Abstract.

We extend the Golub-Kahan algorithm for computing the singular value decomposition of bi-
diagonal matrices to triangular matrices. Instead of forming RTR or RRT, our algorithm starts
with the original matrix R, and generates new iterates by repeated QR factorisations.

The results of the convergence analysis of our algorithm also apply to the QR algorithm for
computing eigenvalues of symmetric matrices. Our analysis demonstrates monotonic convergence
of singular values and singular vectors, and a convergence rate for singular values that equals the
square of the convergence rate for singular vectors. It is also possible to explain the occurrence of
deflation in the interior of the matrix.

We describe the relationship between our algorithm, and the algorithms for rank revealing QR
and URV decompositions. As a consequence we obtain new algorithms for computing URV decom-
positions, and a divide-and-conquer algorithm that computes singular values of dense matrices and
may be beneficial on a parallel architecture.

We present a simple deflation and convergence criterion for triangular matrices that recognises
convergence of the singular values earlier than the traditional perturbation bounds. In particular,
it allows high relative accuracy in the smallest singular value.
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1 Introduction

We present a new algorithm for computing the singular value decomposition of a real upper triangular
matrix R. It represents an extension to triangular matrices of the algorithm for computing singular
values of a bi-diagonal matrix by Golub and Kahan [15]. Our algorithm, first proposed in [20],
proceeds by determining the new iterate from a QR factorisation of the transpose of the old iterate,

RO =R,  ROT = gG+DRG+)

and so avoids the explicit formation of RTR or RRT. Fernando and Parlett [12] recently used this
iteration to derive a version of Rutishauser’s differential QD algorithm that computes singular values
of bi-diagonal matrices to high relative accuracy. Although it would be possible to incorporate shifts,
as in [12] for example, we only discuss the unshifted version in this paper.

The repeated transformation from lower triangular form ROT to upper triangular form R(+1)
by means of orthogonal transformations Q©*) was motivated by an algorithm for computing partial
correlation coefficients of a matrix R [9, 10] without the explicit formation of RT R or RRT.

Although we do not, at this point, advocate the above algorithm as a practical method for
computing singular values of dense matrices its analysis provides more insight into the behaviour
of the Golub-Kahan algorithm for bi-diagonal matrices [15], and into the unshifted QR algorithm
[18, 22, 30] for computing eigenvalues of symmetric matrices. Section 2 exposes the relation of our
new algorithm to the QR and Cholesky LR algorithms for computing eigenvalues.

The convergence properties of the unshifted QR algorithm are well-known [18, 22, 23, 27, 29, 30].
They are usually derived from the fact that one iteration of the QR algorithm is mathematically
equivalent to one nested subspace iteration, applied to particular starting spaces, cf. in particular
[23, 27, 29]. The subspace iterates converge linearly to eigenspaces with an asymptotic convergence
rate equal to a ratio of adjacent singular values (in fact, the distance between the iterates and the
eigenspace decreases from the start [29]). In [28] these results are extended to the computation of
the SVD of R from RTR and RRT. The monotonic convergence of the eigenvalues during nested
subspace iteration is proved through the connection to Toda flows [21].

In Section 3, we provide a simple convergence analysis of our algorithm that emphasizes the
monotonic aspects of the convergence. The additional insight we get from our analysis is obtained
by studying the structure of the SVD of triangular matrices. In particular, we show the monotonic
decrease of the tangent of the angle between certain canonical spaces and the invariant subspaces
of the iterates R(), with the usual convergence rate. As for the singular values, their convergence
rate is equal to the square of that of the singular vectors. These results explain the occurrence of
deflation in the interior of the matrix.

Our analysis also makes it possible to better understand the relation between algorithms that
produce complete SVDs and those that produce incomplete SVDs, such as algorithms for rank-
revaling QR decompositions [7] and for URV decompositions [25]. In Section 4 we show that from
the point of view of an individual singular value o our algorithm proceeds in two phases: a rank-
revealing phase where the singular values are separated into two groups according to whether they
are larger or smaller than o; and a monotonic phase, where the iterates converge monotonically to
block-diagonal form.

Hence, preceding our algorithm with a rank-revealing algorithm accomplishes two things: it re-
verses the grading of inappropriately graded matrices and so enhances subsequent convergence; and
it forces premature deflation of a particular off-diagonal block and thus amounts to the computa-
tion of a URV decomposition. According to this last observation we sketch a divide-and-conquer




-algorithm for computing singular values of dense matrices, which may be advantageous on a parallel
architecture.

In Section 5 we present a very simple deflation and convergence criterion for triangular matrices
that recognises convergence of the singular values earlier than the traditional perturbation bounds.
In particular, it allows high relative accuracy in the smallest singular value. Our criterion represents
a generalisation of the convergence criteria for bi-diagonal matrices in [11].

Section 6 concludes with a summary of the results in this paper.

Notation

We use || - || to represent the Euclidean two-norm. The identity matrix of order k is denoted by I
and its ith column by e;.

2 The Algorithm

In 1965 Golub and Kahan [15] introduced an algorithm for the computation of the singular values
and vectors of a real upper bi-diagonal matrix B. The algorithm is based on the QR algorithm and
involves only an implicit formation of the tridiagonal matrix BT B. An Algol implementation of this
algorithm was proposed by Golub and Reinsch in 1970 [17]. In this paper we extend the Golub-Kahan
algorithm from bidiagonal matrices to triangular matrices, as was first proposed in [20].

We start with the unshifted QR algorithm for computing eigenvalues [18, 22, 30]. Given a real
symmetric matrix A, the QR algorithm first determines a QR decomposition A = QR, where Q is
orthogonal and R is upper triangular, and then it forms A = RQ. The new iterate A is orthogonally
similar to A since A = QT AQ. Hence A has the same eigenvalues as A.

Our algorithm computes the singular values of a real upper triangular matrix Ry. In the first
iteration, the QR decomposition of the lower triangular matrix Rg' = Q1 R, is determined. In the
second iteration, the transpose of the resulting upper triangular matrix R, is in turn decomposed
R{ = Qsz‘ Then

Ry = Qi R{ = Q7 RoQs,

and the second iterate Ry is related to the original matrix Ro by an orthogonal equivalence trans-
formation. Hence Ry has the same singular values as Ry.

2.1 Relation to QR Algorithm

The transformations

RT =Q:R1, RT=Q:R;

are mathematically equivalent to one step of the unshifted QR algorithm applied to R} Ro. The
first transformation corresponds to a QR decomposition R} Ry = @, R, where Q; is orthogonal and
R = R1Ry is upper triangular. The second transformation corresponds to the completion of the
similarity transformation involving Q1,

RTRy = R\RT = QT (RT Ry) Q1.




If Ry is upper bi-diagonal, so are R; and Rj, and the two transformations amount to applymg one
iteration of the Golub-Kahan algorithm [15] to Rg.

Moreover, the transformations also amount to one step of the unshifted QR algorithm [18, 22, 30]
applied to RoRg’ because RoRY = Q2(R2R;) represents a QR decomposition of RoRg', and

RyRY = RTR; = QF (RoRY) QF

is the corresponding similarity transformation.

2.2 Relation to Cholesky Factorisation and LR Algorithm

If Ry is the factor from the upper-lower Cholesky factorisation of a symmetric positive semi-definite
matrix A, A = RoRJ, then also A = R{Rl. So, R; is the factor from the lower-upper Cholesky
factorisation of A, and the two factors are related through @,. The fact that the two Cholesky
factors of a matrix are related by an orthogonal transformation is used in [9, 10] to compute partial
correlation coefficients.

It is observed in [12] that the transformation R} = Q;R; is mathematlcally equivalent to one
iteration of the Cholesky LR algorithm [30] applied to Ag = RoR}: factor Ap = RT Ry, and multiply
in reverse order A; = R1R1 A second iteration of the Cholesky LR algorithm factors A; = RTR2
and multiplies Ay = R,R%Y. Hence the known result, Section 8.51 in [30], that one iteration of
the QR algorithm for symmetric matrices is mathematically equivalent to two iterations of the LR
Cholesky algorithm.

2.3 Summary

Given a real upper triangular matrix Ry, the iterations
R =Qix1Riy1, 120

represent the extension of the Golub-Kahan algorithm from bi-diagonal to triangular matrices. Two
iterations of this extended algorithm correspond to the implicit application of one QR iteration to
RoRY and R} Ry because

RiyaRl 5 = QLo (RiRT) Qiz2,  RYyRiy2 = QY (RTR:) Qi

The above iteration represents one algorithm in a larger class of algorithms analysed in [28, 29].
There the iterates for a matrix A are obtained by applying the QR algorithm to the explicitly
formed matrices ATA and AAT.

3 Monotonic Convergence Results

In this section we determine some of the quantities that undergo monotonic changes during the
extended Golub-Kahan algorithm.

One iteration of the Golub-Kahan algorithm applied to a real upper triangular matrix R of
- order n determines the decomposition RT = QR. Partition the matrices so as to distinguish a (1,1)




block of order k,
Ri1 Rip Qu Qm) ; (Ru R12)
R= = , R= N .
( Ra2 ) ’ @ ( Q21 Qa2 R
We assume that the singular values of R are sorted in descending order,

012 ...2020k412 ...2 Op.

3.1 Zero Singular Values

The following analysis requires that the matrix R be non-singular. If R were singular, one could
precede our algorithm by-a' QR decomposition with column pivoting to enforce the disclosure of the
zero singular values as follows.

First use Golub’s algorithm [4, 14, 18] to perform a QR decomposition with column pivoting on
the given matrix R in order to move the zeros to the bottom of the matrix. This yields

R=Qp (R(;l R{;?) PT,

where Qp is an orthogonal matrix, P is a permutation matrix and R;; is a non-singular upper
triangular matrix. Then perform a QR decomposition on the transpose of the resulting triangular
matrix in order to eliminate the off-diagonal block,

(Ri1 0) P (Rn 0) '
Ri, 0 0
Our algorithm can now be continued on the non-singular triangular matrix Ri1.

In exact arithmetic it therefore takes two QR decompositions to extract the zero singular values
from a triangular matrix. Note that one iteration of the QR algorithm is necessary in order to
expose the zero eigenvalues of an unreduced symmetric tri-diagonal matrix, Section 8.8 in [22].
Consequently, we may assume from now on that R is non-singular.

3.2 Convergence of Singular Values

From RT = QR and R = QT RT it follows that
R, =QuRiu,  Re=QLRL,

SO
IRT < IRTHL  [1Reell < (| Rzl

where || - || denotes the two-norm. These inequalities are special cases of the monotonicity properties
of eigenvalues during subspace iteration [21]).

Hence

. -1 i’l . .
IREFDT < IRD™ Y, 1RGN < 1RO,

sy an—1 . .
and ||Rg’1+l) || and ”Rg';'l)” are monotone non-increasing sequences. Their convergence rate will
be determined in Section 3.6.




3.3 SVD of Triangular Matrices

In order to understand why our algorithm makes progress in every iteration we first study the
structure of the singular value decompositon of triangular matrices.

Let R = UXVT be the singular value decomposition (SVD) of R, where U and V are orthogonal

matrices of order n, and ¥ is a diagonal matrix, whose diagonal contains the singular values in
descending order,

g1
L‘:( ), 012...20;20k412...2 On.
On

- Partition the matrices in the SVD conformally with R,

Un Ui Vii Vi (21 )
= , V = s Y= R
v (U21 Ua2 ) (VZI sz) T,

where

The fact that R is triangular results in the following relations. From RV = UX one gets
Ra2Va1 = U1 3y, RV = U2aXo,

and from UTR = 2V7T,
ULRi =%1VE,  ULRy =%,V3.

Furthermore, Ry; = 0in R = UXVT yields
Un 1V + Uz ZaVi5 = 0.
If Vi1 is non-singular then the last equality can be written as
Usp'Un = =Z2VioVi7 T 7L

In order to derive a geometric interpretation for this equality, we first digress to establish some
properties of orthgonal matrices.

The CS decomposition, Theorem 2.6.1 in [18], of an orthogonal matrix

k
k (Zn le)
Zz = ,
(221 Z22
implies for non-singular 7y,
1Z12ll = | Z2a]l = sinb, |25} Zsall = | 255" Z2s|| = tanb,

where 6 is some angle, and

1
\/1 N = ||Za]|.




These equalities give, together with omin(Z11) = 1/|Z32|I,
sind = /1 - 02, (ZHL 1It).
But the square-root term represents the distance between the column space of (g;) and the

canonical space ( Ié’ ), Corollary 2.6.2 in [18]. Hence, the angle 8 from the CS decomposition of Z

must be the largest principal angle, Section 12.4.3 in [18], between these two subspaces.

Applying this to the above inequality relating the two singular vector matrices of R yields

o
tanfy r < LS tan by i,
Ok

where 6y is the largest principal:-angle between the leading k columns of U and the canonical
I
0
left singular vector matrix U of R are closer to canonical form than those of the right singular vector
matrix V by a factor of o41/0%. By ‘canonical form’ we mean an orthogonal matrix whose columns
I
0

subspace ); while 6, ; is the analogous angle for V. This means, the leading k columns of the

span the canonical space ), that is, a matrix of the form g where Z is orthogonal.

We sum up the relationship between left and right singular vector matrices of a triangular matrix
in the following theorem.

Theorem 3.3.1- Let R be a non-singular upper triangular matriz of order n with SVD R =UXVT
and singular values
012 ...20, 20412 ...2 On.

If the leading principal submatrices of order k of U and V are non-singular then

o
tanfy ; < k1 tanf, ,
Ok

where O, 1 1s the angle-between the leading k columns of V and the canonical subspace (Ié"), and

O,k is the corresponding angle for U.

This means, if the singular vector matrices of a non-singular upper triangular matrix R are

- strongly non-singular and if its singular values are well-separated then the left singular vector matrix

is closer to canonical form than the right singular vector matrix (a matrix is called ‘strongly non-
singular’ if all its leading principal submatrices are non-singular).

3.4 The Effect of One QR Decomposition on the SVD

IfR=UZVT is the SVD of the original matrix then the SVD of the matrix R resulting from a QR
decomposition RT = QR is given by
R=UxVT, U=Q%Tv, V=U.

This means a QR decomposition of RT puts the left singular vector U matrix in place of the right
singular vector matrix and creates a new left singular vector matrix U. With the results from the
previous section we can now see the effect of one QR decomposition on the singular vector matrices.




If the right singular vector matrix V' of the original matrix R has a non-singular leading principal

submatrix V;; of order k then

o
tanf, r < Lz tanfy ,

where 0, and 0, ; are the respective angles between the leading k columns of U and V' with the

canonical subspace (Ié‘ ) But since U is the new right singular vector matrix V, this means

tan 0 < a.ne.,,k.

Moreover, the matrix R resulting from the QR decomposition is again a triangular matrix, so

o
tanf; x < La 2 taneo,k,
provided that 1711 is non-singular. As V=U X
tanfs r < Tkt tanfy k.

Hence, the respective (tangents of the) angles between the invariant subspaces and the canonical
spaces decrease during a QR decomposition RT = QR if the corresponding singular values are
distinct.

The derivation of the above inequalities for the tangents rests on the relations between left
and right singular vector matrices established in the preceding section. These relations, in turn,
require that leading principal submatrices of the singular vector matrices be non-singular. It is well-
known that the strong non-singularity of the eigenvector matrices is a necessary condition for the
convergence to a diagonal matrix of the QR and SVD algorithms [23, 27, 28, 29, 30]. We will now
show that a QR decomposition RT = QR preserves the non-singularity. Although the preservation
of strong non-singularity follows from the proofs for the power method, we briefly prove it here from
first principles.

If R is non-singular and RT = QR, where Q is orthogonal, then R is non-smgular Also, one of
the relations between left and right singular vector matrices of R is UuRu = ElVH, so that Uy,
is non-singular whenever Vi1 is. The analogous relation for Ris U;lRll = 21U11, where V = U,
and the non-singularity of R and Uy; implies the non-singularity of V3;. Thus, if a leading principal
submatrix of the original matrix is non-singular, so will be the corresponding leading principal
submatrix in each iterate. We summarise the results of this section in the following theorem.

Theorem 3.4.1 Let R be a non-singular upper triangular matriz of order n with SVD R = Uvzv?,
singular values
012...20F 20k41 2 ... 2 0On,

and non-singular leading principal submatrices of order k in U and V.

If the upper triangular matriz R from the QR decomposition RT = QR has the SVD R=UxzVT
then

o o
tanfgx < 1 tan Oy i, tanfs r < Lad

tan ev,k,

where 0, is the angle between the leading k columns of a matriz Z and the canonical subspace
I;
0

The leading principal submairices of order k in U and V are also non-singular.




3.5 Convergence of Singular Vectors

The monotonic convergence of the singular vector matrices and the rates of convergence follow
immediately from the results of the previous sections.

Let R(® be a non-singular upper triangular matrix with SVD R(®) = U @zyOT, If, for some k,
the leading principal submatrices of order k of V(®) and U(®) are non-singular then

tan 0'():'1-1) < TE+ tan 0,(2, tan 0,(:",';1) < TE4L tan 9&.),‘,
’ Uk » ) o'k ’
where 9,(,'1 is the angle between the canonical subspace (I; ) and the space spanned by the leading &

columns of the singular vector matrix V() in the ith iteration; and 9,(:;),c is the analogous angle for

U (’:). If, in addition, 041 < o) then the leading k columns of the singular vector matrices V) and
U® converge monotonically to canonical form in the above sense.

We can now draw the following conclusions. If all singular values of the matrix R®) are distinct
and if the singular vector matrices are strongly non-singular, then the singular vector matrices
converge to the identity matrix, in the above sense, monotonically at the rate ming ox+1/0%. Since
the limit of the singular vector matrices is the identity matrix, the singular values appear in sorted
order along the diagonal of the iterates R(*), which converge to a diagonal matrix.

As for the case of multiple singular values, suppose that there is a singular value of multiplicity m,
say

012 ...0k> 041 =...= Ok4m > Ok4m4l > ... > On.

According to the above results for distinct singular values, the singular vector matrices converge to
the canonical form

k
kX X
X X
X X X X
X X X X
X X X X
X X X X
at the rate ox41/0% and to the canonical form
kE + m
E /X X X X
+1X X X X
m|X X X X
X X X X
X X
X X

at the rate 0k ym+1/0k+m (the ‘X’ represent the non-zero structure of the matrix). Thus the singular




vector matrices converge to the canonical form

k m
X X
X X

m X X
X X

k

X X
X X
at the rate max{ox+1/0k, Ok+m+1/0k+m}

In general, the singular vector matrices converge to a block-diagonal matrix whose diagonal
blocks are orthogonal. The convergence rate is equal to the largest ratio of adjacent distinct singular
values. The size of the kth diagonal block equals the multiplicity of the kth distinct singular value,
and the columns making up the block represent an orthogonal basis for the associated invariant
subspace.

In the limit we can partition the iterate
R x X
R = R X
R
into blocks whose sizes conform to the multiplicities, i.e. Rﬁ") is of order k and Rgc.f) is of order m.
The singular vector decomposition is partitioned in the same way,

by v
U= = UZ(;O) , () = Vz(;c’)
| Ug Vg
where the diagonal blocks U;; and Vj; are orthogonal and
o o1 Ok4m+1
2: 0'k+1Im y 21: ’,. y 23: -..
Y33 Ok On

T
Then Rg°2°)V2(2°° ) = ak+1U§g° ), so that Rg°2°) = ak+1U§§°)V2(.§° Y isa multiple of an orthogonal matrix.
But R(Z?) is also upper triangular. Therefore R(z?) = 0k41lm is a scalar matrix, and Uz = Va2
(where we have assumed that R(*) has positive diagonal elements).

Therefore, once the columns of each singular vector matrices have converged to a basis for an

invariant subspace associated with a multiple singular value, the singular values appear on the
diagonal of the iterate R(%°).

3.6 Convergence Rate for Singular Values

From the convergence rate of the singular vector matrices we can in turn estimate the convergence
rate for the singular values.

Suppose again that Vj; of order k is non-singular. The SVD R = USV7 gives
Ras = UnZ1 Vi + UsaZaVag = Uaa(Z2 + U2°21U21E1Vleg_2T)V2T2-




Hence, with the results from Section 3.3,
[|R2z|| € k41 + o1 tanby x tanb, x.
Using

o
tan by < k1 tan Oy x
Ok

yields

Ok41 Ok
This implies that the relative distance of || Ry2|| from 041 is bounded above by the condition number
of ¥; and the square of the angle between right singular vectors and a canonical subspace. Hence if

Vi1 is well-conditioned and the spread of singular values in ¥, is small then ||Ra2|| is close to o%41-

In the same way we derive from R™! = VE~1UT that

IR - oy < Jk+1
1 >
ox In

tan? Oy &,

and the relative distance of ||Ry;!|| from 1/0y is bounded above by the condition number of X3 and
the square of the angle between right singular vectors and a canonical subspace.

In order to determine the rate of convergence, let RT = QR. Since

|Rasll — o241 <tan06,k)2 < (0k+1)2

"Rzz” — Ok41 ~ \ tan 0,,,1‘; Ok

IR - ;1; N (tan 0;,,;,)2 < (a’k.,.l)z
IRG - \tanbux/ ~\ ox /'

Ok

and

the rate of convergence of principal submatrices with disjoint singular values is the square of that of
the associated singular vectors.
In the case of a singular values 041 of multiplicity m > 1,
012 ...0E >0 41 = ...= Okgm > Okgm41 = --- 2 On,

partition the iterates as in the previous section,

® = ©
1) L
RO = Ry X

n-1
The convergence of ||R§’l) || to 1/o% and of

(RE‘J X )
R

to 041 occurs at the rate o3, /07, while the convergence of

i -1
(R&? X )
Ry)

to 1/ok4+1 and the convergence of Rf;g t0 O tm+1 occurs at the rate o1 /02,11

Hence a principal submatrix R(;?) associated with a singular value o4+ of multiplicity m converges
to ox4+1Im at the rate max{o?, /0%, 02, ns1/08 41} '
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3.7 Summary

We summarise all convergence results for the algorithm
ROT = QU+ RU+Y) i>0,

in the following theorem.

, T
Theorem 3.7.1 Let R(®) be an upper triangular matriz of order n with SVD R = U@V gnd
singular values
012 ...05>0k41 = ...= Ok4m > Oktm41 = -.. > On;

and let RO = UOTVOT be the SVDs of the iterates.

If RO is non-singular, and ifUO and V(O are strongly non-singular then the following conver-
gence results hold.

m=1: Columns k+1 of U®) and V(i) converge to column k + 1 of the identily matriz at the rate
Ok+1 0k+2}

pr = max{ ,
Ok Ok41

and the (k + 1)st diagonal element of R®) converges to op41 at the rate p2.
Convergence of the singular vectors is monotonic in the sense that

tan 0(""1) < - L tan 0,(:3“, tan 03}'1) < a;—:'lt ,(:)k,

0
leading k columns of V®); and 0(’)k is the analogous angle for UG,

where 0( % 18 the angle between the canonical subspace (Ik> and the space spanned by the

Convergence of the singular values is monotonic in the sense that

i+1 -1 -1 i+1 .
IRGED TN < IRE 1, 1RGN < 1RS
and )
)" 1
RS — Tkl o 01 42 400) IR -5 < ThHL o2 0G)
Ok41 s 0'k v,k < = on v,k

m>1: Columnsk+1, ..., k+m of UD and V) converge to a n x m matriz of the form

m

k [0

m| Z |,
0

where Z is orthogonal, at the rate

0’k+1 Ok+m+1
¢ = max —1
P S P~ }
The principal submatriz of order m of R®),
Riksr - Ribem

(%)
Rk+m,k+m
converges 10 041l at the rate p2.
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3.8 Consequences

The upper bounds on the relative distance between ||R(1'1) 1" and ||Rg'2)|| to the respective singular
values depend on the spreads o} ...0 and 041 . ..oy, and the conditioning of the leading principal
submatrices of order k of V(. The number of 1teratlons required to reduce the relatlve distance
between ||Rpz|| and ot41 to € can thus be estimated as

logo1/or — loge + logtan 05?,2

log ot /o141

An analogous estimate can be made for || Ry}

It is observed in Section 2.2 of [23] that the QR algorithm tends to converge to the small eigen-
values first. According to our analysis, though, there is no preference of the unshifted Golub-Kahan
algorithm for small singular values over larger ones. However, such a preference may be enforced by
a suitable choice of shifts [22, 30].

The same upper bounds also explain why both algorithms have such a hard time with graded
matrices whose elements increase in size towards the bottom, cf. Section 5 in [11] and Theorem 5
in [12]. These matrices have a large spread in the spectrum and very ill-conditioned leading principal
submatrices. One of the simplest example of a graded matrix is

we (1)

where € € 1 <€ . One iteration of the extended Golub-Kahan algorithm gives

R = 1 <1+c ac)
'S Ty e a)

whose off-diagonal element has increased from ¢ to ae. But the diagonal elements have only changed
marginally, and it is obvious that many iterations are needed to arrive at a diagonal matrix with
diagonal elements in descending order (a similar example was used in Section 8.7 of [30] to illustrate
slow-convergence of the LR algorithm).-Section 4.2 illustrates how to force fast convergence on such . -
graded matrices without the need to decide between QR and QL-type algorithms as in [11, 12].

Numerically, the leading principal submatrices of the singular vector matrices are usually non-
singular but may be very ill-conditioned, hence the slow convergence. Nonsingularity of the principal

~submatrices happens due to finite precision arithmetic, which causes small perturbations of zero off-
diagonal elements, as in the example above.

4 Rank-Revealing QR and URV Decompositions

In this section we discuss the connections between our algorithm, and rank-revealing QR (RRQR)
decompositions [7] and the URV decomposition [25].

12




4.1 Preprocessing by Rank-Revealing QR Decompositions

As before, let
k

k (R Rlz)
R =
( Ra2
be a non-singular upper triangular matrix. For each k define

Tk = ||R11 [H| Rzl

When v; < 1 then

IRl < ey

which means that all singular values of Ry, are larger than the singular values of Ry, and a partial
ordering of the singular values of R has occurred: the k largest singular values of R are represented
by Ri; and separated from the remaining smaller ones, which are represented by Rp2. That is why
we refer to i as the separation between Rj; and Rag.

Given a specific k (usually determined by the number of singular values of R that are smaller
than a certain threshold), it is the objective of RRQR algorithms to find a permutation matrix P
so that in the QR decomposition RP = QR the resulting triangular matrix R has a (1,1) block
with maximal smallest singular value, and/or a (2,2) block with a minimal largest singular value [7].
That is, the goal of RRQR algorithms is to make the separation between the singular values of Ry
and those of Rz as large as possible, thus to minimise +; for a particular k.

Although the tangent of the angle between singular vectors and a canonical subspace converges
monotonically, this cannot in practice be monitored cheaply during the course of our algorithm.
Therefore we express the convergence behaviour in terms of observable quantities, namely the sep-
aration ;. According to Section 3.2, v decreases monotonically for each k,

2D < 4O,

so the separation between singular values of Rgil) and Rg;) never decreases. Section 3.6 showed that
if the leading principal submatrix of the singular vector matrices is non-singular and if oy 41/0% < 1
then

1RO = 1or, 1Bl = oesr, 1P = okg1/on as i— oo,

~-Because the convergence of 7k) to gk4+1/0k < 1 is monotone, there exists a number i; such that
(') < 1 for all i > i;. It make sense therefore to distinguish, for each k, two phases of our algorithm

dependmg on the value of 'y( RF

1. a rank-revealing phase, where 'y(') > 1, during which the singular values of Rgl) and R(')

separate; and

2. a monotonic phase, where 7,(3) < 1, during which all quantities of interest converge monotoni-
cally.

We will show that once the monotonic phase has been reached for some k, the iterates R®
converge rapidly to block-diagonal form because the off-diagonal blocks decrease monotonically.
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4.2 The Rank-Revealing Phase

Theoretically one can enforce the onset of the monotonic phase for a particular k in a finite number
of operations, provided the singular values o} and 041 are well-separated. This is done by preceding
our algorithm with a good RRQR algorithm, which implements the rank-revealing phase. Moreover,
a preliminary RRQR algorithm can also reverse the grading in a matrix all of whose large elements
are at the bottom of the matrix. This obviates the need for deciding whether to subject the matrix
to an algorithm of QR or QL type [12, 11].

The idea of permuting rows or columns of the iterates during eigenvalue computations is not
new. Pivoting, in the form of row exchanges, has been suggested for the LR algorithm, Section 8.13
in [30] and Section 2.7 in [23], to enhance numerical stability in those cases where the orthodox LR
algorithm fails to converge.

The most accurate RRQR algorithm known so far is Hybrid IlI(k) from [7]. Given an index k
and a matrix R of order n with singular values

012...20% 20k41 2 ... 2 On,
Hybrid III(k) finds a permutation matrix P so that the blocks of the triangular matrix
k
5_k (Ri Ry )
R= 5
( Rao
in RP = QR satisfy

1 1 -
== 2 ok, ||Reell < V(k+1)(n - k)owq.
IR = VEm—F+1)

Hybrid-III(k) guarantees bounds for both, the (1,1) and the (2,2) block, so that

R, R o
e = |RE Rzl < (k + 1)(n—k +1) Z—:l.

In practice, it would probably suffice to precede our algorithm with a cheaper and possibly less
accurate form of column pivoting (an attempt at explaining the practical effectiveness of the simple
column pivoting strategies, regardless of their potential failures, is made in [7]). We briefly discuss
the three types of simple pivoting strategies on which the existing RRQR algorithms are based.

The algorithm by Golub [4, 14, 18], which is known as the QR decomposition with column
pivoting; algorithm Greedy-1.4 in [7]; and the one by Chan and Hansen [6] all assemble the columns
with largest norm in the left part of the matrix. They guarantee only exponential bounds on || R},

1 5o
IR~ n2* - Tk

The algorithms by Gragg and Stewart [19], Stewart [24], Chan [5], and Foster [13] assemble
the rows of the inverse with smallest norm in the lower part of the matrix. They guarantee only
exponential bounds on || Ras||,

|Raoll € n 2% %op41, % <02 %o |RTY)-
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The algorithm by Golub, Klema and Stewart [16] permutes the rows of the right singular vector
matrix

k
_k (Vi1 V12
V= (Vzl sz)

so that Vi; becomes well-conditioned; this is accomplished by applying the QR decomposition with

column pivoting [4, 14, 18] to (V{f Vi[). The algorithm guarantees exponentiell bounds on both
- .

1237 [] and || Raa],

1 Ok D min{k,n—k} 2 92min{k,n-k} Tk+1
el 2 omn{kEa=k)’ [|Ro2|l <2 Ok+1, T SN2 o

4.3 A Divide-and-Conquer Algorithm

We will show in Section 4.4 that once the rank-revealing phase has been completed for some k, the
iterates converge rapidly to diagonal form because the off-diagonal blocks are decreasing monoton-
ically and deflation can be expected to occur fast. Hence, preceding our algorithm with a RRQR
algorithm for some k corresponds to forcing completion of the rank-revealing phase and the start of
deflation for that k.

This observation can be exploited to design a divide-and-conquer algorithm to compute singular
values of dense matrices A. Such an algorithm may be advantageous on a parallel architecture.
Below is a rough sketch.

1. Select a k and perform a RRQR algorithm AP = QR so that v = ||RT!|| || Ra2l] < 1.
2. Apply our algorithm to R(®) = R and iterate until ||R§’2)|| is small enough.

3. Apply Steps 1 and 2 recursively to R§‘1) and to R(;z)

The index k selected in step 1 determines where the matrix is to be divided. There are several
ways to determine k. The simplest option is to set k¥ = n/2 and choose Hybrid III(n/2) as the
RRQR algorithm. This would break the matrix into equally sized blocks and ensure load balance
with regard to parallel execution. But the separation of the singular values 0,72 and 05,7241 may
not be large enough.

To circumvent this problem one could alternatively run Golub’s QR with column pivoting on the
matrix and select as k that index j for which the estimate |7;;|/|7j+1,j+1| of ¥; is smallest. Instead
of using 7;; one could also estimate the norm of ||RJ']1|| by an incremental condition estimator [1, 2.
We do not have enough computational experience to judge whether the algorithm presents a viable

alternative to other methods that operate on dense matrices, such as a Jacobi-type method, e.g.
3, 8]. '

4.4 The Monotonic Phase

Now we will show that once the monotonic phase has been reached, convergence to block-diagonal

form is very fast because the off-diagonal blocks Rg'z) of the iterates decrease monotonically once
Q)

7o <1l
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This can be seen as follows. From RT = QR and R = QTRT it follows that
Ri»= QL RY,, RT, = Qu R, RT, = QubRn.

Thus, Rm = chrlRl_ll RlzR’{z and R
| R12l] < 7ell Razll-

Thus, during the monotonic phase

RGN < IR < I1IRE)I.

Since 'y,(:) — 0k+1/0%, the blocks corresponding to well-separated singular values may decrease
faster and deflation (i.e. the decoupling of the (1,1) and (2,2) blocks into two separate problems due

to an almost zero off-diagonal block) is likely to set in earlier.

4.5 Postprocessing with Our Algorithm

In the previous sections we discussed how to use RRQR algorithms as preprocessors to enforce
monotonic convergence to block-diagonal form in our algorithm. Now we look at the other side of
the coin to study how the our algorithm can be used as a postprocessor to refine a more general
form of RRQR factorisation, called URV factorisation.

The URV factorisation was introduced by Stewart [25] to compute the null spaces of a matrix
that is repeatedly updated. If R is a real n x n matrix of rank k then there exist orthogonal matrices
U and V of order n and a non-singular upper triangular matrix R of order k such that

_ R 0\ 7
R—U(O 0)V .

The URV decomposition constitutes a partial SVD, and it can be viewed as a compromise between
RRQR factorisation and SVD.

In applications it is often the case that R is almost of rank k, that is, its singular values o1,
..., 0n are small. In this case one would like to find a decomposition

Ry Rig\ 7
R=U = v,

where ||R{7'|| is maximal, i.e. close to 1/0%; where ||Rs2|| is minimal, i.e. close to o)41; and where
Ry, is small,i.e. close to of41. Hence, the URV decomposition differs from a RRQR factorisation by
the requirement that || R;2|| also be small. For this purpose, rotations rather than just permutations
from the right are allowed.

In [25, 26] Stewart proposes to compute the URV decomposition as follows: compute orthogonal
matrices P and Q such that RP = QR where ||R7}!|| is close to 1/o% and || (R, Raz)|| is close
to ok41. Then perform several of the following ‘refinement steps’ on R(®) = R to further decrease

the size of the (1,2) block [26]: first determine an orthogonal matrix Q) so that ROT = ROQMW

. . . . T T .

is lower triangular and second determine an orthogonal matrix Q(®) so that R = Q(® R s
upper triangular. In [25] Stewart proposes an incomplete version of these refinement steps: reduce
only the last column of R(0) to e,, and in this resulting matrix in turn reduce only the last row to
T

€, -
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Note that in the beginning these algorithms accomplish more than a RRQR decomposition. Due
to the rotations performed on both sides of the matrix the off-diagonal block will also be small.
Hence the following result from [26] applies: if the off-diagonal block is small enough, i.e. if

IR + IR < o

then the first part of the refinement steps in [25, 26] causes a monotonic decrease ”R(xlz)” < [IR(&)”
in the (1,2) block, and so does, of course, the second part of the refinement step.

However, the refinement step in [26] is nothing else but two iterations of our algorithm
ROT = gp,  ROT Z 9@ X

The refinement step in [25] amounts to performing incomplete QR factorisations, where R(lll) remains

lower triangular.

As we showed in the previous section, no assumption on the (1,2) block is needed in general
to ensure monotonic decrease, as long the singular values of R(lil) and Rg'z) have been separated: if
‘y,(:) < 1 then ||RGFY|| < (|RSD||. This is true regardless of whether o4 is small or not. However, if
||Rg'2)|| is small then ||R(1i2+1)|| is as small, — regardless of the relation between Rg‘l) and Rg'z) — because
Rg';"l) = Qgilﬂ)Rgz)T, so “R(l’;'l)“ < HR%,)” Hence, one can compute a URV decomposition of R by
dete_rmining a RRQR decomposition RP = QR and then performing several steps of our algorithm
on R, which will converge monotonically to the desired URV decomposition.

5 Deflation and Convergence Criteria

Demmel and Kahan [11] have shown that, in finite precision arithmetic, the Golub-Kahan algorithm
for bi-diagonal matrices computes singular values to high relative accuracy, provided a zero shift
is used for the smallest singular values and the algorithm is implemented without subtractions.
Fernando and Parlett [12] modify Rutishauser’s differential QD algorithm for bi-diagonal matrices
to obtain an algorithm that is faster than Demmel’s and Kahan’s implementation of the Golub-
Kahan algorithm but still computes singular values to high relative accuracy.

5.1 Bi-Diagonal Matrices

Demmel and Kahan provide two types of convergence criteria that preserve high relative accuracy
of the computed singular values.

Convergence Criterion 1a sets the off-diagonal block R;2 in R to zero whenever ||R12|| [e7 Ry ex|
is small enough, where e is the vector of all ones and e is the kth column of the identity matrix.
Note that || Ry2|| is just the absolute value of the off-diagonal element in an upper bi-diagonal matrix.
If R has also positive diagonal elements and negative off-diagonal elements, which can always be
accomplished by multiplying R with orthogonal diagonal matrices, then |eTRl'llek| represents a lower
bound for the one-norm of R,

le” Ritex| < lle” Ryl = 1Ryl < VEIRT-
Thus, Convergence Criterion la has the upper bound

[|Ruzll €7 Riy'ex] < VEIIRT | | Raall
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-+ Convergence Criterion 1b is the equivalent of Convergence Criterion la applied to an algorithm
"based on a QL decomposition, i.e.a decomposition into a product of orthogonal and lower triangular
matrix.

Convergence Criterion 2a sets the off-diagonal block to zero whenever
2|| Ras|
2P (0min(R11) + || Raz|l)

is small enough, where omin(R11) = 1/||R7}|| and gap, = omin(R11) — || Ra2||- Convergence Crite-
rion 2b is the analogue for a QL-based algorithm.

Demmel and Kahan show that the application of these convergence criteria causes essentially
only a relative perturbation in the singular values. Suppose the singular values of R;1; and Ra are
written as gy > ..»> p,, and-let 0 < 7 <1 be the relative accuracy to which the singular values
are to be computed.

As for Convergence Criteria 1a/b, Theorem 4 in [11], if || Ri2|| e Ry ex| < 7 then each singular
value o; of the bi-diagonal matrix R satisfies

—mé(n) < ln < me(n),

where ¢(n) < 7/v/2, and there are at most m singular values y;, one of them being p;, whose
intervals

{,, . —(n) < lnf; < ¢(n)}

overlap.

As for Convergence Criterion 2a, Theorem 5 in [11], if
2| Rao|?
8aPk(0min(R11) + || Razll)

then each singular value o; of the bi-diagonal matrix R satisfies |oj; — pj| &~ mnu;, where mn <1
and there are-at most m singular values y;, with 4; among them, whose intervals

<7

{pn: |m—pl <nu}

overlap.

5.2 Triangular Matrices

We now extend the two types of convergence criteria in [11] to the computation of singular values
for triangular matrices.

The extension to triangular matrices is accomplished by generalising the following theorem of
Stewart from [25]. If || R12|| + || R22|| < ok then

lok+i — 0i(Raz)| _ || Razl] [| Roal|
o1(R22) = 62— ||Ra||?’

6= O — ||R12”

We now derive a simpler bound that holds without any assumptions on the size of || Ry3]|. To snnphfy
notation, set R = R(® and v; = 4(®.
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From RT = QR it follows that

(R%z) =0 (R22) 9 (Rn)

Using |oj(A + E) — oj(A4)| < ||E]|, Corollary 8.3.2 in [18], with

ima(t). werea(d)ea()-(4)

yields for the singular values of Rz, and Ras
|oj(Ra2) — 05 (Ra2)| < || Raal-
But in Section 4.4 we showed that
|Riall € 7ellRiall, v = I|RE || Razll.

Thus )
loj(R22) — 0 (Ra2)| < vxl|Razll-

According to Section 4.1, 'y() is monotonically decreasing, ¥, ('+1) < ,(:), and the difference
between two successive iterations is

loj (RS = o3 (RED] < IR < IR < 7kl Rasl-
As for the difference between iteration i + 2 and %, we employ the idea in Stewart’s proof in [25],

loj(RSFD) — 05 (RI)] < Lo (RS — a3 (RS )] + loi (RS ) — 05 (RS < (754 +14) [ Raall-

When Vi is non-smgular then, from Section 3.6, the singular values of R() converge to the
singular values 041, ..., 0y of £ as i — co. Whenever v; < 1 we get in the hmlt

lok4j — 0j(Re2)| < || Razl| Z'Yk = IRl §
l..

since Y2, 7} = == — 1. Using 7 = ||RT [l |Ra2l| and omin(R11) = 1/||R111|| yields

|0k+i - dj(Rzz)l ”Rl ” ”R ” - "R12" )
01(Rz3) < Omin(R11) — || Razl|

We summarise the results in the following theorem.

Theorem 5.2.1 Let L

_ k(Rn R
Ro= H(M R

be a non-singular upper triangular matriz of order n with SVD R = ULVT and singular values

012 ...205 2041 2 ...2 On.

If V is strongly non-singular and if gap, = Omin(R11) — ||Ra2|| > 0 then the singular values
0j(Re2) of Roy satisfy
|ok+s — 0i(Ra2)| _ IRzl
o1(Rs2) T gapg
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5.3 Consequences

The implications of Theorem 5.2.1 discussed in this section are to be interpreted as statements about
the nature of a perturbation result rather than as statements about the accuracy of our algorithm
in finite precision. Although Demmel and Kahan [11] have presented an implementation of the
Golub-Kahan algorithm for bi-diagonal matrices that guarantees high relative accuracy in finite
precision, it is not clear that there can be an implementation that guarantees high relative accuracy
for triangular matrices in finite precision.

Theorem 5.2.1 is most valuable for the case k = n—m, where m is the multiplicity of the smallest
singular value o,. It represents a convergence criterion that assures high relative accuracy for the
computation of ¢, (this presumes that no premature deflation was enforced in the interior of the
matrix at some earlier time). Theorem 5.2.1 requires gap; > 0, which means that all singular values
of Ry are larger than those of Rys. Since gap;, > 0 is equivalent to 4 < 1, Theorem 5.2.1 is
applicable to our algorithm only once the monotonic phase for k has set in. Note that gap, > 0 is
not satisfied for a graded matrix whose elements increase in size towards the bottom, regardless of
how small R;9 is.

Theorem 5.2.1 represents the ‘square-root of’ Convergence Criterion 2a in [11]. It also equals,
up to a factor vk, the upper bound on Convergence Criterion 1a, which was derived in the previous
section. This can be seen from the Taylor series expansion,

lz—k'yk =7+ O0(%),
o
lok+j — 0j(Ra22)|
o1(Ra22)

Note, however, that Convergence Criteria 1a/b in [11] apply regardless of whether vy < 1.

<IRTHIR12ll  + [l Razll || Rzall O(FF)-

The bound in Theorem 5.2.1 suggests using the simple deflation criterion

8aPy
Rzl £ 7 25—
(| Re2|

in order to guarantee the computation of singular values of triangular matrices to absolute accuracy
n — assuming that no deflation in the interior of the matrix has been enforced earlier. If ||Ra2||
is small and the singular values of R;; and Ras are well-separated then this criterion recognises
convergence earlier than the traditional criterion, Corollary 8.3.2 in [18],

[|R12]| < n.

Relative accuracy 7 for all singular values is achieved if

gapy
Ryl < ,
” 12“ > UK(Rn)

where k(Ra2) = ||Raz|| || R55 || is the condition number of Raa.

6 Summary

We have presented a new algorithm for computing the singular value decomposition of real trian-
gular matrices R that avoids the formation of RTR or RRT and instead performs repeated QR
factorisations on iterates of R.
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We have demonstrated the monotonic convergence of the singular vectors, and we showed that
the rate of convergence of the singular values is the square of that of the singular vectors. The most
important ingredient in these proofs is the exploitation of the structure of the SVD of triangular
matrices. The convergence results also explain the occurrence of deflation and the slow convergence
for inappropriately graded matrices. These results do not only apply to our algorithm but also
to the unshifted QR algorithm for computing eigenvalues. Qur analysis can be easily extended to
multiple-step algorithms with stationary shifts [29] for the computation of eigenvalues and singular
values.

By making the connection to RRQR and URV decompositions we have developed new ideas for
several algorithms:

e A preliminary RRQR decomposition preceding the application of our algorithm so as to reverse
the grading in inappropriately graded matrices and enhance subsequent convergence.

e The computation of the URV decomposition by several iterations of our algorithm.

e Alternating application of RRQR decompositions and several iterations of our algorithm in
order to enforce premature deflation of off-diagonal blocks in a divide-and-conquer algorithm
for computing singular values of dense matrices.

We have presented a very simple convergence and deflation criterion for triangular matrices
that recognises convergence of the singular values earlier than the traditional perturbation bounds.
In particular, it permits high relative accuracy in the smallest singular values. This convergence
criterion represents a generalisation of some convergence criteria for bi-diagonal matrices in [11]. A
more careful perturbation analysis may lead to more optimistic results about deflation in the interior
of the matrix.

Since we have only presented ideas in this paper, the next step will, of course, be to gather
numerical evidence to determine whether our ideas give rise to numerically viable algorithms.
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