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SYNTAX GRAPHS AND FAST CONTEXT FREE PARSING

1. INTRODUCTION

Syntax graphs have been used both as a means for presentation of
context-free grammars [1] and for storing such grammars in a computer
memory for use with parsing programs. [3]. In Section 2, we define a
graph form for context—-free grammars. which is suitable for both purposes.
The graphs are directly useable by a bottom—up parsing program, and
can be modified in a mechanical way to be.suitable for a top-down parsing
program. In Section 3, we discuss the relative merits of top—down,
bottom-up, and bounded context parsing: programs in terms of process trees
for parsing. In Section 4, we.continue the comparative analysis at
the more detailed level of the work required to derive nodes of a process
tree. In Section 5, we describe a 'fast parsing" program arising from
these analyses. This program is a bottom—up multiple—tracking program
which uses the graph and auxiliary. tables of modest dimension to achieve
a parsing speed which closely approaches that of parsing procgrams for
bounded-context grammars. We draw heavily on the ideas developed in
the report "Multiple-track Programming" [5], and recommend it as a

preliminary reading.

2. THE SYNTAX GRAPH

The Syntax Graph is a tying together of the prodﬁctions of a context-
free grammar ([9], [4]) to allow the recognition process for sentences in
the grammar to be expressed in terms of simple motions. in the graph.

The state of the parsing process can.be. completely characterized by a
small set of pointers to nodes. of the graph, one to the "current point
of interest" and the rest indicating ''yet unsatisfied goals'. Each node

of the graph indicates one of four things:
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1. A terminal symbol is reqﬁired >Ee

2. A non—-terminal is required -<EC>-

3. A non—terminal has been constructed -(EC )~
4, A production number should be recorded »]3 ]-

In the graph fragment

cEmy37911717% <en??s ey’
we show that is we have arrived at node 5 (the superscript is used to
designate a unique number for each node), we have constructed the non-
terminal EA, and that we may build the non-terminal EB on top of the EA
by finding a + and an EB in the sentence under analysis. The boxed
node 71 indicates the production number 17 should be recorded to indicate

how we got from node 5 to node 4.

A graph in this form is derived from the producfions of a context
free grammar in a mechanical way. We use the BNF form of a context free
grammar as described in the ALGOL-60 Report [4], but adding a production
number to each production to identify it, and eliminating the use of the
vertical bar. Figure 1 gives a grammar for a programming language of
medium size in this notation. Figure 2 gives the graph derived from it

and economized. The procedure for writing down the graph is the following:

1. Construct one circled node for each non-terminal symbol

of the grammar.

2. Construct a node for each terminal symbol which occurs
just to the right of the sign :: = . (parentheses denote circled ncdes
in Figure 2)

3. TFor each production

4 <a> u=be...d

construct a path from the node for b to the node for a,

and include along the path new nodes for ¢...d, and one

boxed node with the production number in it. (Square brackets demote

boxed node in Figure 2)




Thus, the productions

COMMON

49 <TE> :: =
50 <TL> :: + <TE>
51 <TL> :: = <TL>, <TE>

produce the graph

The graph can be "economized" to save storage and to improve parsing
performance (as discussed in Section 3) by combining identical nodes

which share the same predecessor or successor. For example the fragment

@BFOR »<AD> - IN

| \'FOR +<AD> > TO

can be collapsed into

@B) +FOR + <AD> > 1IN

S0

In combining nodes leading to a common successor, a boxed node
can be interchanged with its predecessor if it has only one. The graph

fragment

;§——><EB> -—)-->
- +< EB> ->f’q\




can therefore be collapsed to
+ |17} <EB>»
- (18]

Incidentally, if this process leads to a configuration

=

we have identified an ambiguity in the langunage described by the grammar!
The graph of Figure 2 has been economized in this way, although this
‘was done by hand, and a few possibilities were missed: See if you can

find them.

3, MINIMUM PROCESS TREES

9

As discussed in "Multiple~Track Programming" [5], the parsing process
can be characterized by process trees where each node of the tree indicates
a state of the parsing process and where local ambiguity is reflected
in having several nodes at the same distance from the root. A minimum
process tree is one in which no nodes at a fixed distance from the root
can be eliminated without knowledge of what happens further from the
root. The discussion in [5] indicates that for languages suitable for
human use, psychological considerations lead us to expect only a few
nodes at a given distance from the process tree root, because the presence
of more than one node indicates genuine ambiguity in the vicinity of the

node.
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We shall use the "condensed bracketing' mstation introduced
in [5] to describe parses. This notation is derived from the con-—
ventional parse bracketing mnotation by merging brackets whose left
ends occur at the same place. The.conventional and condensed
bracketing of a small sentence according to the graph of Figure 2.
is shown in Figure 3. In Figure:3iwe.useﬁproduction‘numbers.to.denote
the origin of the bracket. In the .condensed bracketing, the number
for the inner most original bracket is written first, next .inner . .
‘most next, etc. so that .we may derive the conventional diagram from

the condensed diagram.

In the condensed bracket nctation, each bracket corresponds . .
to a path through the graph from the entry point for the symbcl at
its left end to the circled node for its goal. The production numbers
indicate the square boxes parsed.along.tha'way,'and identify the path
uvniquely. Another way of identifying this path is to write down
the node number of each node which. .causes us to match a terminal.
symbol or set a new goal under. the symbol we matched or used to begin
the new goal. (Actually ambiguities of a trivial kind such as those
intfoduced‘by duplicated productions will not aliow this second
notation method to distinguish the different paths, but this is a
minor restriction). The bracketing.using this conventiocn is shown
in Figure 4. Node numbers have been. written above the bracket

lines to avoid confusing them with production numbers.

Using the notation cf Figure.4, we can” describe each node of
the process tree for a parse by writing down in order, the ncde
numbers under a symbol (taking the next.one to the left where cne
is miseing). Thus the (minimum) process tree for the sentence of
Figures 3 and 4 is shown in Figure 5. This process tree reflects.
our inability to determine which use of .the < sign is intended without

looking at the symbol which fcllows it.
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We now describe the construction cf a bottom-up parsing program
which will always use a minimum process tree. We shall use as ocux
departure pcint the algorithm from [5], which leads eventualiy to

the fast parse algorithm given in Section 5.

The algorithm of [5] must be modified to avoid wandering off
into areas of the graph which do not lead to the current goal.
This mistaken meandering could .occur at node 4 of Figure 2, for example
with the goal EL. The algorithm of [5] will go off toc (among other
places) nodes 127, 7, 139, 9,and 140 to match a comma as well as

going to mcde 152 to match the comma. In fact an expression
X + Y, P*Q, M[N]

is both a legitimate EL and FL and.the algorithm of [5] will construct
parses for both, even though an FL can never turn into an EL wnich

i{s the current goal. The remedy for this prcﬁlem is to comstruct

a connectivity matrix to show whether or not a path exists between

two ncdes of the graph.

The aigorithm of Section 5 uses such a matrix, and is thereby
forced to stick to the minimum process tree. Eachvﬁode oi the. process
tree will contain a set of numbers which identify -the current .stack
of goals (in terms of the syntax graph nodes where the goals were
set) and a pointer to the entry point .of the graph for the current
symbol if a new goal has been set. As each new symbcl is read, it
either matches a required terminal, cr leads to a required non—terminal
at the current point in.each parse, or the parse is not continued.

As goals are reached every step taken in the syntax graph is checked
against the connectivity matrix to insure that the successor node

is still on a path to the goal it .must reach. Clearly there will

be one such successor node or the node before it could not havé

been on a path to the goal. So each of the syntax graph nodes listed

in a process tree node leads to the goal requested by ncde listed
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below it, and the bottcm one leads. to the final goal. The process
for terminating brackets is constructed so that each of these pending
nodes has a possibility of working its way to its goal by finding
more symbols in the sentence. We can therefore not eliminate any
nodes of the prccess tree without .reading more’symboléc Since in

a context free grammar, the validity of drawing a parse bracket

is determined entirely by what the. bracket embraces, we are assured
that nothing will allow us .to reject a node of the process tree
except symbols further on in the sentence. Sc the process tree will

be minimal,

A top-down parser cannot use.the syntax graph directly, but
must have it broken into .a set of graphs, one for each non—terminai,
telling how to construct the non-terminal. This is accomplished
by starting at the circled .node for.a non—terminal and working ..
backwards. When another circled node is reached, it is changed into
a non—-circled node, and the backward moving process is terminated. .
All circled nodes reached this way. are collected together as.successcrs
cof an entry node .for the non-terminal., Loops in the graph are left
intact, however, to avoid .the left-recursive-producticn problem for
top-down parsing. The resulting top-down subgraphs fcr PG, ED, EC,
EB, EA, AD, and NL are shown in Figure 6. In this graph we have
kept the same node numbers as in Figure 7, except where circled
nodes have been turned into nodes requesting non-terminals. These
nodes have .a new number appended to the old one to make the numbars

unique,

Figure 7 shows the parse and Figure 8 the process tree for the
parse of the same sentence analyzed with the botium-up parse program
in Figure 4, Brackets héve not been condensed here as the top-dcwn
algorithm does not produce them .in condensed form except when going
around a loop, and no loops .are traversed in this example. The fack
that the top-down parser does not produce the condensed bracketing

leads tc more branching in the process tree, but as we shall discuss




in Section 4, less work is required. to derive the average nocde,

so we expect the total amount of work required for the top-down and
bottom-up programs to be roughly the same in the absence cf further
optimization. For the bracketing given, howéver, the process tree
will be a minimum one, The argument is essentially the same as fcr
the bottom-up case.. A connectivity matrix is nct required for the
top—down parser, since all nocdes in the tree for a given non—terminsl

lead to its circled node; we have constructed the tree this way.

Parsing programs for bounded-context grammars all have a process
tree with no branching, since.the point of using such a grammar
for these programs is precisely to.eliminate the branching and.

hence the requirement for backtracking or multipie-tracking.

4,. . NODE DERIVATION TIME

We have established that for reasonable languages, the top-down
and bottom-up algorithms we are discussing will not have a process
tree substantially bigger than that for bounded-context parsers.

s

s

However, the ncde derivation time for both of these algorithms
substantially longer than that for at least the fastest of the bounded-
context systems. We shall now show.a simple mcdification for the
bottom~up algcrithm which makes its node derivation time compare . .

well with bocunded-context parsers. We will compare it, in particulsr,
with the cperator precedence parser of Floyd [7] since that is one

cf the fastest of these Programs . We have nct discovered g similar

cptimization for the top-~down method.

The unoptimized version .cf..the BU algorithm must visit a large
number of nodes of the syntax.graph.when deriving some new nodes of
the process tree. For example, in deriving the second two nodes of
Figure 5 (those for the < sign) we .visit all nodes Whichvcan be

reached from node 15 without passing thrcugh a "terminai required" or
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"non-terminal required" node. ' The nodes visited are 155, 13,

68, 65, 156, 106, 103, 110, 6, 102, 5, 94, 4, 93, 3, 21, 2, 159,

163, 32, 26, 70, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 22, and 46,
a grand total of 34 of the 160 odd nodes in the graph. (The .top-down
program will visit pretty much the same list of nodes eventuaily) -

At each of these nodes (except the boxed ones where we just record
the number in the box) we ask.if we have arrived at a gcal (if the
node is circled) or whether the symbol at hand matches cne required
or will begin a required non-terminal. The answer tc these questicns
will be yes only at a very few ncdes. In the case discussed above

only nodes 81 and 22 yield a 'yes" answer.

(x4
jm g
m

The modification cf the algorithm is essentially to change
search through the nodes of the syntax .graph to a table lookup .
The table we need is one which answers the question "if at node i,
and having the symbol j, what nodes should next be considered?"

A table to answer this question in .complete generality would. be large,
since one dimension is the number. of nodes (about 160 here) and the

other the number of possible terminal symbols (about 35 here).

If we restrict the class of.nodes at which we sre vz take this
"gilant step" to circled nodes, however, we achieve almost alli the .
saving. The only non-circiled. nodes where branching cccurs in Figure
2 are 130, 32, and 27, and the degree of branching is small ét,these
nodes. Even sc, we could.include them in the tabie lookup process

by intrcducing our artificial circled node at these places.

The tasble we need to store mnow.can have an entry for each symboi
telling where that symbol occurs.after any circled node, and z bit
pattern telling which circled nodes the symbel can follow. Since
some symbcls can follow circled nodes.in several places (a comma,
for example, occurs after circled ncdes at 156, 140, 148, and 152) we will
have to link tcgether entries for such multiple cccurances. It happens

in Figure 2 that there are no '"non-terminal required" nodes foliowing
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circled nodes. In general there could be such occurances, of course,
but such nodes are then listed for each terminal which can begin

the requested non~terminal. (Whether a terminal begins a non-
terminal can be determined from the connectivity matrix). The
details of these tables are discussed. in Section 5 in conjunction

with the detailed description of the optimized BU algorithm,

The other type of question .asked at circled nodes is "has the
current goal been reached?" This question can be answered by a
connectivity matrix too, namely, one which tells which circled nodes
are connected to which others by paths going only through circled

(and boxed) nodes.

With these tables in use, only one node is examined in moving
from one node of the prccess tree to the néxt, except when goals
are satisfied. 1In this case one more node for each satisfied goal .
need be examined. This processing, however, it almost identical
in its requirement to that required to move from one symbol to the

next in Floyd's algorithm.

The optimized BU algorithm will therefore be slower than bounded-
context parsers only by the branching factor of the process tree.
This means that it will equal.their performance on grammars that
can be used with those methods, and in any event will not be significantly
worse on other grammars, which are designed (as they should be to make
the language easy for people to use) to allow only a modest amount

of local ambiguity.

The cptimized BU algecrithm will not prcduce output identical to
that for the unoptimized version. . In particular, because boxed .nodes
are skipped over when the tables are empleyed, brackets which cover
only one other bracket or symbol will not be puﬁ onto the parse.

If it is desired to have these brackets in the output, it will be

required to store the list of boxed nodes passed over in moving from a
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circled node to the nodes picked out .of the tables. It is. easy
enough to include such a provision, but it is the author's experience
that most of these brackets are ignored in post-—parse processing

anyway, and it is a small inconvenience to do withcut them altcgether.

It is unclear whether similar optimization could be applied to
the top-down algorithm. Could this be done, however, it is unlikely
that the result would be any better than with the BU algorithm, and
so we recommend the TD approach be rejected altogether in faver of

the optimized BU program.

‘5, THE FAST PARSE ALGORITHM

The fast parse prcgram is described in a global flow diagram in
Figure 9, and in detail in Figure 10. Figure 11 describes in detail
the secticn for processing a circled node in the unoptimized BU
program. The fast parse program has been made from this BU program
by replacing only this section. The BU program is the bottom—up
multiple-tracking program of [5], but tailored, as suggested there, to
the multiple-tracking framework, and augmented to use the connectivity
matrix. The arrays used by the programs are described in Figure 12.
The syntax graph is contained .in arrays POINT, LINK, TYPE, and the
connectivity matrix in BITS. The words describing cne node are
linked together in LINK. The first of these for every node is centained
in the beginning of the arrays, and .the POINT value is the index
of the characters for the terminal or non-terminal in DI (or a production
number fcr boxed nodes)o The rest of the point values for a node
occur in the last part of the arrays and contain pointers to successors
nodes“ It has been arranged that. the non-terminals have directory entries
which are the same as the node number for the circled node for the.
non-terminal, Thus, all non-terminals are identified by a small
number, This number is used as a shift count for bits in the .connectivity
matrix BITS. If node I reaches circled node J then the Jth bit. of
BITS [I] (from the right) will be.l, or BITS [I] A (1 LS J) will be

~ non-zero. The TYPE array indicates the type of a node as follows
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TYPE [I] = O means the node requests a non-terminal
TYPE [I] = 1 means the node requests a terminal symbol
TYPE [I] = 2 a circled (non-terminal reached) node
TYPE [I] = 3 a boxed (output) node.

DI contains the characters for the words recognized by the
lexical analyzer. The initial DI is DIN words long and contains
at its beginning the names of the non-~terminals, then the terminal
symbols. As the parsing proceeds, names occurring in the program
being parsed are added to the end of DI. These are all taken by
the parser to be the terminal symbol NAME, but then indices in DI
are placed in the output stream for use after the parsing process.
ENTRY gives the graph entry point for every terminal symbol which

has one.

NODE, NLINK, and NBITS store the information required by the
circled node section of the fast parser. The beginning of these
arrays is parallel with the DI and ENTRY arrays so there will be
first entries for the non-terminals and then entries for the terminals.

"ecircled node connectivity

The entries for the non-terminals store the
matrix", If NBITS [I] A (1 LS J) is non—zero, then circled node J
can be reached from circled node I by passing only through circied
or boxed nodes. Thus, it answers .the question "if at node I, have I

actually made the non-terminal for node J?"

The entries for the terminal symbols give the graph locations
where the terminals are called for. (either directly or because they
begin a non-terminal which is called for) after circled nodes.
The NODE entry tells the node at which the terminal is requested.
The NBITS entry tells what circled nodes preceed the node NODE.
Thus for the terminal symbol I, and.a circled node J, if NBITS. [I] A (1 LS J)
is non-zero then the terminal symbol I is requested at node NODE [I]
and this node can be reached from J by passing through only circled
“or boxed nodes., Since a terminal symbol can occur at several places

in the graph, several entries for each terminal symbcl may be required.
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If more than cne entry is necessary, the extra ones are put on

the end of the arrays and linked with NLINK., In the syntax graph of
Figure 2, the symbol < has the nodes 22 and 81 listed in node., NBITS
will be 100000001100000 for node 81 (indicating that node 81 comes
after nodes 5,6, and 14) and 100000001000000 for node 22 (indicating

it comes after nodes 6 and 14).

The contents of these arrays for the graph of Figure 2 is given
in Appendix 1. The node numbers given as superscripts in Figure 2

correspond to the node numbers in POINT, etc.

The parses are kept in array P. P has been set to hold 11 parses

of length 30 in the program of Figure 10. Each parse has

P[I] = a pointer to the current node of the graph
P[I+1]
P[I+2]

P[I+3] pairs of words containing tentative

]

a pointer to the last item of output

the word of this parse containing the last goal
P[I+4] output (first word) and goals (second word)

Thus DI [POINT [PIT]11] is the name stored at the node now
being processed by parse I. DI [POINTIP[I+P[I+2]]]1] is the name of

the current goal.

CUR holds the CN indices in P of all the current parses, and NEW
holds the NN indices in P of parses which have been extended, and

hence will be used for the next symbol.

OUT and OUTL hold the output for the current parse. Because
we have moved some boxed nodes back in the graph, the production number
in a boxed node ‘cannot be put directly in the output, or the final
-result will be in the wrong order. For example, the production number
9 at node 47 must not be put into the output until the outputs
from the EC called for at node 25 have been put there. Therefore

when a boxed node is parsed, its production number is put into the
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goal stack at (P[I+3], P[I+5]...) until the next circled node is
reached at the same goal level. Then the production number is put

into OUT and OUTL is used to link to the last item of output put

into OUT for this parse., The links are necessary since all of the
output from all parses is kept in OUT until only one parse is found
valid. At that time the output is. removed from OUT and either stored
compactly in a "final output" array or passed on to generating programs

immediately,



1 <PG>:i=<ED?
56 <ED>: i=<ED> i <EC?
2 <EO
3 CEC>i=<AD> '<' - <ECO
4 <EB> ' 'O LECO
5 <EB> "= 'O B> ELSE <ECO
6 <&€B> FOR <AD> IN <EB>, €B>.CEB>
7 <EB FOR ¢AD> 70 <CEB>
8 &B> FOR <AD> FROM <EB>
9 SNAME> ' ' CECO

12 GO TO NAME>
11 SUBR ¢NAMED> ( <KNL> ) IS <EO
12 PRINT <FL>

13 Re Ap <FL>

i4 <NL> ARE <TL>
15 NLY IS KT

16 <EB>

17 <EB>: i=<EA> + <EB?>

18 E - B>

19 CEEA> ¢ <EB?

20 <EA> / <EB?

21 EA> AND <EB>
22 <SEEA> <Y <EBD
23 EA> 'O <EB>
24 EEA> '=' (B>
25 <EA OR KEB

26 EA> LS <EB>

27 <EA> RS <EB

28 <E A

20 <EAD::=NOT <EAN

30 ( <ED> )

31 <AD>

32 NAME> . <NAMED>
33 <NAME> ( <EL> )
34 <ADD>: i=<NAMED>

35 <NAME> [ <EC> 1]
36 <KFE>::=0CT <EB>

37 IGR <EB

38 STG <EB>

39 FILE <FN>

40 /

41 <EB>

42 <FN>: i=<NAMED>

43 NAME> ,<NAME >
44 CNAMEY> JKNAME D[ <SNAME> »<KNAME D]
45 NAME> [SNAME >, <NAMED ]
46 <FL>: i=<FE>

47 <FL>.SFE>

48 < TED>: i={NAME> LONG

49 CO MM ON

50 <TL > :=<TE>

51 <TL LTES

52 <EL>: 1=<EB>

53 <EL><EB>

54 <NL>: s=<NAMED>

55 SNL> »SNAME >

FIGURE 1: THE GRAMMAR FOR THE SYNTAX GRAPH IN FIGURE 2.
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98 99 190 121
. 187 128 169
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<TE> =
145 146 i | 150 148
COMMON (491 (501
14 3 1 44 \l' 10 147 L 11
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128 8
{423 (FN)
N
129 132 131
S — T S 4 3]
1%
[ 447
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(4 5] = C N AM E , NA ME ]
3

FIGURE 2 (1)

THF SYNTAX GRAPH FOR PRODUCTIONS OF FIGURE 1
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70 71 72 I k) 33 24 36 37 38
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A
73 74 42 43
. - (181 70 (73
75 76 a4 45
= te——[19 ] —— FR OM (8 Jmme
77 78 2% 29 3 3 25
s / (201 e = g C EB Do EL SE wwmnl 5] wars EC > apmmmrens
AN
79 80 28
Fe AN Do [2 1] (43 >
81 82
e € (223
83 84
s > {231
85 86
b, [ 241
87 88
—— OR (253
89 Y
e S (263
9 92 53 54 56 56 58 59
RS (273 S UB Remee NA ME e ( mremeek N[, Do) et | S e[ 11 Jmm
22 23 24
- < - s [31]
46 47
: [9 Je

FIGURE 2(2)¢

(HOOK THIS ON TO THE RIGHT OF THE LAST PAGE)




35 52
64 160
g <EC>
61 v 62 : \L 161 [ 159
| ’ v 3 21 L 2 T‘ 163 2 1
o <p» (EC) [213 >( £ED) A,%—---------I:13"-"'—'(PG)
I-N
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FILE <FN D (391 goememmncam L E
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0C T 36 Jomememd (B Dooesd
118 119
|G Reememme [ 37 ] ommmemmmemes
120 14
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CIGURE 2(8)% (HOOK THIS ONTO THE RIGHT OF THE LAST PAGE)



A < — B + C %
1 B R !
34 34 34
| D | W |
31 31
1
28
\ i
17
//
\ 1
16
(. I
3
1
2
[
1
CONVENTIONAL BRACKETING
A < — B + C %
b {
34,31,28
k 4 |
34,31 17,16
1 1 | A
\ ) 1 § 2]
34 3, 2
CONDENSED BRACKETING
FIGURE 3. CONDENSED PARSE NOTATION
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FIGURE 4. CONDENSED PARSE NOTATION WITH GRAPH PATHS INDENTIFIED
FROM GOAL SEEKING NODES.

A ya ‘— B + C
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FIGURE 5. THE MINIMUM PROCESS TREE FOR THE PARSE OF FIGURES 3 and 4.
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L 65 66 67
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FIGURE 6(1).
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FIGURE 8. THE PROCESS TREE FOR THE PARSE OF FIGURE 7.
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NEWS

CI <1
NN < ¢
S <« LEX(o0)

NO

\1./

< § > DIN.?

...... 1
T «<CUR JCI] + 1
OUTIU] <« S
OUTLJU] « P]T]
P[I]+«TU

T<U+1

CL<CI + 1.

E CN ? )
LYES

CIL = 1

S < NAMNUM

N
( CI

NO

\ N

(:§§§§;:>_W 3| T« CUR [CI]

J « POINT [P[T]]
G« P[I+P [I+2]]

v

NEWJ

(:)é—_ZiiZ:zi TP T3] }‘i39(:> 5C)

FIGURE 10 (2) THE FAST PARSE PROGRAM: PROCESSING A NEW SYMBOL, NEW PARSE,
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FIGURE 10 (6) THE FAST PARSE PROGRAM: PROCESSING A CIRCLED NODE (CONTINUED)
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SYMBOL.



VALIDL (L,G)

T+« L

H<« 1 LS POINT IG]

Ty e

N

V4
=
+¢
ol
.H
H
d

- A \ 2 2
Q < POINT [T]

yes

N , _
( BITS IQ] A H=07 )

Tt

no

T A3

VALIDL < T

v

FIGURE 10 (9) THE FAST PARSE PROGRAM: A SUBROUTINE TO FIND THE NEXT
NODE WHICH STILL LEADS TO A GOAL G.



SUBR  COPYP (IJ) IS (

(PIH] = ¢=> GOTO GOT ) FOR H IN 1, 30, 301

ERROR ( ‘OUT OF PARSE SPACE')

GOT: ®PH+W] « PITJ+W]) FOR W TO P [J + 2]

")

FIGURE 10 (10) THE FAST PARSE PROGRAM; A SUBROUTINE TO FIND SPACE FOR A
NEW PARSE, AND COPY AN EXISTING ONE INTO THE NEW SPACE.
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FIGURE 10(5-6) REPLACED THIS TO MAKE THE FAST PARSE PROGRAM.
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