’— \\\\\j:E£X)x+l

x2r(x) x2r(x)+1 x2r(x)+x_ x°r(x)+x+l

Either our claim is true or every node of the
infinite tree T(r(x)) belongs to DKB. If every
node of the tree T(r(x)) is in DKB, then every node
of the tree T'(r(2)) is in CkB where

k = K(1log nj) + 1 and T'(r(2)) is given by

r(z\(
2:(27”"//’) 25(2)+1

4:(2§/ \2}£2)+1 ,// \\\\

4r(2)+2  4r(2)+3

But the nodes of T'(r(2)) are seen to have positive

density and this contradicts the hypothesis of the
theorem, since if this were true then for some

integer n Cg = K, contradicting previous results.

k
Thus, either r(x)x or r(x)x+l 1s not in DKB; if we
let the successor of r(x) not in DKB be q(x), then

GB(q(x)) < 2+ GB(r(x)) < 2 + K(deg(r(x)))

S F(deg(r(x)))

for large enough NO. Thus; q(x) € DFB. By an
argument similar to that used in the proof of
Theorem 5, we can show that an infinite sequence
of polynomials in DFB - DKB exists, 0O

The results of Theorem 7 can be extended to
multivariate polynomials and n-linear forms by
applying reducibilities to make these problems
equivalent to single variable polynomial

evaluation, -
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