Data Parallel Algorithms for the Finite
Element Method

Kapil K. Mathur and S. Lennart Johnsson

YALEU/DCS/TR-775
March 1990

To be published in the Proceedings of the Fourth SIAM
Conference on Parallel Processing for Scientific Computing
Chicago, 1989.

Data Parallel Algorithms for the Finite Element Method

Kapil K. Mathur and S. Lennart Johnsson
Thinking Machines Corporation
245 First Street
Cambridge, MA 02412

Abstract. A data parallel implementation of the finite element method is described. The
focus of the presentation is on data mapping and data motion. The essential ideas of the data
parallel implementation are developed for discretizations of regular domains by Lagrange elements of
arbitrary order in two and three dimensions. A generalization to irregular domains is also presented.
Implementations of the data mappings for both regular and irregular domains have been made on
the Connection Machine®system model CM—2. Peak performances well in excess of 2 Gflops s™!

have been measured for the evaluation of the elemental stiffness matrices. The performance of the

iterative solver is in the range of 600 — 850 Mflops s™1.

1. Introduction. The most critical issue in high performance computing is data
motion. On data parallel architectures a high storage bandwidth is accomplished by
distributing the memory among thousands of units. Each such unit is often asso-
ciated with a unique processor, as is the case for the Connection Machine system
and all other currently available medium scale and data parallel architectures. An
interconnection network is used on such architectures to provide the data interaction
bandwidth necessary for the solution of elliptic problems. The effective utilization
of this bandwidth is critical to obtain high performance. Effective use of the com-
munication system requires that the locality inherent in many algorithms for elliptic
problems should be preserved through an appropriate data mapping and data routing.

This article describes a data parallel algorithm of the finite element method for
discretizations composed of isoparametric Lagrange elements of arbitrary order in two
and three dimensions. Data layouts of the finite element discretization that allows
for a highly concurrent computation of elemental stiffness matrices and solution of
the equilibrium equations, as well as efficient communication for regular domains are
presented. A data parallel algorithm that computes each elemental stiffness matrix
concurrently, as well as different such matrices concurrently, with no communication
is described. The resulting sparse linear system is solved by a conjugate gradient
method. The algorithms have been implemented on the Connection Machine system,
CM-2. The performance of this implementation is reported for the evaluation of the
elemental stiffness matrices and for the solution of the sparse linear system. Finally,
a brief description of one possible data parallel implementation of the finite element
method for unstructured grids is presented with evaluation times for a representative
mesh.

0 To be published in the Proceedings of the Fourth SIAM Conference on Parallel Processing for
Scientific Computing, Chicago, December 1989.

2. The Model Data Parallel Architecture. The Connection Machine model
CM-2 is a parallel processing unit with up to 64K processing elements (physical
processors) and up to 2 Gbytes of primary storage. These processing elements execute
data parallel operations. Front-end computers provide the development environment
and execute scalar instructions. In addition, the Connection Machine system includes
a high—performance parallel I/O system, and fast interactive graphics.

In the high level programming languages each processing element has its own
local memory (up to 32K bytes). There is no shared memory, but the global address
space is shared. When the number of objects in the parallel data structure exceed the
number of physical processors, the Connection Machine system operates in a virtual
processor mode. The number of objects in a parallel data structure is limited by
the storage requirement per object and the total primary storage. In the virtual
processor mode the application program is assigned as many virtual processors as
there are objects, each virtual processor with a correspondingly smaller memory. This
feature alleviates the applications program from the responsibility of conforming to
the number of physical processors. Each physical processor is made to simulate the
appropriate number of virtual processors. This number is referred to as the virtual
processor ratio.

The virtual processor facility of the Connection Machine system supports the
notion of virtual processor sets. All virtual processors associated with a data set
is called a virtual processor set. The system software allows for the simultaneous
existence of more than one virtual processor sets. In the context of high level pro-
gramming languages, all arrays of the same shape reside in the same virtual processor
set.

In the high level languages the processing elements of the Connection Machine
computing system can communicate information among themselves by two mecha-
nisms: lattice emulation and general routing. The lattice emulation makes use of the
fact that lattices with axes lengths being powers of two are subgraphs of Boolean
cubes, the interconnection network of the Connection Machine processor chips. The
lattice emulation is a preprogrammed communication pattern explicitly managing
the data transfer on the communication channels. The reader is referred to [1] for a
general description of the Connection Machine computing system.

3. Data Layout. Three data representation schemes have been reviewed for the
implementation of the finite element method on the Connection Machine system. The
first two schemes make use of a single data layout for all operations: a processor is
mapped to either an unassembled nodal point per finite element, or an unassembled
finite element. The third scheme maps an unassembled element to a processor for the
evaluation of the local data structures. Then, for solving the sparse linear system one
processor represents an assembled nodal point.

The first two data layouts are very well suited for structured meshes and can
use the lattice emulation features of the model architecture. The third scheme uses
the general communications feature (router), which is typically slower than the lattice
emulation due to contention for communication channels. The contention is caused by
increased need for communication bandwidth due to a non-optimal data allocation,

19 20 21

E F
uA 113) 12

1 222 23 24

O ()
013 014 }A
¢4 35 H
25 26 27
(o)
loi D

o016 | 017 [gM8

A Finite Element Mesh The Unassembled Nodal

Point Representation
Fic. 1. Mapping a physical domain composed of brick elements on to the data parallel archi-
tecture. In the ezample the finite element mesh consists of eight linear elements labeled A-H. The
nodes are labeled 1-27. The processors of the data parallel architecture are configured as a 4 x 4 x 4
array of processors.

and potentially non-optimal routing and scheduling of messages.

3.1. An unassembled nodal point mapping. In this data representation,
one processor of the data parallel architecture represents an unassembled nodal point.
Nodal points shared between two or more elements are replicated on separate proces-
sors. Figure (1) illustrates this replication scheme for a finite element mesh composed
of eight first order elements in three dimensions labeled A though H. This mesh has
27 nodes, labeled 1 to 27, and are mapped on to a 4 x 4 x4 array of processors. Nodal
points labeled 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, and 26 are shared between two
elements and are replicated twice, nodal points 5, 11, 13, 15, 17, and 23 are shared
between four elements and are replicated four times, while nodal point 14 is shared
by all elements and is replicated eight times.

This replication scheme extends naturally for isoparametric Lagrange elements of
high order (Figure 2). Figure (2) shows a two-dimensional domain discretized by four
biquadratic elements with 25 nodal points. The 5 x 5 grid of nodes is mapped on to a
6 x 6 array of processors. In general, nodal points lying on every line (surface in three
dimensions) that is shared between elements are replicated. Note that the fraction of
replicated nodes decreases rapidly with the order [2]. Mapping one processor to an
unassembled nodal point has several advantages over the other mapping strategies.
First, the processor utilization is optimal for the evaluation of the elemental stiffness
matrices, and is very close to optimal for the solution of the sparse linear system.
Second, if iterative methods are used to solve the sparse linear system, then the
explicit assembly of the global stiffness matrix can be avoided by assembling matrix—
vector products instead. Consequently, the storage requirements per processor are

6 _7 I8 (8 9 10

11 12 |13 |13 _14 |15
11 12 13 14 |15

11 12 13 _13 _14 _15

16 17 |18 19 |20
16 .17 ‘18 .18 .19 .20

21 22 23 24 |25 21 22 [23 |23 _24 |25

The Unassembled Nodal

Point Representation

Finite Element Mesh

Fic. 2. An unassembled nodal point data representation for a domain discretized by four bi-
quadratic elements. The 5 X 5 grid of nodal points are mapped on a 6 X 6 processor layout.

uniform. Third, the evaluation of the elemental data structures and the computation
of the sparse matrix vector product for the iterative solver is now shared by a group
of processors for each finite element. For example, eight processors evaluate the
elemental stiffness matrix for the example illustrated in Figure (1). The concurrency
of the computation is significantly higher than for an unassembled finite element per
processor representation discussed in the next section. Consequently, the evaluation
time is reduced proportionally. No inter—processor communication is required to
evaluate the elemental data structures, even though the computation is being spread
over a group of processors.

3.2. An unassembled finite element mapping. The main advantage of map-
ping an unassembled finite element to a processor is that it is easy to exploit the sym-
metry of the elemental stiffness matrices because the entire elemental stiffness matrix
resides in the memory of a processor. However, there is a significant reduction in the
concurrency. Reference [2] describes the storage requirements and the communication
complexity of a data parallel implementation of the finite element method where one
unassembled element is mapped on to a processor.

3.8. Unstructured discretizations. General finite element discretizations in-
volve complicated geometries. The data parallel implementation of the finite element
method involving unstructured grids is most conveniently modeled by two virtual
processor sets, the first corresponding to the data set of all unassembled elements
(one unassembled finite element per processor) and the second corresponding to the
data set of all assembled nodes (one assembled node per processor). The analysis and
the implementation presented in [2] is still valid for the evaluation of the elemental

loop over all finite elements
loop over all quadrature points
evaluate Jacobian and shape function
derivatives for current quadrature point
loop over rows in elemental stiffness matrix
loop over columns in elemental stiffness matrix
evaluate contribution to entry (row, column)
of the elemental stiffness matrix
end loop
end loop
end loop
end loop

FiG. 3. Pseudo-code for evaluating the elemental stiffness matrices.

do concurrently over all rows of the elemental
stiffness matrix for all elements
loop over all quadrature points
evaluate Jacobian and shape function derivatives
for the current quadrature point
loop over columns in elemental stiffness matrix
evaluate contribution to entry (row, column)
end loop

end loop
end do

F1G. 4. The data parallel algorithm for evaluating the elemental stiffness matrices when one
processor of the data parallel architecture represents an unassembled nodal point.

stiffness matrices.

4. Evaluating the Elemental Stiffness Matrices. Figure (3) shows the se-
quential pseudo—code found in a typical finite element implementation. The loop over
all finite elements vanishes naturally for a data parallel implementation. Moreover,
in the data layout for which a processor represents an unassembled nodal point, n
processors represent a finite element with n nodal points. These n processors share
the evaluation of one elemental stiffness matrix. In the pseudo—code shown in Figure
(3) one of the three inner nested loops can also be executed concurrently. Figure
(4) shows the pseudo—code for the data parallel implementation for evaluating the
elemental stiffness matrices. Notice that the loop over all the finite elements in the
mesh is missing in the pseudo—code shown in Figure (4). Moreover, the loop that com-
putes the rows of the unassembled elemental stiffness matrices is also being executed
concurrently.

For three dimensional isoparametric brick elements, the unassembled nodal point

Time (milli-second)

140 -
(o]

120 .
100 -
80 -

o
60 - y » — single—precision

o — double-precision
0+ °
Virtual
20 .I i i | Processor
L 9 4 g Ratio

Fic. 5. Time for the evaluation of the elemental stiffness matrices as a function of the virtual
processor ratio. The peak performance corresponds to 2.4 Gflops s71, single precision, at a virtual
processor ratio of eight.

representation requires that each processor stores the u rows of the unassembled
elemental stiffness matrix, where u is the number of degrees of freedom per nodal
point. This results in a local matrix of size u X nu on every processor. In addition,
each processor also stores the coordinates of all other nodal points forming the element
in a local vector which is nu long. Once this “coordinate” vector is known the data
parallel algorithm illustrated in Figure (4) requires no inter—processor communication.

Figure (5) shows the performance for evaluating the elemental stiffness matri-
ces as a function of the virtual processor ratio, i.e., the number of unassembled
nodal points residing on each physical processor. The peak performance is approx-
imately 2.4 Gflops s™', single precision, at a virtual processor ratio of eight. For
double precision floating-point operations, the measured peak performance is nearly
1.1 Gflops s, at a virtual processor ratio of four.

Figure (6) shows the time taken to evaluate the elemental stiffness matrices when
a processor represents an unassembled finite element. The numbers reported in Figure
(6) correspond to the evaluation time for the symmetric half of the elemental stiffness
matrices stored as a triangular matrix in packed form.

At a fixed virtual processor ratio, the time required to evaluate the elemental
stiffness matrices is independent of the size of the finite element mesh. This fea-
ture is of particular significance for non-linear finite element simulations, where the
evaluation of the elemental data structures dominate the total simulation time.

5. Data Parallel Implementation of the Conjugate Gradient Method.
The sparse linear system representing the equilibrium equations has been solved by
the method of conjugate gradients with diagonal scaling. The primary issues are an
efficient evaluation of inner products and the sparse matrix—vector product. A de-

Time (s)

4
8
° °
6 -
4 - o .
« — single—precision
2 ° . o — double-precision
O
* Virtual
0 - —t | | .+ Processor
12 4 8 16 Ratio

Fic. 6. Time for the evaluation of the elemental stiffness matrices, when one processor repre-
sents an unassembled finite element, as a function of the virtual processor ratio.

tailed description of the numerical behavior of the conjugate gradient method with
diagonal scaling for sparse linear systems arising in stress analysis by the finite ele-
ment method for beams, plates and bricks is reported in [3,4,5]. For the unassembled
nodal point mapping diagonal scaling and the evaluation of inner products is straight-
forward. The sparse matrix—vector product is more involved and is described in detail
for both regular and unstructured discretizations.

5.1. Sparse matrix—vector product. For the unassembled nodal point repre-
sentation, apart from storing the u unassembled rows of the elemental stiffness matrix,
each processor also stores the nodal loads (a vector of length u) corresponding to the
nodal point represented by the processor. The sparse matrix-vector (y = A X z)
product then involves first accumulating the nodal values, z, from each processor
in the group of n processors forming the element. This operation is a segmented
“all-to-all” broadcast, which can be performed concurrently for all finite elements in
the mesh. In addition, concurrency within the group of processors forming the finite
element is also exploited [6]. The nodal values are accumulated in a local vector X,
which is nu long. After the accumulation, a local matrix—vector product is performed,
which yields the unassembled values for the vector y. Finally, an assembly of the local
products results in the assembled values of the product vector at each processor. The
accumulation phase and the assembly phase require inter—processor communication.
For structured grids, the communication can be performed by using the lattice com-
munication primitives. Figure (7) shows the time per conjugate gradient iteration
as a function of the virtual processor ratio for finite element meshes composed of
trilinear brick elements. As before, the virtual processor ratio represents the number
of unassembled nodal points per physical processor. The time per conjugate gradi-
ent iteration in Figure (7) includes the arithmetic operations required for diagonal

Time (milli-second)

* all-to—all broadcast
o assembly |
e inner—product evaluatio
1001 computations é
® one cg iteration
75 -
50 ® *
®
25 ® « : S 1
* Virtua
0 - ? ? I. l. Processor
1 2 4 8 Ratio

FiG. 7. Time per conjugate gradient iteration (with diagonal scaling) as a function of the virtual
processor ratio. The peak performance is approzimately 850 Mflops s~Y, single precision, at a virtual
processor ratio of eight.

preconditioning. The peak performance of the solver corresponds to approximately
850 Mflops s™%, single precision, at a virtual processor ratio of eight. More than half
of the total time per iteration is spent in communication required for the segmented
“all-to—all” broadcast, and the assembly procedure. Another timing study reported
in [2] shows that on a Connection Machine system with 16K physical processors,
the time per conjugate gradient iteration with diagonal scaling for an application
with nearly 400,000 degrees of freedom is approximately 0.13 s for double precision
floating-point operations.

The two data mappings used to implement unstructured discretizations do not
assemble the global stiffness matrix explicitly for evaluating the sparse matrix vector
product. Instead a “gather” operation is performed to collect elemental data into -
local vectors. This operation involves data motion from the virtual processor set rep-
resenting the assembled nodes to the virtual processor set representing the elements.
Figure (8) illustrates the “gather” operation for a representative mesh composed of
four elements and nine nodal points. After the elemental vectors have been collected,
a local matrix—vector multiplication is performed and finally the local results are as-
sembled into the global vector. Figure (9) shows the time taken per conjugate (with
diagonal preconditioning) as a function of the number of assembled nodal points per
physical processor. The timings reported in Figure (9) are for representative unstruc-
tured grids and have been measured on a Connection Machine system with 16384
physical processors. These timings include the time required to gather the elemental
vectors and assemble the global vector after the product.

6. Summary. Data parallel implementations of the finite element method for
structured and unstructured grids in two and three dimensions are described. La-
grange elements of arbitrary order have been used for the presentation, The algo-
rithms when a processor represents a finite element are also valid for Serendipity

7 8 9

Finite Element Mesh

Element A
/'—N—_\

Set of Finite Elements

Set of Nodal Points

cmfS$layout elem_val(:serial,),icon(:serial,)
dimension elem_val(4,512),icon(4,512)
dimension node_val(1024)

do i=1,4
elem_val(i,:) = node_val(icon(i,:))
enddo

Fic. 8. CM-Fortran implementation of a “gather” operation for the example 2 x 2 discretization
shown above. This pseudo-code assumes two data representations. In the first mapping, each pro-
cessor represents an unassembled element. The “serial” directive forces the four elemental values
to be stored locally in the processor’s memory. The second data representation maps an assembled
nodal point o a processor. The interaction between the two daia mappings is achieved through the

use of the connectivity array, icon.

16+
84
6 T -3
4+ ,
" . _ single-precision
2+ ° - dm%befegprecision
o Virtual
04y, — i > Processor
ﬁ b h 16 39 Ratio

FiG. 9. Time per conjugate gradient iteration (with diagonal preconditioning) for unstructured
grids as a function of the virtual processor ratio. This data parallel implementation assumes two
data representations. In the first mapping, each processor represents an unassembled element. The
second data representation maps an assembled nodal point to a processor. The interaction between
the two data mappings is included in the timings reported above.

elements. When a processor represents a nodal point per element the concurrency
for three dimensional problems is one to two orders of magnitude higher than with
one processor per finite element. For structured grids, a data layout is presented that
both exploits this fine grain concurrency, and the lattice emulation feature of the
model data parallel architecture. For unstructured grids, two separate data layouts
are used, one for the evaluation of the elemental stiffness matrices and the other for
the solution of the sparse linear system arising out of the equilibrium equations.

For the elemental stiffness matrix computation an algorithm requiring no commu-
nication is presented. The performance is close to the peak arithmetic performance.
A diagonally scaled conjugate gradient method is used for the solution of the equilib-
rium equations. The load balance is optimal. For a structured grid the execution time
with one processor per unassembled nodal point is dominated by the communication
among the group of processors representing a finite element. For an unstructured
grid the communication is dominated by the inter-element communication required
for the sparse matrix—vector product.

One significant result of this study is that data parallel architectures are very
efficient for scientific computing. The high degree of concurrency inherent in the
finite element method is compatible with the degree of concurrency necessary for
data parallel architectures to give good performance [see also 7,8, 9]. However, spe-
cial attention is required for optimizing data layout and communication between the
processors of the data parallel architecture. '

7. REFERENCES.

1.

2.

Connection Machine Model CM-2 Technical Summary, Technical Report,
Thinking Machines Corporation, 1989.

S. L. Johnsson and K. K. Mathur, Data Structures and Algorithms for the
Finite Element Method on a Data Parallel Supercomputer, Int. J. Numer.
Meth. Engr., 29-4 (1990), pp. 881-908.

S. L. Johnsson and K. K. Mathur, Ezperience with the Conjugate Gradient
Method for Stress Analysis on a Data Parallel Supercomputer, Int. J. Numer.
Meth. Engr., 27-3 (1989), pp. 523-546.

K. K. Mathur and S. L. Johnsson, Element Order and Convergence Rate
of the Conjugate Gradient Method for Data Parallel Stress Analysis, Proc.
Supercomputing ’89, (1989), pp. 337-343.

K. K. Mathur and S. L. Johnsson, The Finite Element Method on a Data
Parallel Computing System, Int. J. High-Speed Comp., 1-1 (1989), pp. 29-
44.

S. L. Johnsson and C. T. Ho, Spanning Graphs for Optimum Broadcasting
and Personalized Communication in Hypercubes, IEEE Trans. Comp., 38-9,
(1989), pp. 1249-1268.

T. Belytschko, E. J. Plaskacz, J. M. Kennedy, and D. L. Greenwell, Finite
Element Analysis on the CONNECTION Machine, Comp. Meth. in Appl.
Meth. and Engr., in press.

T. Belytschko and E. J. Plaskacz, SIMD Implementation of a Nonlinear Tran-
sient Shell Program with Partially Structured Meshes, Int. J. Num. Meth.
Engr., submitted.

C. Farhat, N. Sobh, and K. C. Park, Transient Finite Flement Compu-
tations on 65536 Processors: The Connection Machine, Technical Report,
CU-CSSC-89-06, Univ. of Colorado, 1989.

