
Prolate spheroidal wave functions (PSWFs) provide a natural and effective tool for
computing with bandlimited functions defined on an interval. As demonstrated by
Slepian et. al., the so called generalized prolate spheroidal functions (GPSFs) extend
this apparatus to higher dimensions. While the analytical and numerical apparatus in
one dimension is fairly complete, the situation in higher dimensions is less satisfactory.
This report attempts to improve the situation by providing analytical and numerical
tools for GPSFs, including the efficient evaluation of eigenvalues, the construction
of quadratures, interpolation formulae, etc. Our results are illustrated with several
numerical examples. This report is a draft; a complete version will be published at a
later date.
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1 Introduction

2 Mathematical and Numerical Preliminaries

2.1 Spherical Harmonics

2.2 Zernike Polynomials

In this section we describe the properties of the Zernike polynomials, which are a sequence
of orthogonal polynomials on the unit ball in Rp+2. Zernike polynomials are defined via
the formula

Z`
N,n(x) = RN,n(‖x‖)S`N(x/‖x‖), (1)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, S`N are the
orthonormal surface harmonics of degree N (see Section ??), and RN,n are polynomials
of degree 2n+N defined via the formula

RN,n(x) = xN
n∑

m=0

(−1)m
(
n+N + p

2

m

)(
n

m

)
(x2)n−m(1− x2)m, (2)

for all 0 ≤ x ≤ 1. The polynomials RN,n satisfy the relation

RN,n(1) = 1, (3)

and are orthogonal with respect to the weight function w(x) = xp+1, so that∫ 1

0

RN,n(x)RN,m(x)xp+1 dx =
δn,m

2(2n+N + p
2

+ 1)
, (4)

where

δn,m =

{
1 if n = m,
0 if n 6= m.

(5)

We define the polynomials RN,n via the formula

RN,n(x) =
√

2(2n+N + p/2 + 1)RN,n(x), (6)

so that ∫ 1

0

(
RN,n(x)

)2
xp+1 dx = 1, (7)

where N and n are nonnegative integers. In an abuse of notation, we refer to both
the polynomials Z`

N,n and the radial polynomials RN,n as Zernike polynomials where the
meaning is obvious.
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Remark 2.1 When p = −1, the Zernike polynomials take the form

Z1
0,n(x) = R0,n(|x|) = P2n(x), (8)

Z2
1,n(x) = sgn(x) ·R1,n(|x|) = P2n+1(x), (9)

for −1 ≤ x ≤ 1 and nonnegative integer n, where Pn denotes the Legendre polynomial of
degree n and

sgn(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0,

(10)

for all real x.

Remark 2.2 When p = 0, the Zernike polynomials take the form

Z1
N,n(x1, x2) = RN,n(r) cos(Nθ), (11)

Z2
N,n(x1, x2) = RN,n(r) sin(Nθ), (12)

where x1 = r cos(θ), x2 = r sin(θ), and N and n are nonnegative integers.

2.2.1 Other Notational Conventions

Some authors index the Zernike polynomials by their degree. In the case p = 0, Born
and Wolf [6] represent the Zernike polynomial

RN,n(r) (13)

by the notation

RN
2n+N(r). (14)

2.2.2 Special Values

The following formulas are valid for all nonnegative integers N and n, and for all 0 ≤
x ≤ 1.

RN,0(x) = xN , (15)

RN,1(x) = xN
(
(N + p/2 + 2)x2 − (N + p/2 + 1)

)
, (16)

RN,n(1) = 1, (17)

R
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1, (18)

R
(N)
N,n(0) = (−1)nN !

(
n+N + p

2

n

)
. (19)
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2.2.3 Hypergeometric Function

The polynomials RN,n are related to the hypergeometric function 2F1 (see [3]) by the
formula

RN,n(x) = (−1)n
(
n+N + p

2

n

)
xN 2F1

(
−n, n+N +

p

2
+ 1;N +

p

2
+ 1;x2

)
, (20)

where 0 ≤ x ≤ 1, and N and n are nonnegative integers.

2.2.4 Interrelations

The polynomials RN,n are related to the Jacobi polynomials via the formula

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (21)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(α,β)
n , α, β > −1, denotes the

Jacobi polynomials of degree n (see [3]).
When p = −1, the polynomials RN,n are related to the Legendre polynomials via the

formulas

R0,n(x) = P2n(x), (22)

R1,n(x) = P2n+1(x), (23)

where 0 ≤ x ≤ 1, n is a nonnegative integer, and Pn denotes the Legendre polynomial
of degree n (see [3]).

2.2.5 Limit Relations

The asymptotic behavior of the Zernike polynomials near 0 as the index n tends to
infinity is described by the formula

lim
n→∞

(−1)nRN,n

(
x
2n

)
(2n)p/2

=
JN+p/2(x)

xp/2
, (24)

where 0 ≤ x ≤ 1, N is a nonnegative integer, and Jν denotes the Bessel functions of the
first kind (see [3]).

2.2.6 Zeros

The asymptotic behavior of the zeros of the polynomials RN,n as n tends to infinity

is described by the following relation. Let x
(n)
N,m be the mth positive zero of RN,n, so

6



that 0 < x
(n)
N,1 < x

(n)
N,2 < . . .. Likewise, let jν,m be the mth positive zero of Jν , so that

0 < jν,1 < jν,2 < . . ., where Jν denotes the Bessel functions of the first kind (see [3]).
Then

lim
n→∞

2nx
(n)
N,m = jN+p/2,m, (25)

for any nonnegative integer N .

2.2.7 Inequalities

The inequality

|RN,n(x)| ≤
(
n+N + p

2

n

)
(26)

holds for 0 ≤ x ≤ 1 and nonnegative integer N and n.

2.2.8 Integrals

The polynomials RN,n satify the relation∫ 1

0

JN+p/2(xy)

(xy)p/2
RN,n(y)yp+1 dy =

(−1)nJN+p/2+2n+1(x)

xp/2+1
, (27)

where x ≥ 0, N and n are nonnegative integers, and Jν denotes the Bessel functions of
the first kind.

2.2.9 Generating Function

The generating function associated with the polynomials RN,n is given by the formula(
1 + z −

√
1 + 2z(1− 2x2) + z2

)N+p/2

(2zx)N+p/2xp/2
√

1 + 2z(1− 2x2) + z2
=
∞∑
n=0

RN,n(x)zn, (28)

where 0 ≤ x ≤ 1 is real, z is a complex number such that |z| ≤ 1, and N is a nonnegative
integer.

2.2.10 Differential Equation

The polynomials RN,n satisfy the differential equation

(1− x2)y′′(x)− 2xy′(x) +

(
χN,n +

1
4
− (N + p

2
)2

x2

)
y(x) = 0, (29)
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where

χN,n = (N + p
2

+ 2n+ 1
2
)(N + p

2
+ 2n+ 3

2
), (30)

and

y(x) = xp/2+1RN,n(x), (31)

for all 0 < x < 1 and nonnegative integers N and n.

2.2.11 Recurrence Relations

The polynomials RN,n satisfy the recurrence relation

2(n+ 1)(n+N + p
2

+ 1)(2n+N + p
2
)RN,n+1(x)

= −
(
(2n+N + p

2
+ 1)(N + p

2
)2 + (2n+N + p

2
)3(1− 2x2)

)
RN,n(x)

− 2n(n+N + p
2
)(2n+N + p

2
+ 2)RN,n−1(x), (32)

where 0 ≤ x ≤ 1, N is a nonnegative integer, n is a positive integer, and (·)n is defined
via the formula

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1), (33)

for real x and nonnegative integer n. The polynomials RN,n also satisfy the recurrence
relations

(2n+N + p
2

+ 2)xRN+1,n(x) = (n+N + p
2

+ 1)RN,n(x) + (n+ 1)RN,n+1(x), (34)

for nonnegative integers N and n, and

(2n+N + p
2
)xRN−1,n(x) = (n+N + p

2
)RN,n(x) + nRN,n−1(x), (35)

for integers N ≥ 1 and n ≥ 0, where 0 ≤ x ≤ 1.

2.2.12 Differential Relations

The Zernike polynomials satisfy the differential relation given by the formula

(2n+N + p
2
)x(1− x2) d

dx
RN,n(x)

=
(
N(2n+N + p

2
) + 2n2 − (2n+N)(2n+N + p

2
)x2
)
RN,n(x)

+ 2n(n+N + p
2
)RN,n−1(x), (36)

where 0 < x < 1, N is a nonnegative integer, and n is a positive integer.
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2.2.13 Spectral Differentiation

2.3 Generalized Prolate Spheroidal Functions

2.3.1 Basic Facts

In this section, we summarize several facts about generalized prolate spheroidal functions
(GPSFs). Let B denote the closed unit ball in Rp+2. Given a real number c > 0, we
define the operator Fc : L2(B)→ L2(B) via the formula

Fc[ψ](x) =

∫
B

ψ(t)eic〈x,t〉 dt, (37)

for all x ∈ B, where 〈·, ·〉 denotes the inner product on Rp+2. Clearly, Fc is compact.
Obviously, Fc is also normal, but not self-adjoint. We denote the eigenvalues of Fc by
λ0, λ1, . . . , λn, . . ., and assume that |λj| ≥ |λj+1| for each non-negative integer j. For
each non-negative integer j, we denote by ψj the eigenfunction corresponding to λj, so
that

λjψj(x) =

∫
B

ψj(t)e
ic〈x,t〉 dt, (38)

for all x ∈ B. We assume that ‖ψj‖L2(B) = 1 for each j. The following theorem is proved
in [1] and describes the eigenfunctions and eigenvalues of Fc.

Theorem 2.1 Suppose that c > 0 is a real number and that Fc is defined by (37). Then
the eigenfunctions ψ0, ψ1, . . . , ψn, . . . of Fc are real, orthonormal, and complete in L2(B).
For each j, the eigenfunction ψj is either even, in the sense that ψj(−x) = ψj(x) for
all x ∈ B, or odd, in the sense that ψj(−x) = −ψj(x) for all x ∈ B. The eigenvalues
corresponding to even eigenfunctions are real, and the eigenvalues corresponding to odd
eigenfunctions are purely imaginary. The domain on which the eigenfunctions are defined
can be extended from B to R

p+2 by requiring that (38) hold for all x ∈ R
p+2; the

eigenfunctions will then be orthogonal on Rp+2 and complete in the class of band-limited
functions with bandlimit c.

We define the self-adjoint operator Qc : L2(B)→ L2(B) via the formula

Qc =
( c

2π

)p+2

F ∗c · Fc. (39)

Since Fc is normal, it follows that Qc has the same eigenfunctions as Fc, and that the
jth eigenvalue µj of Qc is connected to λj via the formula

µj =
( c

2π

)p+2

|λj|2. (40)
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We also observe that

Qc[ψ](x) =
( c

2π

)p/2+1
∫
B

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (41)

for all x ∈ Rp+2, where Jν denotes the Bessel functions of the first kind and ‖ · ‖ denotes
Euclidean distance in Rp+2 (see Appendix A for a proof).

We observe that

Qc[ψ](x) = 1B(x) · F−1
[
1B(c)(t) · F [ψ](t)

]
(x), (42)

where F : L2(Rp+2) → L2(Rp+2) is the (p + 2)-dimensional Fourier transform, B(c)
denotes the set {x ∈ Rp+2 : ‖x‖ ≤ c }, and 1A is defined via the formula

1A(x) =

{
1 if x ∈ A,
0 if x 6∈ A. (43)

From (42) it follows that µj < 1 for all j.
We observe further thatQc is closely related to the operator Pc : L2(Rp+2)→ L2(Rp+2),

defined via the formula

Pc[ψ](x) =
( c

2π

)p/2+1
∫
Rp+2

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (44)

which is the orthogonal projection onto the space of bandlimited functions on Rp+2 with
bandlimit c > 0.

2.3.2 Eigenfunctions and Eigenvalues of Fc

In this section we describe the eigenvectors and eigenvalues of the operator Fc, defined
in (37). Suppose that ψ is some eigenfunction of the integral operator Fc, with corre-
sponding complex eigenvalue λ, so that

λψ(x) =

∫
B

ψ(t)eic〈x,t〉 dt, (45)

for all x ∈ B (see Theorem 2.1).

Observation 2.3 The operator Fc, defined by (37), is spherically symmetric in the sense
that, for any (p + 2) × (p + 2) orthogonal matrix U , Fc commutes with the operator
Û : L2(B)→ L2(B), defined via the formula

Û [ψ](x) = ψ(Ux), (46)

for all x ∈ B. Hence, the problem of finding the eigenfunctions and eigenvalues of Fc is
amenable to the separation of variables.
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Suppose that

ψ(x) = Φ`
N(‖x‖)S`N(x/‖x‖), (47)

where S`N , ` = 0, 1, . . . , h(N, p) denotes the spherical harmonics of degree N (see Sec-
tion ??), and Φ`

N(r) is a real-valued function defined on the interval [0, 1]. We observe
that

eic〈x,t〉 =
∞∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖), (48)

where x, t ∈ B, and where Jν denotes the Bessel functions of the first kind (see Section VII
of [1] for a proof). Substituting (47) and (48) into (45), we find that

λΦ`
N(r) = iN(2π)p/2+1

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
Φ`
N(ρ)ρp+1 dρ, (49)

for all 0 ≤ r ≤ 1. We define the operator HN,c : L2
(
[0, 1], ρp+1 dρ

)
→ L2

(
[0, 1], ρp+1 dρ

)
via the formula

HN,c[Φ](r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
Φ(ρ)ρp+1 dρ, (50)

where 0 ≤ r ≤ 1, and observe that HN,c is clearly compact and self-adjoint, and does not
depend on `. Dropping the index `, we denote by βN,0, βN,1, . . . , βN,n, . . . the eigenvalues
of HN,c, and assume that |βN,n| ≥ |βN,n+1| for each nonnegative integer n. For each
nonnegative integer n, we let ΦN,n denote the eigenvector corresponding to eigenvalue
βN,n, so that

βN,nΦN,n(r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
ΦN,n(ρ)ρp+1 dρ, (51)

for all 0 ≤ r ≤ 1. Clearly, the eigenfunctions ΦN,n are purely real. We assume that
‖ΦN,n‖L2([0,1],ρp+1 dρ) = 1 and that ΦN,n(1) > 0 for each nonnegative integer N and n (see
Theorem 9.6). It follows from (51) and (49) that the eigenvectors and eigenvalues of Fc
are given by the formulas

ψ`N,n(x) = ΦN,n(‖x‖)S`N(x/‖x‖), (52)

and

λ`N,n = iN(2π)p/2+1βN,n, (53)
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respectively, where x ∈ B, N and n are nonnegative integers, and ` is an integer so that
1 ≤ ` ≤ h(N, p) (see Section ??). We note in formula (53) the expected degeneracy
of eigenvalues due to the spherical symmetry of the integral operator Fc (see Observa-
tion 2.3); we denote λ`N,n by λN,n where the meaning is clear. We also make the following
observation.

Observation 2.4 The domain on which the functions ΦN,n are defined may be extended
from the interval [0, 1] to the complex plane C by requiring that (45) hold for all r ∈ C.
Moreover, the functions ΦN,n, extended in this way, are entire.

2.3.3 The Dual Nature of GPSFs

In this section, we observe that the eigenfunctions ΦN,0,ΦN,1, . . . ,ΦN,n, . . . of the inte-
gral operator HN,c, defined in (50), are also the eigenfunctions of a certain differential
operator.

Let βN,n denote the eigenvalue corresponding to the eigenfunction ΦN,n, for all non-
negative integers N and n, so that

βN,nΦN,n(r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
ΦN,n(ρ)ρp+1 dρ, (54)

where 0 ≤ r ≤ 1, N and n are nonnegative integers, and Jν denotes the Bessel functions
of the first kind (see (51)). Making the substitutions

ϕN,n(r) = r(p+1)/2ΦN,n(r), (55)

and

γN,n = c(p+1)/2βN,n, (56)

we observe that

γN,nϕN,n(r) =

∫ 1

0

JN+p/2(crρ)
√
crρ ϕN,n(ρ) dρ, (57)

where 0 ≤ r ≤ 1, and N and n are arbitrary nonnegative integers. We define the operator
MN,c : L2([0, 1])→ L2([0, 1]) via the formula

MN,c[ϕ](r) =

∫ 1

0

JN+p/2(crρ)
√
crρ ϕ(ρ) dρ, (58)

where 0 ≤ r ≤ 1, and N is an arbitrary nonnegative integer. Obviously, MN,c is compact
and self-adjoint. Clearly, the eigenvalues of MN,c are γN,0, γN,1, . . . , γN,n, . . ., and ϕN,n is
the eigenfunction corresponding to eigenvalue γN,n, for each nonnegative integer n.
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We define the differential operator LN,c via the formula

LN,c[ϕ](x) =
d

dx

(
(1− x2)dϕ

dx
(x)

)
+

( 1
4
− (N + p

2
)2

x2
− cx2

)
ϕ(x), (59)

where 0 < x < 1, N is a nonnegative integer, and ϕ is twice continuously differentiable.
Let C be the class of functions ϕ which are bounded and twice continuously differentiable
on the interval (0, 1), such that ϕ′(0) = 0 if p = −1 and N = 0, and ϕ(0) = 0 otherwise.
Then it is easy to show that, operating on function in class C, LN,c is self-adjoint. From
Sturmian theory we obtain the following theorem (see [1]).

Theorem 2.2 Suppose that c > 0, N is a nonnegative integer, and LN,c is defined
via (59). Then there exists a strictly increasing unbounded sequence of positive numbers
χN,0 < χN,1 < . . . such that for each nonnegative integer n, the differential equation

LN,c[ϕ](x) + χN,nϕ(x) = 0 (60)

has a solution which is bounded and twice continuously differentiable on the interval
(0, 1), so that ϕ′(0) = 0 if p = −1 and N = 0, and ϕ(0) = 0 otherwise.

The following theorem is proved in [1].

Theorem 2.3 Suppose that c > 0, N is a nonnegative integer, and the operators MN,c

and LN,c are defined via (58) and (59) respectively. Suppose also that ϕ : (0, 1)→ R is in
L2([0, 1]), is twice differentiable, and that ϕ′(0) = 0 if p = −1 and N = 0, and ϕ(0) = 0
otherwise. Then

LN,c
[
MN,c[ϕ]

]
(x) = MN,c

[
LN,c[ϕ]

]
(x), (61)

for all 0 < x < 1.

Since Theorem 2.2 shows that the eigenvalues of LN,c are not degenerate, Theorem 2.3
implies that LN,c and MN,c have the same eigenvectors.

2.3.4 Bandlimited Functions and GPSFs

2.3.5 Zernike Polynomials and GPSFs

In this section we describe the relationship between Zernike polynomials and GPSFs. We
use ϕcN,n, where c > 0 and N and n are arbitrary nonnegative integers, to denote the nth
eigenfunction of LN,c, defined in (59); we denote by χN,n(c) the eigenvalue corresponding
to eigenfunction ϕcN,n.
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For c = 0, the eigenfunctions and eigenvalues of the differential operator LN,c, defined
in (59), are given by the formulas

TN,n(x) = x(p+1)/2RN,n(x), (62)

and

χN,n(0) = (N + p
2

+ 2n+ 1
2
)(N + p

2
+ 2n+ 3

2
), (63)

respectively, where 0 ≤ x ≤ 1, N and n are arbitrary nonnegative integers, and RN,n are
Zernike polynomials defined by (2). We define the functions TN,n via the formula

TN,n(x) = x(p+1)/2RN,n(x), (64)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and RN,n are the normalized Zernike
polynomials defined by (6), so that∫ 1

0

(
TN,n(x)

)2
dx = 1, (65)

for all nonnegative integers N and n.
For small c > 0, the connection between Zernike polynomials and GPSFs is given by

the formulas

ϕcN,n(x) = TN,n(x) + o(c2), (66)

and

χN,n(c) = χN,n(0) + o(c2), (67)

as c→ 0, where 0 ≤ x ≤ 1 and N and n are arbitrary nonnegative integers (see [1]).
For c > 0, the functions TN,n are also related to the integral operator MN,c, defined

in (58), via the formula

MN,c

[
TN,n

]
(x) =

∫ 1

0

JN+p/2(cxy)
√
cxy TN,n(y) dy =

(−1)nJN+p/2+2n+1(cx)√
cx

, (68)

where x ≥ 0 and N and n are arbitrary nonnegative integers (see (27)).

2.4 Miscellaneous Analytical Facts

The following theorem is an identity involving the incomplete beta function.
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Theorem 2.4 Suppose that a, b > 0 are real numbers and n is a nonnegative integer.
Then

Bx(a+ n, b) =
Γ(a+ n)

Γ(a+ b+ n)

(
Γ(a+ b)

Γ(a)
Bx(a, b)− (1− x)b

n∑
k=1

Γ(a+ b+ k − 1)

Γ(a+ k)
xa+k−1

)
(69)

for all 0 ≤ x ≤ 1, where Bx(a, b) denotes the incomplete beta function.

The following lemma is an identity involving the gamma function.

Lemma 2.5 Suppose that n is a nonnegative integer. Then

√
π +

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
=

2Γ(n+ 3
2
)

Γ(n+ 1)
. (70)

The following two lemmas are identities involving the incomplete beta function.

Lemma 2.6 Suppose that 0 ≤ r ≤ 1. Then

B1−r2(1,
1
2
) = 2(1− r). (71)

Lemma 2.7 Suppose that 0 ≤ r ≤ 1. Then

B1−r2(
1
2
, 1
2
) = 2 arccos(r). (72)

2.4.1 The Area and Volume of a Hypersphere

The following theorem provides formulas for the volume and area of a (p+2)-dimensional
hypersphere.

Theorem 2.8 Suppose that Sp+2(r) = {x ∈ R
p+2 : ‖x‖ = r} denotes the (p + 2)-

dimensional hypersphere of radius r > 0. Suppose further that Ap+2(r) denotes the area
of Sp+2(r) and Vp+2(r) denotes the volume enclosed by Sp+2(r). Then

Ap+2(r) =
2πp/2+1

Γ(p
2

+ 1)
rp+1, (73)

and

Vp+2(r) =
πp/2+1

Γ(p
2

+ 2)
rp+2. (74)
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The following theorem provides a formula for the volume of the intersection of two
(p+ 2)-dimensional hyperspheres (see, for example, [4]).

Theorem 2.9 Suppose that p ≥ −1 is an integer, let B denote the closed unit ball in
R
p+2, and let B(c) denote the set {x ∈ Rp+2 : ‖x‖ ≤ c}, where c > 0. Then∫

RD

1B(u− t)1B(t) dt = Vp+2(1)
B1−‖u‖2/4(

p
2

+ 3
2
, 1
2
)

B(p
2

+ 3
2
, 1
2
)

, (75)

for all u ∈ B(2), where B(a, b) denotes the beta function, Bx(a, b) denotes the incomplete
beta function, Vp+2 is defined by (74), and 1A is defined via the formula

1A(x) =

{
1 if x ∈ A,
0 if x 6∈ A. (76)

2.4.2 Bessel Functions

The primary analytical tool of this subsection is Theorem 2.15.
The following lemmas 2.10, 2.11, 2.12, 2.13, 2.14 describe the limiting behavior of

certain integrals involving Bessel functions.

Lemma 2.10 Suppose that ν > 0. Then∫ 1

0

(Jν(2cr))
21

r
dr =

1

2ν
+O

(1

c

)
, (77)

as c→∞.

Lemma 2.11 Suppose that ν > 0. Then∫ 1

0

(Jν(2cr))
2 dr =

1

2π

log(c)

c
+ o
( log(c)

c

)
, (78)

as c→∞.

Lemma 2.12 Suppose that ν > 0 is real and k is a positive integer. Then∫ 1

0

(Jν(2cr))
2rk dr = O

(1

c

)
, (79)

as c→∞.
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Lemma 2.13 Suppose that n is a positive integer. Then∫ 1

0

(Jn(2cr))2

r
arccos(r) dr =

π

4n
− 1

2π

log(c)

c
+ o
( log(c)

c

)
, (80)

as c→∞.

Lemma 2.14 Suppose that n and k are positive integers. Then∫ 1

0

(Jn(2cr))2(1− r2)k−
1
2 dr =

1

2π

log(c)

c
+ o
( log(c)

c

)
, (81)

as c→∞.

The following theorem describes the limiting behavior of a certain integral involving
a Bessel function and the incomplete beta function.

Theorem 2.15 Suppose that p ≥ −1 is an integer. Then∫ 1

0

(Jp/2+1(2cr))
2

r
B1−r2(

p
2

+ 3
2
, 1
2
) dr =

√
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

)
(82)

as c→∞, where Bx(a, b) denotes the incomplete beta function.

Proof. Suppose that p ≥ −1 is an odd integer, and let n = p
2

+ 1
2
. Then∫ 1

0

(
Jp/2+1(2cr)

)2
r

B1−r2(
p
2

+ 3
2
, 1
2
) dr =

∫ 1

0

(
Jn+1/2(2cr)

)2
r

B1−r2(1 + n, 1
2
) dr. (83)

By Theorem 2.4 and Lemma 2.6, we observe that∫ 1

0

(
Jn+1/2(2cr)

)2
r

B1−r2(1 + n, 1
2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

∫ 1

0

(
Jn+1/2(2cr)

)2
r

(√π
2
B1−r2(1,

1
2
)− r

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
(1− r2)k

)
dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

∫ 1

0

(
Jn+1/2(2cr)

)2
r

(√
π(1− r)− r

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
(1− r2)k

)
dr, (84)

where 0 ≤ r ≤ 1 and n is a nonnegative integer. By lemmas 2.10, 2.11, and 2.12, it
follows that∫ 1

0

(
Jn+1/2(2cr)

)2
r

B1−r2(1 + n, 1
2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

( √
π

2n+ 1
− 1

2π

(√
π +

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)

) log(c)

c

)
+ o
( log(c)

c

)
, (85)
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as c→∞, where 0 ≤ r ≤ 1 and n is a nonnegative integer. Applying Lemma 2.5,∫ 1

0

(Jn+1/2(2cr))
2B1−r2(1 + n, 1

2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

( √
π

2n+ 1
− 1

π

Γ(n+ 3
2
)

Γ(n+ 1)

log(c)

c

)
+ o
( log(c)

c

)
=

√
π Γ(n+ 1)

2(n+ 1
2
)Γ(n+ 3

2
)
− 1

π

log(c)

c
+ o
( log(c)

c

)
, (86)

as c→∞, where 0 ≤ r ≤ 1 and n is a nonnegative integer. Therefore,∫ 1

0

(Jp/2+1(2cr))
2

r
B1−r2(

p
2

+ 3
2
, 1
2
) dr =

√
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

)
, (87)

as c→∞, for all 0 ≤ r ≤ 1 and odd integers p ≥ −1.
The proof in the case when p ≥ 0 is an even integer is essentially identical.

�

3 Analytical Apparatus

3.1 Properties of GPSFs

The following theorem provides a formula for ratios of eigenvalues βN,n (see (51)), and
finds use in the numerical evaluation of βN,n.

Theorem 3.1 Suppose that N is a nonnegative integer. Then

βN,m
βN,n

=

∫ 1

0
xΦ′N,n(x)ΦN,m(x)xp+1 dx∫ 1

0
xΦ′N,m(x)ΦN,n(x)xp+1 dx

, (88)

for each nonnegative integers n and m.

3.2 Decay of the Expansion Coefficients of GPSFs into Zernike
Polynomials

Since the functions ΦN,n are analytic on C for all nonnegative integers N and n (see

Observation 2.4), and Φ
(k)
N,n(0) = 0 for k = 0, 1, . . . , N−1 (see Theorem 9.5), the functions

ΦN,n are representable by series of Zernike polynomials of the form

ΦN,n(r) =
∞∑
k=0

bkRN,k(r), (89)
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for all 0 ≤ r ≤ 1, where b0, b1, . . . , bk, . . . are real numbers, and RN,n is defined by (6).
Theorem ?? in this section shows that the coefficients bk decay exponentially, and estab-
lishes a bound for the decay rate.

4 Dimension of the Class of Bandlimited Functions

In this section, we investigate the properties of the eigenvalues µ0, µ1, . . . , µj, . . . of the
operator Qc, defined via formula (39). We denote by λj the eigenvalues of operator Fc,
defined via formula (37), and let ψj denote the eigenfunctions corresponding to λj, for
each nonnegative integer j.

The following two theorems evaluate the sums
∑∞

j=0 µj and
∑∞

j=0 µ
2
j respectively.

Theorem 4.1 Suppose that c > 0. Then

∞∑
j=0

µj =
cp+2

2p+2Γ(p
2

+ 2)2
. (90)

Proof. From (38), we observe the identity

∞∑
j=0

λjψj(x)ψj(t) = eic〈x,t〉, (91)

for all x, t ∈ B, where B is the closed unit ball in Rp+2, and the sum on the left hand
side converges in the sense of L2(B) ⊗ L2(B). By taking the squared L2(B) ⊗ L2(B)
norm of both sides and using (74), we obtain the formula

∞∑
j=0

|λj|2 =
πp+2

Γ(p
2

+ 2)2
. (92)

Since

µj =
( c

2π

)p+2

|λj|2, (93)

for all nonnegative integer j (see (38)), it follows that

∞∑
j=0

µj =
cp+2

2p+2Γ(p
2

+ 2)2
. (94)

�
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Theorem 4.2 Suppose that c > 0. Then

∞∑
j=0

µ2
j =

cp+2

2p+2Γ(p
2

+ 2)2
− cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (95)

as c→∞.

Proof. By (41),

∞∑
j=0

µjψj(x)ψj(t) =
( c

2π

)p/2+1Jp/2+1(c‖x− t‖)
‖x− t‖p/2+1

, (96)

for all x, t ∈ B, where the sum on the left hand side converges in the sense of L2(B) ⊗
L2(B), and where Jν denotes the Bessel functions of the first kind. Taking the squared
L2(B)⊗ L2(B) norm of both sides, we obtain the formula

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
B

∫
B

(
Jp/2+1(c‖x− t‖)

)2
‖x− t‖p+2

dx dt

=
( c

2π

)p+2
∫
B

∫
B

(
Jp/2+1(c‖x+ t‖)

)2
‖x+ t‖p+2

dx dt

=
( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖x+ t‖)

)2
‖x+ t‖p+2

1B(x)1B(t) dx dt, (97)

where 1A is defined via the formula

1A(x) =

{
1 if x ∈ A,
0 if x 6∈ A. (98)

Letting u = x+ t, we observe that

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖u‖)

)2
‖u‖p+2

1B(u− t)1B(t) du dt

=
( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖u‖)

)2
‖u‖p+2

1B(2)(u)1B(u− t)1B(t) du dt

=
( c

2π

)p+2
∫
B(2)

(
Jp/2+1(c‖u‖)

)2
‖u‖p+2

∫
RD

1B(u− t)1B(t) dt du. (99)
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Combining (99) and (75),

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
B(2)

(
Jp/2+1(c‖u‖)

)2
‖u‖p+2

· Vp+2(1)
B1−‖u‖2/4(

p
2

+ 3
2
, 1
2
)

B(p
2

+ 3
2
, 1
2
)

du

=
( c

2π

)p+2 Vp+2(1)

B(p
2

+ 3
2
, 1
2
)

∫
B(2)

(
Jp/2+1(c‖u‖)

)2
‖u‖p+2

B1−‖u‖2/4(
p
2

+ 3
2
, 1
2
) du

=
( c

2π

)p+2Vp+2(1)Ap+2(1)

B(p
2

+ 3
2
, 1
2
)

∫ 2

0

(
Jp/2+1(cr)

)2
r

B1−r2/4(
p
2

+ 3
2
, 1
2
) dr

=
( c

2π

)p+2Vp+2(1)Ap+2(1)

B(p
2

+ 3
2
, 1
2
)

∫ 1

0

(
Jp/2+1(2cr)

)2
r

B1−r2(
p
2

+ 3
2
, 1
2
) dr, (100)

where Vp+2(1) denotes the volume of the unit ball in Rp+2, Ap+2(1) denotes the area
of the unit sphere in Rp+2, B(a, b) denotes the beta function, and Bx(a, b) denotes the
incomplete beta function. Applying Theorem 2.8 to (100),

∞∑
j=0

µ2
j =

cp+2

2p+1
√
πΓ(p

2
+ 1)Γ(p

2
+ 3

2
)

∫ 1

0

(
Jp/2+1(2cr)

)2
r

B1−r2(
p
2

+ 3
2
, 1
2
) dr

=
cp+2

πΓ(p+ 2)

∫ 1

0

(
Jp/2+1(2cr)

)2
r

B1−r2(
p
2

+ 3
2
, 1
2
) dr. (101)

Combining (101) and (82),

∞∑
j=0

µ2
j =

cp+2

πΓ(p+ 2)

( √
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

))
=

cp+2

2p+2Γ(p
2

+ 2)2
− cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (102)

as c→∞.
�

The following corollary follows immediately from theorems 4.1 and 4.2.

Corollary 4.3 Suppose that c > 0. Then

∞∑
j=0

µj(1− µj) =
cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (103)

as c→∞.
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From (90) and (103) we observe that the spectrum of Qc consists of three parts:

cp+2

2p+2Γ(p
2

+ 2)2
(104)

eigenvalues close to 1;

cp+1 log(c)

π2Γ(p+ 2)
(105)

eigenvalues in the transition region; and the rest close to 0.

5 Numerical Evaluation of GPSFs

5.1 Numerical Evaluation of Eigenvalues λi

5.2 Numerical Evaluation of a Single Eigenvalue λi

6 Quadratures for Band-limited Functions

7 Interpolation via GPSFs

8 Numerical Results

9 Miscellaneous Properties of GPSFs

9.1 Growth and Oscillation Properties

9.2 Properties of the Derivatives of GPSFs

The following theorem follows immediately from (55) and (59).

Theorem 9.1 Let c > 0. Then

d

dx

(
(xp+1 − xp+3)

dΦN,n

dx
(x)
)

+
(
χN,nx

p+1 − (p+ 1)(p+ 3)

4
xp+1 −N(N + p)xp−1 − c2xp+3

)
ΦN,n(x) = 0,

(106)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.
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Corollary 9.2 Let c > 0. Then

x2(1− x2)Φ′′N,n(x) +
(
(p+ 1)x− (p+ 3)x3

)
Φ′N,n(x)

+
(
χN,nx

2 − (p+ 1)(p+ 3)

4
x2 −N(N + p)− c2x4

)
ΦN,n(x) = 0, (107)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.

The following lemma connects the values of the (k + 2)nd derivative of the function
ΦN,n with its derivatives of orders k − 4, k − 3, . . . , k + 1, and is obtained by repeated
differentiation of (107).

Lemma 9.3 Let c > 0. Then

(x2 − x4)Φ(k+2)
N,n (x) +

(
(2k + 1 + p)x− (4k + 3 + p)x3

)
Φ

(k+1)
N,n (x)

+
(
k(k + p)−N(N + p) +

[
χN,n − 1

4
(p+ 1)(p+ 3)

− 3k(2k + 1 + p)
]
x2 − c2x4

)
Φ

(k)
N,n(x)

+
([

2k
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− k(k − 1)(4k + 1 + 3p)

]
x− 4kc2x3

)
Φ

(k−1)
N,n (x)

+
(
k(k−1)

(
χN,n− 1

4
(p+1)(p+3)

)
−k(k−1)(k−2)(k+p)−6k(k−1)c2x2

)
Φ

(k−2)
N,n (x)

− 4k(k − 1)(k − 2)c2xΦ
(k−3)
N,n (x)− k(k − 1)(k − 2)(k − 3)c2Φ

(k−4)
N,n (x) = 0,

(108)

where 0 < x < 1, N and n are arbitrary nonnegative integers, and k is an arbitrary
integer so that k ≥ 4. Also,

(x2 − x4)Φ′′N,n(x) +
(
(p+ 1)x− (p+ 3)x3

)
Φ′N,n(x)

+
(
−N(N + p) +

[
χN,n − 1

4
(p+ 1)(p+ 2)

]
x2 − c2x4

)
ΦN,n(x) = 0, (109)

and

(x2 − x4)Φ(3)
N,n(x) +

(
(p+ 3)x− (p+ 7)x3

)
Φ′′N,n(x)

+
(

(p+1)−N(N+p)+
[
χN,n− 1

4
(p+1)(p+3)−3(p+3)

]
x2−c2x4

)
Φ′N,n(x)

+
(

2
[
χN,n − 1

4
(p + 1)(p + 3)

]
x− 4c2x3

)
ΦN,n(x) = 0, (110)
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and

(x2 − x4)Φ(4)
N,n(x) +

(
(p+ 5)x− (p+ 11)x3

)
Φ

(3)
N,n(x)

+
(

2(p+2)−N(N+p)+
[
χN,n− 1

4
(p+1)(p+3)−6(p+5)

]
x2−c2x4

)
Φ′′N,n(x)

+
([

4
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(p+ 3)

]
x− 8c2x3

)
Φ′N,n(x)

+
(

2
(
χN,n − 1

4
(p + 1)(p + 3)

)
− 12c2x2

)
ΦN,n(x) = 0, (111)

and

(x2 − x4)Φ(5)
N,n(x) +

(
(p+ 7)x− (p+ 15)x3

)
Φ

(4)
N,n(x)

+
(

3(p+3)−N(N+p)+
[
χN,n− 1

4
(p+1)(p+3)−9(p+7)

]
x2−c2x4

)
Φ

(3)
N,n(x)

+
([

6
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(3p+ 13)

]
x− 12c2x3

)
Φ′′N,n(x)

+
(

6
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(p+ 3)− 36c2x2

)
Φ′N,n(x)

− 24c2xΦN,n(x) = 0, (112)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.

The following corollary and theorem are obtained immediately from Lemma 9.3.

Corollary 9.4 Let c > 0. Then(
k(k + p)−N(N + p)

)
Φ

(k)
N,n(0)

+
(
k(k − 1)

(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− k(k − 1)(k − 2)(k + p)

)
Φ

(k−2)
N,n (0)

− k(k − 1)(k − 2)(k − 3)c2Φ
(k−4)
N,n (0) = 0, (113)

where N and n are arbitrary nonnegative integers, and k is an arbitrary integer so that
k ≥ 4. Also,

N(N + p)ΦN,n(0) = 0, (114)

and (
(p+ 1)−N(N + p)

)
Φ′N,n(0) = 0, (115)

and (
2(p+ 2)−N(N + p)

)
Φ′′N,n(0) + 2

(
χN,n − 1

4
(p+ 1)(p+ 3)

)
ΦN,n(0) = 0,

(116)
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and (
3(p+ 3)−N(N + p)

)
Φ

(3)
N,n(0)

+
(

6
(
χN,n − 1

4
(p + 1)(p + 3)

)
− 6(p + 3)

)
Φ′N,n(0) = 0, (117)

where N and n are arbitrary nonnegative integers.

Theorem 9.5 If N = 0, then

ΦN,n(0) 6= 0, (118)

where n is an arbitrary nonnegative integer. If N ≥ 1, then

Φ
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1, (119)

and

Φ
(N)
N,n(0) 6= 0, (120)

where n is an arbitrary nonnegative integer.

The following theorem follows directly from Theorem ??.

Theorem 9.6 Suppose that N and n are nonnegative integers. Then

ΦN,n(1) 6= 0. (121)

9.3 Derivatives of GPSFs and Corresponding Eigenvalues With
Respect to c

The following two theorems establish formulas for the derivatives of the eigenvalues µN,n
(see (40)) and βN,n (see (51)) with respect to c.

Theorem 9.7 Suppose that c > 0 is real and that N and n are nonnegative integers.
Then

∂βN,n
∂c

= βN,n
(ΦN,n(1))2 − (p+ 2)

2c
, (122)

and

∂µN,n
∂c

=
µN,n
c

((ΦN,n(1))2 − (p+ 1)). (123)
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9.4 Integrals of Products of GPSFs and Their Derivatives

10 Appendix A

10.1 Derivation of the Integral Operator Qc

In this section we derive an explicit formula for the integral operator Qc, defined in (39).
Suppose that B denotes the closed unit ball in Rp+2. From (39),

Qc[ψ](x) =
( c

2π

)p+2
∫
B

∫
B

eic〈x−t,u〉ψ(t) du dt, (124)

for all x ∈ B. We observe that

eic〈v,u〉 =
∞∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖u‖‖v‖)
(c‖u‖‖v‖)p/2

S`N(u/‖u‖)S`N(v/‖v‖), (125)

for all u, v ∈ B, where S`N denotes the spherical harmonics of degree N , and Jν denotes
Bessel functions of the first kind (see Section VII of [1]). Therefore,∫

B

eic〈v,u〉 du = (2π)p/2+1

∫ 1

0

Jp/2(c‖v‖ρ)

(c‖v‖ρ)p/2
ρp+1 dρ

=
(2π)p/2+1

(c‖v‖)p/2

∫ 1

0

ρp/2+1Jp/2(c‖v‖ρ) dρ

=
(2π

c

)p/2+1Jp/2+1(c‖v‖)
‖v‖p/2+1

, (126)

for all v ∈ Rp+2, where the last equality follows from formula 6.561(5) in [5]. Combin-
ing (124) and (126),

Qc[ψ](x) =
( c

2π

)p/2+1
∫
B

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (127)

for all x ∈ Rp+2.
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