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Abstract

A new class of cryptosystems {RSAm : m>0} is defined which is inspired from the well
known RSA cryptosystem ( i.c. the system due to Rivest, Shamsr, and Adelman. ) It {8 shown
that for each m, RSA m 18 cquivalent to RSA, in the sense that if there czists an ¢ ffictent
algorithm that can “break” every instance of RSA then there ezists an efficient alg;m'thm that

can “break” every instance of RSA_, and vice versa. Single RSA_ bits are also studied.

1. Introduction

The significance of the new results in public key cryptosystems is partly based on the fact that
one makes the security of a cryptosystem dependant upon the difficulty of sclving a problem in
" number theory. In other words one proves results of the following type: “if a certain probl_em in
number theory is difficult to solve, then the given cryptosystem is difficult to break.” Such an
approach can be called “The Method of External Reduction”, because one reduces the security of

the given cryptosystem to an external problem (usually to one in number theory).

In the present paper a new approach is initiated in order to study the security of public key
cryptosystems, called “The Method of Internal Reduction.” According to this approach one tries
to reduce the security of the given public key cryptosystem to another already existing one in

order to determine which of the two systems is the most secure. For that purpose a new class of
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cryptosystems is defined in section 2, denoted by {RSA_}. In section 3 it is shown that each
cryptosystem RSA_ is equivalent to RSA. The security of single RSA_ bits is studied in section
4. Security considerations of RSA  are further studied in section 5; in particular these include a

generalization of Davida’s cryptanalytic attack.

It would be interesting if one could find “internal reductions” between other well known public
key cryptosystems. Throughout the present paper Z; will denote the set of all positive integers

less than n which are relatively prime to n.

2. Encryption and Decryption of RSA
Each user U gets access to an integer n; which is the product of two odd primes py;, q;» The
iteger n;, is made public, but its factorization is not. For simplicity the subscript U will be
omitted. Let ¢(n) = (p—1)(q—1), where ¢ is the Euler function. Messages M are integers which
are relatively prime to n. The encryption key is an m+l-tuple nee,,...e such that
ged(é(n)e,....e m) =L Similarly, the decryption key is an m+1-tuple nd,,....d such that
die,+..+d e =1 mod¢(n)

Each user makes his encryption key public, but keeps secret his decryption key.

The encryption algorithm E__ is defined by
E (M) = <M°*modn,...,.M°»modn>,

and the decryption algorithm D, is defined by
D, (M,,--.M,}) = M;% ... M, “smodn

An instance of RSA is a 2m+1 tuple n, € e MM, where n is the product of two
distinct odd primes, e,,...e, <n, gcd(n,el,...,em) == 1, and there exists an integer N such that N°
= M;modn for all i = 1,..,m. If m = 1, then RSA, is identical to the cryptosystem due to

Rivest, Shamir, and Adelman and will be denoted by RSA (see {RSA].)



To show that the cryptosystém is well-defined it must be shown that
Theorem 1: (i) For all messages M, D_(E_(M)) =M

(ii) for all messages M,,..,M_ if there exists an M such that M = M;modn for alli = 1,...,m,
then E_ (D, (M,,...M, )) = <M,,...M >
Proof: (i) Let M be a given message. Then E (M) = <M‘imodn,...M‘mmodn>. Hence,
D, .(E, (M)) =
D, (M‘imodn,....M*»modn) =
M4 ... Mw9mmodn =

M‘ldl"'"""md- modn = M,

because e,d,+...+e_d = 1 modé(n), and b*(™) = 1 modn for all integers b relatively prime

to n, which completes the proof of part (i). The proof of part (ii) is similar.

3. Equivalence of the Cryptosystems
The purpose of the present section is to show that the cryptosystems RSA . are equivalent for

each m >0. This assertion follows from the following two theorems

Theorem 2: If there is an efficient algorithm A which given as input an instance
n,e,...€, M, M of RSA will output a message N such that N% = M;modn, for all
i=1,..,m, in S(“rev""em'Msz""’Mm) steps, then there is an efficient algorithm A, which given
as input an instance n,e,M of RSA will output a message N such that N° = M modn, in

S(n,e,...,e,M,M,...,M) steps.

Proof: The idea is to transform instances of one cryptosystem into instances of the other, and
then use the algorithm which “breaks” one cryptosystem to devise an algorithm that will “break”
the other cryptosystem. Let A, S be as in the hypothesis of the theorem, and let n,e,M be an

instance of RSA. Put e, =.. =e¢_=-¢, and let M, =.. =M_ = M. It is then clear that



n,el,...,em,M‘,...,Mm form an instance of RSA . Hence it is enough to dzfine A(n,eM) =

A (ne,,e, M, M ) This completes the proof of the theorem.

Remark 1: Define the set MS(n,e,...,e i) = {er; 2 A (ne.e m,x‘xmodn,...,x‘mmodn)
= x}. Using the notation of theorem 2 it follows that for all er;, X€MS(n,e,...,e,A, ) if and

only if x€EMS(n,e,A).
Converseley,

Theorem 3: If there is an efficient algorithm A which given as input an instance n, e, M of
RSA will output a message N such that N° = Mmodn, in S(n,e,M) steps, then t_here is an
efficient algorithm A which given as input an instance ne,,...,e MM of RSA__ will output
a message N such that N = M modn holds for all i=1,..,m, and the number of steps required is

S(n,gcd(el,...,em),P(el,...,em,Ml,Mz,...,Mm)) + Q(ey,---¢,,), where P, Q are polynomials.

Proof: Let A, S be as in the hypothesis of the theorem, and let n.e;,....e M,,...M_ be an

instance of RSA . The algorithm A | is defined as follows:
Input: n,el,...,em,Ml,...,Mm
Step 1: Compute e = ged(e,,....e,.)
Step 2: Compute kl""’km such that kle1+...+kmem = e
Step 3: Compute M = Mlkx Mm"'n
Output: A(n,e,M)

It remains to show that the above algorithm works. Let 0,€)5ees€p My M,y be an instance of
RSA,,. It will be shown that the above algorithm outputs an integer N such that N% == M modn

for all i = 1,...,m. Since n,e,,...e,_M,,..M_ is an instance of RSA_, there exists an integer N



such that N% = M;modn for all i = 1,..,m. Compute e,kl,...,km as in the above algorithm.

Then it can be shown that
N¢ =

Nk Ftbnen —
(NE)oL (NP ) =
Mlkl...Mm"- =
= Mmodn.
It follows that n,e,M is an instance of RSA. Consequently A(n,e,M) = N, and the proof of the
theorem is complete. The polynomials P, Q depend on standard algorithms for computing the

greatest common divisor (e.g. see [A].)

Remark 2: Using the notation of theorem 2 and remark 1 it follows that for all er:,

'xeMS(n,el,...,e m,Am) if and only if xEMS(n,gcd(el,...,em),A).

4. Single RSA_ bits

The results of Goldwasser, Micali, and Tong about the security of single RSA bits, can now be
generalized to the context of the RSA_ cryptosystems (see [GMT).) In particular it will be shown
that inverting the RSA  system is “equivalent” to computing certain functions f with domain Z:
X .. X Z; and values in {0,1}. The proof of the main theorem of this section is very similar to
the corresponding result on RSA, and the reader is advised to consult [GMT) for further details.

Define the following functions

Last Bit Function: LB et (x“imodn,....x°smodn) == 0 if x is even, and 1 if x is odd.

N
Location Function: LOC . (ximodn,...x°»modn) = 0 if x < n/2, and 1 if x > n/2.
]

n,epyeney

Significant Bit Function: Let B(n) = b,_,---b;by be the representation of the number n in

the binary system, and let t(n) = the largest value of t such that b, +1 = 0, b, = 1. The



signiﬁcani bit function corresponding to t < t{a) is defined by SB, ot (x“1modn,...,x“»modn)
LAl Lot e )

= LB

1*1%m n,el,...,cm'

= the t-th bit in the binary representation of x. Notice that SB; .
As in [GMT] one can prove the following

Theorem 4: Given an m-tuple ¢,,....e . of odd integers < ¢(n) such that ged(e,,....e,,4(n)) =

1, and any t < t(n) the following statements are equivalent
(i)There is an efficient algorithm A _ such that for all x in Z;, A_(x‘imodn,...x“»modn) = x.
(ii)There is an efficient algorithm computing the function LB Byt

(iii)There is an efficient algorithm computing the function LOCn' eyt

(iv)There is an efficient algorithm computing the function SBt, ne

1,...,:..'

Proof:(outline) It is obvious that (i) implies each of the statements (ii), (iii) and (iv). For each
i =1,...,m let I, = the unique integer such that 1,2% = lmodn. The equivalence of (ii) and (iii)

is a consequence of the following easily proved
Claim 1: For all x in Z:, x < n/2 if and only if 2xmodn is even.

It follows that LB , (x‘imodn,...x’smodn) = LOC_, ., (I,xmodh,...,] x°wmodn).
—

€ ey

This proves the equivalence of (ii) and (iii).
To prove that (ii) implies (i) the following claim will be needed
Claim 2: Forall x in Z;, and all i = 1,...,m the following hold:
(a) n—x% = (n—x)% modn
(b) Ix% = (x/2)% modn, if x is even.

(c) I{n—x%) = ((n—x)/2) modn, if x is odd.



Proof of the claim: To prove (a) expard (n—x)% using the binomial tkeorem. It follows that
(n—x)% = (=1)°x% = —x% = (n—x%) modn, because e; is odd. To prove (b) write x = 2u.

Then I;x% = 1.2 = u® modn. The proof of (c) is an immediate consequence of (a) and (b).

The main idea needed in the proof of the implication: (ii) implies (i) is included in the

following procedure
Input: x; = x“imodn,...,x 'n = X‘mmodn
Step 1: Compute LB", s c.(xl,...,x m)

Step 2: If the result of the computation in step 1 is 0 then set x;/=l.x.modn for i = 1,...m
and goto step 1. If the result of the computation in step 1 is 1 then set x;=l(n—x;)modn for i

== 1,...,m and goto step 1.

If k is the binary length of n then k applications of the above loop will output from step 1 a
sequence of k bits, which gives the binary representation of x, if the original input were
x“imodn,...,x°»modn. Details of a more formal proof can be derived by an argument similar to

that in [GMT].

(iv) is in essence a generalization of (ii). The proof of (iv) implies (i) is similar to the proof of
(i) implies (i) above. Further formal details can be found in [GMT]. This completes the outline

of the proof of theorem 4.

5. Security of RSA,
The reader should take into account the security corsiderations of RSA regarding factoring n,
computing ¢(n) without factoring n, and computing d,;....d,, without factoring n or computing

#(n), as those are described in [RSA].

The proof of theorem 3 shows that if ged(ey,...,e,,) = 1, then one can efficiently compute M



from the given M“,... M®m. Indeed; compute k;,...k  such that ek ,+...+e k = 1. Thenit is

clear that M = (M%)f1...(M%)Fimodn.

Since the systems RSA and RSA  are equivalent it is expected that both systems will suffer
from the same shortcomings. The following cryptanalytic attack on RSA  is a generalization of
a corresponding cryptanalytic attack on RSA, due to Davida (see [DA], [DE].) It is based on the
fact that a cryptanalyst can intercept the transmission between the Sender and the Receiver.

The cryptanalyst can compute M by following the procedure below:
Step 1: Intercept M“1,... M®m,
Step 2: Pick any message X such that ged(X,n) = 1.
Step 3: Compute X~ 'modn,X®imodn,...,X»modn.
Step 4: Ask the Receiver to sign the messages (XM)“imodn,...,(XM)’»modn.
Step 5: Intercept the Receiver’s response: ((XM)‘X)‘Imodn,...,((i(M)‘m)dmmodn.
Step 6: Obtain M through the equation:
M = X~1((XM)%1)%imodn...((XM)»)*»modn.

For a further discussion see [DE].
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