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Large-scale software verification relies critically on the use of compositional languages, semantic models,

specifications, and verification techniques. Recent work on certified abstraction layers synthesizes game se-

mantics, the refinement calculus, and algebraic effects to enable the composition of heterogeneous components

into larger certified systems. However, in existing models of certified abstraction layers, compositionality is

restricted by the lack of encapsulation of state.

In this paper, we present a novel game model for certified abstraction layers where the semantics of layer

interfaces and implementations are defined solely based on their observable behaviors. Our key idea is to

leverage Reddy’s pioneer work on modeling the semantics of imperative languages not as functions on global

states but as objects with their observable behaviors. We show that a layer interface can be modeled as an

object type (i.e., a layer signature) plus an object strategy. A layer implementation is then essentially a regular

map, in the sense of Reddy, from an object with the underlay signature to that with the overlay signature.

A layer implementation is certified when its composition with the underlay object strategy implements the

overlay object strategy. We also describe an extension that allows for non-determinism in layer interfaces.

After formulating layer implementations as regular maps between object spaces, we move to concurrency

and design a notion of concurrent object space, where sequential traces may be identified modulo permutation

of independent operations. We show how to express protected shared object concurrency, and a ticket lock

implementation, in a simple model based on regular maps between concurrent object spaces.
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1 INTRODUCTION
Certified software [Shao 2010] comes with a formal specification and a mechanized proof that

the software conforms to the specification. There have been a large number of recent projects

on building certified components such as compilers [Leroy 2009], program logics [Appel 2011],

OS kernels [Gu et al. 2015, 2016], file systems [Chen et al. 2015], and processor designs [Choi

et al. 2017]. Unfortunately, even if these systems were developed using the same proof assistant,

they use different semantic models and verification techniques. To scale up verification further

(as exemplified by the DeepSpec project [dee 2021; Appel et al. 2017]), one major challenge is to

identify a general-purpose model which could embed all existing components. This model should

support composition and help bridge the gap between components that operate at different levels

of abstraction.

1.1 Certified Abstraction Layers
Certified abstraction layers [Gu et al. 2015, 2018] are a promising technology for programming,

compiling, linking, and composing certified heterogeneous components. The initial sequential

CertiKOS kernel [Gu et al. 2015] was decomposed into 37 certified layers consisting of C and

assembly modules such as physical and virtual memory managers, context-switch libraries, thread

and process managers, virtual machine managers, and page fault and trap handlers. Later versions

of CertiKOS [Chen et al. 2016; Gu et al. 2016, 2018; Liu et al. 2019] showed how to extend certified

layers to support multicore and multithreaded concurrency, fine-grained locking, device drivers,

and real-time scheduling; they have also been extended to verify not only the total functional

correctness but also information-flow security properties [Costanzo et al. 2016; Liu et al. 2019].

As described in Gu et al. [2015], a certified abstraction layer consists of a layer implementation
together with two layer interfaces: the underlay provides specifications for the primitives available

to the layer implementation; the overlay provides specifications for the primitives which the layer

implements. A layer𝑀 implementing the overlay interface 𝐿2 on top of the underlay interface 𝐿1
can be depicted on the right below. 𝐿2

𝑀
𝐿1

A layer interface 𝐿 has three components. First, a signature enu-
merates primitives together with their types, given as op : 𝐴→ 𝐵

where 𝐴 and 𝐵 are sets. Second, the set 𝑆 contains the abstract states of the layer interface. Finally,
for each primitive op : 𝐴→ 𝐵, its specification is given as a function of type 𝐴 × 𝑆 → P1 (𝐵 × 𝑆)
where P1

corresponds to the maybe monad: P1 (𝑋 ) is defined as {𝑥 ⊆ 𝑋 : |𝑥 | ≤ 1}, and the empty

set ∅ ∈ P1 (𝑋 ) denotes fault or silent divergence.
As an example (taken from Koenig and Shao [2020]), Fig. 1 presents a certified layer that

implements a bounded queue with at most 𝑁 elements using a ring buffer. In the underlay interface

𝐿1 = 𝐿rb, its abstract state contains an array 𝑓 ∈ U𝑁
with 𝑁 values of type U and two counters

which take values in the interval 0 ≤ 𝑐1, 𝑐2 < 𝑁 . The array supports the primitives get and set; the
primitives fai1 and fai2 increment the corresponding counter and return the counter’s old value.

The overlay 𝐿2 = 𝐿bq features two primitives enq and deq which respectively add a new element

to the queue and remove the oldest element. If we add an element which overflows the queue’s

capacity 𝑁 , or remove an element from an empty queue, the result is ∅ (i.e., the primitive aborts).

The layer implementation𝑀bq stores the queue’s elements into the array, between the indices

given by the counters’ values. This is expressed by the simulation relation 𝑅 ⊆ 𝑆bq × 𝑆rb in Fig. 1,

which explains how overlay states are realized by𝑀bq in terms of underlay states. The code of𝑀bq

can be interpreted using the monad 𝑆rb → P1 (− × 𝑆rb), with calls to primitives of 𝐿1 = 𝐿rb replaced

by their specifications. We write 𝐿rb [𝑀bq] to denote the result. We declare that 𝑀bq defines a
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𝐿bq 𝑆bq := U∗

enq : U→ 1 𝐿bq .enq(𝑣)@®𝑞 := {∗@®𝑞𝑣 | | ®𝑞 | < 𝑁 }
deq : 1→ U 𝐿bq .deq(∗)@®𝑞 := {𝑣@®𝑝 | ®𝑞 = 𝑣 ®𝑝}

𝑀bq 𝑅 ⊆ 𝑆bq × 𝑆rb
𝑀bq .enq(𝑣) := 𝑖 ← fai2; set(𝑖, 𝑣) ®𝑞 𝑅 (𝑓 , 𝑐1, 𝑐2) ⇔ (𝑐1 ≤ 𝑐2 < 𝑁 ∧ ®𝑞 = 𝑓𝑐1 · · · 𝑓𝑐2−1) ∨
𝑀bq .deq(∗) := 𝑖 ← fai1; get(𝑖) (𝑐2 ≤ 𝑐1 < 𝑁 ∧ ®𝑞 = 𝑓𝑐1 · · · 𝑓𝑁−1 𝑓0 · · · 𝑓𝑐2−1)

𝐿rb 𝑆rb := U𝑁 × N × N

set : N × U→ 1 𝐿rb .set(𝑖, 𝑣)@(𝑓 , 𝑐1, 𝑐2) := {∗@(𝑓 ′, 𝑐1, 𝑐2) | 𝑖 < 𝑁 ∧ 𝑓 ′ = 𝑓 [𝑖 := 𝑣]}
get : N→ U 𝐿rb .get(𝑖)@(𝑓 , 𝑐1, 𝑐2) := {𝑓𝑖@(𝑓 , 𝑐1, 𝑐2) | 𝑖 < 𝑁 }
fai1 : 1→ N 𝐿rb .fai1@(𝑓 , 𝑐1, 𝑐2) := {𝑐1@(𝑓 , 𝑐 ′1, 𝑐2) | 𝑐

′
1
= (𝑐1 + 1)mod𝑁 }

fai2 : 1→ N 𝐿rb .fai2@(𝑓 , 𝑐1, 𝑐2) := {𝑐2@(𝑓 , 𝑐1, 𝑐 ′2) | 𝑐
′
2
= (𝑐2 + 1)mod𝑁 }

Fig. 1. A certified layer 𝐿rb ⊢𝑅 𝑀bq : 𝐿bq implementing a bounded queue of size 𝑁 using a ring buffer. The left
side of the figure shows the signatures of the overlay and underlay interfaces, and the code associated with
the layer. The right side shows primitive specifications and the simulation relation used by the correctness
proof. We use ∗ as a unit value of type 1, and 𝑣@𝑘 ∈ 𝐴 × 𝑆 as a pair of value 𝑣 ∈ 𝐴 and state 𝑘 ∈ 𝑆 .

certified layer 𝐿rb ⊢𝑅 𝑀bq : 𝐿bq when for each operation op ∈ {enq(𝑣), deq(∗) | 𝑣 ∈ U} of the
overlay 𝐿2 = 𝐿bq, the relation 𝑅 indeed establishes a simulation of 𝐿bq.op by 𝐿rb [𝑀bq] .op.
Certified abstraction layers bring the following benefits:

• Compositional Specification: A layer interface 𝐿 provides not only the type signatures of its

primitives but also their full functional “deep” specification [Gu et al. 2015]. The client code

for 𝐿bq can operate without seeing how 𝐿bq is actually implemented. In this sense, 𝐿bq fully

encapsulates the implementation details of all the layers below.

• Compositional Verification: A certified system can be decomposed into many certified layers.

Each layer implementation (e.g.,𝑀bq) serves as a building block connecting one layer interface

(e.g., 𝐿bq) with another (e.g., 𝐿rb). A layer implementation can be verified using its overlay

and underlay interfaces alone.

• Effect Encapsulation and Composition: A layer interface behaves like an object in that its

signature hides not only the implementation but also the abstract state. A layer signature

is like an algebraic effect signature [Plotkin and Power 2001]. Its layer primitives are like

methods or effect handlers [Plotkin and Pretnar 2009].

1.2 A Layered and Object-Based Game Model
Koenig and Shao [2020] recently presented a game-semantic model for certified abstraction layers

by synthesizing ideas from game semantics [Abramsky et al. 2000; Abramsky and McCusker 1999;

Blass 1992; Hyland and Ong 2000], the refinement calculus [Back and Wright 1998], and algebraic

effects [Plotkin and Power 2001; Plotkin and Pretnar 2009]. They interpret each layer interface

signature as a game and the interaction between the layer interface and its client as a strategy.

They then model a layer implementation (e.g., 𝑀bq) as an “interaction substitution” morphism

from overlay strategies to underlay strategies. The resulting game semantics features specification

refinement with both angelic and demonic nondeterminism.
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Fig. 2. The picture on the left describes how every regular map𝑀 : †𝐴→ †𝐵 can be factored into the map
𝜅 : †𝐴 → ††𝐴 which decomposes any sequence of elements of 𝐴 such as ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6⟩ ∈ †𝐴 into a
"sequence of sequences" such as ⟨⟨𝑎1, 𝑎2⟩, ⟨𝑎3⟩, ⟨𝑎4, 𝑎5, 𝑎6⟩⟩ ∈ ††𝐴, followed by the map †𝑀 : ††𝐴 → †𝐵
which “replays”𝑀 : †𝐴 ⊸ 𝐵 as many times as there are elements in the output sequence of elements of 𝐵:
three times in this case, in order to obtain the sequence ⟨𝑏1, 𝑏2, 𝑏3⟩ ∈ †𝐵. The picture on the right explains
how the construction adapts smoothly to a regular map 𝑀 : †𝑅𝐴 → †𝐵 from a concurrent object space
†𝑅𝐴 equipped with an equivalence relation 𝑅 on sequences of elements of 𝐴, using the decomposition map
𝜅𝑅 : †𝑅𝐴→ ††𝑅𝐴.

However, in their main development, Koenig and Shao use an explicit state-passing approach

where abstract states (e.g., elements of 𝑆bq and 𝑆rb) are communicated as part of the interaction

(i.e., in game-semantic moves such as deq(∗)@®𝑞). This is not desirable since a layer interface is
supposed to encapsulate its abstract state. A client of 𝐿bq should not observe the internal state ®𝑞 in

its interaction with 𝐿bq.

In this paper, we leverage ideas from Reddy’s pioneer work [Reddy 1996] on object-based semantics
and develop a new model for certified abstraction layers that does not carry abstract states in

the game-semantic moves and strategies. Semantics for imperative languages have mostly been

described as functions on global states. Reddy’s approach, on the other hand, defines such semantics

as objects with their observable behaviors. His key idea is precisely to restrict states as part of

the internal structure of objects and make them not externally visible. He constructed a semantic

model for objects based on coherence spaces [Girard 1987], and showed that an object function𝑀

building objects of type 𝐵 on top of other objects of type 𝐴 can be viewed as a regular map (a linear

map with extra structure):

𝑀 : †𝐴 †𝐵

between coherence spaces †𝐴 and †𝐵 whose elements (or tokens) describe sequences of elements

of the coherence spaces 𝐴 and 𝐵. Informally, the semantics of an object of type 𝐴 (or 𝐵) is a set of

its observable event traces, denoted as of type †𝐴 (or †𝐵), as shown in Fig.2. Each event (e.g., 𝑎1,

𝑏1) is just an atomic method invocation plus its return value. The fundamental property of regular

maps is that they are entirely determined by their restriction𝑀 : †𝐴 ⊸ 𝐵 to the coherence space 𝐵

describing a single element (instead of many) inside †𝐵. The regular map 𝑀 is recovered from𝑀

by the equation:

†𝐴 †𝐵𝑀
= †𝐴 ††𝐴 †𝐵𝜅 †𝑀

(1)

where 𝜅 is a canonical "decomposition" map and †𝑀 replays𝑀 sequentially, as explained in Fig. 2.

The coherence space †𝐴 is called “dagger 𝐴” or more evocatively “replay 𝐴” for that reason.

Regular maps reveal the “declarative” nature of the object-based semantics. An “imperative-

looking” layer implementation𝑀bq is actually quite “functional:” it transforms a stream of events for

the underlay 𝐿rb into one for the overlay 𝐿bq. While the bounded queue interface 𝐿bq encapsulates
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a stateful object, its effectful operations actually come from the underlay 𝐿rb, orchestrated by the

“stateless” object implementation𝑀bq following a regular pattern.
We show that there is a great synergy between object-based semantics and certified abstraction

layers, and we establish a nice and useful synthesis between these two lines of work. The object-

based approach can be nicely extended to support concurrency by equipping each †𝐴 with an

equivalence relation 𝑅, yielding a set of equivalent event traces, denoted as †𝑅𝐴 in Fig. 2.

1.3 Summary and Main Contributions
Our paper makes the following contributions:

• We present a new layered game model of interaction suitable for building certified systems

(see §3). We derive an object-based game from each layer signature. Layer interfaces are

modeled as general strategies for this game, and layer implementations are modeled as regular
strategies from the underlay signature to the overlay signature. A layer implementation is

then called certified when its composition with the underlay interface strategy refines the

overlay interface strategy.

• We show that our new layered game model as well as its object-based interpretation can

be easily extended to support a generalized form of layer interface specification that allows

non-determinism (see §4).

• We connect our game semantics to Reddy’s object-based model (see §2) by interpreting layer

signatures as coherence spaces and layer implementations as regular maps; we then extend

this interpretation to certified layer implementations (see §5).

• We design a notion of concurrent object space, where sequential traces may be identified

modulo permutation of independent operations (see §6). We show how to express protected

shared object concurrency, and a ticket lock implementation, in a simple model based on

regular maps between such concurrent object spaces (see §7).

Appendix A gives a formal presentation of §3, while Appendices B and C give detailed proofs of

the key results of the paper.

1.4 Connecting Semantics to Code: A Broader Perspective
More broadly, this paper continues the work by Koenig and Shao [2020] and aims to develop a
compositional model for certified abstraction layers so that the model can be used to build certified
heterogeneous systems such as CertiKOS. The abstract reformulation of certified abstraction layers

enables us to benefit from a wealth of semantics research toward our goal. While our model allows

us to have a bird’s-eye view of a system’s behavior, when dealing with a concrete system we must

establish a connection between this large-scale view and the fine-grained operational semantics of

the code implementing it. To do so we plan to leverage and enhance the following technologies

developed recently by the Yale FLINT group:

CompCertO [Koenig and Shao 2021]. The CompCertO compiler provides an open semantics based

on Koenig and Shao [2020] to the CompCert certified C compiler. The semantics is inspired by the

game-semantics approaches and compatible with the model of certified abstraction layers in this

paper. This tier of abstraction, unfortunately, suffers from the problem of lack of encapsulation of

memory state, which we resolve here in the case of certified layers.

DeepSEA [Sjöberg et al. 2019]. The process of manually connecting the C and assembly semantics

from CompCert with the Certified Abstraction Layers framework in the original development of

CertiKOS led to the development of the DeepSEA programming language. The DeepSEA code is

compiled into C (and then compiled to assembly using CompCertO) plus a deep specification of its

behavior in Coq and an automatically generated proof of refinement between them. The DeepSEA
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platform has been revamped so that it now follows the semantics presented in this paper, and the

C code generated now comes with a proof of refinement with a specification in our new semantic

model. DeepSEA bridges the gap between the more abstract model (presented in our current paper)

and CompCertO’s model, crucially enforcing the encapsulation of C memory state by different

layers.

To verify a concrete system, we can first use DeepSEA and CompCertO to move from the small-step

operational semantics of CompCert to our model; we can then verify the system using the more

abstract model as described in this paper. Ultimately we believe this connection between systems

verification and the semantic models of linear logic and state brings to the forefront of systems

verification well-established semantic techniques for characterizing programming language and

systems behavior, with a focus on expressiveness and compositionality.

2 OBJECT-BASED SEMANTICS
Reddy [1996] introduces a semantic domain for imperative languages based on the model of state

introduced in Reddy [1993], itself based on the coherence spaces semantics for linear logic [Girard

1987] with the before operator [Retoré 1997]. He calls this semantic domain object-based semantics.

This section gives a quick introduction to coherence spaces and object-based semantics.

2.1 The Basic Principles
Reddy [1996] advocates the idea that a program with an internal state can be entirely characterized

in terms of its interactive behavior, as what he calls an object. This object-based semantics is based

on four basic principles:

(1) An object can in general be used only sequentially,

(2) The behavior of an object is in general affected by its past history of operations,

(3) Object functions must be linear maps,

(4) Object functions are regular maps.

Principle 1means that objects can be described by the linear trace they produce, and Principle 2 that

the prefix of a trace influences what comes next. Principles 3 and 4 are then elegantly formalized

using the notion of coherence spaces originally introduced by Girard [1987].

2.2 Coherence Spaces and Linear Maps
Definition 2.1. A coherence space 𝐴 = ( |𝐴|,¨𝐴) is a set of tokens |𝐴| together with a reflexive

and symmetric coherence relation ¨𝐴⊂ |𝐴| × |𝐴|.

Example 2.2. The coherence space Var encodes the operations over a variable (or memory cell)

storing an integer value 𝑛 ∈ N. The web |Var| of Var is defined as:

|Var| := {get.𝑛 | 𝑛 ∈ N} ⊎ {set(𝑛).ok | 𝑛 ∈ N}

Each token of Var encodes both a call and return event: the token set(𝑛).ok encodes a call to

set with argument 𝑛 returning ok; the token get.𝑛 encodes a call to get with no arguments and

returning 𝑛. The coherence relation of Var is defined as:

op.𝑣 ¨Var op′.𝑣 ′ ⇐⇒
(
op = op′⇒ 𝑣 = 𝑣 ′

)
The definition of ¨Var conveys the intuition that the operations in Var are deterministic, in the

sense that two tokens op.𝑣 and op.𝑣 ′ with the same underlying operation op are coherent precisely

when the operation returns the same value 𝑣 = 𝑣 ′.
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We proceed in the same way to define the coherence spaceCounterwhich encodes the operations
of a counter:

|Counter| := {get.𝑛 | 𝑛 ∈ N} ∪ {inc.ok} op.𝑣 ¨Counter op′.𝑣 ′ ⇐⇒
(
op = op′⇒ 𝑣 = 𝑣 ′

)
Morphisms between coherence spaces are defined as linear maps, in the following way, where we

use the notation 𝑎 ↦→ 𝑏 to denote a pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵 :

Definition 2.3. A relation 𝑓 ⊆ |𝐴| × |𝐵 | is a linear map 𝑓 : 𝐴 ⊸ 𝐵 when for all 𝑎1 ↦→ 𝑏1, 𝑎2 ↦→
𝑏2 ∈ 𝑓 the following holds:

(1) 𝑎1 ¨𝐴 𝑎2 ⇒ 𝑏1 ¨𝐵 𝑏2 (2) 𝑎1 ¨𝐴 𝑎2 ∧ 𝑏1 = 𝑏2 ⇒ 𝑎1 = 𝑎2

A clique in a coherence space 𝐴 is defined as a subset 𝑓 ⊆ |𝐴| of tokens of 𝐴 which are pairwise

coherent. Note that a clique 𝑓 of a coherence space 𝐴 is the same thing as a linear map 𝑓 : 1 ⊸ 𝐴

where 1 is defined as the coherence space with web |1| := {∗} containing a single token such that

∗ ¨1 ∗.

2.3 The Replay Modality
The main thesis of Reddy [1996] is that the informal notion of object is appropriately captured

by the notion of clique of a coherence space of the form †𝐴, whose tokens are finite sequences of
tokens of 𝐴.

Definition 2.4. Given a coherence space 𝐴, the (free) object space associated to 𝐴 is the coherence

space †𝐴 with tokens in |†𝐴| := |𝐴|∗ and the coherence relation¨†𝐴 which relates ⟨𝑎1, . . . , 𝑎𝑛⟩ ¨†𝐴
⟨𝑏1, . . . , 𝑏𝑚⟩ if and only if:

∀𝑖 ≤ min(𝑛,𝑚).⟨𝑎1, . . . , 𝑎𝑖−1⟩ = ⟨𝑏1, . . . , 𝑏𝑖−1⟩ ⇒ 𝑎𝑖 ¨𝐴 𝑏𝑖 .

An object is a clique of †𝐴.

The coherence relation over †𝐴 ensures that at the first point where the two sequences differ,

they differ coherently. Note that if 𝑠 ∈ |†𝐴| is a prefix of 𝑡 ∈ |†𝐴| then 𝑠 ¨†𝐴 𝑡 .

Example 2.5. The object space associated to Var is the space of all sequences of call and return

events that can be performed on a variable. Note that †𝐴 does not enforce a particular semantics

for the returns across this sequence. For instance,

⟨get.3, set(7).ok, get.5⟩ ∈ |†Var| ⟨get.0, set(1).ok, get.1⟩ ∈ |†Var|

On the other hand, an object in †Var specifies a particular semantics by restricting those sequences.

For instance, the following set of sequences forms a clique in †Var:

𝑉Var := {𝑠 ∈ |†Var| | (𝑠 = get.𝑖 · 𝑠 ′⇒ 𝑖 = 0) ∧ (𝑠 = 𝑝 · get.𝑖 · get.𝑖 ′ · 𝑡 ⇒ 𝑖 = 𝑖 ′)
∧ (𝑠 = 𝑝 · set(𝑖).ok · get.𝑖 ′ · 𝑡 ⇒ 𝑖 = 𝑖 ′)}

The properties over the sequences in 𝑉Var enforce that: (1) The variable initially responds to a

get with a 0; (2) Consecutive calls to get return the same value; (3) A call to get following a set(𝑖)
must return 𝑖 . This defines a prefix-closed clique encoding all possible behaviors starting from a

certain state. Similarly, we can define:

𝑉Counter := {𝑠 ∈ |†Counter| | (𝑠 = 𝑝 · get.𝑖 · 𝑡 ⇒ 𝑖 = #inc(𝑝))}

where #inc(𝑝) counts occurrences of inc.ok in the sequence 𝑝 .
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2.4 Regular Maps Between Object Spaces
Maps between object spaces are required to satisfy a regularity requirement. In Reddy [1996],

regular functions are first defined using a structural property of the map, then an equivalence is

proven with the co-Kleisli category of † on coherence spaces.

Definition 2.6. For object spaces †𝐴 and †𝐵, a regular map 𝑓 : †𝐴 →Reg †𝐵 is a linear map

satisfying:

(1) (𝑠1 ↦→ 𝑡1), . . . , (𝑠𝑛 ↦→ 𝑡𝑛) ∈ 𝑓 ⇒ (𝑠1 · · · 𝑠𝑛 ↦→ 𝑡1 · · · 𝑡𝑛) ∈ 𝑓
(2) If (𝑠 ↦→ 𝑡1 · · · 𝑡𝑛) ∈ 𝑓 , then there exists 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴| such that 𝑠 = 𝑠1 · . . . · 𝑠𝑛 and

𝑠1 ↦→ 𝑡1 ∈ 𝑓 , . . ., 𝑠𝑛 ↦→ 𝑡𝑛 ∈ 𝑓

The equivalence is then given by the following theorem.

Theorem 2.7 (Reddy). There is an isomorphism

†𝐴 ⊸ 𝐵 � †𝐴→Reg †𝐵
between the linear maps from †𝐴 to 𝐵 and the regular maps from †𝐴 to †𝐵.

The isomorphism is based on the observation by Reddy that every linear function 𝑓 : †𝐴 ⊸ 𝐵

extends uniquely to a regular map 𝑓 : †𝐴→ †𝐵 defined in the following way:

𝑓 := {𝑠1 · · · 𝑠𝑛 ↦→ ⟨𝑏1, . . . , 𝑏𝑛⟩ | 𝑛 ≥ 0 ∧ ∀𝑖 . 𝑠𝑖 ↦→ 𝑏𝑖 ∈ 𝑓 } : †𝐴→Reg †𝐵

As explained in the introduction, the regular map 𝑓 can be equivalently defined as the composite (1)

where the canonical "decomposition" map 𝜅 : †𝐴→ ††𝐴 is defined as:

𝜅 := {𝑠1 · . . . · 𝑠𝑛 ↦→ ⟨𝑠1, . . . , 𝑠𝑛⟩ | 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴|}

Example 2.8. We can define a regular map𝑀 : †Var ⊸ Counter by first defining two maps𝑀get

and𝑀 inc
which define the sequences that map to the get.𝑖 token and the inc.ok token in Counter,

respectively,

𝑀 inc = {⟨get.𝑖, set.(𝑖 + 1)⟩ ↦→ inc.ok | 𝑖 ∈ N} 𝑀get = {⟨get.𝑖⟩ ↦→ get.𝑖 | 𝑖 ∈ N}
This intuitively corresponds to the following pieces of code one might write to implement a counter

using a variable:

inc() { get() {

i ← get(); i ← get();

set(i+1); return i;

return ok; }

}

And then, the map 𝑀 defined as 𝑀 := 𝑀get ⊎𝑀 inc
is indeed a linear map 𝑀 : †Var ⊸ Counter

which can be extended to a regular map 𝑀 : †Var →Reg †Counter, which can be regarded as

a function from objects in †Var to objects in †Counter. One important equation which we will

formalize in §3 is that

𝑀 ◦𝑉Var = 𝑉Counter . (2)

The equation expresses that the object𝑉Counter is correctly implemented by the object𝑉Var by using

the implementation specified by the regular map𝑀 . This can be seen as follows. Since𝑀get
and

𝑀 inc
both start with get, it must be that whenever 𝑠 ↦→ 𝑡 ∈ 𝑀 ◦𝑉Var we have that 𝑠 starts with get.0.

But, as we will see in §3, traces in 𝑉Var are deterministic so that there is only one possible return

for a get. This way, there is a single sequence in 𝑉Var that is mapped to any particular sequence in

𝑉Counter by𝑀 .
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Composition of linear functions is defined by usual relational composition:

Definition 2.9. Given linear maps 𝑓 : 𝐴 ⊸ 𝐵 and 𝑔 : 𝐵 ⊸ 𝐶 we define the composition

𝑔 ◦ 𝑓 : 𝐴 ⊸ 𝐶 as

𝑔 ◦ 𝑓 := {𝑎 ↦→ 𝑐 | ∃𝑏 ∈ |𝐵 |. 𝑎 ↦→ 𝑏 ∈ 𝑓 ∧ 𝑏 ↦→ 𝑐 ∈ 𝑔}
The identity id𝐴 : 𝐴 ⊸ 𝐴 is defined as id𝐴 := {𝑎 ↦→ 𝑎 | 𝑎 ∈ |𝐴|}.

We define the composition of linear maps generating regular functions 𝑓 : †𝐴 ⊸ 𝐵 and 𝑔 : †𝐵 ⊸ 𝐶

as 𝑔 ◦ 𝑓 .
In summary, object spaces are modeled as coherence spaces †𝐴 and morphisms between these

object spaces are regular maps †𝐴→Reg †𝐵. Regular maps can be instead described by linear maps

†𝐴 ⊸ 𝐵, and such linear maps can be composed in accordance to regular map composition. A

single object of type 𝐴 is a clique in the graph of the relation ¨†𝐴.
3 AN INTERACTIVE MODEL OF CERTIFIED LAYERS
In this section, we describe a layered model of interaction based on game semantics, suitable for

defining certified systems. We choose to present it informally here for the sake of simplicity, see

Appendix A for a formal presentation. A layer interface (𝐸,𝑉𝐸) consists of an effect signature 𝐸 and

of a deterministic specification 𝑉𝐸 , which we call an object strategy, of the interactive behavior of
the interface. A certified implementation 𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹 ) between two such layer interfaces

is essentially a collection of strategies𝑀 : 𝐸 → 𝐹 which implement the overlay interface (𝐹,𝑉𝐹 )
using the effects and capabilities provided by the underlay interface (𝐸,𝑉𝐸).

3.1 Effect Signatures as Layer Signatures
An important observation of Koenig and Shao [2020] is that effect signatures can be used to specify

layer interface signatures. We recall their notion of effect signature here.

Definition 3.1. An effect signature is a set 𝐸 of operations together with a mapping ar(−), which
assigns to each 𝑒 ∈ 𝐸 a set ar(𝑒) called the arity of 𝑒 . We will use the notation

𝐸 = {𝑒1 : ar(𝑒1), 𝑒2 : ar(𝑒2), . . .}
to describe effect signatures.

Example 3.2. We can define signatures Var, for a layer describing a variable interface, and

Counter, describing a counter, as follows:

Var := {get : N, set : N→ 1} Counter := {get : N, inc : 1}
Note that a primitive of type 𝐴 → 𝐵 is described in the signature as an 𝐴-indexed family of

operations of arity 𝐵. For example, set : N→ 1 corresponds to one operation set(𝑖) : 1 for each
possible index 𝑖 ∈ N.
Example 3.3. The operations of the layer interfaces presented in Fig. 1 can be described by the

following effect signatures:

𝐸bq := {enq(𝑣) : 1, deq : U | 𝑣 ∈ U} 𝐸rb := {set(𝑖, 𝑣) : 1, get(𝑖) : U, fai1 : N, fai2 : N | 𝑖 ∈ N, 𝑣 ∈ U}

An effect signature already defines a certain structure of interaction in the sense that a caller

issues an effect 𝑒 ∈ 𝐸 and potentially receives a response 𝑣 ∈ ar(𝑒) from its environment. In this

way, an effect signature 𝐸 defines a very small game where the possible moves are effects of 𝐸 or

responses ∪𝑒∈𝐸ar(𝑒) to effects of 𝐸. The only valid plays in this game are:

𝜖 𝑒 𝑒 · 𝑣
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which are simply the empty play, a call to 𝑒 ∈ 𝐸, and a call to 𝑒 ∈ 𝐸 followed by a return value

𝑣 ∈ ar(𝑒) to 𝑒 .

3.2 Layer Implementations
Our primary goal in this section is to express how an overlay with effect signature 𝐹 is imple-

mented using an underlay with effect signature 𝐸. To that purpose, we introduce the notion of

implementation 𝑀 : 𝐸 → 𝐹 of the signature 𝐹 in terms of the signature 𝐸. This notion of imple-

mentation is formulated as a family𝑀 = (𝑀 𝑓 )𝑓 ∈𝐹 of game-semantics strategies𝑀 𝑓
, which we call

implementation strategies, over the signature 𝐸 associated to each effect 𝑓 ∈ 𝐹 .
When implementing an overlay with signature 𝐹 using an underlay with signature 𝐸 a single

operation 𝑓 of the overlay 𝐹 may require several operations over 𝐸 to respond with a value

𝑣 ∈ ar(𝑓 ). This suggests a different pattern of interaction than what we discussed in §3.1, as the

game associated with 𝐸 may be replayed several times in sequence. This leads to considering a

game, call it Replay 𝐸, which allows for the same moves as 𝐸 but lets the game defined by 𝐸 be

replayed as many times as necessary, so that the set of valid plays is given by sequences of shape:

𝜖 𝑒1 𝑒1 · 𝑣1 𝑒1 · 𝑣1 · 𝑒2 . . . 𝑒1 · 𝑣1 · . . . · 𝑒𝑛 · 𝑣𝑛
that is, a sequence of completed plays of 𝐸 followed by a potentially partial play of 𝐸.

Then, we consider a play of 𝐸 → 𝐹 , a complete interaction leading to the implementation of an

effect 𝑓 , as a play of Replay 𝐸 bracketed by a play of 𝐹 , like so:

𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑛 · 𝑣𝑛 · 𝑣
where 𝑓 ∈ 𝐹 , 𝑣 ∈ ar(𝑓 ) and for all 𝑖 , 𝑒𝑖 ∈ 𝐸 and 𝑣𝑖 ∈ ar(𝑒𝑖 ). Any partial interactions matching this

shape are also possible plays, for instance

𝜖 𝑓 𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑘 𝑓 · 𝑒1 · 𝑣1 · . . . · 𝑒𝑘 · 𝑣𝑘
These remarks allow us to define a notion of implementation as follows:

Definition 3.4. Let 𝐸 and 𝐹 be effect signatures. An implementation𝑀 : 𝐸 → 𝐹 is a non-empty

set of plays of 𝐸 → 𝐹 such that

(1) 𝑀 is closed under the prefix order ⊑: If 𝑠 ∈ 𝑀 and 𝑝 ⊑ 𝑠 then 𝑝 ∈ 𝑀 .

(2) 𝑀 is receptive: 𝑓 ∈ 𝑀 for every 𝑓 ∈ 𝐹 , and for every 𝑒 ∈ 𝐸 if 𝑠 · 𝑒 ∈ 𝑀 and 𝑣 ∈ ar(𝑒) then
𝑠 · 𝑒 · 𝑣 ∈ 𝑀 .

(3) 𝑀 is deterministic: If 𝑠 ·𝑚 · 𝑛, 𝑠 ·𝑚 · 𝑛′ ∈ 𝑀 are even-length plays then 𝑛 = 𝑛′.

Receptivity means that𝑀 accepts any operation 𝑓 ∈ 𝐹 played by its client, as well as any return

value 𝑣 ∈ ar(𝑒) played by its underlay in response to a call made by𝑀 to the operation 𝑒 . Note also

that determinism means that

𝑠 · 𝑒, 𝑠 · 𝑒 ′ ∈ 𝑀 ⇒ 𝑒 = 𝑒 ′

so that the implementation calls the same effect of the underlay next if their past histories are the

same. It also implies that

𝑠 · 𝑣, 𝑠 · 𝑣 ′ ∈ 𝑀 ⇒ 𝑣 = 𝑣 ′

so that if the same code in the underlay was executed with the same returns, then the same return

is given to the overlay effect being implemented. Furthermore, because of determinism, in no

condition may the plays 𝑓 · 𝑠 · 𝑣 and 𝑓 · 𝑠 · 𝑒 , where 𝑣 ∈ ar(𝑓 ) and 𝑒 ∈ 𝐸, belong to the same

implementation𝑀 .

An implementation𝑀 : 𝐸 → 𝐹 may be decomposed into sets

𝑀 𝑓
:= {𝑠 ∈ 𝑀 | 𝑓 ⊑ 𝑠}
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that is,𝑀 𝑓
is the set of plays that implement the effect 𝑓 . This is verified by the equation

𝑀 = {𝜖} ⊎
⊎
𝑓 ∈𝐹

𝑀 𝑓

In fact, given a collection (𝑀 𝑓 )𝑓 ∈𝐹 such that for each 𝑓 the set of plays𝑀 𝑓
is an implementation

𝑀 𝑓
: 𝐸 → 𝐹 that only has plays starting with 𝑓 , the set𝑀 defined as

𝑀 = {𝜖} ⊎
⋃
𝑓 ∈𝐹

𝑀 𝑓

is an implementation𝑀 : 𝐸 → 𝐹 . This way, implementations are in one-to-one correspondence to

collections (𝑀 𝑓 )𝑓 ∈𝐹 of implementations of each effect 𝑓 ∈ 𝐹 .

Example 3.5. The code presented in Example 2.8 can easily be encoded as the sets of plays

𝑀 inc
:= ↓{inc · getVar · 𝑛 · set(𝑛 + 1) · ok · ok | 𝑛 ∈ N} 𝑀get

:= ↓{getCounter · getVar · 𝑛 · 𝑛 | 𝑛 ∈ N}

where ↓𝑆 = {𝑠 | ∃𝑡 ∈ 𝑆.𝑠 ⊑ 𝑡} is the prefix ordering down-closure of 𝑆 . The correspondence between
the code and the sets of plays should be apparent. The full implementation𝑀 : Var→ Counter is
then simply𝑀 inc ∪𝑀get

.

Example 3.6. The strategy associated with the implementation𝑀bq : 𝐸rb → 𝐸bq outlined in Fig. 1

can be described as:

𝑀
enq(𝑣)
bq := ↓{enq(𝑣) · fai2 · 𝑛 · set(𝑛, 𝑣) · ok · ok | 𝑛 ∈ N}

𝑀
deq
bq := ↓{deq · fai1 · 𝑛 · get(𝑛) · 𝑣 · 𝑣 | 𝑛 ∈ N ∧ 𝑣 ∈ U}

In order to model the vertical composition operation of Gu et al. [2015, 2018] it will be necessary

to compose implementations. So consider an implementation𝑀 : 𝐸 → 𝐹 and an implementation

𝑁 : 𝐹 → 𝐺 . We would like to produce an implementation 𝑁 ◦𝑀 : 𝐸 → 𝐺 . In order to do so the

implementation𝑀 will need to be used several times, as 𝑁 might make several calls to effects in

𝐹 in order to implement a single call/return event from 𝐺 . To this end, given an implementation

𝑀 : 𝐸 → 𝐹 we define the set𝑀 of plays, called its regular extension, as the set

𝑀 := {𝑠1 · . . . · 𝑠𝑛 | 𝑠1, . . . , 𝑠𝑛 ∈ 𝑀}

so that𝑀 describes the plays resulting from using𝑀 several times to implement a play of Replay 𝐹 .

Example 3.7. Consider the 𝑀 : Var → Counter defined in Example 3.5. Its regular extension

includes plays such as

getCounter · getVar · 𝑎 · 𝑎︸                        ︷︷                        ︸
𝑀

· inc · getVar · 𝑏 · set(𝑏 + 1) · ok · ok︸                                       ︷︷                                       ︸
𝑀

· getCounter · getVar · 𝑐 · 𝑐︸                       ︷︷                       ︸
𝑀

In the following definition, if 𝑠 is a sequence involving events in signatures 𝐸, 𝐹,𝐺 we use the

notation 𝑠↾𝐸,𝐹 to denote the subsequence of 𝑠 including all but only the events in 𝐸 or 𝐹 . Later

we use the unary variation 𝑠↾𝐸 for the subsequence including all but only the events in 𝐸. Then,

implementation composition is defined as

Definition 3.8. Let 𝑀 : 𝐸 → 𝐹 and 𝑁 : 𝐹 → 𝐺 be implementations. Then, the implementation

𝑁 ◦𝑀 : 𝐸 → 𝐺 is defined as

𝑁 ◦𝑀 := {𝑠↾𝐸,𝐺 | 𝑠↾𝐸,𝐹 ∈ 𝑀 and 𝑠↾𝐹,𝐺 ∈ 𝑁 }
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Example 3.9. Suppose we want to use a counter, with signature Counter as in example 3.2, to

implement an interface with signature

EqCounter := {get : N→ B, inc : 1}
where B = {True, False}. The difference between Counter and EqCounter is that in EqCounter the
get operation takes an integer as argument, compares it against the current value of the counter,

and returns whether or not the value of the counter is equal to the argument to get. This can be

implemented by 𝑁 : Counter→ EqCounter defined as

𝑁 inc
:= ↓{incEqCounter · incCounter · ok · ok} 𝑁 get(𝑖)

:= ↓{get(𝑖) · get · 𝑗 · (𝑖 == 𝑗)}
where we use − == − to denote the boolean function checking for equality of two integers. Now,

given the implementation𝑀 : Var→ Counter from Example 3.5 we can construct 𝑁 ◦𝑀 : Var→
EqCounter using Definition 3.8. Then, the general shape for a play in (𝑁 ◦𝑀)get(𝑖) is depicted by

the following graphical descriptions:

𝑀 𝑁 get(𝑖) (𝑁 ◦𝑀)get(𝑖)
Var → Counter Counter → EqCounter Var EqCounter

get(𝑖) get(𝑖)
get get

get get
𝑗 𝑗

𝑗 𝑗

(𝑖 == 𝑗) (𝑖 == 𝑗)
For the particular play we depicted the interaction 𝑠 in the definition of composition is

𝑠 = get(𝑖) · getCounter · getVar · 𝑗 · 𝑗 · (𝑖 == 𝑗)
so that we verify that

𝑠↾Var,Counter = getCounter · getVar · 𝑗 · 𝑗 ∈ 𝑀 𝑠↾Counter,EqCounter = get(𝑖) · getCounter · 𝑗 · (𝑖 == 𝑗) ∈ 𝑁
and therefore

𝑠↾Var,EqCounter = get(𝑖) · getVar · 𝑗 · (𝑖 == 𝑗) ∈ 𝑁 ◦𝑀

Definition 3.10. At this point we are ready to define a category Layer whose objects are effect
signatures 𝐸, 𝐹 and whose morphisms from 𝐸 to 𝐹 are the implementations𝑀 : 𝐸 → 𝐹 . Composition

is as in Definition 3.8 and the identity implementation for an effect signature 𝐸 is given by

𝐼𝐸 := ↓{𝑒 · 𝑒 · 𝑣 · 𝑣 | 𝑒 ∈ 𝐸 ∧ 𝑣 ∈ ar(𝐸)}

3.3 Layer Interfaces
We introduce in this section the notion of layer interface defined as a pair (𝐸,𝑉𝐸) consisting of an

effect signature 𝐸 specifying the interface for the objects, together with an object strategy𝑉𝐸 which

specifies the interactive behavior of the layer interface. We first define the notion of object strategy

and then give an illustration with our running example of ring buffers and bounded queues.

Definition 3.11. A (deterministic) object strategy over an effect signature 𝐸 is a non-empty set of

plays 𝑉𝐸 of Replay 𝐸 which satisfies

(1) the strategy 𝑉𝐸 is prefix-closed.

(2) the strategy 𝑉𝐸 is receptive:

If 𝑠 ∈ 𝑉𝐸 is an even-length play and 𝑒 ∈ 𝐸 then 𝑠 · 𝑒 ∈ 𝑉𝐸 .
(3) the strategy 𝑉𝐸 is deterministic:

If 𝑠 · 𝑒 · 𝑣, 𝑠 · 𝑒 · 𝑣 ′ ∈ 𝑉𝐸 are even-length plays then 𝑣 = 𝑣 ′.
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We denote by S𝐸 the set of object strategies over 𝐸.

Definition 3.12. A layer interface is a pair 𝐿 = (𝐸,𝑉𝐸) of an effect signature 𝐸 and of an object

strategy 𝑉𝐸 over 𝐸.

Example 3.13. In general, given a state-based description of a layer interface 𝐿 of the kind used

in Fig. 1, we can obtain the set of plays 𝐿♯𝑞 induced by a state 𝑞 with the recursive condition:

𝜖 ∈ 𝐿♯𝑞 ; 𝑚 · 𝑛 · 𝑠 ∈ 𝐿♯𝑞 ⇔ ∃𝑞′ . (𝑛, 𝑞′) ∈ 𝐿.𝑚@𝑞 ∧ 𝑠 ∈ 𝐿♯𝑞′

The empty queue 𝜖 is a natural initial state, so we define (where 𝐿𝑆bq is the state-based specification

in Fig. 1):

𝐿bq := (𝐸bq,𝑉bq) 𝑉bq := 𝐿𝑆bq♯𝜖

For example, for all 𝑢, 𝑣 ∈ U, 𝐿bq allows the following play, as witnessed by the sequence of states

𝜖,𝑢,𝑢𝑣, 𝑣, 𝜖 .

enq(𝑢) · ok · enq(𝑣) · ok · deq · 𝑢 · deq · 𝑣 ∈ 𝑉bq ,
For ring buffers, we prefer not to make any assumptions on initial contents, so that the get

operation on a location which has not yet been set is undefined. The corresponding layer interface

is (again, we denote by 𝐿𝑆rb the state-based specification in Fig. 1):

𝐿rb := (𝐸rb,𝑉rb) 𝑉rb :=
⋂
𝑓 ∈U𝑁

𝐿𝑆rb♯(𝑓 , 0, 0)

In this case, set(𝑖, 𝑣) · ok · get(𝑖) · 𝑣 is a play in 𝑉rb for all 𝑖 < 𝑁 , 𝑣 ∈ U, but get(𝑖) · 𝑣 on its own is

never accepted when |U| > 1.

3.4 Certified Layer Implementations
We have just seen in §3.2 how to define a notion of implementation 𝑀 : 𝐸 → 𝐹 of an effect

signature 𝐹 in terms of an effect signature 𝐸. We now adapt and refine this definition to obtain a

notion of certified implementation

𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹 )
between layer interfaces, as defined in Definition 3.12.

For an implementation𝑀 : 𝐸 → 𝐹 we will use the notation 𝑠
𝑀
↩−→ 𝑡 to mean that𝑀 can implement

the play 𝑡 of Replay 𝐹 using the underlay play 𝑠 of Replay 𝐸. Formally:

𝑠
𝑀
↩−→ 𝑡 ⇐⇒ ∃𝑝 ∈ 𝑀.𝑝↾𝐸 = 𝑠 and 𝑝↾𝐹 = 𝑡

Definition 3.14. Let 𝐿𝐸 = (𝐸,𝑉𝐸) and 𝐿𝐹 = (𝐹,𝑉𝐹 ). A certified implementation 𝑀 : 𝐿𝐸 → 𝐿𝐹 is an

implementation𝑀 : 𝐸 → 𝐹 such that

∀𝑡 ∈ 𝑉𝐹 .∃𝑠 ∈ 𝑉𝐸 .𝑠
𝑀
↩−→ 𝑡

We also find convenient to use the notation:

𝑉𝐸
𝑀
↩−→ 𝑉𝐹 ≡ ∀𝑡 ∈ 𝑉𝐹 .∃𝑠 ∈ 𝑉𝐸 .𝑠

𝑀
↩−→ 𝑡 .

Example 3.15. Building on Example 3.13, the correctness of 𝑀bq can be established using the

simulation relation 𝑅 given in Fig. 1. We can show by induction on plays that:

®𝑞 𝑅 (𝑓 , 𝑐1, 𝑐2) ⇒ 𝐿rb♯(𝑓 , 𝑐1, 𝑐2)
𝑀bq
↩−−→ 𝐿bq♯®𝑞

For 𝜖 ∈ 𝐿bq♯®𝑞 we have 𝜖
𝑀bq
↩−−→ 𝜖 and 𝜖 ∈ 𝐿rb♯(𝑓 , 𝑐1, 𝑐2). For (𝑛, ®𝑞 ′) ∈ 𝐿bq.𝑚 and 𝑠 ∈ 𝐿bq♯®𝑞 ′, we only

need to witness a related state ®𝑞 ′ 𝑅 (𝑓 ′, 𝑐 ′
1
, 𝑐 ′

2
) of 𝐿rb reached by the corresponding sequence of
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operations in𝑀bq. Since the initial states 𝜖 𝑅 (𝑓 , 0, 0) are related for all 𝑓 ∈ U𝑁
, we can conclude

𝑉rb
𝑀bq
↩−−→ 𝑉bq.

Definition 3.16. The category CertiLayer has layer interfaces as objects and certified implemen-

tations 𝑀 : (𝐸,𝑉𝐸) → (𝐹,𝑉𝐹 ) as morphisms, with composition and identities defined as in the

category Layer.

Layer interfaces support a simple notion of refinement defined by

(𝐸,𝑉𝐸) ⊑ (𝐸,𝑉 ′𝐸) ⇐⇒ 𝑉𝐸 ⊆ 𝑉 ′𝐸
The refinement order ⊑ defines a refinement system satisfying the usual refinement law.

Proposition 3.17. (𝐸,𝑉𝐸) ⊑ (𝐸,𝑉 ′𝐸) if and only if the identity implementation on 𝐸 is a certified
implementation from (𝐸,𝑉𝐸) to (𝐸,𝑉 ′𝐸).

Which immediately implies that:

Corollary 3.18. Suppose that 𝐿1 ⊑ 𝐿′
1
and 𝐿′

2
⊑ 𝐿2. Then, if𝑀 : 𝐿1 → 𝐿2 then𝑀 : 𝐿′

1
→ 𝐿′

2
.

Remark 1. Another way to formulate Definition 3.8 would be to proceed along the lines of game
semantics, and to see the implementation𝑀 : 𝐸 → 𝐹 as a strategy from Replay 𝐸 to 𝐹 , and similarly
for 𝑁 . In that prospect, the set 𝑀 of plays defines a strategy from Replay 𝐸 to Replay 𝐹 which may
be then composed with the strategy 𝑁 from Replay 𝐹 to 𝐺 in order to obtain the strategy 𝑁 ◦ 𝑀
from Replay 𝐸 to 𝐺 . Definition 3.14 of certified implementation may be reformulated in this spirit by

observing that the property𝑉𝐸
𝑀
↩−→ 𝑉𝐹 is equivalent to the fact that𝑉𝐹 seen as a strategy of Replay 𝐹 is

refined by the composite of 𝑉𝐸 seen as a strategy of Replay 𝐸 with the strategy𝑀 from Replay 𝐸 to
Replay 𝐹 , see Appendix A for details.

4 NON-DETERMINISTIC LAYER INTERFACES
In this section, we generalize the notions of layer interface formulated in §3 in order to accommodate

specific forms of nondeterminism in the specification of layers. We start by introducing the notion

of nondeterministic layer interface.

Definition 4.1. A non-deterministic layer interface L = (𝐸,V𝐸) is a pair consisting of an effect

signature 𝐸 and setV𝐸 ⊆ S𝐸 of object strategies. We further requireV𝐸 to be upward closed under

the refinement order:

∀𝑉𝐸 ∈ V𝐸 . ∀𝑉 ′𝐸 ∈ S𝐸 . 𝑉𝐸 ⊑ 𝑉 ′𝐸 ⇒ 𝑉 ′𝐸 ∈ V𝐸

Given an arbitrary set V𝐸 of object strategies, we will write its upward closure ↑V = {𝑉 ′ ∈
S𝐸 | ∃𝑉 ∈ V .𝑉 ⊑ 𝑉 ′} This means in particular that a layer interface (𝐸,𝑉 ) can be promoted to its

nondeterministic counterpart as (𝐸, ↑{𝑉 }).

Definition 4.2. A certified implementation 𝑀 : L𝐸 → L𝐹 between nondeterministic layer inter-

faces is an implementation𝑀 : 𝐸 → 𝐹 such that

∀𝑉𝐸 ∈ V𝐸 . ∃𝑉𝐹 ∈ V𝐹 . (𝐸,𝑉𝐸)
𝑀
↩−→ (𝐹,𝑉𝐹 ).

The intuition behind these definitions is that the behavior of a nondeterministic layer interface
(𝐸,V𝐸) is described by the setV𝐸 of deterministic object strategies potentially chosen to implement

the layer interface. An implementation𝑀 : 𝐸 → 𝐹 defines a certified implementation𝑀 : L𝐸 → L𝐹

when for all object strategies𝑉𝐸 of the underlay, there is an object strategy𝑉𝐹 of the overlay included

in the composite of𝑀 and 𝑉𝐸 .
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The category CertiLayerND has non-deterministic layer interfaces L𝐸,L𝐹 as objects and certi-

fied implementations𝑀 : L𝐸 → L𝐹 as morphisms. Composition and identities are as in Layer.

Example 4.3. Recall that in Example 3.13, we defined

𝐿rb := (𝐸rb,𝑉rb) 𝑉rb :=
⋂
𝑓 ∈U𝑁

𝐿𝑆rb♯(𝑓 , 0, 0)

allowing arbitrary initial contents in 𝐿rb. In fact, the correctness of𝑀bq is also insensitive to the

counters’ initial value, since 𝜖 𝑅 (𝑓 , 𝑐, 𝑐) for all 𝑐 < 𝑁 . However, we cannot define 𝑉rb as

𝑉
wrong

rb :=
⋂
𝑓 ∈U𝑁

⋂
𝑐<𝑁

𝐿𝑆rb♯(𝑓 , 𝑐, 𝑐)

which would make the behavior of fai1 and fai2 completely undefined, similarly to the initial

behavior of get.
By contrast, the model introduced by Definition 4.1 gives a more fine-grained way to weaken

constraints on 𝐿rb:

Lrb := (𝐸rb,Vrb) Vrb := ↑{𝐿𝑆rb♯(𝑓 , 𝑐, 𝑐) | 𝑓 ∈ U
𝑁 , 𝑐 < 𝑁 }

Lbq := (𝐸bq,Vbq) Vbq := ↑{𝑉bq}
Then𝑀bq : Lrb → Lbq remains a certified implementation in the sense of Definition 4.2.

We can easily adapt the notion of refinement ⊑ between deterministic layer interfaces, in the

following way:

(𝐸,V ′) ⊑ (𝐸,V) ⇐⇒ V ′ ⊇ V
Just as in §3.4, we have that (𝐸,V ′) ⊑ (𝐸,V) if and only if the identity implementation I𝐸 : 𝐸 → 𝐸

on the effect signature 𝐸 is a certified implementation. From this follows an immediate adaptation

of Proposition 3.18:

Proposition 4.4. Given L1 ⊑ L ′1 and L ′2 ⊑ L2, if𝑀 : L1 → L2, then𝑀 : L ′
1
→ L ′

2
.

5 CORRESPONDENCEWITH OBJECT-BASED SEMANTICS IN COHERENCE SPACES
In §2 we reviewed Reddy’s object-based semantics in coherence spaces, and in §3 we introduced an

interactive game model of certified layers with many similarities to Reddy’s object-based semantics.

In this section we discuss a way of connecting the two semantics. See Appendix B for the proof of

the functoriality of the functors discussed here.

5.1 The Category Reg of Regular Maps
We start by observing that in §2 we have delineated all of the structure for the category of coherence

spaces, defined simply as

Definition 5.1. The category Coh has coherence spaces𝐴, 𝐵 as objects and linear maps 𝑓 : 𝐴 ⊸ 𝐵

as morphisms. Composition and identity are relational composition −◦−, and the diagonal relation
id− respectively.

We also take the opportunity to define the category Reg of object spaces:

Definition 5.2. The category Reg has coherence spaces𝐴, 𝐵 as objects and regular maps 𝑓 : †𝐴 ⊸
𝐵 as morphisms. The composite of two regular maps 𝑓 : †𝐴 ⊸ 𝐵 and 𝑔 : †𝐵 ⊸ 𝐶 is defined as the

regular map 𝑔 ◦ 𝑓 : †𝐴 ⊸ 𝐶 as explained in §2. The identity morphism of 𝐴 in Reg is the regular

map 𝜖𝐴 : †𝐴 ⊸ 𝐴 defined as 𝜖𝐴 := {⟨𝑎⟩ ↦→ 𝑎 | 𝑎 ∈ |𝐴|}. Note that the category Reg is the co-Kleisli

category associated to the comonad † : Coh→ Coh on the category Coh of coherence spaces.
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We then introduce the category CertiReg which refines the category Reg of regular maps in the

same way as the category CertiLayer refines Layer in §3.

Definition 5.3. The objects of CertiReg are the pairs (𝐴,𝑊𝐴) consisting of a coherence space 𝐴
and of a clique𝑊𝐴 of the coherence space †𝐴. A morphism𝑀 : (𝐴,𝑊𝐴) → (𝐵,𝑊𝐵) of the category
CertiReg is defined as a regular map 𝑀 : †𝐴 ⊸ 𝐵 such that 𝑀 ◦ 𝑊𝐴 ⊇ 𝑊𝐵 where ⊆ is the

(set-theoretic) inclusion of linear maps.

5.2 Effect Signatures to Coherence Spaces
We can associate to every effect signature 𝐸 a coherence space ⟦𝐸⟧ defined as

|⟦𝐸⟧| = {𝑒.𝑣 | 𝑒 ∈ 𝐸 and 𝑣 ∈ ar(𝑒)} 𝑒.𝑣 ¨⟦𝐸⟧ 𝑒 ′.𝑣 ′ ⇐⇒ (𝑒 = 𝑒 ′⇒ 𝑣 = 𝑣 ′)

Every token 𝑒.𝑣 ∈ ⟦𝐸⟧ is a pair consisting of an effect and a return value (or arity) associated to

this effect. Coherence encodes a form of determinism, which ensures that there exists at most one
possible return value 𝑣 ∈ ar(𝑒) for a given effect 𝑒 ∈ 𝐸 in a clique of ⟦𝐸⟧. This means in particular

that given an effect 𝑒 and two possible return values 𝑣, 𝑣 ′ ∈ ar(𝑚), two tokens of the coherence

space †⟦𝐸⟧ of the form 𝑠 · (𝑒.𝑣) and 𝑠 · (𝑒.𝑣 ′) are coherent precisely when 𝑣 = 𝑣 ′.
The translation from effect signatures 𝐸 to the underlying coherence space ⟦𝐸⟧ suggests that we

can see plays 𝑒 · 𝑣 in 𝐸 as tokens 𝑒.𝑣 ∈ ⟦𝐸⟧. We can then interpret any even-length play of Replay 𝐸
as sequence in †⟦𝐸⟧ as follows:

⟦𝑒1 · 𝑣1 · . . . 𝑒𝑛 · 𝑣𝑛⟧ = ⟨𝑒1 .𝑣1, . . . , 𝑒𝑛 .𝑣𝑛⟩

which in fact defines an order-preserving bijection (with respect to prefix ordering on sequences)

between the plays encoded by Replay 𝐸 and tokens of †⟦𝐸⟧. From now on we allow ourselves to

apply this bijection tacitly whenever we need it.

5.3 From Implementations to Certified Regular Maps
We start by noting that every implementation 𝑀 : 𝐸 → 𝐹 between effect structures 𝐸, 𝐹 can be

translated to a regular map ⟦𝑀⟧ : †⟦𝐸⟧ ⊸ ⟦𝐹⟧ between coherence spaces in the following way:

⟦𝑀⟧ := {𝑠 ↦→ 𝑓 .𝑣 | 𝑓 · 𝑠 · 𝑣 ∈ 𝑀}

We can establish that the translation is functorial in the sense that

Proposition 5.4. The translation ⟦−⟧ defines a full (but not faithful) functor ⟦−⟧ : Layer→ Reg

The functor ⟦−⟧ is full because every regular map 𝑁 : †⟦𝐸⟧ ⊸ ⟦𝐹⟧ can be turned into an object

strategy𝑀 : 𝐸 → 𝐹 such that 𝑁 = ⟦𝑀⟧ defined as the receptive closure of

𝑀 = ↓{𝑓 · 𝑠 · 𝑣 | 𝑠 ↦→ 𝑓 .𝑣 ∈ 𝑁 }

On the other hand the functor ⟦−⟧ is not faithful because two object strategies𝑀,𝑀 ′ : 𝐸 → 𝐹

which differ only on partial behaviors are translated to the same regular map ⟦𝑀⟧ = ⟦𝑀 ′⟧. The
reason is that the functor ⟦−⟧ captures exactly the complete behaviors of object strategies.

We then extend the functor ⟦−⟧ : Layer→ Reg defined in §5.3 to a functor

⟦−⟧ : CertiLayer→ CertiReg (3)

To that purpose we observe that for every effect signature 𝐸,

Proposition 5.5. If 𝑉𝐸 is an object strategy over the effect signature 𝐸 then its set of even-length
plays is a non-empty, prefix-closed clique of the associated coherence space †⟦𝐸⟧.
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Thanks to this observation we can associate to every layer interface (𝐸,𝑉𝐸) in CertiLayer the
corresponding pair in CertiReg,

(𝐸,𝑉𝐸) ↦→ (⟦𝐸⟧, ⟦𝑉𝐸⟧)
where ⟦𝑉𝐸⟧ is simply the clique in †⟦𝐸⟧ corresponding to the even-length plays of the object

strategy 𝑉𝐸 . This then allows us to extend the functor ⟦−⟧ : CertiLayer → CertiReg defined in

§5.3 to a functor

⟦−⟧ : CertiLayerND→ CertiRegND
by applying to setsV𝐸 of object strategies the action of the original functor ⟦−⟧ in (3) to object

strategies 𝑉𝐸 ∈ V𝐸 , in the following wayL

⟦V𝐸⟧ := {⟦𝑉𝐸⟧ | 𝑉𝐸 ∈ V𝐸} ⟦(𝐸,V𝐸)⟧ := (⟦𝐸⟧, ⟦V𝐸⟧)
The image of a non-deterministic layer interface (𝐸,V𝐸) is defined as seen above, while implemen-

tations 𝑀 : (𝐸,V𝐸) → (𝐹,V𝐹 ) are mapped to the same regular map ⟦𝑀⟧ as in §5. We obtain in

this way a commutative diagram:

CertiLayer CertiReg CertiRegConc

CertiLayerND CertiRegND CertiRegConcND

Layer Reg RegConc

⟦−⟧

inclusion inclusion

inclusion

inclusion

⟦−⟧

forget forget

inclusion

forget

⟦−⟧ inclusion

which may be seen as a map of functorial refinement systems [Melliès and Zeilberger 2015]. This

expresses very concisely in what sense the categoriesCertiReg andCertiRegND refine the category

Reg in the same way as the categories CertiLayer and CertiLayerND refine the category Layer.
The grayed-out categories will be discussed in §6, except for CertiRegConcND which is the result

of applying the abstract construction from §4 to CertiRegConc.

6 CONCURRENT OBJECT SPACES
So far we have only discussed models of sequential systems. The models we defined are expressive

enough to capture stateful sequential computation with an elegant decomposition of statefulness

into a state-less implementation and a stateful sequential specification. Challenges arise when

attempting to faithfully model concurrent computation. In order to discuss this situation, we take

full advantage of the correspondence shown in §5.

So let us consider a very simple concurrent system, where two variable objects are used concur-

rently to implement two independent counters. This can be modeled by an underlay signature

Var + Var = {111:get : N,111:set : N→ 1} ∪ {222:get : N,222:set : N→ 1}
In coherence spaces this signature nicely corresponds to the product

⟦Var + Var⟧ = ⟦Var⟧ & ⟦Var⟧
where the with of coherence spaces 𝐴 and 𝐵, 𝐴 & 𝐵, is defined by

|𝐴 & 𝐵 | := |𝐴| + |𝐵 | 𝑋𝑋𝑋 :𝑥 ¨𝐴&𝐵 𝑌𝑌𝑌 :𝑦 ⇐⇒ 𝑋 = 𝑌 ⇒ 𝑥 ¨𝑋 𝑦

The unit for & is the empty coherence space ⊤. For conciseness we will omit applications of the

functor ⟦−⟧ to effect signatures to no harm, so we may write Var & Var, for example.

Now, an implementation in our models corresponds to a regular map †(Var&Var) ⊸ (Counter&
Counter). If we assume each agent can only call the operations labelled with their own name, such

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.



42:18 Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

a map corresponds to two maps †Var ⊸ Counter each representing the local implementation that

each agent is running. We will use the usual implementation of Counter in terms of Var, as in
Example 2.8. Then, the implementation for all the agents is given by

𝑀 &𝑀 : †(Var & Var) ⊸ (Counter & Counter)
where 𝑀 &𝑀 is a labelled disjoint union of the implementation 𝑀 with itself regarded as a set

(including labeling the events within each copy of𝑀). But note that this map only expresses a very

limited form of concurrency. Namely, the implementation of a trace 𝑡 = ⟨111:inc.ok,222:inc.ok⟩ by𝑀 is

always given by a sequence of shape

𝑠1 = ⟨111:get.𝑖,111:set(𝑖 + 1).ok,222:get. 𝑗,222:set( 𝑗 + 1).ok⟩ ∈ †(Var & Var)
which is completely atomic. The issue lies much deeper. Consider another interleaving on the

underlay corresponding to calls to inc on the overlay. For instance,

𝑠2 = ⟨111:get.𝑖,222:get. 𝑗,111:set(𝑖 + 1).ok,222:set( 𝑗 + 1).ok⟩ ∈ †(Var & Var)
A purposed linear map 𝑓 : †(Var & Var) ⊸ †(Counter & Counter) that models the usual counter

implementation on each counter should map both 𝑠1, 𝑠2 to the same sequence 𝑡 : 𝑠1 ↦→ 𝑡 ∈ 𝑓 and

𝑠2 ↦→ 𝑡 ∈ 𝑓 . But note that according to the definition of a linear map (Def. 2.3) this implies that

𝑠1 = 𝑠2, as 𝑠1 ¨†(Var&Var) 𝑠2. Therefore, there is no such linear map. Despite that, coherence spaces

do support a notion of parallelism in the tensor product ⊗:
|𝐴 ⊗ 𝐵 | := |𝐴| × |𝐵 | (𝑎, 𝑏) ¨𝐴⊗𝐵 (𝑎′, 𝑏 ′) ⇐⇒ 𝑎 ¨𝐴 𝑎′ ∧ 𝑏 ¨𝐵 𝑏 ′

So that a map 𝑓 : †Var⊗ †Var ⊸ †Counter⊗ †Counter is possible. On the other hand, the category

Reg does not have tensor products, a fact noted by Reddy [1996].

In this section we explore the issue by dissecting the category Reg as the category of free †-
coalgebras, that is, coalgebras of the form †𝐴. We then consider a larger category of all †-coalgebras
where we pinpoint a particularly elegant class of †-coalgebras, equipped with a tensor product,

and with the expressive power to model a variety of concurrent systems.

6.1 The Replay Modality’s Co-monadic Structure
We start by noting that †− is a comonad in Coh, with the structural maps

𝛿𝐴 : †𝐴 ⊸ ††𝐴 𝜖𝐴 : †𝐴 ⊸ 𝐴

𝛿𝐴 := {𝑠1 · . . . · 𝑠𝑛 ↦→ ⟨𝑠1, . . . , 𝑠𝑛⟩ | 𝑠1, . . . , 𝑠𝑛 ∈ |†𝐴|} 𝜖𝐴 := {⟨𝑎⟩ ↦→ 𝑎 | 𝑎 ∈ |𝐴|}
which justifies the construction of Reg as the co-Kleisli category of †−. As a functor, the action of

†− on a linear map 𝑓 : 𝐴 ⊸ 𝐵 is

†𝑓 := {⟨𝑎1, . . . , 𝑎𝑛⟩ ↦→ ⟨𝑏1, . . . , 𝑏𝑛⟩ | ∀𝑖 ≤ 𝑛.𝑎𝑖 ↦→ 𝑏𝑖 ∈ 𝑓 }
which applies 𝑓 element-wise through the input sequences. Note that in Reg the map 𝜖𝐴 plays the

role of the identity morphism. In particular, the identity implementation 𝐼𝐸 is mapped by ⟦−⟧ to
𝜖𝐸 , in other words: ⟦𝐼𝐸⟧ = 𝜖𝐸 .

As explained in the introduction, see Fig. 2, the "decomposition" map 𝜅 = 𝛿𝐴 plays an essential

role in lifting a map 𝑓 : †𝐴 ⊸ 𝐵 to the regular map 𝑓 : †𝐴→ †𝐵 defined as the composite

†𝐴 †𝐵𝑓
= †𝐴 ††𝐴 †𝐵𝛿𝐴 †𝑓

Example 6.1. With the usual counter implementation 𝑀 : †Var → Counter we observe the

composition

⟨get.𝑎, get.𝑏, set(𝑏 + 1).ok, get.𝑐⟩ 𝛿Var↦−−−→ ⟨⟨get.𝑎⟩, ⟨get.𝑏, set(𝑏 + 1) .ok⟩, ⟨get.𝑐⟩⟩ †𝑀↦−−−→ ⟨get.𝑎, inc.ok, get.𝑐⟩

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.



Layered and Object-Based Game Semantics 42:19

where 𝛿Var plays the role of decomposing the input trace before𝑀 can be replicated to map the

input trace of †Var to a trace of †Counter. Note also that there are many decompositions of the

input trace that do not get mapped though †𝑀 and therefore do not appear in𝑀 .

Although the role of 𝜅 = 𝛿𝐴 in this setting is rather simple, it is fundamental for the structure

of regular maps. We will see that this decomposition step plays a much subtler role for general

†-coalgebras, which is fundamental to the simplicity of our model.

6.2 Identifying Interleavings
In §6 we noted that it is rather challenging to model the independent composition of objects because

different interleavings of the underlay are all coherent, and we can’t represent a ⊗ in Reg. On the

other hand, as the objects are independent, we could identify all those interleavings as representing

the same computation. We define a relation 𝑅 ⊆ |†(Var & Var) | × |†(Var & Var) | as the smallest

equivalence relation relating, for any 𝑠, 𝑡 ∈ |†(Var & Var) |, 𝑒.𝑣, 𝑒 ′.𝑣 ′ ∈ Var:

𝑖 ≠ 𝑗 ⇒ 𝑠 · ⟨𝑖𝑖𝑖:𝑒.𝑣⟩ · ⟨𝑗𝑗𝑗 :𝑒 ′.𝑣 ′⟩ · 𝑡 𝑅 𝑠 · ⟨𝑗𝑗𝑗 :𝑒 ′.𝑣 ′⟩ · ⟨𝑖𝑖𝑖:𝑒.𝑣⟩ · 𝑡

Then, we can define a coherence space †𝑅 (Var & Var) by

|†𝑅 (Var & Var) | := |†(Var & Var) |/𝑅 𝑥 ¨†𝑅 (Var&Var) 𝑦 ⇐⇒ ∀𝑠 ∈ 𝑥 .∀𝑡 ∈ 𝑦.𝑠 ¨†(Var&Var) 𝑡
where |†(Var & Var) |/𝑅 is the set of equivalence classes of 𝑅 over |†(Var & Var) |. Similarly, we can

define an analogous relation 𝑆 ⊆ |†(Counter & Counter) | × |†(Counter & Counter) | and a space

†𝑆 (Counter & Counter).
The usual Counter implementation in this setting can be formulated instead by defining two

maps𝑀 [𝑖] : 𝜄𝑖 (Var) ⊸ 𝜄𝑖 (Counter), one for each 𝑖 ∈ {1, 2}:

𝑀 [𝑖] := {⟨𝑖𝑖𝑖:get.𝑛⟩ ↦→ 𝑖𝑖𝑖:get.𝑛 | 𝑛 ∈ N} ∪ {⟨𝑖𝑖𝑖:get.𝑛, 𝑖𝑖𝑖:set(𝑛 + 1).ok⟩ ↦→ 𝑖𝑖𝑖:inc.ok | 𝑛 ∈ N}

Then, we can define a map
�𝑀 [1] ⊗�𝑀 [2] : †𝑅 (Var & Var) ⊸ †𝑆 (Counter & Counter) as�𝑀 [1] ⊗�𝑀 [2] := {[𝑠1 · . . . · 𝑠𝑛]𝑅 ↦→ [𝑡1 · . . . · 𝑡𝑛]𝑆 | ∀𝑖 ≤ 𝑛.𝑠𝑖 ↦→ 𝑡𝑖 ∈ �𝑀 [1] ∨ 𝑠𝑖 ↦→ 𝑡𝑖 ∈ �𝑀 [2]}

where [𝑠]𝑅 denotes the equivalence class of 𝑅 in which 𝑠 belongs, and similarly for [−]𝑆 (we will

often omit the subscript when it causes no confusion). Then, in our usual graphical presentation

we observe that

[𝑠2] = [⟨111:get.𝑖,222:get. 𝑗,111:set(𝑖 + 1).ok,222:set( 𝑗 + 1) .ok⟩]

=
�𝑀 [1] ⊗�𝑀 [2]
↦−−−−−−−−−−→ [⟨111:inc.ok,222:inc.ok⟩] = 𝑡

[𝑠1] = [⟨111:get.𝑖,111:set(𝑖 + 1) .ok,222:get. 𝑗,222:set( 𝑗 + 1) .ok⟩]

6.3 Concurrent Object Spaces
We say that an equivalence relation 𝑅 ⊆ |†𝐴| × |†𝐴| is coherent when

∀𝑠, 𝑡 ∈ |†𝐴|. 𝑠 𝑅 𝑡 ⇒ 𝑠 ¨†𝐴 𝑡

which we write more concisely 𝑅 ⊆ ¨†𝐴. Furthermore, we say that 𝑅 is a congruence when

∀𝑝, 𝑠, 𝑠 ′, 𝑡 ∈ †𝐴. 𝑠 𝑅 𝑠 ′⇒ 𝑝 · 𝑠 · 𝑡 𝑅 𝑝 · 𝑠 ′ · 𝑡

Definition 6.2. The coherence space †𝑅𝐴 associated to a coherent congruence 𝑅 is defined as

†𝑅𝐴 := |†𝐴|/𝑅 𝑥 ¨†𝑅𝐴 𝑦 ⇐⇒ ∀𝑠 ∈ 𝑥 .∀𝑡 ∈ 𝑦.𝑠 ¨†𝐴 𝑡

A coherence space †𝑅𝐴 is called a concurrent object space.
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The fact that 𝑅 is a coherent congruence ensures that there is a linear map 𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴
playing a similar role for †𝑅𝐴 as the "decomposition" map 𝜅 = 𝛿𝐴 : †𝐴 ⊸ ††𝐴 plays for the free

†-coalgebra †𝐴. The map 𝜅𝑅 is defined as

𝜅𝑅 := [𝑠1 · . . . · 𝑠𝑛] ↦→ ⟨[𝑠1], . . . , [𝑠𝑛]⟩ : †𝑅𝐴 ⊸ ††𝑅𝐴.
An important observation of the paper is that this map equips the concurrent object space †𝑅𝐴 with

the structure of a †-coalgebra. Recall that a †-coalgebra is a pair (𝐶,𝜅 : 𝐶 ⊸ †𝐶) of a coherence
space 𝐶 and linear map 𝜅 : 𝐶 ⊸ †𝐶 making the diagrams below commute:

𝐶 †𝐶

†𝐶 ††𝐶

𝜅

𝜅 †𝜅
𝛿𝐶

𝐶 †𝐶

𝐶

𝜅

id𝐶
𝜖𝐶 (4)

The †-coalgebras define a category †-Coalg, known as the Eilenberg-Moore category associated

to the comonad †. Its objects are the †-coalgebras just described, and its morphisms 𝑓 : (𝐶,𝜅) →
(𝐶 ′, 𝜅 ′) are the maps 𝑓 : 𝐶 → 𝐶 ′ of Coh making the diagram below commute:

𝐶 𝐶 ′

†𝐶 †𝐶 ′

𝑓

𝜅 𝜅′

†𝑓

(5)

We can summarize the observations made so far into the following proposition:

Proposition 6.3. For every coherence space 𝐴 and coherent congruence 𝑅 ⊆ |†𝐴| × |†𝐴|, the pair
( †𝑅𝐴 , 𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴 )

defines a †-coalgebra.

A detailed proof of proposition 6.3 can be found in Appendix C.

Example 6.4. Note that the equivalence relations 𝑅 and 𝑆 introduced in §6.2 are both coherent

congruences, so that †𝑅 (Var & Var) and †𝑆 (Counter & Counter) assemble into concurrent object

spaces which are †-coalgebras by Proposition 6.3.

It should be noted that coalgebra morphisms of †-coalgebras described in (4) generalize in a

very natural and pleasant way the notion of regular map †𝐴→ †𝐵 defined in §2.4 between object

spaces. Indeed, an important (and well-known) fact is that the map 𝛿𝐴 : †𝐴 ⊸ ††𝐴 defines the free

†-coalgebra generated by 𝐴:

(†𝐴, 𝛿𝐴 : †𝐴 ⊸ ††𝐴)
It then turns out that a regular map †𝐴→ †𝐵 in the sense of Def. 2.6 in Section §2.4 is same as a

coalgebra morphism †𝐴→ †𝐵 between free †-coalgebras in the sense of (5). In particular, every

regular map 𝑓 : †𝐴 → †𝐵 associated to the linear map 𝑓 : †𝐴 ⊸ 𝐵 makes the diagram below

commute:

†𝐴 †𝐵

††𝐴 ††𝐵

𝑓

𝛿𝐴 𝛿𝐵

†𝑓

(6)

Looking backwards, this means that we have been working all along in the previous sections

with †-coalgebras, even if only the free ones, of the form †𝐴. The challenges which arise with
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concurrency lead us to consider more general †-coalgebras such as concurrent object spaces, of

the more general form †𝑅𝐴 for 𝑅 ⊆ |†𝐴| × |†𝐴| for a coherent congruence. It should come as no

surprise that we can define a full subcategory RegConc of the category of †-coalgebras given by

restricting the objects of †-Coalg to such concurrent †-spaces. At the same time, we can recover †𝐴
as the concurrent object space †=𝐴 associated to the specific identity relation 𝑅 defined by equality

=. The situation is nicely summarized by the chain of inclusion functors

Reg ↩→ RegConc ↩→ †-Coalg
Note that one main difference is that RegConc and †-Coalg are equipped with a parallel tensor

product (discussed in §6.4), while this is not the case for the original category Reg of regular maps.

We have just seen in (6) how coalgebra morphisms are similar (and in fact extend) the usual

notion of regular map †𝐴→ †𝐵 in the category Reg. A special case is of particular relevance to us:

imagine that one is given a linear map 𝑓 : †𝑅𝐴 ⊸ 𝐵 which, by analogy with regular maps, one

would like to lift to a map †𝑅𝐴 ⊸ †𝑆𝐵. While this is in general not possible, in the case where 𝑆

is the identity relation we may exploit the †-coalgebra structure of †𝑅𝐴 to construct a morphism

𝑓 : †𝑅𝐴 ⊸ †𝐵 in the following way:

†𝑅𝐴 †𝐵𝑓
= †𝑅𝐴 ††𝑅𝐴 †𝐵𝜅𝑅 †𝑓

The structural morphism 𝜅𝑅 plays here a very similar role as the "decomposition" map 𝜅 = 𝛿𝐴
discussed in the introduction for the sequential setting. One fundamental difference however is

that 𝜅𝑅 may take advantage of the equational theory encoded in 𝑅 prior to decomposing a trace.

6.4 A Parallel Tensor Product on Concurrent Object Spaces
Every pair of †-coalgebras (𝐶1, 𝜅1) and (𝐶2, 𝜅2) defines a †-coalgebra 𝐶1 ⊗ 𝐶2 with structural map

𝜅12 defined as the composition

𝐶1 ⊗ 𝐶2 †(𝐶1 ⊗ 𝐶2)
𝜅12

= 𝐶1 ⊗ 𝐶2 †𝐶1 ⊗ †𝐶2 †(𝐶1 ⊗ 𝐶2)
𝜅1⊗𝜅2

where the second map is an instance of the structural map

†𝐴 ⊗ †𝐵 ⊸ †(𝐴 ⊗ 𝐵) (⟨𝑎1, . . . , 𝑎𝑛⟩, ⟨𝑏1, . . . , 𝑏𝑛⟩) ↦→ ⟨(𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)⟩ (7)

This construction turns †-Coalg into a symmetric monoidal category. The coherence space 1 (the
usual unit for ⊗) is equipped with a †-coalgebra structure provided by the structural map

1 ⊸ †1 ∗ ↦→ ⟨∗, . . . , ∗︸  ︷︷  ︸
𝑛 times

⟩ (8)

The monoidal structure of †-Coalg comes from the fact that (7) and (8) equip the comonad † with
the structure of a symmetric monoidal comonad over Coh [Kock 1972][Melliès 2009].

We saw in §6.3 that every concurrent object space †𝑅𝐴 defines a †-coalgebra. We establish now

that our class of concurrent object spaces is closed under tensor product in the sense that

Proposition 6.5. Given two concurrent object spaces †𝑅𝐴 and †𝑆𝐵 the tensor product of †𝑅𝐴 and
†𝑆𝐵 is a concurrent object space †𝑅⊗𝑆 (𝐴 & 𝐵).

Indeed, given relations 𝑅 ⊆ |†𝐴| × |†𝐴| and 𝑆 ⊆ |†𝐵 | × |†𝐵 | we define the relation
𝑅 ⊗ 𝑆 ⊆ |†(𝐴 & 𝐵) | × |†(𝐴 & 𝐵) | 𝑠 (𝑅 ⊗ 𝑆) 𝑡 ⇐⇒ 𝑠↾𝐴 𝑅 𝑡↾𝐴 ∧ 𝑠↾𝐵 𝑆 𝑡↾𝐵

which in addition to any equations from 𝑅 and 𝑆 also adds equations allowing for tokens of𝐴 and 𝐵

to be swapped. This congruence has the remarkable property that it induces an isomorphism of

†-coalgebras
†𝑅 𝐴 ⊗ †𝑆𝐵 � †𝑅⊗𝑆 (𝐴 & 𝐵) (9)
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which elegantly captures an equivalence between a true concurrency and an interleaving concur-

rency presentation of the same concurrent object, and should be seen as an analogue of the Seely

isomorphism satisfied by the exponential modality 𝐴 ↦→ !𝐴 of linear logic (see Melliès [2009] for

details). Thanks to this isomorphism (9) proved in Appendix C, we establish the important property

that our category RegConc of concurrent object spaces is equipped with a notion of parallel tensor

product:

Proposition 6.6. RegConc is a symmetric monoidal category.

Example 6.7. As an illustration, coming back to the motivating equivalence relations 𝑅 and 𝑆

formulated in §6.2, we observe that they satisfy the isomorphisms

†Var ⊗ †Var � †𝑅 (Var & Var) † Counter ⊗ †Counter � †𝑆 (Counter & Counter)
mentioned in (9) because the equivalence relations 𝑅 and 𝑆 in §6.2 are equal to = ⊗ =.

6.5 Certified Concurrent Object Spaces
We are now ready to define our category of certified concurrent systems CertiRegConc, which
refines RegConc in the same way CertiReg refines Reg. Its objects are triples (𝐴, 𝑅,𝑉𝐴) of a coher-
ence space 𝐴, a coherent congruence 𝑅 ⊆ |†𝐴| × |†𝐴| and 𝑉𝐴 : 1 ⊸ †𝐴 a clique of †𝐴. Morphisms

𝑀 : (𝐴, 𝑅,𝑉𝐴) → (𝐵, 𝑆,𝑉𝐵) are coalgebra morphisms 𝑀 : †𝑅𝐴 ⊸ †𝑆𝐵 satisfying the additional

requirement that

∀𝑡 ∈ 𝑉𝐵 .∃𝑠 ∈ 𝑉𝐴 . [𝑠]𝑅 ↦→ [𝑡]𝑆 ∈ 𝑀
Identity and composition are as in †-Coalg.

We have seen in §6.4 that RegConc comes equipped with a tensor product. We now extend the

parallel tensor to CertiRegConc. Given (𝐴, 𝑅,𝑉𝐴) and (𝐵, 𝑆,𝑉𝐵) we would like that the underlying

coherence space of their product

(𝐴, 𝑅,𝑉𝐴) ⊗ (𝐵, 𝑆,𝑉𝐵)
be given by 𝐴 & 𝐵 so to match the relation 𝑅 ⊗ 𝑆 . But taking the tensor product of the cliques 𝑉𝐴
and 𝑉𝐵 we obtain

𝑉𝐴 ⊗ 𝑉𝐵 : 1 ⊸ †𝐴 ⊗ †𝐵
which is not a clique of †(𝐴 & 𝐵). In order to obtain such a clique, we make use of the interleaving

morphism

inter𝐴,𝐵 : †𝐴 ⊗ †𝐵 ⊸ †(𝐴 & 𝐵) inter𝐴,𝐵 := {(𝑠𝐴, 𝑠𝐵) ↦→ 𝑠 | 𝑠↾𝐴 = 𝑠𝐴 ∧ 𝑠↾𝐵 = 𝑠𝐵}
which produces all the possible interleavings of the pair of input traces. Then, we define the product

𝑉𝐴 •𝑉𝐵 of the cliques 𝑉𝐴 and 𝑉𝐵 as the composition

1 †(𝐴 & 𝐵)𝑉𝐴•𝑉𝐵
= 1 1 ⊗ 1 †𝐴 ⊗ †𝐵 †(𝐴 & 𝐵)𝑖𝑠𝑜 𝑉𝐴⊗𝑉𝐵 inter

which is simply the set of all possible interleavings of traces in 𝑉𝐴 with traces in 𝑉𝐵 . This endows

the category CertiRegConc with a monoidal structure encoding independent parallel composition:

(𝐴, 𝑅,𝑉𝐴) ⊗ (𝐵, 𝑆,𝑉𝐵) := (𝐴 & 𝐵, 𝑅 ⊗ 𝑆,𝑉𝐴 •𝑉𝐵)

7 CONCURRENT OBJECT SPACES: TWO CASE STUDIES
In §6 we defined a notion of concurrent object spaces supporting independent parallel composition.

In this section we present two case studies showcasing that concurrent object spaces can express

more complex forms of concurrency. In §7.1 we discuss a simple model of protected shared object

concurrency which uses a lock primitive to synchronize several computational agents. We show

atomic concurrent overlays can be certified by proving a local sequential refinement condition. Then,
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§7.2 discusses how the lock interface, which §7.1 uses as underlay, can be encoded in concurrent

object spaces in a simple fashion by means of a carefully constructed equational theory.

7.1 Protected Shared Object Concurrency
A common form of concurrency in systems is protected access to a shared object. By this we mean

that different agents (say threads, or processors) have their accesses to a shared object protected

by a synchronization primitive such as a lock. This allows an object that in principle is shared

concurrently to implement atomic interfaces.

To ground this discussion we will assume a set of computational agents Υ. Given an effect

signature 𝐸 we can construct an effect signature 𝐸 [Υ] which labels the operations described by 𝐸

with the name of who is executing the operation, formally defined as the labelled disjoint union

𝐸 [Υ] :=
∑
𝜏 ∈Υ

𝐸 corresponding to the coherence space

¯
𝜏 ∈Υ
⟦𝐸⟧

We define a signature Lock for a lock interface as

Lock := {acq : 1, rel : 1}
which is shared by a set of agents Υ in the signature Lock[Υ]. We give a simple sequential specifi-

cation to the Lock interface with the (prefix-closed) clique 𝑉Lock defined as

𝑉Lock := {𝑠 ∈ |†Lock| | ∀𝑝, 𝑡 ∈ |†Lock|.∀𝜏, 𝜏 ′ ∈ Υ.∀𝑚 ∈ Lock.(𝑠 = 𝜏𝜏𝜏 :𝑚 · 𝑡 ⇒𝑚 = acq.ok)
∧ (𝑠 = 𝑝 · 𝜏𝜏𝜏 :acq.ok · 𝜏 ′𝜏 ′𝜏 ′:𝑚 · 𝑡 ⇒𝑚 = rel.ok ∧ 𝜏 ′ = 𝜏)
∧ (𝑠 = 𝑝 · 𝜏𝜏𝜏 :rel.ok · 𝜏 ′𝜏 ′𝜏 ′:𝑚 · 𝑡 ⇒𝑚 = acq.ok)},

where each of the conditions say, respectively, that: (1) Every trace starts with an acq move; (2) If

acq is called by agent 𝜏 then the next event is a call to rel by agent 𝜏 ; (3) Any rel call may only be

followed by an acq call.

Now, given an object encoded by the signature 𝐸 and a clique 𝑉𝐸 : 1 ⊸ †𝐸 we construct the

interface for its sharing among the agents in Υ as the signature 𝐸 [Υ] and the clique

𝑉𝐸 [Υ] := {⟨𝜏1𝜏1𝜏1:𝑒1.𝑣1, . . . ,𝜏𝑛𝜏𝑛𝜏𝑛 :𝑒𝑛 .𝑣𝑛⟩ ∈ †𝐸 [Υ] | ⟨𝑒1.𝑣1, . . . , 𝑒𝑛 .𝑣𝑛⟩ ∈ 𝑉𝐸}
that is, all sequences such that if we “forget” which agent is calling each operation the trace obeys

the specification 𝑉𝐸 .

Given an object specification (𝐸,𝑉𝐸) we can always construct the object specification

(†=⊗= (Lock & 𝐸) [Υ],𝑉Lock •𝑉𝐸 [Υ])
where we make use of the isomorphism

Lock[Υ] & 𝐸 [Υ] � (Lock & 𝐸) [Υ] .
The equivalence classes of = ⊗ =, the tensor of the equality relation over †Lock[Υ] with the equality
relation over †𝐸 [Υ] as defined in §6.5, allow for Lock and 𝐸 events to be commuted liberally.

Then, given an implementation𝑀 : †𝐸 ⊸ 𝐹 we denote by𝑀 [𝜏] : †𝐸 [𝜏] ⊸ 𝐹 [𝜏] the implemen-

tation obtained by labelling every event that appears in𝑀 with agent 𝜏 . We construct the protected

implementation ⟨𝑀⟩[𝜏] : †=⊗= (Lock & 𝐸) [Υ] ⊸ 𝐹 [Υ] :
⟨𝑀⟩[𝜏] := {[⟨𝜏𝜏𝜏 :acq.ok⟩ · 𝑠 · ⟨𝜏𝜏𝜏 :rel.ok⟩] ↦→ 𝜏𝜏𝜏 :𝑓 .𝑣 | 𝑠 ↦→ 𝜏𝜏𝜏 :𝑓 .𝑣 ∈ 𝑀 [𝜏]}

which surrounds the body of the implementation by acquiring a lock and then releasing it when

done. The implementation on behalf of all the agents is given by

⟨𝑀⟩[Υ] :=
⊎
𝜏 ∈Υ
⟨𝑀⟩[𝜏] .
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It is easy to check that if𝑀 ◦𝑉𝐸 ⊇ 𝑉𝐹 that is, the refinement condition holds locally, then�⟨𝑀⟩[Υ] : ((Lock & 𝐸) [Υ],= ⊗ =,𝑉Lock •𝑉𝐸 [Υ]) → (𝐹,=,𝑉𝐹 [Υ]),

that is,
�⟨𝑀⟩[Υ] is a certified implementation of CertiRegConc.

Example 7.1. We take our usual example of implementing a counter using a variable. Now,

we consider implementing an atomic concurrent counter interface making use of a lock and a

concurrent shared variable. From our discussion, the underlay can be modeled by the signature

and specification

(Lock & Var) [Υ] 𝑉Lock •𝑉Var [Υ]
where 𝑉Var is the usual variable specification, as seen in Example 2.5. The usual implementation

𝑀 : †Var ⊸ Counter is lifted to

⟨𝑀⟩[Υ] : †=⊗= (Lock & Var) [Υ] ⊸ †Counter[Υ] .

Note that the underlay’s equational theory relates the traces 𝑠1 and 𝑠2 below:

𝑠1 = ⟨111:acq.ok,111:get.0,111:set(1).ok,111:rel.ok,222:acq.ok,222:get.1,222:set(2).ok,222:rel.ok⟩

𝑠2 = ⟨111:acq.ok,111:rel.ok,222:acq.ok,222:rel.ok,111:get.0,111:set(1).ok,222:get.1,222:set(2).ok⟩

and therefore both map under
�⟨𝑀⟩[Υ] to 𝑡 = ⟨111:inc.ok,222:inc.ok⟩ despite the fact that 𝑠2 does not

match the shape of the implementation𝑀 . The presence of the synchronization primitives with

semantics given by the clique 𝑉Lock •𝑉Var [Υ] together with the equational theory = ⊗ = means

that 𝑠2 carries the information that the two increments were indeed performed atomically. Here,

the structural map 𝜅=⊗= plays a very important role as it makes use of the equational theory to

decompose 𝑠2 in the following way:

[𝑠2]
𝜅=⊗=↦−−−→ ⟨[111:acq.ok,111:get.0,111:set(1).ok,111:rel.ok], [222:acq.ok,222:get.1,222:set(2).ok,222:rel.ok]⟩

which †⟨𝑀⟩[Υ] is then able to map to 𝑡 . There is no other choice: the synchronization primitives

do not commute with each other and neither do the variable primitives. We note that a more

specialized map that does not protect calls to get could have been used instead.

This example showcases that the coalgebra structural map 𝜅 plays a much more subtle role than

𝛿 did in the completely sequential models. It does not only split a trace, but it also may transform

the trace according to the equational theory it has access to. We will see that it is a key feature of

our handling of even more complex concurrent objects.

7.2 Ticket Lock
We have just discussed in §7.1 a simple framework for handling protected shared object concurrency.

In that setting we assume a sequentially specified lock interface (Lock[Υ],𝑉Lock) is available as
underlay. For instance, a particular system architecture may implement an array of ticket locks

to be used throughout the system. Often such a lock interface is implemented using some other

synchronization primitives. In the context of a certified system, the ticket lock implementation

itself might be certified to be correctly implemented using its underlay.

We will take as example a ticket lock algorithm. The ticket lock is implemented using a fetch-and-

increment primitive and a shared counter. We model this underlay with the signature FAI&Counter
where Counter is the usual Counter interface and FAI is given by the signature and specification

FAI := {fai : N} 𝑉FAI := {𝑠 ∈ |†FAI| | 𝑠 = 𝑝 · fai.𝑛 · 𝑡 ⇒ 𝑛 = #fai(𝑝)}
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where #fai(𝑝) is the number of fai operations in the sequence 𝑝 . We construct the interfaces

(FAI[Υ],𝑉FAI [Υ]) and (Counter[Υ],𝑉Counter [Υ]) as in §7.1. We will define the underlay specification

𝑉FAI&Counter to be all possible interleavings of traces in 𝑉FAI [Υ] and 𝑉Counter [Υ]. That is,
𝑉FAI&Counter := {𝑠 ∈ |†(FAI & Counter) [Υ] | | 𝑠↾FAI[Υ] ∈ 𝑉FAI [Υ] ∧ 𝑠↾Counter[Υ] ∈ 𝑉Counter [Υ]}
In order to justify the equational theory we will be using, it is vital to understand exactly how

the ticket lock is implemented. We wish to encode the code:

acq() {

my_t := fai();

while (get() != my_t) {};

return ok

}

rel() {

inc();

return ok

}

The intuition for the code is that each contestant for the lock acquires a ticket number from the

FAI object. Then, each contestant keeps checking for the currently serving ticket number obtained

from the shared counter. As soon as a contestant checks for the currently serving ticket number

and verifies that it is the same as the ticket number it holds it acquires the lock. In order to release

the lock the current lock holder simply increments the currently serving ticket number.

Note that while the underlay interface is atomic, at least with respect to each of the inde-

pendent objects available, the implementation of the overlay events themselves may interleave

non-atomically creating friction with the completely atomic overlay lock specification. A common

correctness criterion for atomicity of concurrent objects is linearizability. In defining our equational

theory for the ticket lock we take inspiration from the fact that the ticket lock implementation

yields a linearizable lock interface. Our equational theory is carefully constructed so to preserve

“happens before” order as defined in Herlihy and Wing [1990].

We are now ready to define the relation

𝐿 ⊆ |†(FAI & Counter) [Υ] | × |†(FAI & Counter) [Υ] |
encoding the equational theory for the Lock implementation.We define 𝐿 as the smallest congruence

satisfying the rules:

(1) 𝜏 ≠ 𝜏 ′ ∧ (𝑒 and 𝑒 ′ are events of different shared objects) ⇒ ⟨𝜏𝜏𝜏 :𝑒.𝑣,𝜏 ′𝜏 ′𝜏 ′:𝑒 ′.𝑣 ′⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:𝑒 ′.𝑣 ′,𝜏𝜏𝜏 :𝑒.𝑣⟩
(2) 𝜏 ≠ 𝜏 ′⇒ ⟨𝜏𝜏𝜏 :get.𝑖,𝜏 ′𝜏 ′𝜏 ′:inc.ok⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:inc.ok,𝜏𝜏𝜏 :get.𝑖⟩
(3) 𝜏 ≠ 𝜏 ′⇒ ⟨𝜏𝜏𝜏 :get.𝑖,𝜏 ′𝜏 ′𝜏 ′:get. 𝑗⟩ 𝐿 ⟨𝜏 ′𝜏 ′𝜏 ′:get. 𝑗,𝜏𝜏𝜏 :get.𝑖⟩

Rule (1) says that if two events come from different agents and different shared objects they may

be swapped. Rule (2) might seem counter-intuitive, as it allows an inc event to swap with a get
event. Despite that, it still preserves the program order of each agent involved, as the swap can

only be performed between events of different threads. Therefore, from the local perspective of

each agent they still see the same history. Furthermore, the swap does not change the real-time

ordering of operations from the perspective of the overlay events, it at most refines it. Rule (3)
enforces the passivity of get. In Figure 3 we consider a few traces related by 𝐿.

Now that we have carefully described the intuition for the 𝐿 equational theory, we are ready to

discuss the encoding of the implementation of the ticket lock. Locally the implementation is simply

given by the map

𝑀 [𝜏] : †𝐿 (FAI & Counter) [𝜏] ⊸ Lock[𝜏]
defined as

𝑀 [𝜏]acq := {[⟨𝜏𝜏𝜏 :fai.𝑖,𝜏𝜏𝜏 :get.𝑖1, . . . ,𝜏𝜏𝜏 :get.𝑖𝑛,𝜏𝜏𝜏 :get.𝑖⟩] ↦→ 𝜏𝜏𝜏 :acq.ok | ∀𝑗 ≤ 𝑛.𝑖 𝑗 ≠ 𝑖}
𝑀 [𝜏]rel := {[⟨𝜏𝜏𝜏 :inc.ok⟩] ↦→ 𝜏𝜏𝜏 :rel.ok}
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111:acq.ok 111:rel.ok

222:acq.ok 222:rel.ok

111:fai.1 222:fai.2 111:get.1 222:get.1 111:inc.ok 222:get.2 222:inc.ok

111:fai.1 111:get.1 222:fai.2 222:get.1 111:inc.ok 222:get.2 222:inc.ok

111:fai.1 111:get.1 222:fai.2 111:inc.ok 222:get.1 222:get.2 222:inc.ok

111:acq.ok 111:rel.ok 222:acq.ok 222:rel.ok

111:fai.1 111:get.1 111:inc.ok 222:fai.2 222:get.1 222:get.2 222:inc.ok

Fig. 3. We depict several 𝐿 related traces. Vertically adjacent traces require a single swap to be related. Above
the traces are the intervals in which call/return events of the Lock overlay are active. The swaps, from top to
bottom, preserve the happens before ordering of the lock overlay. The bottom-most trace introduces a new
happens before relation, which is allowed by linearizability. Although the bottom-most trace does not satisfy
the sequential specification of Counter, it preserves local program order and behavior. Therefore, from the
perspective of each agent there is no difference between the traces displayed.

note that all the equivalence classes involved in 𝑀 [𝜏] are singleton equivalence classes. It is

notorious that the definition of𝑀 is essentially just the code for the implementation.

𝑀 can be lifted to the map�𝑀 [Υ] : †𝐿 (FAI & Counter) [Υ] ⊸ †Lock[Υ]
and shown to be correct by verifying the refinement condition:

∀𝑡 ∈ 𝑉Lock.∃𝑠 ∈ 𝑉FAI&Counter .[𝑠]𝐿 ↦→ 𝑡 ∈ �𝑀 [Υ]
For this, the structural map 𝜅𝐿 plays a fundamental role. Consider for instance the following

graphical depiction of an input/output pair in
�𝑀 [Υ]:

[⟨111:fai.0,222:fai.1,111:get.0,222:get.0,111:inc.ok,222:get.1⟩]
𝜅𝐿−−→ ⟨[⟨111:fai.0,111:get.0⟩], [⟨111:inc.ok⟩], [⟨222:fai.1,222:get.0,222:get.1⟩]⟩�𝑀 [Υ]

−−−−−→ ⟨111:acq.ok,111:rel.ok,222:acq.ok⟩

The𝑉FAI&Counter trace is transformed using the equational theory encoded in 𝐿. This transformation

is performed by the structural map 𝜅𝐿 which then decomposes the trace into the components which

𝑀 [Υ] is able to map. This is a much more subtle operation than the sequential decomposition per-

formed by 𝛿 . This nice coalgebraic structure greatly simplifies reasoning and makes for particularly

simple implementation definitions. After the decomposition the map𝑀 , which simply encodes the

body of the code implementing each method, is applied directly.

8 RELATEDWORK
Object-Based Semantics. While we have already discussed the relationship between our work and

Reddy’s work on object-based semantics [Reddy 1996], we have not mentioned Reddy’s work with

†-coalgebras in the Appendix of Reddy [1996]. Reddy faces similar problems with the tensor product
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as we do and presents two solutions. One of them [Reddy 1996] defines a class of †-coalgebras
characterized by partial monoids, which he calls finitary object spaces. Our work in §6 may be

seen as a subcategory of Reddy’s finitary object spaces characterized instead as presentations of

partial monoids. This equational formulation is more convenient for our purposes, as it is leads

to a smooth treatment of concurrency. While Reddy’s finitary object spaces are monoidal closed,

concurrent objects are not. Despite that, concurrent object spaces are still rich enough to encode

Reddy’s model of interference-controlled Algol.

The second approach pioneered by Reddy, called dependence spaces [Reddy 1994], was one of

many inspirations for our work. They differ substantially in that our work remains in the category

of coherence spaces, while dependence spaces endow coherence spaces with extra structure. We

believe there is an instructive embedding of dependence spaces into a generalization of our category

of concurrent object spaces using partial equivalence relations instead of equivalence relations and

mediated by a reformulation of dependence spaces as Mazurkiewicz traces [Mazurkiewicz 1995]

which we leave for future work.

Reddy [1993] has also investigated in detail the categorical structures surrounding object-based

semantics, what he calls a LLMS for Linear Logic Model of State. Appendix A places our model

from §3 in a standard game-semantics model by defining a † modality. Although we don’t discuss

it there, the † is constructed so to endow the category of games defined with a LLMS. A careful

discussion from this point-of-view would be lengthy, so we curb our remarks on the matter. Reddy’s

subsequent work [O’Hearn and Reddy 1999; Reddy 2002, 2013; Reddy and Dunphy 2012] focused

on combining the event-based and state-based approaches to define the full semantics of Algol-like

languages.

Game Semantics. Game semantics has been around for more than 30 years. It has been extremely

successful in describing the fine-grained semantics of a large class of programming languages

including PCF [Abramsky et al. 2000; Hyland and Ong 2000], imperative languages [Abramsky and

McCusker 1997, 1999; Ghica and Murawski 2008], and object-oriented languages [Murawski and

Tzevelekos 2014]. Despite its importance and promising support to compositional reasoning, it has

not been used in large formal verification projects based on proof assistants. Instead, the formal

verification community has preferred to use simple small-step or mixed-step operational semantics

to verify programs because game semantics is often seen as too complex to be smoothly mechanized

in any proof assistant. Our work as well as Koenig and Shao [2020] can be seen as significant steps

toward applying game semantics to the mechanized verification of large systems. We have had a

pleasant experience in mechanizing coherence spaces due to their simplicity. Furthermore, while

we give a traditional game semantics presentation to our model in §3, we believe Koenig [2021]

provides an equivalent model amenable to convenient mechanization.

The game semantics literature focused on giving the semantics for a specific programming

language and then using it to prove the soundness and full abstraction properties. They are complex

because they use game semantics to model command- or expression-level interaction in the core

programs. These languages and their game semantics are not primarily designed for program

verification; and there are no equivalent notions of layer interfaces or certified layers. By focusing

on certified layers, we take the best idea from game semantics to support certified composition. To

make things simple, our key idea is that these certified layers must fully encapsulate their states,

otherwise, their interfaces would be too complex and then make composition difficult.

This is why Reddy’s approach to handling global state is particularly attractive. Starting from

the seminal work by Abramsky and McCusker on Idealized Algol [Abramsky and McCusker 1997],

the game semantics community took inspiration from Reddy’s idea to give fully abstract models to

imperative languages—for programming in the small. Here, we show that the very idea could have
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a big impact for certified layer programming in the large. This happens to match the best practice

on how abstraction layers are used by the real-world engineers. Also, despite its early influence on

game semantics, the † modality has been largely forgotten in the game semantics community in

the benefit of linear logic’s ! modality. Our work seeks to bring back into focus the relevance of

the † modality by showcasing its simplicity and expressiveness.

Calderon andMcCusker [2010] presented a full, faithful strong monoidal embedding of a category

of games into a category of coherence posets and hinted about a possible deep connection between

games semantics and Reddy’s object-based semantics. The correspondence which we established

in §5 can be viewed as a first attempt toward addressing this problem in the context of certified

abstraction layers. Our functor differs from that of Calderon and McCusker [2010] in that it maps

less plays. This way, while their functor is lax with respect to † our functor distributes strictly over †.
This is fundamental for our development as we need a precise connection with † in coherence

spaces, and is what prevents us from using the functor in Calderon and McCusker [2010].

Finally, there are similarities but also intrinsic differences between our model of certified layers

based on concurrent objects and the model of Idealized Concurrent Algol (ICA) developed by Ghica

and Murawski [2008]. A first key difference is that their model is based on arena games, which

means that they have to take care of the intricacies associated to the justification of pointers. Our

model based on coherence spaces and regular functions is for that reason simpler to manipulate and

to certify in a proof assistant, and this is a main point of our work. In particular, regular functions

describe alternating strategies where each token of the coherence space describes a pair consisting

of an Opponent move followed by a Player move. In contrast, the model based on arena games

enables interactions where Opponent moves and Player moves do not necessarily alternate — which

complicates the construction of the model, even on first-order functions. The information provided

by the coherence relation as well as the dagger structure are moreover missing from the game

model of ICA. For these foundational and practical reasons, our model does not coincide with the

game model of ICA restricted to first-order functions.

Certified Abstraction Layers. Koenig and Shao [2020] model certified abstraction layers using

categories whose objects are effect signatures and whose morphisms are strategy specifications,
enriched with a complete refinement lattice structure. Layer interfaces and implementations are

both modeled as strategy specifications. Layer correctness can be stated as 𝐿𝐹 ⊑ 𝑀 ◦ 𝐿𝐸 , where
𝐿𝐸 : 1→ 𝐸 is the underlay interface,𝑀 : 𝐸 → 𝐹 is the layer implementation, and 𝐿𝐹 : 1→ 𝐹 is the

overlay interface. However, this elegant picture is complicated by their treatment of state. The set of

states used by a layer interface must be encoded as part of its signature, and interactions must follow

a “state-passing” discipline. Likewise, the simulation relation used to establish a layer’s correctness

must be internalized as a morphism, then composed with the implementation to translate between

underlay and overlay states. While Koenig and Shao also explore a model featuring stateful and

reentrant strategies, which could in principle realize the encapsulation of state, this comes at

the cost of the simplicity and elegance of their main development, and they do not extend their

treatment of certified layers to this setting. They also do not consider layers with concurrency.

By contrast, our approach avoids complex combinations of features by maintaining a strong

distinction between layer interfaces and implementations. Layer implementations are two-sided

(they both use underlay operations and provide overlay operations) but they can remain stateless

and deterministic. Layer interfaces are stateful, but because they are one-sided the structure of

their plays can remain simple. In turn, the statefulness of layer interfaces and our direct approach

to formalizing layer correctness mean we do not need an explicit internalization of simulation

relations. This allows us to limit our treatment of nondeterminism to demonic nondeterminism,

which is sufficient to express implementation freedom.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.



Layered and Object-Based Game Semantics 42:29

Concurrency. Gu et al. [2018] developed Certified Concurrent Abstraction Layers (CCAL) and
applied them to build a certified concurrent OS kernel [Gu et al. 2019, 2016]. They used game-

semantic strategies to model the interaction behavior of each thread (or CPU core) against its

environment context, and developed a program logic for reasoning about both the safety and

progress of concurrent objects. The marriage of Reddy’s work [Reddy 1994, 1996] with our new

layered game semantics offers a promising direction for developing compositional models for

CCAL-style shared-memory concurrency. An appealing challenge for future work in that direction

will be to articulate the results of this paper with the asynchronous and interactive accounts based

on action and footstep trace semantics [Brookes 2006, 2007] and template game semantics [Melliès

and Stefanesco 2018, 2020] of Concurrent Separation Logic [O’Hearn 2004].

Similarly, there is a significant body of work on correctness conditions for concurrent programs

[Cerone et al. 2014; Filipović et al. 2009; Herlihy and Wing 1990; Murawski and Tzevelekos 2019].

Most notably Cerone et al. [2014] and Murawski and Tzevelekos [2019] provide generalizations

of linearizability to layers encompassing both an underlay and an overlay, including potentially

higher-order computation. As far as we are aware this is the only work in this line that discusses a

notion of layer with underlay and overlay, and we believe that there is an opportunity to connect the

ideas from there with our model. Indeed, while we present a framework for certifying concurrent

programs, we provide no correctness criterion for our coherent congruences. It is a key part

of the proof of some of the claims in §6 and §7 that any congruence which is a subrelation of

the equivalence up-to sequential consistency relation is a coherent congruence. This includes

preservation of happens-before order as in Herlihy and Wing [1990]. As the Lock example in

§7 shows, we often need even more precise coherent congruences. There is a complex interplay

between the coherent congruence and the implementation𝑀 . Despite that, as §7.1 shows, once a

synchronization primitive such as Lock has been verified, general compositional rules for shared

state concurrency become available. This is a promising avenue for future work and will likely

involve a connection with concurrent models such as Ghica and Murawski [2008], Cerone et al.

[2014], and Murawski and Tzevelekos [2019].

9 CONCLUSION
The idea of certified abstraction layers [Gu et al. 2015] was inspired by the systems community’s

best practice in using abstraction layers to build large-scale software and hardware systems [Saltzer

and Kaashoek 2009]. Certified abstraction layers rely on using a pair of underlay and overlay

interfaces to encapsulate the implementation effects and eliminate undesirable dependencies from

other components. Gu et al. [2016] has shown the effectiveness of using certified abstraction layers

to build large-scale certified concurrent OS kernels. However, the main semantic ingredients that

make certified abstraction layers so effective have been unclear for many years.

In this paper, we have demonstrated that there is a close connection between certified abstraction

layers and Reddy’s object-based semantics of states based on coherent spaces. The major new

conceptual contribution of this paper is our model of certified layer implementation (e.g., Defini-

tions 3.16 and 4.2). Modeling a layer interface 𝐿 as a pair of an effect signature 𝐸 and an object

strategy 𝑉𝐸 (or a set of object strategiesV𝐸 ) is by no means obvious. Here, the signature 𝐸 imposes

a syntactic well-formedness of the system-environment interface, and 𝑉𝐸 (orV𝐸 ) imposes more

refined semantic constraints to the layer’s behaviors.

This is very different from how existing module languages model a module implementation

and its import and export interfaces, and how Koenig and Shao [2020] model certified layer

implementation which is still based on a simulation relation between the underlay and overlay

states. This reformulation comes with great benefit. Looking to the past, it helps clarify some of

what made certified abstraction layers so effective. Looking to the future, it provides an abstract
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model of certified abstraction layers that can be studied and extended in its own right, as the

preliminary advances into the territory of concurrent systems in §6 and §7 showcase.
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A GAME-SEMANTICS OF CERTIFIED LAYERS
In this section we give a quick description of a game-semantics. In the process, we recast the

interactive models of certified layers we introduced in §3 in this game-semantics setting. This

formalizes several informal comments made in §3 and reveals that the models in §3 are merely a

less bureaucratic presentation of a game-semantics for certified systems. This slight reformulation

sheds light on several connections which were informally present between the models in §3 and

Reddy’s original object-based semantics, which we reviewed in §2. This gives us a stepping stone

to formally connecting them in section §5.

A.1 Games and Strategies
We start by establishing several preliminary definitions.

Remark 2 (Notations, Conventions and Basic Definitions). Given sets 𝑋 and 𝑌 we denote
by Alt(𝑋,𝑌 ) the set of alternating sequences whose elements alternate between 𝑋 and 𝑌 . Namely,
Alt(𝑋,𝑌 ) is the set of 𝑠 ∈ (𝑋 + 𝑌 )∗ such that one of the following holds
• ∀𝑖 .1 ≤ 𝑖 ≤ |𝑠 | ⇒ (even(𝑖) ⇒ 𝑠𝑖 ∈ 𝑌 ) ∧ (odd(𝑖) ⇒ 𝑠𝑖 ∈ 𝑋 )
• ∀𝑖 .1 ≤ 𝑖 ≤ |𝑠 | ⇒ (even(𝑖) ⇒ 𝑠𝑖 ∈ 𝑋 ) ∧ (odd(𝑖) ⇒ 𝑠𝑖 ∈ 𝑌 )

where |𝑠 | denotes the length of 𝑠 .
Given a sequence 𝑠 ∈ Alt(𝑋,𝑌 ) we define the projection 𝑠↾𝑋 as the subsequence of 𝑠 that contains

all but only the elements of 𝑠 in 𝑋 . We define 𝑠↾𝑌 similarly.

We can now define a game. The games we consider here are rather simple: a game 𝐴 simply

consist of a set of polarized moves 𝑀𝑂
𝐴
+ 𝑀𝑃

𝐴
, with a polarity for Opponent moves and one for

Proponent moves, and a set 𝑃𝐴 of alternating plays between Opponent and Proponent that all start

with Opponent moves. This set 𝑃𝐴 describes the valid plays over the game. Formally,

Definition A.1. A game 𝐴 = (𝑀𝐴, 𝑃𝐴) is a set of polarized moves

𝑀𝐴 = 𝑀𝑂
𝐴 +𝑀

𝑃
𝐴

and a non-empty, prefix-closed subset 𝑃𝐴 ⊆ Alt(𝑀𝑂
𝐴
, 𝑀𝑃

𝐴
) such that the first move in every 𝑠 ∈ 𝑃𝐴

belongs to𝑀𝑂
𝐴
.

As usual in game semantics we call the moves in 𝑀𝑂
𝐴
Opponent moves and the moves in 𝑀𝑃

𝐴

Proponent moves. The usual parity properties apply to 𝑠 ∈ 𝑃𝐴. Namely, since the first element of 𝑠 is

an Opponent move, it follows that 𝑠 ends in a Proponent move if and only if |𝑠 | is even, and it ends

in an Opponent move if and only if |𝑠 | is odd.
From an effect signature we can define a very small game capturing the dynamics of call-return

events modeled by that signature.

Definition A.2. Given an effect signature 𝐸 we define the game G(𝐸) = (𝑀𝐸, 𝑃𝐸) by
𝑀𝑂

𝐸 = {𝑒 ∈ 𝐸} 𝑀𝑃
𝐸 = ∪𝑒∈𝐸ar(𝑒)

𝑃𝐸 = ↓{𝑒 · 𝑣 | 𝑒 ∈ 𝐸 ∧ 𝑣 ∈ ar(𝑒)}

A key concept in game-semantics is that of a strategy. A strategy describes a particular schema to

how Proponent responds to Opponent moves. It is fundamental in game-semantics for programming

languages, as it makes for the terms which games type. In particular, strategies describe the

morphisms between games.

Definition A.3. A strategy 𝜎 on a game 𝐴 consists of a non-empty and prefix-closed set of

elements of 𝑃𝐴. Formally:
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Non-Empty :

𝜎 ≠ ∅
Prefix-Closed :

∀𝑠 ∈ 𝜎.∀𝑡 .𝑡 ⊑ 𝑠 ⇒ 𝑡 ∈ 𝜎
Receptive

∀𝑠 ∈ 𝜎.∀𝑜 ∈ 𝑀𝑂
𝐴 .𝑠 · 𝑜 ∈ 𝑃𝐴 ⇒ 𝑠 · 𝑜 ∈ 𝜎

We require further that strategies be deterministic with respect to Proponent moves:

Definition A.4. A strategy 𝜎 on a game 𝐴 is deterministic when

If 𝑠 · 𝑎, 𝑠 · 𝑏 ∈ 𝜎 and Player to move at 𝑠 then 𝑎 = 𝑏.

A.2 The Category G of Games and Deterministic Strategies
We are almost ready to define a category with games as objects and strategies as morphisms. In

order to define morphisms we define an exponential game 𝐴 ⊸ 𝐵. Morphisms between 𝐴 and 𝐵

will be deterministic strategies over 𝐴 ⊸ 𝐵.

Definition A.5. Define the game 𝐴 ⊸ 𝐵 = (𝑀𝐴⊸𝐵, 𝑃𝐴⊸𝐵) by

𝑀𝑂
𝐴⊸𝐵 := 𝑀𝑃

𝐴 +𝑀
𝑂
𝐵 𝑀𝑃

𝐴⊸𝐵 := 𝑀𝑂
𝐴 +𝑀

𝑃
𝐵

𝑃𝐴⊸𝐵 := {𝑠 ∈ Alt(𝑀𝑂
𝐴⊸𝐵, 𝑀

𝑃
𝐴⊸𝐵) | 𝑠↾𝐴 ∈ 𝑃𝐴 ∧ 𝑠↾𝐵 ∈ 𝑃𝐵}

Note that the game 𝐴 is taken to its dual in 𝐴 ⊸ 𝐵, expressed as the flip of the polarity of every

move of 𝐴 in 𝐴 ⊸ 𝐵.

At this point we can define a category of games. We first recall the usual definition of composition

as parallel composition plus hiding.

Definition A.6. The parallel composition 𝜎 ∥ 𝜏 of strategies 𝜎 on 𝐴 ⊸ 𝐵 and 𝜏 on 𝐵 ⊸ 𝐶

𝜎 ∥ 𝜏 := {𝑠 ∈ (𝑀𝐴 +𝑀𝐵 +𝑀𝐶 )∗ | 𝑠↾𝐴,𝐵 ∈ 𝜎 ∧ 𝑠↾𝐵,𝐶 ∈ 𝜏}

And the interaction 𝜎 ;𝜏 of 𝜎 with 𝜏 as

𝜎 ;𝜏 := (𝜎 ∥ 𝜏) \ 𝐵 := {𝑠↾𝐴,𝐶 | 𝑠 ∈ 𝜎 ∥ 𝜏}

Definition A.7. For any game 𝐴, define the strategy id𝐴 : 𝐴 ⊸ 𝐴, called the copycat strategy on

𝐴, as

id𝐴 := {𝑠 ∈ 𝑃𝐴1⊸𝐴2
| ∀𝑡 even-length prefix of 𝑠: 𝑡↾𝐴1

= 𝑡↾𝐴2
}

The copycat strategy simply relays moves in its co-domain to its domain and then relays responses

in the domain to its co-domain.

Definition A.8. The category G has games 𝐴, 𝐵,𝐶 as objects and deterministic strategies 𝜎, 𝜏 on

𝐴 ⊸ 𝐵, 𝐵 ⊸ 𝐶 as morphisms 𝐴 → 𝐵, 𝐵 → 𝐶 . Composition is given by strategy interaction 𝜎 ;𝜏

and the identity by id𝐴.

From now on, we denote a strategy 𝜎 on a game 𝐴 as 𝜎 : 𝐴. In particular, a morphism in G from

𝐴 to 𝐵 is a deterministic strategy 𝜎 : 𝐴 ⊸ 𝐵. The proof that G is indeed a category is standard and

can be found in the usual references [Abramsky et al. 2000][Curien 1994].
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A.3 The Replay Modality on Games
In this section we define a replay modality on our category of games. This will allow us to have an

object-based semantics in G, which we will then use to re-cast our interactive model of certified

layers.

Definition A.9. Let 𝐴 be a game. We define the game †𝐴 = (𝑀†𝐴, 𝑃†𝐴) as

𝑀𝑂
†𝐴 :=

∑
𝑖∈N

𝑀𝑂
𝐴 𝑀𝑃

†𝐴 :=
∑
𝑖∈N

𝑀𝑃
𝐴

𝑃†𝐴 := {𝑠1 · . . . · 𝑠𝑛 ∈ Alt(𝑀𝑂
†𝐴, 𝑀

𝑃
†𝐴) | ∀𝑖 .𝑠𝑖 ∈ 𝜄𝑖 (𝑃𝐴)}

where, for a play 𝑠 , 𝜄𝑖 (𝑠) labels all the moves𝑚 ∈ 𝑠 as in𝑖 𝑚, and for a set of plays 𝑆 the set of plays

𝜄𝑖 (𝑆) is obtained by applying 𝜄𝑖 (𝑠) to every play 𝑠 ∈ 𝑆 .

An important result which we do not prove here for the sake of succinctness is that

Proposition A.10. †− is a comonad in G.

At this point we can elucidate several points about the model defined in §3. Recall that the

category Layer had as objects effect signatures 𝐸, 𝐹 , and as morphisms implementations𝑀 : 𝐸 → 𝐹 .

Implementations were defined there as certain well-formed sets of sequences of events in 𝐸 and 𝐹 .

In fact, an implementation𝑀 : 𝐸 → 𝐹 is exactly a deterministic strategy𝑀 : †G(𝐸) ⊸ G(𝐹 ). We

call strategies of type †𝐴 ⊸ 𝐵 regular strategies.

It is also worth noting again that any play 𝑠 ∈ 𝑃†G(𝐸)⊸G(𝐹 ) has the shape
𝑠 ⊑ 𝑓 · 𝑠 ′ · 𝑣

for 𝑓 ∈ 𝐹 , 𝑣 ∈ ar(𝑓 ) and 𝑠 ′ a play of †G(𝐸). Furthermore, there is no bureaucracy in labelling

events as in A.9 because the games G(𝐸) are simple enough.

Given a deterministic strategy 𝜎 : †𝐴 ⊸ 𝐵 we define its regular extension 𝜎 : †𝐴 ⊸ †𝐵 as the

strategy

𝜎 := {𝑠 ∈ 𝑃†𝐴⊸†𝐵 | ∃𝑠1, . . . , 𝑠𝑛 ∈ 𝜎.𝑠 ⊑ 𝜄1 (𝑠1) · . . . · 𝜄𝑛 (𝑠𝑛)}
We can also define a strategy 𝜖𝐴 : †𝐴 ⊸ 𝐴

𝜖𝐴 := {𝑠 ∈ 𝑃†𝐴⊸𝐴 | ∀𝑡 ⊑even 𝑠 .𝑡↾†𝐴 = in1 𝑡↾𝐴}
The category G† has games 𝐴, 𝐵,𝐶 as objects and regular strategies 𝜎 : †𝐴 ⊸ 𝐵, 𝜏 : †𝐵 ⊸ 𝐶 as

morphisms. Composition is given by

𝜏 ◦ 𝜎 := 𝜎 ;𝜏

and identity is given by the strategy 𝜖−.
The category Layer is then simply the full subcategory of G† restricted to games of the form

G(𝐸). Note that we can exploit the fact that G is a category and that † is a comonad to get that G†
is a category, as it is just the co-Kleisli category associated to †− in G. This immediately lets us

derive that Layer is indeed a category and that implementation composition is well-defined.

A.4 Object Strategies, Layer Interfaces and Certified Implementations
At this point, we note that object strategies 𝑉𝐸 are simply deterministic strategies 𝑉𝐸 : †G(𝐸). This
way, a layer interface of CertiLayer is just a pair (𝐸,𝑉𝐸 : †G(𝐸)).

To characterize the refinement condition on certified implementations it is useful to define

a notion of refinement. For a game 𝐴 ∈ G and deterministic strategies 𝜎, 𝜏 : 𝐴 we define the

refinement order − ⊑ − as follows

𝜎 ⊑ 𝜏 ⇐⇒ 𝜎 ⊆ 𝜏
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A certified layer implementation is then simply a regular strategy𝑀 : †G(𝐸) ⊸ G(𝐹 ) such that

𝑉𝐹 ⊑ 𝑉𝐸 ;𝑀
Checking that the refinement condition composes is straight-forward as strategy interaction is a

monotonic operation.

Note that as we did with coherence spaces, we could have defined a category of pairs (𝐴, 𝜎𝐴 : 𝐴)
and certified regular strategies between such pairs by using the refinement condition just discussed.

B ⟦−⟧ IS A FUNCTOR
In this appendix we undertake the task of showing functoriality of the translation defined in §5.

We will use the formal presentation of our game-semantics model outlined in Appendix A.

B.1 From regular strategies to regular maps
Lemma B.1. Let 𝑠, 𝑠 ′ ∈ †G(𝐸) be even-length plays. Then, 𝑠 ¨†⟦𝐸⟧ 𝑠 ′ if and only if the largest

common prefix of 𝑠 and 𝑠 ′ is even-length.

Proof. (⇒) Suppose 𝑠 ¨†⟦𝐸⟧ 𝑠 ′ and let 𝑝 be the largest common prefix of 𝑠 and 𝑠 ′ in †⟦𝐸⟧.
If 𝑝 = 𝑠 or 𝑝 = 𝑠 ′ we are done, as by assumption 𝑠 and 𝑠 ′ are even-length. So suppose 𝑝 is a

strict prefix of both 𝑠 and 𝑠 ′. Then, there is 𝑒.𝑣, 𝑒 ′.𝑣 ′ ∈ ⟦𝐸⟧ such that

𝑝 · 𝑒.𝑣 ⊑ 𝑠 𝑝 · 𝑒 ′.𝑣 ′ ⊑ 𝑠 ′

since 𝑠 ¨†⟦𝐸⟧ 𝑠 ′ it follows that either 𝑒 ≠ 𝑒 ′ or 𝑒 = 𝑒 ′ and 𝑣 = 𝑣 ′. In the former case, the

largest common prefix of 𝑠 and 𝑠 ′ in †G(𝐸) is 𝑝 which is even-length. In the later case, 𝑝 · 𝑒.𝑣
is a common prefix of 𝑠 and 𝑠 ′ larger than 𝑝 , a contradiction.

(⇐) Let 𝑝 be the largest common prefix of 𝑠 and 𝑠 ′ which is even-length by assumption. If

𝑝 = 𝑠 or 𝑝 = 𝑠 ′ we are done. So suppose 𝑝 is a strict prefix of both 𝑠 and 𝑠 ′. Then, there are
opponent moves 𝑒, 𝑒 ′ ∈ 𝐸 and values 𝑣 ∈ ar(𝑒) and 𝑣 ′ ∈ ar(𝑒 ′) such that

𝑝 · 𝑒 · 𝑣 ⊑ 𝑠 𝑝 · 𝑒 ′ · 𝑣 ′ ⊑ 𝑠 ′

and 𝑒 ≠ 𝑒 ′ and hence 𝑒.𝑣 ¨⟦𝐸⟧ 𝑒 ′.𝑣 ′ so that 𝑠 ¨†⟦𝐸⟧ 𝑠 ′.
□

Proposition B.2. If𝑀 : †G(𝐸) ⊸ G(𝐹 ) is a deterministic strategy then ⟦𝑀⟧ : †⟦𝐸⟧ ⊸ ⟦𝐹⟧ is
linear.

Proof. Indeed, suppose 𝑠 ↦→ 𝑓 .𝑣, 𝑠 ′ ↦→ 𝑓 ′.𝑣 ′ ∈ ⟦𝑀⟧ and that 𝑠 ¨†⟦𝐸⟧ 𝑠 ′. Then,
𝑓 · 𝑠 · 𝑣 ∈ 𝑀 𝑓 ′ · 𝑠 ′ · 𝑣 ′ ∈ 𝑀

If 𝑓 ≠ 𝑓 ′ it follows that 𝑓 .𝑣 ¨⟦𝐹⟧ 𝑓 ′.𝑣 ′ and we are done. So suppose 𝑓 = 𝑓 ′. We must then show that

𝑣 = 𝑣 ′. Since 𝑠 ¨†⟦𝐸⟧ 𝑠 ′ it follows that the largest common prefix of 𝑠 and 𝑠 ′ in †G(𝐸) is even-length
by lemma B.1. Call it 𝑝 . If 𝑝 = 𝑠 there exists 𝑡 such that

𝑓 ′ · 𝑝 · 𝑡 ′ · 𝑣 ′ = 𝑓 ′ · 𝑠 ′ · 𝑣 ′

Now, 𝑓 ′ · 𝑝 is an Opponent position as it is odd-length. Hence, by determinism of𝑀 , it follows that

𝑡 ′ is empty and 𝑣 = 𝑣 ′. The argument is symmetric if 𝑝 = 𝑠 ′. Hence, suppose 𝑝 is a strict prefix of

both 𝑠 and 𝑠 ′. Then, there are moves 𝑒, 𝑒 ′ ∈ 𝐸 such that

𝑓 · 𝑝 · 𝑒 ⊑ 𝑓 · 𝑠 · 𝑣 𝑓 · 𝑝 · 𝑒 ′ ⊑ 𝑓 · 𝑠 ′ · 𝑣 ′

Since 𝑝 is even-length, it follows that 𝑓 · 𝑝 is an Opponent position so that by determinism 𝑒 = 𝑒 ′

contradicting that 𝑝 is the largest common prefix of 𝑠 and 𝑠 ′. Hence, it must be that 𝑣 = 𝑣 ′ and
therefore 𝑓 .𝑣 ¨⟦𝐹⟧ 𝑓 .𝑣 ′.
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Now, suppose 𝑓 .𝑣 = 𝑓 ′.𝑣 ′ and let 𝑝 be the largest common prefix of 𝑠 and 𝑠 ′ in †G(𝐸), which
must be even-length. Suppose 𝑝 ≠ 𝑠 . Then, there is a move 𝑒 ∈ 𝐸 such that

𝑓 · 𝑝 · 𝑒 ⊑ 𝑓 · 𝑠 · 𝑣
but 𝑓 · 𝑝 is an Opponent position, so by determinism it follows that 𝑝 · 𝑒 ⊑ 𝑠 ′ a contradiction with

the maximality of 𝑝 . Hence, 𝑝 = 𝑠 . A similar argument shows that 𝑝 = 𝑠 ′ as well. □

We now extend the translation ⟦−⟧ to regular extensions𝑀 : †G(𝐸) ⊸ †G(𝐹 ) in the following

way

⟦𝑀⟧ = {𝑠𝐸 ↦→ 𝑠𝐹 ∈ |†⟦𝐸⟧ ⊸ †⟦𝐹⟧| | ∃𝑠 ∈ 𝑀.𝑠↾†G(𝐸) = 𝑠𝐸 ∧ 𝑠↾†G(𝐹 ) = 𝑠𝐹 ∧ even(𝑠𝐹 )}
we now establish that

Proposition B.3. For any𝑀 : †G(𝐸) ⊸ G(𝐹 ):

⟦𝑀⟧ = �⟦𝑀⟧
Proof. (⟦𝑀⟧ ⊆�⟦𝑀⟧) Indeed, suppose 𝑠𝐸 ↦→ 𝑠𝐹 ∈ ⟦𝑀⟧. Then, there is 𝑠 ∈ 𝑀 such that

𝑠↾†G(𝐸) = 𝑠𝐸 𝑠↾†G(𝐹 ) = 𝑠𝐹

We first note that if 𝑠𝐹 = 𝜖 then 𝑠𝐸 = 𝜖 because the games we consider are Opponent starting.

Hence, suppose

𝑠𝐹 = ⟨𝑓1.𝑣1, . . . , 𝑓𝑛 .𝑣𝑛⟩
Then, by definition of𝑀 there are 𝑠1, . . . , 𝑠𝑛 ∈ 𝑀 such that

𝑠 = 𝑠1 · . . . · 𝑠𝑛
It is straight-forward to show that then it must be that

𝑠𝑖 = 𝑓𝑖 · 𝑠𝑖↾†G(𝐸) · 𝑣𝑖
for every 𝑖 ≤ 𝑛. Indeed, every non-empty play of 𝑀 such that its projection to G(𝐹 ) is
even-length must be of the just mentioned shape. But then,

𝑠𝑖↾†G(𝐸) ↦→ 𝑓𝑖 .𝑣𝑖 ∈ ⟦𝑀⟧
for every 𝑖 ≤ 𝑛. But note that

𝑠𝐸 = 𝑠↾†G(𝐸) = 𝑠1 · . . . · 𝑠𝑛↾†G(𝐸) = 𝑠1↾†G(𝐸) · . . . · 𝑠𝑛↾†G(𝐸)
and therefore

𝑠𝐸 ↦→ 𝑠𝐹 ∈�⟦𝑀⟧
as desired.

(⟦𝑀⟧ ⊇�⟦𝑀⟧) Now, suppose 𝑠𝐸 ↦→ 𝑠𝐹 ∈�⟦𝑀⟧. If 𝑠𝐹 = 𝜖 then 𝑠𝐸 = 𝜖 from which we note that

𝜖 ∈ 𝑀 and hence 𝜖 ↦→ 𝜖 ∈ ⟦𝑀⟧. So suppose

𝑠𝐹 = ⟨𝑓1.𝑣1, . . . , 𝑓𝑛 .𝑣𝑛⟩
then, there are 𝑠1

𝐸
, . . . , 𝑠𝑛

𝐸
such that

∀𝑖 ≤ 𝑛.𝑠𝑖𝐸 ↦→ 𝑓𝑖 .𝑣𝑖 ∈ ⟦𝑀⟧
But then,

∀𝑖 ≤ 𝑛.𝑓𝑖 · 𝑠𝑖𝐸 · 𝑣𝑖 ∈ 𝑀
from which it follows that

𝑠 = 𝑓1 · 𝑠1𝐸 · 𝑣1 · . . . · 𝑓𝑛 · 𝑠𝑛𝐸 · 𝑣𝑛 ∈ 𝑀
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and therefore

𝑠↾†G(𝐸) ↦→ 𝑠↾†G(𝐹 ) ∈ ⟦𝑀⟧
but

𝑠↾†G(𝐸) = 𝑠𝐸 𝑠↾†G(𝐹 ) = 𝑠𝐹

as desired.

□

Proposition B.4. For any𝑀 : †G(𝐸) ⊸ G(𝐹 ) and 𝑁 : †G(𝐹 ) ⊸ †(𝐺):

⟦𝑀 ;𝑁⟧ = ⟦𝑁⟧ ◦�⟦𝑀⟧
Proof. (⟦𝑀 ;𝑁⟧ ⊆ ⟦𝑁⟧ ◦�⟦𝑀⟧) Suppose 𝑠𝐸 ↦→ 𝑔.𝑣 ∈ ⟦𝑀 ;𝑁⟧. Then,

𝑔 · 𝑠𝐸 · 𝑣 ∈ 𝑀 ;𝑁

Then, there is 𝑠 ∈ 𝑀 and 𝑔 · 𝑠𝐹 · 𝑣 ∈ 𝑁 such that

𝑠↾†G(𝐸) = 𝑠𝐸 𝑠↾†G(𝐹 ) = 𝑠𝐹

But then, as we saw in proposition B.3,

𝑠𝐸 ↦→ 𝑠𝐹 ∈�⟦𝑀⟧
and by definition

𝑠𝐹 ↦→ 𝑔.𝑣 ∈ 𝑁
hence,

𝑠𝐸 ↦→ 𝑔.𝑣 ∈ ⟦𝑁⟧ ◦�⟦𝑀⟧
(⟦𝑀 ;𝑁⟧ ⊇ ⟦𝑁⟧ ◦�⟦𝑀⟧) Suppose 𝑠𝐸 ↦→ 𝑔.𝑣 ∈ ⟦𝑁⟧ ◦�⟦𝑀⟧. Then, there is 𝑠𝐹 such that

𝑠𝐸 ↦→ 𝑠𝐹 ∈�⟦𝑀⟧ 𝑠𝐹 ↦→ 𝑔.𝑣 ∈ ⟦𝑁⟧
but then, by proposition B.3 there is 𝑠 ∈ 𝑀 such that

𝑠↾†G(𝐸) = 𝑠𝐸 𝑠↾†G(𝐹 ) = 𝑠𝐹

and by definition of ⟦𝑁⟧
𝑔 · 𝑠𝐹 · 𝑣 ∈ 𝑁

so that it is easily checked that

𝑔 · 𝑠𝐸 · 𝑣 ∈ 𝑀 ;𝑁

and therefore

𝑠𝐸 ↦→ 𝑔.𝑣 ∈ ⟦𝑀 ;𝑁⟧
□

Proposition B.5.

⟦−⟧ : Layer→ Reg
is a functor.

Proof. Functoriality has been mostly proven in proposition B.4. It remains to show that the

strategy

𝜖G(𝐸) := ↓{𝑒 · 𝑒 · 𝑣 · 𝑣 | 𝑒 ∈ 𝐸 ∧ 𝑣 ∈ ar(𝐸)}
maps to the regular map 𝜖⟦𝐸⟧, which is immediate from its definition. □

The fact that ⟦−⟧ is full is straight-forward consequence of lemma B.1.
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B.2 Object Strategies and Cliques
Proposition B.6. If 𝑉𝐸 : †G(𝐸) is an object strategy over the effect signature 𝐸 then its set of

even-length plays is a non-empty, prefix-closed clique of the associated coherence space †⟦𝐸⟧.

Proof. Note that in a deterministic strategy𝑉𝐸 the largest common prefix of any two even-length

plays 𝑠, 𝑠 ′ ∈ 𝑉𝐸 is even-length. Indeed, let 𝑝 be the largest common prefix of 𝑠 and 𝑠 ′ and suppose it

is odd-length. Since 𝑠 and 𝑠 ′ are even-length there are𝑚,𝑚′ ∈ 𝑀†G(𝐸) such that

𝑝 ·𝑚 ⊑ 𝑠 𝑝 ·𝑚′ ⊑ 𝑠 ′

and from determinism it follows that𝑚 =𝑚′, a contradiction. Then, by lemma B.1 it follows that

any two even-length plays 𝑠, 𝑠 ′ ∈ 𝑉𝐸 are coherent, and therefore ⟦𝑉𝐸⟧ is a clique. Prefix-closure of
the clique follows from prefix-closure of 𝑉𝐸 , as well as non-emptiness. □

Proposition B.7. Let 𝑉𝐸 : †G(𝐸) be a deterministic strategy and let 𝑀 : †G(𝐸) ⊸ G(𝐹 ) be a
regular strategy.

⟦𝑉𝐸 ;𝑀⟧ = �⟦𝑀⟧ ◦ ⟦𝑉𝐸⟧
Proof. (⟦𝑉𝐸 ;𝑀⟧ ⊆�⟦𝑀⟧ ◦ ⟦𝑉𝐸⟧) Let 𝑡𝐹 ∈ ⟦𝑉𝐸 ;𝑀⟧. Then, 𝑡𝐹 is an even-length play of𝑉𝐸 ;𝑀 .

But then, there is 𝑠 ∈ 𝑉𝐸 and 𝑡 ∈ 𝑀 such that

𝑡↾†G(𝐸) = 𝑠 𝑡↾†G(𝐹 ) = 𝑡𝐹

But then, 𝑠 ↦→ 𝑡𝐹 ∈�⟦𝑀⟧ by proposition B.3. In particular, 𝑠 must be even-length and therefore

𝑠 ∈ ⟦𝑉𝐸⟧. But then, 𝑡𝐹 ∈�⟦𝑀⟧ ◦ ⟦𝑉𝐸⟧) as desired.
(⟦𝑉𝐸 ;𝑀⟧ ⊇�⟦𝑀⟧ ◦ ⟦𝑉𝐸⟧) Suppose 𝑡𝐹 ∈�⟦𝑀⟧ ◦ ⟦𝑉𝐸⟧). Then, there is 𝑠 ∈ ⟦𝑉𝐸⟧ such that 𝑠 ↦→
𝑡𝐹 ∈�⟦𝑀⟧. But then, 𝑠 ∈ 𝑉𝐸 and by proposition B.3 there is 𝑡 ∈ 𝑀 such that

𝑡↾†G(𝐸) = 𝑠 𝑡↾†G(𝐹 ) = 𝑡𝐹

but then

𝑡𝐹 ∈ 𝑉𝐸 ;𝑀
so that 𝑡𝐹 ∈ ⟦𝑉𝐸 ;𝑀⟧.

□

Proposition B.8. Let 𝑉𝐸,𝑉 ′𝐸 : †G(𝐸) be deterministic strategies over †G(𝐸). Then,

𝑉𝐸 ⊆ 𝑉 ′𝐸 ⇒ ⟦𝑉𝐸⟧ ⊆ ⟦𝑉 ′𝐸⟧

Proof. Immediate by definition. □

Proposition B.9.

⟦−⟧ : CertiLayer→ CertiReg

is a full functor.

Proof. Follows from proposition B.5 and propositions B.7 and B.8. □

C STRUCTURE OF CONCURRENT OBJECT SPACES
In this appendix we prove the key claims of §6.
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C.1 Concurrent Object Spaces are †-coalgebras
We start by recalling the definition of a concurrent object space.

Recall that given a coherence space 𝐴 we define the coherence space 𝐴/𝑅 by:

|𝐴/𝑅 | := |𝐴|/𝑅 𝑥 ¨𝐴/𝑅 𝑦 ⇐⇒ ∀𝑠 ∈ 𝑥 .∀𝑡 ∈ 𝑦.𝑠 ¨𝐴 𝑡

In order for the coherence relation of 𝐴/𝑅 to be reflexive it is necessary to require that 𝑅 is a

coherent relation in the following sense

∀𝑎, 𝑎′ ∈ |𝐴|.𝑎 𝑅 𝑎′⇒ 𝑎 ¨𝐴 𝑎′

or, more concisely, 𝑅 ⊆ ¨𝐴. This means, in particular, that every equivalence class of 𝑅 is a clique

of 𝐴.

Proposition C.1. If 𝑅 ⊆ |𝐴| × |𝐴| is coherent, 𝐴/𝑅 is a coherence space

Proof. All that needs to be proved is that¨𝐴/𝑅 is symmetric and reflexive. Symmetricity follows

immediately from the definition. Reflexivity follows from 𝑅 being coherent as given 𝑥 ∈ 𝐴/𝑅 and

𝑎, 𝑎′ ∈ 𝑥 we have by definition that 𝑎 𝑅 𝑎′ and therefore, from 𝑅 being coherent, 𝑎 ¨𝐴 𝑎′. □

Then, a concurrent object space is just any space of the form

†𝑅𝐴 := (†𝐴)/𝑅
where 𝑅 is a coherent congruence relation, in the sense that in addition to being a coherent

equivalence relation it holds that:

∀𝑝, 𝑠, 𝑠 ′, 𝑡 ∈ †𝐴.𝑠 𝑅 𝑠 ′⇒ 𝑝 · 𝑠 · 𝑡 𝑅 𝑝 · 𝑠 ′ · 𝑡
The relation 𝑅 being a congruence is crucial for concurrent object spaces †𝑅𝐴 to assemble into

†-coalgebras. Indeed, the structural map

𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴 [𝑠1 · . . . · 𝑠𝑛]
𝜅𝑅↦−−→ ⟨[𝑠1], . . . , [𝑠𝑛]⟩

is such that the pair

(†𝑅𝐴,𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴)
is a †-coalgebra, as we prove next.

Proposition C.2.

𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴
is indeed a linear map when 𝑅 is a congruence.

Proof. Suppose

[𝑠1 · . . . · 𝑠𝑛] ¨†𝑅𝐴 [𝑡1 · . . . · 𝑡𝑚]
and that

⟨[𝑠1], . . . , [𝑠𝑘−1]⟩ = ⟨[𝑡1], . . . , [𝑡𝑘−1]⟩
so that in particular

𝑠1 𝑅 𝑡1 . . . 𝑠𝑘−1 𝑅 𝑡𝑘−1
we must show

[𝑠𝑘 ] ¨†𝑅𝐴 [𝑡𝑘 ]
now, note that for any 𝑠 ∈ [𝑠𝑘 ] and 𝑡 ∈ [𝑡𝑘 ] we have

𝑠 𝑅 𝑠𝑘 ∧ 𝑡 𝑅 𝑡𝑘

and then, since 𝑅 is a congruence

𝑠1 · . . . 𝑠𝑘−1 · 𝑠 · 𝑠𝑘+1 · . . . · 𝑠𝑛 𝑅 𝑠1 · . . . · 𝑠𝑛
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𝑠1 · . . . · 𝑠𝑘−1 · 𝑡 · 𝑡𝑘+1 · . . . · 𝑡𝑚 𝑅 𝑡1 · . . . · 𝑡𝑘−1 · 𝑡 · 𝑡𝑘+1 · . . . · 𝑡𝑚 𝑅 𝑡1 · . . . · 𝑡𝑛
it follows then that since

[𝑠1 · . . . · 𝑠𝑛] ¨†𝑅𝐴 [𝑡1 · . . . · 𝑡𝑚]
we have

𝑠1 · . . . 𝑠𝑘−1 · 𝑠 · 𝑠𝑘+1 · . . . · 𝑠𝑛 ¨†𝐴 𝑠1 · . . . · 𝑠𝑘−1 · 𝑡 · 𝑡𝑘+1 · . . . · 𝑡𝑚
and therefore

𝑠 ¨†𝐴 𝑡

Now, if

⟨[𝑠1], . . . , [𝑠𝑛]⟩ = ⟨[𝑡1], . . . , [𝑡𝑚]⟩
then in particular

𝑠1 · . . . · 𝑠𝑛 𝑅 𝑡1 · . . . · 𝑡𝑚
by the fact that 𝑅 is a congruence. From the fact that it is an equivalence relation it follows that

[𝑠1 · . . . · 𝑠𝑛] = [𝑡1 · . . . · 𝑡𝑚]
□

Proposition C.3. Any concurrent object space †𝑅𝐴 defines a †-coalgebra
(†𝑅𝐴,𝜅𝑅 : †𝑅𝐴 ⊸ ††𝑅𝐴)

Proof. Since †𝑅𝐴 is a concurrent object space, 𝑅 is a congruence. Hence, by proposition C.2

it follows that 𝜅𝑅 is a linear map. It remains to show the two diagrams defining a †-coalgebra
commute. We start by showing

†𝑅𝐴 ††𝑅𝐴

†𝑅𝐴

𝜅𝑅

id†𝑅𝐴

𝜖†𝑅𝐴

Indeed,

𝑥 ↦→ 𝑦 ∈ 𝜖†𝑅𝐴 ◦ 𝜅𝑅 ⇐⇒ 𝑥 ↦→ ⟨𝑦⟩ ∈ 𝜅𝑅 ⇐⇒ 𝑦 = 𝑥 ⇐⇒ 𝑥 ↦→ 𝑦 ∈ id†𝑅𝐴
We now show

†𝑅𝐴 ††𝑅𝐴

† †𝑅 𝐴 †††𝑅𝐴

𝜅𝑅

𝜅𝑅 †𝜅𝑅

𝛿†𝑅𝐴

So suppose

𝑥 ↦→ ⟨⟨𝑥1
1
, . . . , 𝑥1𝑚1

⟩, . . . , ⟨𝑥𝑛
1
, . . . , 𝑥𝑛𝑚𝑛

⟩⟩ ∈ 𝛿†𝑅𝐴 ◦ 𝜅𝑅
by definition of 𝛿†𝑅𝐴 it follows that

𝑥 ↦→ ⟨𝑥1
1
, . . . , 𝑥1𝑚1

, . . . , 𝑥𝑛
1
, . . . , 𝑥𝑛𝑚𝑛

⟩ ∈ 𝜅𝑅
and hence, by definition of 𝜅𝑅 there is 𝑠 ∈ 𝑥 and

∀𝑖 < 𝑛.∀𝑗 < 𝑚𝑖 .∃𝑠𝑖𝑗 ∈ 𝑥𝑖𝑗
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such that

𝑠 = 𝑠1
1
· . . . · 𝑠𝑛𝑚1

· . . . · 𝑠𝑛
1
· . . . · 𝑠𝑛𝑚𝑛

But then,

[𝑠] 𝜅𝑅↦−−→ ⟨[𝑠1
1
· . . . · 𝑠1𝑚1

], . . . , [𝑠𝑛
1
· . . . · 𝑠𝑛𝑚𝑛

]⟩ †𝜅𝑅↦−−−→ ⟨⟨[𝑠1
1
], . . . [𝑠1𝑚1

]⟩, . . . , ⟨[𝑠𝑛
1
], . . . , [𝑠𝑛𝑚𝑛

]⟩⟩
and by construction

⟨⟨[𝑠1
1
], . . . [𝑠1𝑚1

]⟩, . . . , ⟨[𝑠𝑛
1
], . . . , [𝑠𝑛𝑚𝑛

]⟩⟩ = ⟨𝑥1
1
, . . . , 𝑥1𝑚1

, . . . , 𝑥𝑛
1
, . . . , 𝑥𝑛𝑚𝑛

⟩
as desired.

On the other hand, suppose

𝑥 ↦→ ⟨⟨𝑥1
1
, . . . , 𝑥1𝑚1

⟩, . . . , ⟨𝑥𝑛
1
, . . . , 𝑥𝑛𝑚𝑛

⟩⟩ ∈ †𝜅𝑅 ◦ 𝜅𝑅
then,

∀𝑖 ≤ 𝑛.∀𝑗 < 𝑚𝑖 .∃𝑠𝑖𝑗 ∈ 𝑥𝑖𝑗
such that

∀𝑖 ≤ 𝑛.[𝑠𝑖
1
· . . . · 𝑠𝑖𝑚𝑖

] ↦→ ⟨𝑥𝑖
1
, . . . , 𝑥𝑖𝑚𝑖

⟩ ∈ 𝜅𝑅
so let

𝑥𝑖 = [𝑠𝑖1 · . . . · 𝑠𝑖𝑚𝑖
]

then

∀𝑖 ≤ 𝑛.∃𝑡𝑖 .𝑡𝑖 ∈ 𝑥𝑖
such that

𝑥 = [𝑡1 · . . . · 𝑡𝑛] ↦→ ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝜅𝑅
but then

∀𝑖 .𝑡𝑖 𝑅 𝑠𝑖
1
· . . . · 𝑠𝑖𝑚𝑖

so that

𝑥 = [𝑠1
1
· . . . · 𝑠1𝑚1

· . . . · 𝑠𝑛
1
· . . . · 𝑠𝑛𝑚𝑛

]
because 𝑅 is a congruence, and hence

𝑥
𝜅𝑅↦−−→ ⟨[𝑠1

1
], . . . , [𝑠1𝑚1

], . . . , [𝑠𝑛
1
], . . . , [𝑠𝑛𝑚𝑛

]⟩
𝛿†𝑅𝐴

↦−−−−→ ⟨⟨𝑥1
1
, . . . , 𝑥1𝑚1

⟩, . . . , ⟨𝑥𝑛
1
, . . . , 𝑥𝑛𝑚𝑛

⟩⟩
□

C.2 Tensor Product
Finally we would like to recall the key proposition allowing us to define a tensor product on

RegConc, which we now prove. We start by reminding the reader the definition of the parallel

product of two relations

𝑅 ⊆ |†𝐴| × |†𝐴| 𝑆 ⊆ |†𝐵 | × |†𝐵 |
which is defined as the relation

𝑅 ⊗ 𝑆 ⊆ |†(𝐴 & 𝐵) | × |†(𝐴 & 𝐵) |
given by

𝑠 (𝑅 ⊗ 𝑆) 𝑡 ⇐⇒ 𝑠↾𝐴 𝑅 𝑡↾𝐴 ∧ 𝑠↾𝐵 𝑆 𝑡↾𝐵

We must first confirm that

Proposition C.4. If 𝑅 ⊆ |†𝐴| × |†𝐴| and 𝑆 ⊆ |†𝐵 | × |†𝐵 | are coherent congruences then 𝑅 ⊗ 𝑆 is a
coherent congruence.
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Proof. We start by showing 𝑅 ⊗ 𝑆 is a congruence. First we note that

𝑠↾𝐴 𝑅 𝑠↾𝐴 𝑠↾𝐵 𝑆 𝑠↾𝐵

from the reflexiveness of 𝑅 and 𝑆 so that

𝑠 𝑅 ⊗ 𝑆 𝑠

Now,

𝑠 𝑅 ⊗ 𝑆 𝑡 ⇐⇒ 𝑠↾𝐴 𝑅 𝑡↾𝐴 ∧ 𝑠↾𝐵 𝑆 𝑡↾𝐵 ⇐⇒ 𝑡↾𝐴 𝑅 𝑠↾𝐴 ∧ 𝑡↾𝐵 𝑆 𝑠↾𝐵 ⇐⇒ 𝑡 𝑅 ⊗ 𝑆 𝑠

by symmetricity of 𝑅 and 𝑆 so that 𝑅 ⊗ 𝑆 is symmetric. Finally, if

𝑟 𝑅 ⊗ 𝑆 𝑠 𝑠 𝑅 ⊗ 𝑆 𝑡

then

𝑟↾𝐴 𝑅 𝑠↾𝐴 𝑅 𝑡↾𝐴 𝑟↾𝐵 𝑅 𝑠↾𝐵 𝑅 𝑡↾𝐵

so that by transitivity of 𝑅 and 𝑆 we have

𝑟↾𝐴 𝑅 𝑡↾𝐴 𝑟↾𝐵 𝑆 𝑡↾𝐵

and hence

𝑟 𝑅 ⊗ 𝑆 𝑡

which proves 𝑅 ⊗ 𝑆 is an equivalence relation.

Now, to show it is a congruence, suppose

𝑠 𝑅 ⊗ 𝑆 𝑠 ′

which by the definition of 𝑅 ⊗ 𝑆 means that

𝑠↾𝐴 𝑅 𝑠 ′↾𝐴 𝑠↾𝐵 𝑆 𝑠 ′↾𝐵

Then, for any 𝑝, 𝑡 we have

(𝑝 · 𝑠 · 𝑡)↾𝐴 = 𝑝↾𝐴 · 𝑠↾𝐴 · 𝑡↾𝐴 𝑅 𝑝↾𝐴 · 𝑠 ′↾𝐴 · 𝑡↾𝐴 = (𝑝 · 𝑠 ′ · 𝑡)↾𝐴
and similarly

(𝑝 · 𝑠 · 𝑡)↾𝐵 = 𝑝↾𝐵 · 𝑠↾𝐵 · 𝑡↾𝐵 𝑆 𝑝↾𝐵 · 𝑠 ′↾𝐵 · 𝑡↾𝐵 = (𝑝 · 𝑠 ′ · 𝑡)↾𝐵
so that

𝑝 · 𝑠 · 𝑡 𝑅 ⊗ 𝑆 𝑝 · 𝑠 ′ · 𝑡
as desired.

It remains to show 𝑅 ⊗ 𝑆 is coherent. Suppose

𝑠 𝑅 ⊗ 𝑆 𝑡

then

𝑠↾𝐴 𝑅 𝑡↾𝐴 𝑠↾𝐵 𝑆 𝑡↾𝐵

so that, since 𝑅 and 𝑆 are coherent

𝑠↾𝐴 ¨†𝐴 𝑡↾𝐴 𝑠↾𝐵 ¨†𝐵 𝑡↾𝐵

and hence, by lemma C.5 it follows that

𝑠 ¨†(𝐴&𝐵) 𝑡
so that indeed, 𝑅 ⊗ 𝑆 is coherent. □

In C.4 we made use of the following important lemma, which we prove now
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Lemma C.5. Let 𝑠, 𝑡 ∈ †(𝐴 & 𝐵) and suppose
𝑠↾𝐴 ¨†𝐴 𝑠↾𝐴 𝑠↾𝐵 ¨†𝐵 𝑡↾𝐵

then
𝑠 ¨†(𝐴&𝐵) 𝑡

Proof. Let 𝑝 be the largest common prefix of 𝑠 and 𝑡 . If 𝑝 = 𝑠 or 𝑝 = 𝑡 we are done. So suppose

𝑝 is a strict prefix of both 𝑠 and 𝑡 . Then, there are tokens 𝑥,𝑦 ∈ 𝐴 & 𝐵 such that

𝑝 · 𝑥 ⊑ 𝑠 𝑝 · 𝑦 ⊑ 𝑡

If

𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 or 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴
then 𝑥 ¨ 𝑦 in 𝐴 & 𝐵 and we are done. So suppose either 𝑥,𝑦 ∈ 𝑋 where 𝑋 is either 𝐴 or 𝐵. Then,

by assumption

(𝑝 · 𝑥)↾𝑋 = 𝑝↾𝑋 · 𝑥 ¨†𝑋 𝑝↾𝑋 · 𝑦 = (𝑝 · 𝑦)↾𝑋
so that 𝑥 ¨𝑋 𝑦 and therefore 𝑥 ¨𝐴&𝐵 𝑦 and hence

𝑠 ¨†(𝐴&𝐵) 𝑡
□

Note that an almost immediate consequence of this corollary is that

Corollary C.6. The interleaving map

inter : †𝐴 ⊗ †𝐵 ⊸ †(𝐴 & 𝐵),
introduced in §6.5, is indeed a linear map.

Proof. Indeed, lemma C.5 proves most of the claim. It remains to show that if

(𝑠𝐴, 𝑠𝐵) ↦→ 𝑠 ∈ inter𝐴,𝐵 (𝑠 ′𝐴, 𝑠 ′𝐵) ↦→ 𝑠 ∈ inter𝐴,𝐵
then

𝑠𝐴 = 𝑠 ′𝐴 and 𝑠𝐵 = 𝑠 ′𝐵
which is immediate as

𝑠𝐴 = 𝑠↾𝐴 = 𝑠 ′𝐴 𝑠𝐵 = 𝑠↾𝐵 = 𝑠 ′𝐵
□

We then establish the following †-coalgebra isomorphism

Proposition C.7.

†𝑅𝐴 ⊗ †𝑆𝐵 � †𝑅⊗𝑆 (𝐴 & 𝐵)

Proof. The isomorphism is given by the map

inter𝑅,𝑆 = {([𝑠𝐴], [𝑠𝐵]) ↦→ [𝑠] | 𝑠↾𝐴 = 𝑠𝐴 ∧ 𝑠↾𝐵 = 𝑠𝐵}
and the obvious inverse

deinter𝑅,𝑆 = {[𝑠] ↦→ ([𝑠𝐴], [𝑠𝐵]) | 𝑠↾𝐴 = 𝑠𝐴 ∧ 𝑠↾𝐵 = 𝑠𝐵}
We will omit the type on the name of the morphisms above for conciseness. Then, suppose

(𝑥𝐴, 𝑥𝐵) ↦→ (𝑦𝐴, 𝑦𝐵) ∈ deinter ◦ inter
then, there exists 𝑥 ∈ †𝑅𝐴 ⊗ †𝑆𝐵 such that

(𝑥𝐴, 𝑥𝐵)
inter↦−−−→ 𝑥

deinter↦−−−−−→ (𝑦𝐴, 𝑦𝐵)
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so there is 𝑠𝐴 ∈ 𝑦𝐴 and 𝑠𝐵 ∈ 𝑦𝐵 and 𝑠 ∈ 𝑥 such that

𝑠↾𝐴 = 𝑠𝐴 𝑠↾𝐵 = 𝑠𝐵

and there is 𝑡 ∈ 𝑥 and 𝑡𝐴 ∈ 𝑥𝐴 and 𝑡𝐵 ∈ 𝑥𝐵 such that

𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

But note that then

𝑠 𝑅 ⊗ 𝑆 𝑡

so that

𝑠𝐴 𝑅 𝑡𝐴 𝑠𝐵 𝑆 𝑡𝐵

by definition of 𝑅 ⊗ 𝑆 . Hence
𝑥𝐴 = [𝑠𝐴]𝑅 = [𝑡𝐴]𝑅 = 𝑦𝐴 𝑥𝐵 = [𝑠𝐵]𝑅 = [𝑡𝐵]𝑅 = 𝑦𝐵

as desired. Conversely, suppose

𝑥 ↦→ 𝑦 ∈ inter ◦ deinter
then, there is (𝑥𝐴, 𝑥𝐵) ∈ †𝑅𝐴 ⊗ †𝑆𝐵 such that

𝑥
deinter↦−−−−−→ (𝑥𝐴, 𝑥𝐵)

inter↦−−−→ 𝑦

and hence, there are 𝑠 ∈ 𝑦, 𝑠𝐴 ∈ 𝑥𝐴 and 𝑠𝐵 ∈ 𝑥𝐵 such that

𝑠↾𝐴 = 𝑠𝐴 𝑠↾𝐵 = 𝑠𝐵

and there are 𝑡 ∈ 𝑥 , 𝑡𝐴 ∈ 𝑥𝐴 and 𝑡𝐵 ∈ 𝑥𝐵 such that

𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

but note that

𝑠𝐴 𝑅 𝑡𝐴 𝑠𝐵 𝑆 𝑡𝐵

and hence

𝑠 𝑅 ⊗ 𝑆 𝑡

which means that

𝑥 = [𝑠] = [𝑡] = 𝑦

as expected. So as relations inter and deinter compose into the diagonal relation both ways. It

remains to establish that inter and deinter are †-coalgebra morphisms. We start by establishing

that both maps are linear maps.

Suppose (𝑥𝐴, 𝑥𝐵) ↦→ 𝑥, (𝑦𝐴, 𝑦𝐵) ↦→ 𝑦 ∈ inter𝑅,𝑆
𝐴,𝐵

and that

(𝑥𝐴, 𝑥𝐵) ¨†𝑅𝐴⊗†𝑆𝐵 (𝑦𝐴, 𝑦𝐵)
then, there are 𝑠 ∈ 𝑥 , 𝑠𝐴 ∈ 𝑥𝐴, 𝑠𝐵 ∈ 𝑥𝐵 and 𝑡 ∈ 𝑦, 𝑡𝐴 ∈ 𝑦𝐴 and 𝑡𝐵 ∈ 𝑦𝐵 such that

𝑠↾𝐴 = 𝑠𝐴 𝑠↾𝐵 = 𝑠𝐵 𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

Now, let 𝑠 ′ ∈ 𝑥 and 𝑡 ′ ∈ 𝑦. Note then that

𝑠 𝑅 ⊗ 𝑆 𝑠 ′ 𝑡 𝑅 ⊗ 𝑆 𝑡 ′

so that

𝑠𝐴 𝑅 𝑠 ′↾𝐴 𝑠𝐵 𝑅 𝑠 ′↾𝐵 𝑡𝐴 𝑆 𝑡 ′↾𝐴 𝑡𝐵 𝑆 𝑡 ′↾𝐵
and hence

𝑠 ′↾𝐴 ∈ 𝑥𝐴 𝑠 ′↾𝐵 ∈ 𝑥𝐵 𝑡 ′↾𝐴 ∈ 𝑦𝐴 𝑡 ′↾𝐵 ∈ 𝑦𝐵
which gives the important fact that

𝑠 ′↾𝐴 ¨†𝐴 𝑡 ′↾𝐴 𝑠 ′↾𝐵 ¨†𝐵 𝑡 ′↾𝐵
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because 𝑅 and 𝑆 are coherent. But then, by lemma C.5 it follows that

𝑠 ′ ¨†(𝐴&𝐵) 𝑡 ′
and hence

𝑥 ¨†𝑅⊗𝑆 (𝐴&𝐵) 𝑦
Now, suppose

𝑥 = 𝑦

then

𝑠 𝑅 ⊗ 𝑆 𝑡

so that

𝑠𝐴 𝑅 𝑡𝐴 𝑠𝐵 𝑆 𝑡𝐵

and therefore

𝑥𝐴 = 𝑦𝐴 𝑥𝐵 = 𝑦𝐵

because 𝑅 and 𝑆 are congruences. This establishes the linearity of inter𝑅,𝑆 .
Now, suppose 𝑥 ↦→ (𝑥𝐴, 𝑥𝐵), 𝑦 ↦→ (𝑦𝐴, 𝑦𝐵) ∈ deinter𝑅,𝑆 and that 𝑥 ¨†𝑅⊗𝑆 (𝐴&𝐵) 𝑦. We will show

that

𝑥𝐴 ¨†𝑅𝐴 𝑦𝐴

the argument for

𝑥𝐵 ¨†𝑆𝐵 𝑦𝐵

is symmetric. By definition of deinter, there are 𝑠 ∈ 𝑥 , 𝑠𝐴 ∈ 𝑥𝐴, 𝑠𝐵 ∈ 𝑥𝐵 and 𝑡 ∈ 𝑦, 𝑡𝐴 ∈ 𝑦𝐴 and

𝑡𝐵 ∈ 𝑦𝐵 such that

𝑠↾𝐴 = 𝑠𝐴 𝑠↾𝐵 = 𝑠𝐵 𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

Now, let 𝑠 ′
𝐴
∈ 𝑥𝐴 and 𝑡 ′

𝐴
∈ 𝑦𝐴. By assumption

𝑠𝐴 𝑅 𝑠 ′𝐴 𝑡𝐴 𝑅 𝑡 ′𝐴

and hence

𝑠 𝑅 ⊗ 𝑆 𝑠↾𝐴 · 𝑠↾𝐵 = 𝑠𝐴 · 𝑠↾𝐵 𝑅 ⊗ 𝑆 𝑠 ′𝐴 · 𝑠↾𝐵
and

𝑡 𝑅 ⊗ 𝑆 𝑡↾𝐴 · 𝑠↾𝐵 = 𝑡𝐴 · 𝑠↾𝐵 𝑅 ⊗ 𝑆 𝑡 ′𝐴 · 𝑠↾𝐵
and therefore

𝑠 ′𝐴 · 𝑠↾𝐵 ∈ 𝑥 𝑡 ′𝐴 · 𝑠↾𝐵 ∈ 𝑦
but since 𝑥 ¨ 𝑦 it follows that

𝑠 ′𝐴 · 𝑠↾𝐵 ¨†(𝐴&𝐵) 𝑡 ′𝐴 · 𝑠↾𝐵
from which we conclude that

𝑠 ′𝐴 ¨†𝐴 𝑡 ′𝐴
Now, suppose

𝑥𝐴 = 𝑦𝐴 and 𝑦𝐵 = 𝑥𝐵

then note that we have

𝑠𝐴 𝑅 𝑡𝐴 𝑠𝐵 𝑆 𝑡𝐵

so that

𝑠 𝑅 ⊗ 𝑆 𝑡

and therefore

𝑥 = 𝑦

as desired.
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It remains to show that the linear maps inter𝑅,𝑆 and deinter𝑅,𝑆 are †-coalgebra morphisms. This

amounts to showing the commutativity of the diagrams:

†𝑅𝐴 ⊗ †𝑆𝐵 †𝑅⊗𝑆 (𝐴 & 𝐵)

†(†𝑅𝐴 ⊗ †𝑆𝐵) ††𝑅⊗𝑆 (𝐴 & 𝐵)

inter𝑅,𝑆

†inter𝑅,𝑆

†𝑅⊗𝑆 (𝐴 & 𝐵) †𝑅𝐴 ⊗ †𝑆𝐵

††𝑅⊗𝑆 (𝐴 & 𝐵) †(†𝑅𝐴 ⊗ †𝑆𝐵)

deinter𝑅,𝑆

†deinter𝑅,𝑆

We start with inter𝑅,𝑆 . Suppose

(𝑥𝐴, 𝑥𝐵) ↦→ ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝜅𝑅⊗𝑆 ◦ inter
then, there is 𝑥 such that

(𝑥𝐴, 𝑥𝐵)
inter↦−−−→ 𝑥 ↦→ ⟨𝑥1, . . . , 𝑥𝑛⟩

and therefore, there is 𝑠 ∈ 𝑥 and 𝑠1 ∈ 𝑥1, . . . , 𝑠𝑛 ∈ 𝑥𝑛 such that

𝑠 = 𝑠1 · . . . · 𝑠𝑛
and then there is 𝑡 ∈ 𝑥 and 𝑡𝐴 ∈ 𝑥𝐴, 𝑡𝐵 ∈ 𝑥𝐵 such that

𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

but note that

𝑠 𝑅 ⊗ 𝑆 𝑡

so that

𝑡𝐴 𝑅 𝑠↾𝐴 𝑡𝐵 𝑆 𝑠↾𝐵
so that

𝑠↾𝐴 ∈ 𝑥𝐴 𝑠↾𝐵 ∈ 𝑥𝐵
Now, notice that then

𝑥𝐴 = [𝑠1↾𝐴 · . . . · 𝑠𝑛↾𝐴] 𝑥𝐵 = [𝑠1↾𝐵 · . . . · 𝑠𝑛↾𝐵]
so that

(𝑥𝐴, 𝑥𝐵) ↦→ ⟨([𝑠1↾𝐴], [𝑠1↾𝐵]), . . . , ( [𝑠𝑛↾𝐴], [𝑠𝑛↾𝐵])⟩
†inter↦−−−−→ ⟨[𝑠1], . . . , [𝑠𝑛]⟩ = ⟨𝑥1, . . . , 𝑥𝑛⟩

Conversely, suppose

(𝑥𝐴, 𝑥𝐵) ↦→ ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ †inter ◦ 𝜅†𝑅𝐴⊗†𝑆𝐵
then, there are 𝑦1, . . . , 𝑦𝑛 and 𝑧1, . . . , 𝑧𝑛 such that

(𝑥𝐴, 𝑥𝐵) ↦→ ⟨(𝑦1, 𝑧1), . . . , (𝑦𝑛, 𝑧𝑛)⟩
†inter↦−−−−→ ⟨𝑥1, . . . , 𝑥𝑛⟩

and hence

∀𝑖 ≤ 𝑛.∃𝑠𝑖 ∈ 𝑥𝑖 .∃𝑠𝐴𝑖 ∈ 𝑦𝑖 .∃𝑠𝐵𝑖 ∈ 𝑧𝑖 .𝑠𝑖↾𝐴 = 𝑠𝐴𝑖 ∧ 𝑠𝑖↾𝐵 = 𝑠𝐵𝑖

and there are 𝑡𝐴
1
∈ 𝑦1, . . . , 𝑡𝐴𝑛 ∈ 𝑦𝑛 and 𝑡𝐵

1
∈ 𝑧1, . . . , 𝑡𝐵1 ∈ 𝑧𝑛 and 𝑡𝐴 ∈ 𝑥𝐴 and 𝑡𝐵 ∈ 𝑥𝐵 such that

𝑡𝐴 = 𝑡𝐴
1
· . . . · 𝑡𝐴

1
𝑡𝐵 = 𝑡𝐵

1
· . . . · 𝑡𝐵𝑛
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but then

∀𝑖 ≤ 𝑛.𝑠𝐴𝑖 𝑅 𝑡𝐴𝑖 ∧ 𝑠𝐵𝑖 𝑆 𝑡𝐵𝑖

and therefore

𝑡𝐴 𝑅 𝑠𝐴
1
· . . . · 𝑠𝐴𝑛 𝑡𝐵 𝑆 𝑠𝐵

1
· . . . · 𝑠𝐵𝑛

hence

(𝑥𝐴, 𝑥𝐵) = ( [𝑠𝐴1 · . . . · 𝑠𝐴𝑛 ], [𝑠𝐵1 · . . . · 𝑠𝐵𝑛 ])
inter↦−−−→ [𝑠1 · . . . · 𝑠𝑛] ↦→ ⟨[𝑠1], . . . , [𝑠𝑛]⟩ = ⟨𝑥1, . . . , 𝑥𝑛⟩

and hence, indeed, inter𝑅,𝑆
𝐴,𝐵

is a †-coalgebra morphism.

We now consider the morphism deinter𝑅,𝑆 . Suppose

𝑥 ↦→ ⟨(𝑥𝐴
1
, 𝑥𝐵

1
), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩ ∈ 𝜅†𝑅𝐴⊗†𝑆𝐵 ◦ deinter

which means that there are 𝑥𝐴 ∈ †𝑅𝐴 and 𝑥𝐵 ∈ †𝑆𝐵 such that

𝑥
deinter↦−−−−−→ (𝑥𝐴, 𝑥𝐵) ↦→ ⟨(𝑥𝐴1 , 𝑥𝐵1 ), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩

Now, this means that

∃𝑠𝐴 ∈ 𝑥𝐴 .∀𝑖 ≤ 𝑛.∃𝑠𝐴𝑖 ∈ 𝑥𝐴𝑖 .𝑠𝐴 = 𝑠𝐴
1
· . . . · 𝑠𝐴𝑛

∃𝑠𝐵 ∈ 𝑥𝐵 .∀𝑖 ≤ 𝑛.∃𝑠𝐵𝑖 ∈ 𝑥𝐵𝑖 .𝑠𝐵 = 𝑠𝐵
1
· . . . · 𝑠𝐵𝑛

and there is 𝑡 ∈ 𝑥 and 𝑡𝐴 ∈ 𝑥𝐴 and 𝑡𝐵 ∈ 𝑥𝐵 such that

𝑡↾𝐴 = 𝑡𝐴 𝑡↾𝐵 = 𝑡𝐵

But then

𝑡𝐴 𝑅 𝑠𝐴
1
· . . . · 𝑠𝐴𝑛 𝑡𝐵 𝑆 𝑠𝐵

1
· . . . · 𝑠𝐵𝑛

so that

𝑡 𝑅 ⊗ 𝑆 (𝑠𝐴
1
· 𝑠𝐵

1
) · . . . · (𝑠𝐴𝑛 · 𝑠𝐵𝑛 )

so that

𝑥 = [𝑡] = [(𝑠𝐴
1
· 𝑠𝐵

1
) · . . . · (𝑠𝐴𝑛 · 𝑠𝐵𝑛 )] ↦→ ⟨[𝑠𝐴1 · 𝑠𝐵1 ], . . . , [𝑠𝐴𝑛 · 𝑠𝐵𝑛 ]⟩

†deinter↦−−−−−−→ ⟨([𝑠𝐴
1
], [𝑠𝐵

1
]), . . . , ( [𝑠𝐴𝑛 ], [𝑠𝐵𝑛 ])⟩ = ⟨(𝑥𝐴1 , 𝑥𝐵1 ), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩

Conversely, suppose

𝑥 ↦→ ⟨(𝑥𝐴
1
, 𝑥𝐵

1
), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩ ∈ †deinter ◦ 𝜅𝑅⊗𝑆

Then, there are 𝑥1, . . . , 𝑥𝑛 such that

𝑥 ↦→ ⟨𝑥1, . . . , 𝑥𝑛⟩
†deinter↦−−−−−−→ ⟨(𝑥𝐴

1
, 𝑥𝐵

1
), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩

which means that

∀𝑖 ≤ 𝑛.∃𝑠𝑖 ∈ 𝑥𝑖 .∃𝑠𝐴𝑖 ∈ 𝑥𝐴𝑖 .∃𝑠𝐵𝑖 ∈ 𝑥𝐵𝑖 .𝑠𝑖↾𝐴 = 𝑠𝐴𝑖 ∧ 𝑠𝑖↾𝐵 = 𝑠𝐵𝑖

and that there is 𝑡 ∈ 𝑥 and 𝑡1 ∈ 𝑥1, . . ., 𝑡𝑛 ∈ 𝑥𝑛 such that

𝑡 = 𝑡1 · . . . · 𝑡𝑛
But then,

∀𝑖 ≤ 𝑛.𝑡𝑖 𝑅 ⊗ 𝑆 𝑠𝑖

so that

𝑡 𝑅 ⊗ 𝑆 𝑠1 · . . . · 𝑠𝑛
and therefore

𝑥 = [𝑡] deinter↦−−−−−→ ([𝑠𝐴
1
· . . . · 𝑠𝐴𝑛 ], [𝑠𝐵1 · . . . · 𝑠𝐵𝑛 ]) ↦→ ⟨(𝑥𝐴1 , 𝑥𝐵1 ), . . . , (𝑥𝐴𝑛 , 𝑥𝐵𝑛 )⟩
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Therefore, indeed, deinter𝑅,𝑆 is a †-coalgebra morphism. □

C.3 Refinement in CertiRegConc
We can extend refinement to CertiRegConc by noting that there is a thinning morphism

ℓ𝑅→𝑆
𝐴 : †𝑅𝐴 ⊸ †𝑆𝐴 [𝑠]𝑅

ℓ𝑅→𝑆
𝐴↦−−−−→ [𝑠]𝑆

for any 𝑅 ⊇ 𝑆 . This means in particular that there is a sequentialization morphism

ℓ𝑅𝐴 : †𝑅𝐴 ⊸ †𝐴
This sequentialization map can be used to lift a (local) implementation𝑀 : †𝐴 ⊸ 𝐵 to the equational

theory 𝑅 by the composition

†𝑅𝐴 †𝐴 𝐵
ℓ𝑅
𝐴 𝑀

a construction we frequently used in §7, although we defined such liftings explicitly to aid under-

standing. We can use the thinning morphisms to easily establish a refinement rule for certified

concurrent †-spaces

Proposition C.8. If

(𝐴,𝑉𝐴) ⊑ (𝐴,𝑉 ′𝐴) (𝐵,𝑉𝐵) ⊑ (𝐵,𝑉 ′𝐵) 𝑅 ⊇ 𝑅′ 𝑆 ′ ⊆ 𝑆

and𝑀 : (𝐴, 𝑅,𝑉𝐴) → (𝐵, 𝑆,𝑉𝐵) then𝑀 : (𝐴, 𝑅′,𝑉 ′
𝐴
) → (𝐵, 𝑆 ′,𝑉 ′

𝐵
).
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